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and heightened uncertainty hence depresses aggregate activity. With sticky prices,
increased precautionary savings lower aggregate demand and generate significant
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1 Introduction

The Great Recession has led to a reconsideration of the role of uncertainty in business
cycles. Increased uncertainty has been documented in various markets, but household
income uncertainty stands out in size and importance. Households face substantial id-
iosyncratic income uncertainty that is up to two orders of magnitude larger than the one
of total factor productivity. Shocks to household income are very persistent and their
variance changed substantially over the business cycle. The seminal work by Storeslet-
ten et al. (2001) estimated that during an average NBER recession households’ income
uncertainty, interpreted as the standard deviation of persistent income shocks, is about
126% higher than at the peak of an expansion.

In any model with incomplete asset markets such time-varying household income un-
certainty translates into business cycle variations in the propensity to consume, hence in
aggregate demand. When income uncertainty increases, households demand more assets
for precautionary motives and private consumption declines. To quantify these effects, we
augment the incomplete markets model, as pioneered by Bewley (1980), Huggett (1993),
and Aiyagari (1994), by nominal rigidities similar to Gornemann et al. (2012). In this
model, uncertainty driven aggregate demand changes lead to time-varying markups and
finally fluctuations in aggregate output.1 Depending on the reaction and possibilities of
monetary policy, the supply of liquidity may not increase sufficiently in order to restore
the flexible-price equilibrium.

The setup we study isolates the effect of uncertainty transmitted from asset demand to
aggregate demand. Other studies have emphasized the role of an increase in labor supply
caused by uncertainty spikes, see e.g. Basu and Bundick (2011). Yet, this channel - at
least for increases in household level income uncertainty - rests upon the assumption that
households can adjust the intensive margin of their labor choice easily. If one assumes
labor supply decisions to be lumpy investment-like decisions, the opposite finding should
hold: households wait longer in adjusting their labor market participation.

Other authors have analyzed settings in which uncertainty shocks change aggre-
gate productivity; either through changes in worker composition, see Takahashi (2013),
through decreased reallocation, see Bloom et al. (2012), or directly through unemploy-
ment duration, see Ravn and Sterk (2013). We are agnostic about all these channels

1Storesletten et al. (2001) explore the effect of time-varying income uncertainty in a standard in-
complete markets model analyzing the welfare costs of business cycles and argue that countercyclical
uncertainty generates considerable welfare costs. They do not explore the business cycle implications of
time-varying uncertainty. There is also a literature that models cyclical variations in factor reallocation
as transmission mechanism, e.g. Bachmann and Bayer (2013) or Bloom et al. (2012)

1



and therefore, look at uncertainty shocks that do not impact aggregate productivity or
aggregate labor supply – neither directly by changing the total labor endowment of the
economy nor indirectly through households’ labor supply decisions, but focus on the
fluctuations in aggregate demand caused by uncertainty shocks.

For this purpose, we model an economy in which households are subject to idiosyn-
cratic labor income risk and have access to two assets as means of self-insurance. One
asset is nominal and liquid (money) the other one is an illiquid, dividend paying real
asset. We model the illiquidity of the asset as limited participation in the asset mar-
ket, where the real asset can only randomly be traded as an approximation to a more
complex trading friction as in Kaplan and Violante (2011) who follow the tradition of
Baumol (1952) and Tobin (1956). It is the liquidity of money that makes households
willing to hold it even though it is a return dominated asset in our model, and when
uncertainty spikes, households seek to rebalance their portfolios towards money, i.e. the
nominal, liquid asset.

In this setup, we study two monetary policy regimes. First, we consider a regime,
in which the central bank does not engage in stabilizing the economy. Here, the Pigou
(1943) effect brings back the economy to the equilibrium and we show that in this regime,
an uncertainty increase can have substantial depressing real effects. A one standard
deviation increase in income uncertainty decreases aggregate activity over the first year
by roughly 0.1%, roughly the same size that Fernández-Villaverde et al. (2011) find
for a two standard deviation shock to fiscal uncertainty. The economy recovers from
this shock only fairly sluggishly after 12 quarters. Since an uncertainty shock works
effectively as a demand shock in our model, monetary policy can eliminate the aggregate
effects on output. We then go on to study the distributional and welfare effects of
uncertainty shocks and of systematic monetary policy response in this model. Since
an uncertainty shock decreases wages and the price level (i.e. increases the price of
money) in the economy, households that hold large sums of money gain from an increase
in uncertainty, while households rich in human and physical capital lose most. Active
monetary policy can change the overall costs of uncertainty shocks, but the general
direction of distributional effects remains if we assume wasteful seignorage: Upon the
uncertainty shock seignorage increases are financed by asset poor and human capital rich
households that buy the freshly printed money.

The remainder of the paper is organized as follows: Section 2 reviews the related
literature, Section 3 develops our model. Section 4 discusses the solution method. Section
5 presents the calibration, Section 6 our numerical results, and Section 7 concludes.
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2 Related Literature

There is now a vast empirical and theoretical literature on the aggregate effects of time-
varying uncertainty. The seminal paper by Bloom (2009) discusses the effects of time-
varying productivity uncertainty on firms’ factor demand exploring the idea and effects
of time-varying real option values of investment. This paper has triggered a stream of
research discussing under which conditions such variations have aggregate effects.2

A more recent branch of this literature focusses on the response of households to
increases in uncertainty and discusses this in a framework with nominal rigidities. Basu
and Bundick (2011) show that an increase in aggregate uncertainty operates in a standard
New Keynesian model with capital through the labor market and the “paradox of toil”. If
uncertainty about aggregate productivity increases, the representative household wants
to insure against the higher income uncertainty by producing more today, i.e. supplying
more labor. As a result, wages and hence marginal costs for firms fall. If prices are rigid,
firms’ markups over marginal costs will increase and the demand for consumption and
investment goods falls. Since in the New Keynesian model output is demand driven, a
recession follows.

Mericle (2012) also focusses on the “precautionary labour channel” as Basu and
Bundick (2011), but develops similar to us a model with incomplete markets, nominal
rigidities and shocks to idiosyncratic uncertainty. Our contribution differs from Mericle
(2012) by modeling strategy, solution method and focus. We explicitly model central
bank policy, we solve for the full general (Krusell-Smith) equilibrium taking the dynamic
evolution of heterogeneity into account, and focus on the quantitative implications of
uncertainty shocks in the tradition of calibrated DSGE models of the business cycle.
Mericle (2012), by contrast, keeps prices of consumption goods entirely fixed, such that
households hold out-of-equilibrium price expectations. While all this leads to strong and
intuitive theoretical results that highlight important propagation channels, it limits the
quantitative predictions.

Moreover, we can discuss the distributional consequences of more active or more
passive monetary policy upon an uncertainty shock, which relates our analysis to Gorne-
mann et al. (2012). Since an uncertainty shock drives up the value of money but decreases
wages and dividends, it implicitly transfers wealth from those households that are rich

2Arellano et al. (2012), Bachmann and Bayer (2013), Christiano et al. (2010), Chugh (2012), Gilchrist
et al. (2010), Narita (2011), Panousi and Papanikolaou (2012), Schaal (2011), and Vavra (2012) have
studied the business cycle implications of a time-varying dispersion of firm-specific variables, often inter-
preted as and used to calibrate shocks to firm risk, propagated through various frictions: wait-and-see
effects from capital adjustment frictions, financial frictions, search frictions in the labor market, nominal
rigidities and agency problems.
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in human and physical capital to those that hold a lot of money. In contrast to Gorne-
mann et al.’s model, however, we differentiate between the effect of monetary policy on
different assets and we highlight the role of money, i.e. an asset in which prices are
denominated. We find that an uncertainty shock drives down the relative price of capi-
tal shares in the short-run, because households want to change their portfolio structure,
holding more money for two reasons: in more uncertain times households want to hold
more liquid portfolios for insurance purposes and furthermore the return on money goes
up with lower inflation, while dividends fall. This portfolio readjustment effect amplifies
the depressing real economic effect of uncertainty shocks.

Most closely related is the paper by Ravn and Sterk (2013), which looks at shocks
to the duration of unemployment in an incomplete markets model with labor search and
nominal frictions. There, a shock to unemployment duration increases the perceived in-
come risk of households and lets these households demand more government bonds as
means to self-insure. At the same time, the shock decreases labor supply as households re-
main unemployed longer after a job-separation. They find that the increased uncertainty
might substantially propagate and amplify the effects of the shock to unemployment
duration if the central bank does not stabilize inflation strongly.

Another closely related paper is Den Haan et al. (2013). In their setup, agents face
imperfectly insured unemployment risk and a search friction in the labor market à la
Diamand-Mortensen-Pissarides. As in our model, agents can hold two types of assets
to save and insure themselves: money and equity. But unlike in our model, equity is
not physical capital in the sense of the neoclassical standard model but is equated with
vacancy-ownership. The asset market clears, when the demand for money equates the
constant money supply and the demand for firm ownership equates the number of firms.
While in our model the nominal friction is a price rigidity for consumption goods, their
model imposes a wage setting function which potentially allows for nominal and real
wage rigidity. When wages are sticky the precautionary money demand induces a strong
deflation which pushes up real wages and strongly decreases the incentive for firm creation
which is governed by a standard free-entry condition. In that case, they also find that
the downturn is amplified through precautionary savings.

3 Model

We model an economy inhabited by two types of agents: workers and entrepreneurs.
Workers supply capital and labor and are subject to idiosyncratic shocks to their la-
bor productivity. Workers face idiosyncratic persistent labor income risk that is time
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varying. They self insure in a liquid nominal asset (money) and a less liquid physical
asset (capital), which they rent out to the intermediate goods producing sector on a
perfectly competitive rental market. This sector combines labor services, a fixed capital
stock, and final goods into intermediate goods (in roundabout production). Risk neutral
entrepreneurs then differentiate these intermediate goods into final consumption goods
and set prices for these final goods monopolistically competitive. They are subject to a
pricing friction à la Calvo (1983) and adjust their prices with some positive probability.

We model the liquidity of money in the general spirit of Kaplan and Violante’s (2011)
model of wealthy hand-to-mouth consumers, where households hold claims on the econ-
omy’s stock of capital, but trading these claims is subject to a trading friction. We
model this trading friction as limited participation in the asset market. Every period
a fraction of households is randomly selected to be able to trade shares in the physical
stock of capital. All other households can only adjust their money holdings. We keep
the economy’s stock of capital fixed in the aggregate such that changes in demand for
physical assets only translate into asset price changes.

3.1 Worker Households

There is a continuum of ex-ante identical worker-households (in short households) of
measure one. Households are infinitely lived, derive felicity from consumption ct and
maximize the discounted sum of felicity:

V = E0 max
{cit}

∞∑
t=0

βtWu (cit) (1)

The felicity function is twice continuously differentiable, increasing and concave in ct,
and takes CRRA form with risk aversion ξ:

u(cit) =
1

1− ξ
c1−ξ
it , ξ > 0.

cit is household i’s demand of the bundled consumption good obtained from bundling
varieties j of differentiated consumption goods according to a Dixit-Stiglitz aggregator

cit =

(∫
c
η−1
η

ijt dj

) η
η−1

.
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Each of these differentiated goods is offered at price pjt such that the demand for each
of the varieties is given by

cijt =

(
pjt
Pt

)−η
cit,

where Pt =
(∫

p1−η
jt dj

) 1
1−η is the average price level.

Workers derive income from supplying labor and from renting out physical capital.
A household is endowed in each period with hit efficiency units of labor, which evolves
according to an AR(1)-process.

log hit = ρh log hit−1 + εit, εit ∼ N (µ, σht) (2)

Since we abstract from a labor leisure trade-off to isolate the precautionary savings effect
of income uncertainty, households provide all of their hours of labor and thus total labor
input supplied is given by3

NS
t =

∫
hjdj.

We assume that asset markets are incomplete. Households can only trade in nominal
money, m̃it, that does not bear any interest and in physical capital to smooth their
consumption. Households can moreover only hold non-negative amounts of both assets.4

Real money holdings of a household at the end of period t are denoted by mit+1 := m̃it+1

Pt
.

Every period a fraction of ν households is randomly selected to participate in the
asset market and to trade their physical capital. All other households only obtain their
dividends and may adjust their money holdings. For those households participating in
the asset market, the budget constraint reads

cit +mit+1 + qtkit+1 =
mit

πt
+ (qt + rt)kit + wthit, m̃it+1, kit+1 ≥ 0, (3)

where mit are real money holdings, kit are physical capital holdings, hit is the stochastic
endowment with efficiency units of human capital, qt is the price of a capital share, wt
is the wage rate, and πt = Pt

Pt−1
is the inflation rate.

For those households that cannot trade in the market for physical capital the budget
3Time varying dispersions of log-human capital endowments introduce small variations in labor supply.

We solve the model taking these into account - hence the time index NS
t - but the actual variations are

small.
4The non-negativity requirement on money holdings reflects the natural borrowing limit. Any other

borrowing limit might lead in case of a sufficiently large deflation to a violation of the requirement that
households need to be able to repay their debt.
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constraint simplifies to

cit +mit+1 =
mit

πt
+ rtkit + wthit m̃it ≥ 0. (4)

Since households’ saving decisions will be some non-linear function of a household’s
wealth and productivity, the price level Pt and therefore aggregate real money Mt+1 =
M̃t+1

Pt
will be functions of the entire joint distribution Θt of (mt, kt, ht). This makes Θt

a state variable of the household’s planning problem. This distribution evolves as result
of the economy’s reaction to shocks to uncertainty, which we model as time variations
in the variance of idiosyncratic income shocks. We assume as process for the stochastic
income shock volatility, σ2

ht,

σ2
ht = σ̄2st, log st = ρs log st−1 + εt, εt ∼ N (0, σs) , (5)

where σ̄2 is the steady state labor risk of the households and s shifts this uncertainty.
With this setup, the dynamic planning problem of a household is then characterized

by two Bellman equations, Va in case the household can adjust its capital holdings and
Vn otherwise

Va(m, k, h; Θ, s) =maxk′,m′au[c(m,m′a, k, k
′, h)]

+ βW
[
νEV a(m′a, k

′, h′,Θ′, s′) + (1− ν)EV n(m′a, k
′, h′,Θ′, s′)

]
Vn(m, k, h; Θ, s) =maxm′nu[c(m,m′n, k, k, h)]

+ βW
[
νEV a(m′n, k, h

′,Θ′, s′) + (1− ν)EV n(m′n, k, h
′,Θ′, s′)

]
(6)

In line with this notation, we define the optimal consumption policies for the adjust-
ment and non-adjustment cases as c∗a and c∗n, the money holding policies as m∗a and m∗n
and the capital investment policy as k∗. Details on the properties of the value and policy
functions, the first order conditions, and the algorithm we employ to calculate the policy
functions can be found in Appendix A.

3.2 Intermediate Goods Producers

Since we abstract from a household’s labor-leisure choice and treat aggregate capital
as fixed, we need to introduce another mechanism through which aggregate output can
vary in the economy.5 We follow Basu (1995) and assume that the intermediate goods

5Another way would be to model capacity utilization. Varying utilization, however, has consequences
for the variability of the marginal productivity of capital, which is substantially dampened.
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producing sector operates a gross production function with constant returns to scale
instead of a value added production function, which combines pre-products Xt acquired
on the final consumption goods market at price Pt, labor Nt = NS

t and capital Kt = K̄.
Hence, total gross output of the intermediate goods sector is

Yt = Xγ
t N

α(1−γ)
t K̄(1−α)(1−γ).

Let MCt be the relative price at which intermediate goods are sold to final goods
producers. The intermediate goods producers seek to maximize profits through their
choice of the extend of pre-products used in production.

MCtYt −Xt = MCtX
γ
t N

α(1−γ)
t K̄(1−α)(1−γ) −Xt

The optimal amount of pre-products is then given by

X∗t = γMCtYt = (γMCt)
1

1−γNα
t K̄

1−α. (7)

Once the optimal amount of pre-products used in production is determined, we can
express GDP, which is equal to consumption in this setting, as

Ct = Yt −X∗t =
[
(γMCt)

γ
1−γ − (γMCt)

1
1−γ
]
Nα
t K̄

1−α. (8)

It moreover implies that the intensity in which pre-products are used in production
is pro-cyclical, which is in line with the data, as:

Xt/Yt = γMCt.

The real wage and the user costs of capital are given by the marginal products of
labor and capital.

wt = α(1− γ)γ
γ

1−γMC
1

1−γ
t

(
K̄/Nt

)1−α (9)

rt + δ = (1− α)(1− γ)γ
γ

1−γMC
1

1−γ
t

(
Nt/K̄

)α (10)

3.3 Entrepreneurs

Entrepreneurs produce final goods by differentiating intermediate goods and set prices.
We assume that entrepreneurs are risk neutral and have the same discount factor as
the worker-households. We assume that only the central bank can issue money such
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that the entrepreneurs do not participate in the money market. We make this assump-
tion for tractability reasons in order to separate the price setting problem from the
worker-household’s saving problem, as it enables us to determine the price setting of
entrepreneurs without having to take into account intertemporal decision making of the
workers.6 Under these assumptions, the consumption of an entrepreneur is given by

cEt = Πjt,

where Πjt is the current profit of the j-th final goods producer. Given their preferences,

V = E0

∞∑
t=0

βtEΠjt (11)

entrepreneurs maximize over prices of final goods.
Final goods producers buy intermediate goods at a price equalling the nominal

marginal costs MCtPt, where MCt are the real marginal costs at which the interme-
diate goods are traded due to perfect competition, and differentiate them without the
need of additional input factors. Final goods come in varieties uniformly distributed on
the unit interval and each indexed by j ∈ [0, 1]. Resellers are monopolistic competitors
and therefore can charge a markup over their marginal costs. They are, however, subject
to a Calvo (1983) price setting friction and can only update their prices with probability
θ. They maximize the expected value of future discounted profits by setting today’s price
pjt taking into account the price setting friction:

max
{pjt}

∞∑
s=0

(θβE)sEΠjt,t+s =
∞∑
s=0

(θβE)sEYjt,t+s(pjt −MCt+sPt+s) (12)

s.t. : Yjt,t+s =

(
pjt
Pt+s

)−η
Yt+s

where Πjt,t+s are the profits and Yjt,t+s is the production level in t+ s of a firm j whose
last price reset was in period t.

We obtain the following first order condition with respect to pjt:
6Alternatively, we could have assumed Rotemberg (1982) pricing at the expense of a less straight-

forward calibration.
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∞∑
s=0

(θβE)sEYjt,t+s

 p∗jt
Pt−1

− η

η − 1︸ ︷︷ ︸
µ

MCt+s
Pt+s
Pt−1

 = 0 (13)

where µ is the static optimal markup.
Since individual resellers are risk neutral, we can solve the resellers’ planning problem

by log-linearizing around the zero inflation steady state without having to know the
solution of the worker-households’ problem as entrepreneurs and worker-households do
not interact in any inter-temporal trades.7 This yields after some tedious algebra, see
e.g. Galí (2008), the new Keynesian Phillips curve.

log πt = βEEt(log πt+1) + κ(logMCt + µ) (14)

where
κ =

(1− θ)(1− βθ)
θ

.

3.4 Goods, Money, Asset and Labor Market Clearing

The labor market clears at the competitive wage given in (9); so does the market for
capital services if (10) holds. The goods market then clears, whenever the money and
asset markets clear. We assume that money supply is given by a monetary policy rule
that adjusts the growth rate of money in order to stabilize inflation, i.e.

Mt+1

Mt
= (θ1/πt)

1+θ2 . (15)

HereMt+1 are real balances at the end of period t (with the timing aligned to our notation
for the household’s budget constraint), θ1 ≥ 1 determines steady state inflation and
θ2 ≥ 0 the extent to which the central bank tries to stabilize inflation around its steady
state value – the larger θ2 the more does the central bank react to current inflation, as
θ2 →∞ inflation is perfectly stabilized at the steady state value. We assume the central
bank to waste any seignorage buying final goods and choose the above functional form
for simplicity in order to guarantee a (weakly) positive value of seignorage.

7Importantly we study the effect of idiosyncratic, not aggregate, uncertainty shocks. Therefore,
the shocks that entrepreneurs face are small and approximately homoscedastic, such that a first order
approximation is sufficiently precise.
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The money market clears, whenever

(θ1/π)1+θ2 Mt =

∫
[νm∗a(m, k, h; q, π) + (1− ν)m∗n(m, k, h; q, π)] Θt(m, k, h)dmdkdh.

(16)
with last end-of-period’s real money holdings

Mt :=

∫
mtΘt(mt, ht)dmtdht

In addition, we need that the market for capital shares clears

νK̄ = ν

∫
k∗(m, k, h; q, π)Θt(m, k, h)dmdkdh. (17)

The goods market clears, whenever both, money and asset, markets clear due to Walras’
law.

3.5 Recursive Equilibrium

A recursive equilibrium in our model is a set of policy functions {c∗a, c∗n,m∗a,m∗n, k∗},
value functions Va, Vn, pricing functions {r, w, π, q}, aggregate capital and labor supply
functions {N,K}, distribution Θ over individual asset holdings and productivity, and a
perceived law of motion Γ, such that

1. Given V , Γ, prices, and distributions, the policy functions {c∗a, c∗n,m∗a,m∗n, k∗} solve
the household’s problem and given the policy functions {c∗a, c∗n,m∗a,m∗n, k∗}, prices
and distributions, the value functions Va, Vn are a solution to the Bellman equations
(6).

2. The labor, money, capital and intermediate and final good markets clear, i.e. (9),
(14), (16), and (17) hold.

3. The actual law of motion and the perceived law of motion Γ coincide, i.e. Θ′ =

Γ(Θ, s′).

4 Numerical Implementation

Of course the dynamic program (6) and hence the recursive equilibrium is not computable
as it involves the infinite dimensional object Θ.
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4.1 Krusell-Smith equilibrium

In order to turn this problem into a computable one, we assume that households predict
future prices only on the basis of a restricted set of moments as in Krusell and Smith
(1997, 1998). Specifically, we make the assumption that households condition their ex-
pectations only on last period’s aggregate real money holdings Mt, the realized variance
of idiosyncratic productivity var(hit)t, and the uncertainty state st. The idea of this
assumption is that (16) determines inflation, which obviously depends on the current
money stock. Once inflation is determined, the Phillips curve (14) determines markups
and hence wages and dividends. In turn, this will pin down asset prices by making the
marginal investor indifferent between money and physical assets. If the optimal money
demand function m∗a,n and k∗ are sufficiently close to a second order polynomial in h

and linear in non-human wealth where the mass of Θ is, then we can expect approximate
aggregation to hold with st, var(hit)t, and Mt.

While the laws of motion for st and var(hit)t are pinned down by (2) and (5), house-
holds use the following log-linear forecasting rule for future inflation and asset prices
where the coefficients may depend on the uncertainty state.

log πt = β1
π(st) + β2

π(st) logMt + β3
π(st)var(hit)t (18)

log qt = β1
q (st) + β2

q (st) logMt + β3
q (s)var(hit)t. (19)

The law of motion for real money holdings Mt then follows from the monetary policy
rule and sequential market clearing and is given by

logMt+1 = logMt + (1 + θ2)(log θ1 − log πt)

Fluctuations in q and π come from two sources: The self-insurance services that workers
receive from the capital good fluctuate as uncertainty varies and the rental rate of capital
fluctuates as firms’ markup is changing. When making their investment decisions, workers
need to predict the capital price q′ in the next period in order to predict returns on their
investment. Since the amount of physical capital is fixed and share prices are not linked
intertemporarily (unlike goods prices i.e. there is no pricing friction in the asset market),
last periods value of physical assets is no state variable. Since all other prices are known
functions of the markup, only π and q need to be predicted.

Technically, finding the equilibrium inflation rate and asset prices is similar to Krusell
and Smith (1997), as we need to find market clearing prices in each period. Concretely,
this means the posited rules (18) and (19) are used to solve for the household’s policy
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functions. Having solved for the policy functions of the household conditional on the
forecasting rules, we then simulate n independent sequences of economies for t = 1, . . . , T

periods, keeping track of the actual distribution Θt. The initial distribution Θ1 in each
simulation equals the stationary one from a model without aggregate risk. We then
calculate in each period t the optimal household policies for market clearing inflation
rates and asset prices assuming that the household resorts to the policy functions derived
under rule (19) from period t+1 onwards. After determining the market clearing inflation
rate, we obtain next period’s distribution Θt+1. In doing so, we obtain n sequences of
equilibria. The first 150 observations of each simulation are discarded to minimize the
impact of the initial distribution. We next re-estimate the parameters of (19) from the
simulated data and update the parameters accordingly. By using n = 10 and T = 350,
it is possible to make use of parallel computing resources and obtain 2500 equilibrium
observations. Subsequently, we re-calculate policy functions and iterate until convergence
in the forecasting rules.

The quality of approximation from (18) and (19) is relatively high. The minimal
within sample R2 is 99.88%. Also the out-of-sample performance, see Den Haan (2010a),
of the forecasting rule is good, see the Appendix for details.

4.2 Solving the household planning problem

In solving for the household’s policy functions we apply an endogenous gridpoint method
as originally developed in Carroll (2006) and extended by Hintermaier and Koeniger
(2010), iterating over the first-order conditions. We approximate the productivity pro-
cess by a discrete Markov chain with 11 states and time-varying transition probabilities,
using the method proposed by Tauchen (1986). The stochastic volatility process is ap-
proximated in the same vein using 5 states.8 Details on the algorithm can be found in
Appendix A.4.

5 Calibration

We calibrate the model to the U.S. economy, identifying all parameters from steady state
model behavior where we set uncertainty fluctuations to zero.9 In the simulation of the
model we find that time-averages of aggregate variables in the model are very close to

8We solve the household policies for 50 points on the grid for money and 80 points on the grid for
capital.

9We check whether average asset demand is different in the model with uncertainty fluctuations and
find little difference.
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their steady state values. The aggregate data used for calibration spans 1984:Q1 to
2008:Q4. One period in the model refers to a quarter of a year. The choice of parameters
as summarized in Tables 1 and 2 is explained next. We present the parameters as if they
were individually changed in order to match a specific data moment, but of course all
parameters are calibrated jointly.

5.1 Income Process

We calibrate the income process and hence uncertainty faced by households to estab-
lished estimates for the U.S. We adopt the conventional AR(1) process for idiosyncratic
productivity, as the dynamics of individual earnings in the Panel Study of Income Dy-
namics (PSID) is quite well replicated by an autoregressive process. The algorithm by
Tauchen (1986) is used to discretize the AR(1) process for the log of individual produc-
tivity with mean zero, persistence parameter ρh and a variance of the innovation of σ2

t .
The autocorrelation of annual earnings is chosen to be 0.95, which is within the range
of existing empirical estimates (0.9 to 1) and close to the number reported in Bayer and
Juessen (2009). In line with their estimates, we set the quarterly variance of persistent
income innovations to σ2

h = 0.0873.
Bayer and Juessen also find countercyclical variations of the variance of persistent

shocks, which negatively co-moves with deviations from HP-filtered GDP. They find a
coefficient of variation of roughly 50%. The persistence of uncertainty shocks is arguably
the hardest item to measure as it would require extremely long panel data and we can
only estimate it to be in line with aggregate fluctuations and hence set the quarterly
autocorrelation to ρs = .9. In Appendix D, we provide robustness checks. Table 1
summarizes the parameter choices.

Table 1: Income Process

Parameter Value Description

ρh 0.951/4 Persistence of income
σ2
h 0.09 Average variance of innovations to income

ρs 0.90 Persistence of the income-innovation variance, σ2
h

σ2
s 0.02 Conditional variance the income-innovation variance, σ2

h
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5.2 Preferences and Technology

Table 2 summarizes our calibration for the parameters that cannot be directly estimated
as an exogenous shocks process. In detail we calibrate them as follows.

5.2.1 Households

The period utility function is of the constant relative risk aversion form, twice continu-
ously differentiable as well as increasing and concave in ct. It takes the form:

u =
1

1− ξ
c1−ξ

where we set ξ = 4 as in Kaplan and Violante (2011). The time-discount factor, βW , and
the asset market participation frequency are calibrated, to match a ratio of high powered
money (St. Louis Ajdusted Monetary Base from the Federal Reserve Bank of St. Louis)
to annual output of 6.5% and a capital to output ratio of 3.5. For simplicity, we set
the entrepreneurs’ discount factor equal to the workers’ discount factor. It is important
to note that we need to calibrate to base money and not higher money aggregates as
higher money aggregates do not constitute claims of the private sector, as they are
created by issuing private (nominal) debt. Hence, their net value does not change with
inflation other than through the change of the value of the monetary base. We consider
a robustness check, where we equate the total amount of the liquid asset to the total
amount of government liabilities.

5.2.2 Intermediate Goods Producers

We parameterize the production function of the intermediate good producer according
to the U.S. National Income and Product Accounts (NIPA). In the U.S. economy, total
amount of pre-products used in production, the intermediate consumption, makes up
roughly 45% of gross output. Hence, we set α = 0.45. The labor and capital share (2/3
and 1/3) align with standard macroeconomic calibrations.

5.2.3 Final Goods Producers

Final good producers differentiate intermediate goods and set final goods prices. We
calibrate the price setting behavior to match the standard markup and price stickiness
employed in the New Keynesian literature. The Calvo parameter κ implied by the New
Keynesian Phillips curve is chosen in such a way to yield an average price duration of
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Table 2: Calibrated Parameters

Parameter Value Description Target

Households
βW , βE 0.97 Discount factor Capital to Output Ratio of 3.5
ν 63.7% Participation frequency M/Y Ratio 6.5% annual (Basemoney)

alternative: 8.6% M/Y Ratio 50% (Gov. liabilities)
ξ 4 Coefficient of rel. risk av. Standard value

Intermediate Goods
γ 0.45 Share of pre-products Ratio of Gross Output/GDP
α 2/3 Share of labor Income share of labor
K̄ 1.14 Aggregate capital stock Annual capital to output is 3.5
δ 2.5% Depreciation rate NIPA data

Final Goods
κ 0.09 Price stickiness Average price duration 4 quarters
µ 10% Markup Standard value

Monetary policy
θ1 1.005 Money Growth 2% p.a. (≈Average US Inflation 1980-2008)
θ2 0 Inflation Stabilization No stabilization
alternative: 105 Perfect stabilization
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4 quarters. The steady state marginal costs exp(−µ) = 0.90 and imply a markup of
roughly 10%.

5.2.4 Central Bank

We set the average growth rate of money θ1 such that our model produces an average
annual inflation rate of 2% in line with the usual estimates of the inflation target of the
Fed and in line with the average inflation between 1980 and 2008. We do not have a
good estimate of the reaction to inflation θ2 and set this either zero for inactive policy
or to 105 to capture a central bank behavior with strong inflation stabilization.

6 Quantitative Results

6.1 Aggregate Impact of Uncertainty Shocks

Figure 1 displays the impulse responses of output, consumption, real balances, and asset
prices under the assumption of a monetary policy that follows a strict money growth
rule and no inflation stabilization for our baseline calibration of money holdings being
50% of annual GDP. After a one standard deviation increase in the variance of idiosyn-
cratic productivity shocks, output drops on impact by 0.25% and returns after roughly
12 quarters to the normal growth path. This effect is roughly of a similar size that
Fernández-Villaverde et al. (2011) find for a two standard deviation shock to fiscal un-
certainty.

This output drop is a result of households trying to increase their wealth for con-
sumption smoothing and readjusting their portfolios. As households thrive for higher
savings, aggregate demand and in consequence also output falls, since output is demand
determined in our model. Notwithstanding the increase in the propensity to save for
precautionary motives, on impact the price of capital decreases by 2.5% and only real
balances grow (by 0.25%).

While the overall drop in total wealth (roughly equal to the drop in the capital price)
is driven by a paradox of thrift in our model, the strong decline in asset prices also
comes from a change in the optimal portfolio composition. In times of high uncertainty,
households dislike illiquidity, as it disrupts their ability to smooth consumption and
therefore the real money holdings increase after a shock to uncertainty. The flight to
liquidity is particularly pronounced for households with little current money holdings.
So not only the asset poor shift resources into the liquid asset, but also wealthy but
liquidity constrained households will, if possible, liquidate part of their capital. As the
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Figure 1: IRFs: money and capital, constant money growth
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aggregate demand for capital falls, its price decreases on impact.
Yet, not only this portfolio adjustment effect drives down capital prices. Also the dis-

inflation itselfs shifts the relative returns of money and capital, making money holdings
more attractive. Disinflation decreases the inflation tax on money holdings and dividend
payments on capital fall when mark-ups of final goods producers rise above their steady
state levels. We can isolate the portfolio adjustment effect, when we look at a mone-
tary policy that is perfectly stabilizing below. The corresponding impulse responses are
displayed in Figure 2. In case of strict inflation targeting the price of capital falls less,
as there is no deflation and thus no change in the relative returns. Yet, still it falls by
roughly .5%, while money demand now jumps up on impact by .5%. Households would
like to dissave as they know they will face lower than steady state consumption in the
next periods as the central bank continuously issues money and creates wasteful seignor-
age. This wasteful seignorage makes the costs of stabilization in terms of consumption
also higher in the model with inflation stabilization. Yet, although the initial drop in
consumption is more pronounced, consumption recovers faster than under the money
growth rule.

This changes after 2 years roughly when real money balances peek. Now households
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are totally more wealthy and hence also want to hold more physical capital. Further-
more, in the model without stabilization, the relative return advantage reverses. As
liquid wealth has become abundant, households expect inflation in the future and money
becomes an unappealing asset and households start investing relatively more in capital.
This effect can again be seen when comparing inflation stabilization to money growth
rule. In case of strict inflation targeting, the capital price increases slightly less, as no
inflation is expected.

Figure 2: IRFs: money and capital, inflation targeting
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Table 3 displays standard aggregate unconditional business cycle statistics for the
cycles produced by uncertainty shocks. Compared to roughly 1%-1.5% output volatility
in actual GDP data for developed countries, uncertainty shocks can produce sizable
business cycles of roughly 0.1% of what we find in the data. The uncertainty shocks
produce too little persistence.

6.2 Redistributive effects

Since uncertainty shocks affect the price level, asset prices, dividends and wages differ-
ently, our model predicts that not all agents (equally) lose from the decline in consump-
tion upon an uncertainty shock.
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Table 3: Simulated business cycle statistics

Narrow Money Broad Money
Variable STD AC STD AC

Output 0.07 0.66
Consumption 0.07 0.66

Real money balances 0.63 0.94
Inflation 0.20 0.66

Dividend 2.64 0.66
Wage 0.79 0.66

Realized real return on capital 1.51 -0.10
Capital price 1.83 0.66

STD: Standard deviation after log-HP(1600)-filtering.
AC: First order autocorrelation.

To understand the relative welfare consequences, we simulate two sets of economies.
One where the uncertainty state simply evolves according to its Markov chain properties
and another set where we exogenously set the uncertainty state in T to the highest
uncertainty state and let the economies evolve stochastically from then on. We trace
agents over the next s periods for both sets of economies and calculate their period-
felicity uiT+t and then calculate for each agent with individual state h,m, k in period T
the discounted expected felicity stream over the next S periods as

vS(h,m, k) = E

[
S∑
t=0

βtuT+t

∣∣∣∣∣(hT ,mT , kT ) = (h,m, k)

]

where uT+t is the felicity stream in period in period T + t under the household’s optimal
saving policy. We then calculate an equivalent consumption tax households would be
willing to face over the next S quarters in order to eliminate the uncertainty shock in T
as

τ = −
(

vshockS

vno shock
S

)1/ξ

+ 1 (20)

Figure 3 displays the relative differences in vS for S = 20 quarters in terms of con-
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Figure 3: Welfare effects after 5 years, broad money definition
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Welfare costs in terms of consumption equivalents τ , as defined in (20)
The graphs refer to the conditional expectations of τ with respect to the two displayed
dimensions, respectively. The missing dimension has been integrated out.

21



Table 4: Welfare after 20 quarters

Policy Regime: Money Growth Rule

Quintiles of Money Holdings Quintiles of Capital Holdings
1. 2. 3. 4. 5. 1. 2. 3. 4. 5.

Conditional -0.64 -0.56 -0.48 -0.39 -0.25 -0.58 -0.49 -0.45 -0.44 -0.51
Median -0.66 -0.58 -0.49 -0.37 -0.17 -0.60 -0.53 -0.52 -0.54 -0.62

Quintiles of Human Capital

Conditional -0.31 -0.42 -0.49 -0.51 -0.52
Median -0.46 -0.49 -0.53 -0.54 -0.62

Policy Regime: Inflation Targeting

Quintiles of Money Holdings Quintiles of Capital Holdings
1. 2. 3. 4. 5. 1. 2. 3. 4. 5.

Conditional -0.21 -0.26 -0.23 -0.16 -0.08 -0.41 -0.31 -0.21 -0.12 -0.05
Median -0.22 -0.23 -0.19 -0.14 -0.07 -0.41 -0.28 -0.20 -0.09 -0.00

Quintiles of Human Capital

Conditional -0.03 -0.12 -0.19 -0.23 -0.31
Median -0.03 -0.13 -0.23 -0.30 -0.47

sumption equivalents τ between the two sets of simulations of the economy. After 20
quarters, the initial position before the uncertainty shock hit has washed out mostly and
any remaining differences are discounted substantially. Of course in the long-run there
are no differences between the two sets of economies. On average households would be
willing to forgo roughly 0.5% of their consumption over 4 years to eliminate the uncer-
tainty shock, but the welfare effects are heterogeneous depending on the asset positions
of households and their human capital. Moreover, monetary policy can substantially
shift the burden of the shock between various households.

Without stabilization, money rich and physical asset poor households win. The gradient
in human capital is relatively flat. Human capital rich households suffer from lower
wages, but are as savers partly compensated as they can acquire physical capital at
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Figure 4: Welfare effects of uncertainty shock by quintiles of money and capital at various
horizons S (up to 100 quarters), broad money definition, constant money growth
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lower prices. At median incomes and median money holdings also the gradient in capital
holdings is relatively flat. Median income households with sufficient liquid wealth hardly
want to change their physical assets and hence are little affected by the decrease in
asset prices, they only suffer from decreased dividend incomes. Table 4 summarizes the
figures numerically, conditioning on just one dimension of the households’ portfolio, and
displays the average relative welfare gains depending on the household’s relative position
in the distribution of human/non-human wealth. Yet by looking at only the marginal
distribution we lose some interesting information on the interaction of human and non-
human wealth for the welfare effects.

Stabilization policy shifts the burden of the uncertainty shock substantially. The
wealthy agents with low human capital profit the most from this policy, the asset poor
lose the most and the gradient in human capital becomes steeper. Now the asset poor
households with a lot of human capital finance the increased seignorage by accumulating
money and by later buying physical capital that quickly reaches above steady state prices.
However, on average the welfare loss is smaller with stabilization policy than without and
the median household would only be willing to decrease consumption by 0.2% to avoid
the uncertainty shock.

Finally, Figure 4 displays the consumption equivalents as a function of the time
horizon S. Since the effect of the uncertainty shock dies out after 12 quarters, the
willingness to forgo consumption at longer horizons in exchange for avoiding the shock
(effects at longer horizons) decreases relatively quickly.
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7 Conclusion

This paper examines how changes in the uncertainty of household income affect the
macroeconomy. We start out with a setup that merges the standard New Keynesian and
the standard incomplete markets model and produces real effects of demand swing via
countercyclical markups arising through sticky prices. Calibrating the model to match
income uncertainty movements in the US, we find that an increase in income uncertainty
can lead to substantive output drops which may help to understand the slow recovery
of the U.S. economy during the Great Recession. An increase in precautionary savings
and a flight to liquidity in reaction to an increase in idiosyncratic income uncertainty can
generate output losses in the environment we are study that are roughly twice as large as
the output losses generated by an increase in aggregate policy uncertainty documented
in Fernández-Villaverde et al. (2011).

Moreover, the welfare effects of such uncertainty shock depend crucially on a house-
holds asset position and the stance of monetary policy. Unconventional monetary policy
that increases money supply drastically in times of uncertainty hikes may limit substan-
tially the negative welfare effects of uncertainty shocks.
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A Dynamic Planning Problem with Two Assets

The dynamic planning problem of a household in the model is characterized by two
Bellman equations, Va in case the household can adjust its capital holdings and Vn

otherwise

Va(m, k, h; Θ, s) =maxk′,m′a∈Γau[c(m,m′a, k, k
′, h)]

+ βW
[
νEV a(m′a, k

′, h′,Θ′, s′) + (1− ν)EV n(m′a, k
′, h′,Θ′, s′)

]
Vn(m, k, h; Θ, s) =maxm′n∈Γnu[c(m,m′n, k, k, h)]

+ βW
[
νEV a(m′n, k, h

′,Θ′, s′) + (1− ν)EV n(m′n, k, h
′,Θ′, s′)

]
(21)

where the budget sets are given by

Γa(m, k, h; Θ, s) = {m′, k′ ≥ 0|q(Θ, s)(k′ − k) +m′ ≤ w(Θ, s)h+ r(Θ, s)k +
m

π(Θ, s)
}

(22)

Γn(m, k, h; Θ, s) = {m′ ≥ 0|m′ ≤ w(Θ, s)h+ r(Θ, s)k +
m

π(Θ, s)
} (23)

c(m,m′, k, k′, h) = w(Θ, s)h+ r(Θ, s)k +
m

π(Θ, s)
− q(Θ, s)(k′ − k)−m′ (24)

To save on notation, let X be the set of possible idiosyncratic state variables controlled
by the household, let Z be the set of potential aggregate states, Γi : X → X be the
correspondence describing the feasibility constraints, and Ai(z) = {(x, y) ∈ X ×X : y ∈
Γi(x, z)} be the graph of Γi. Hence the states and controls of the household problem can
be defined as

X ={x = (m, k) ∈ R3
+ : m, k ≤ ∞} (25)

z ={h,Θ, s} (26)

(27)
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and the return function F : A→ R reads

F (Γi(x, z), x; z) =
c1−γ
i

1− γ
(28)

Define the value before the adjustment /no-adjustment shock realizes as

v(x, z) := νVa(x, z) + (1− ν)Vn(x, z).

Now we can rewrite the optimization problem of the household in terms of the defi-
nitions above in a compact form:

Va(x, z) = max
y∈Γa(x,z)

[F (x, y; z) + βwEv(y, z′)] (29)

Vn(x, z) = max
y∈Γn(x,z)

[F (x, y; z) + βwEv(y, z′)]. (30)

Finally we define the mapping T : C(X) → C(X)), where C(X) is the space of
bounded, continuous and weakly concave functions.

(Tv)(x, z) = νVa(x, z) + (1− ν)Vn(x, z) (31)

Va(x, z) = max
y∈Γa(x,z)

[F (x, y; z) + βwEv(y, z′)]

Vn(x, z) = max
y∈Γn(x,z)

[F (x, y; z) + βwEv(y, z′)].

A.1 Properties of Primitives

The following properties of the primitives of the problem obviously hold:

P 1. Properties of sets X,Γa(x, z),Γn(x, z)

1. X is a convex subset of R3.

2. Γi(·, z) : X → X is non-empty, compact-valued, continuous, monotone and convex
for all z.

P 2. Properties of return function F

F is bounded, continuous, strongly concave, C2 differentiable on the interior of A,
and strictly increasing in each of its first two arguments.
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A.2 Properties of the Value and Policy Functions

Lemma 1. The mapping T defined by the Bellman equation for v fulfills Blackwell’s suf-
ficient conditions for a contraction on the set of bounded, continuous and weakly concave
functions C(X).

a) It satisfies discounting.

b) It is monotonic.

c) preserves boundedness (assuming an arbitrary maximum consumption level).

d) It preserves strict concavity.

Hence, the solution to the Bellman equation is strictly concave. The policy is a single-
valued function in m, k, and so is optimal consumption.

Proof. The proof proceeds item by item and closely follows Nancy L. Stokey (1989)
taking into account that the household problem in the extended model consists of two
Bellman equations.

a) Discounting
Let a ∈ R+ and the rest be defined as above. Then it holds that

(T (v + a))(x, z) =ν max
y∈Γa(x,z)

[F (x, y, z) + βwEv(y, z′) + a]

+ (1− ν) max
y∈Γn(x,z)

[F (x, y, z) + βwEv(y, z′) + a]

=(Tv)(x, z) + βwa

Accordingly, T fulfills discounting.

b) Monotonicity
Let g : X × Z → R2, f : X × Z → R2 and g(x, z) ≥ f(x, z) ∀x, z ∈ X × Z, then it
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follows that

(Tg)(x, z) =ν max
y∈Γa(x,z)

[F (x, y, z) + βwEg(y, z′)]

+ (1− ν) max
y∈Γn(x)

[F (x, y, z) + βwEg(y, z′)]

≥ν max
y∈Γa(x,z)

[F (x, y, z) + βwEf(y, z′)]

+ (1− ν) max
y∈Γn(x)

[F (x, y, z) + βwEf(y, z′)]

=Tf(x, z)

The objective function for which Tg is the maximized value is uniformly higher
than the function for which Tf is the maximized value. Therefore, T preserves
monotonicity.

c) Boundedness
From properties P1 it follows that the mapping T defines a maximization problem
over the continuous and bounded function [F (x, y)+βwEv(y, z′))] over the compact
sets Γi(x, z) for i = (a, n). Hence the maximum is attained. Since F and v are
bounded, Tv is also bounded.

d) Strict Concavity
Let f ∈ C ′′(X), where C ′′ is the set of bounded, continuous, strictly concave
functions on X. Since the convex combination of two strictly concave functions
is strictly concave, it is sufficient to show that Ti[C ′′(X)] ⊆ C ′′(X), where Ti is
defined by

Tiv = max
y∈Γi(x,z)

[F (x, y, z) + βwEv(y, z′)], i ∈ a, n

Let x0 6= x1, θ ∈ (0, 1), xθ = θx0 + (1− θ)x1.
Let yj ∈ Γi(xj , z) be the maximizer of (Tif)(xj) for j = 0, 1 and i = a, n, yθ =

θy0 + (1− θ)y1.

(Tif)(xθ, z) ≥[F (xθ, yθ, z) + βwEf(yθ, z
′)]

>θ[F (x0, y0) + βwEf(y0, z
′))] + (1− θ)[F (x1, y1) + βwEf(y0, z

′)]

=θ(Tf)(x0, z) + (1− θ)(Tf)(x1, z)

The first inequality follows from yθ being feasible because of convex budget sets.
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The second inequality follows from the strict concavity of f . Since x0, x1 were
arbitrary, it follows that Tif is strictly concave, and since f was arbitrary that
T [C ′′(X)] ⊆ C ′′(X).

Lemma 2. The value function is C2 and the policy function C1 differentiable.

Proof. The properties of the choice set P1, of the return function P2, and the properties
of the value function proven in (1) fulfill the assumptions of Santos (1991) theorem on
the differentiability of the policy function. According to the theorem, the value function
is C2 and the policy function C1 differentiable.
Note that strong concavity of the return function holds for CRRA utility, because of the
arbitrary maximum we set for consumption.

Lemma 3. The total savings S∗i := m∗i (x, z) + q(z)k∗i (x, z) and consumption c∗i , i ∈
a, n are increasing in x if r(z) is positive. In the adjustment case total savings and
consumption are also increasing in total resources R = [q(z) + r(z)]k +m/π(z).

Proof. Define ṽ(S, z) := max{m,k|m+q(z)k≤S}Ev(m, k; z′). Since v is strictly concave and
increasing, so is ṽ by the line of the proof of Lemma 1.d). Now we can (re)write the
planning problem as

Va(m, k; z) = max
S≤w(z)h+[q(z)+r(z)]k+m/π(z)

[u(w(z)h+ [q(z) + r(z)]k +m/π(z)− S) + βW ṽ(S, z)]

Vn(m, k; z) = max
m′≤w(z)h+r(z)k+m/π(z)

[u(w(z)h+ r(z)k +m/π(z)−m′) + βWEv(m′, k; z′)].

Due to differentiability we obtain the following (sufficient) first order conditions

∂u(w(z)h+ [q(z) + r(z)]k +m/π(z)− S)

∂c
= βW

∂ṽ(S, z)

∂S
]

∂u(w(z)h+ r(z)k +m/π(z)−m′)
∂c

= βW
∂v(m′, k; z)

∂m′
]. (32)

Since the left-hand sides are decreasing in x = (m, k), and increasing in S (respectively

m′), and the right-hand side is decreasing in S (respectivelym′), S∗i =

{
qk′ +m′ if i = a

qk +m′ if i = n
must be increasing in x.
Since the right-hand side of (32) is hence decreasing in x, so must be the left-hand side
of (32). Hence consumption must be increasing in x.
The last statement follows directly from the same proof.
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A.3 Euler Equations

Denote the optimal policies for consumption, for money holdings and capital as c∗i ,m
∗
i , k
∗, i ∈

{a, n} respectively. The first order conditions for an inner solution in the (no-)adjustment
case read

k∗ :
∂u(c∗a)

∂c
q =βWE

[
ν
∂Va(m

∗
a, k
∗; z′)

∂k
+ (1− ν)

∂Vn(m′a, k
′; z′)

∂k

]
(33)

m∗a :
∂u(c∗a)

∂c
=βWE

[
ν
∂Va(m

∗
a, k
∗; z′)

∂m
+ (1− ν)

∂Vn(m∗a, k
∗; z′)

∂m

]
(34)

m∗n :
∂u(c∗n)

∂c
=βWE

[
ν
∂Va(m

∗
n, k; z′)

∂m
+ (1− ν)

∂Vn(m∗n, k; z′)

∂m

]
(35)

Note the subtle difference between (34) and (35), which lies in the different capital stocks
k′ vs. k in the right-hand side expressions.

Differentiating the value functions with respect to k and m, we obtain

∂Va(m, k; z)

∂k
=
∂u[c∗a(m, k; z)]

∂c
(q + r) (36)

∂Va(m, k; z)

∂m
=
∂u[c∗a(m, k; z)]

∂c
π−1 (37)

∂Vn(m, k; z)

∂m
=
∂u[c∗n(m, k; z)]

∂c
π−1 (38)

∂Vn(m, k; z)

∂k
= r(z)

∂u[c∗n(m, k; z)]

∂c
(39)

+ βE

[
ν
∂Va[m

∗
n(m, k; z), k; z′]

∂k
+ (1− ν)

∂V n[m∗n(m, k; z), k; z′]

∂k

]
= r(z)

∂u[c∗n(m, k; z)]

∂c
+ βW νE

∂u{c∗a[m∗n(m, k; z), k; z], k; z′}
∂c

(q(z′) + r(z′))

+ βW (1− ν)E
∂Vn{[m∗n(m, k; z), k; z], k; z′}

∂k

Such that the marginal value of capital in non-adjustment is defined recursively.
Now we can plug in the second set of equations into the first set of equations and
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obtain the following Euler equations (in slightly shortened notation)

∂u[c∗a(m, k; z)]

∂c
q(z) =βWE

[
ν
∂u[c∗a(m

∗
a, k
∗; z′)]

∂c
[q(z′) + r(z′)] + (1− ν)

∂V n(m∗a, k
′; z′)

∂k′

]
(40)

∂u[c∗a(m, k; z)]

∂c
=βWEπ

′(z′)−1

[
ν
∂u[c∗a(m

∗
a, k
∗; z′)]

∂c
+ (1− ν)

∂u[cn(m∗a, k
′; z′)]

∂c

]
(41)

∂u[c∗n(m, k, ; z)]

∂c
=βWEπ

′(z′)−1

[
ν
∂u[c∗a(m

′
n, k; z′)]

∂c
+ (1− ν)

∂u[c∗n(m∗n, k; z′)]

∂c

]
(42)

A.4 Algorithm

The algorithm we use to solve for optimal policies given the Krussel-Smith forecasting
rules is a version of Hintermaier and Koeniger’s (2010) extension of the Endogenous Grid
Method, originally developed by Carroll (2006).

It works iteratively (until convergence of policies) as follows: Start with some guess
for the policy functions c∗a and c∗n on a given grid (m, k) ∈ M ×K. Define the shadow
value of capital

β−1ψ(m, k; z) :=νE

{
∂u{c∗a[m∗n(m, k, z), k; z′]}

∂c
[q(z′) + r(z′)]

}
(43)

+ (1− ν)E
∂Vn[m∗n(m, k, z), k; z′]

∂k

= νE

{
∂u{c∗a[m∗n(m, k, z), k; z′]}

∂c
[q(z′) + r(z′)]

}
+ (1− ν)E

{
∂u{c∗n(m∗n(m, k, z), k; z′)]

∂c
r(z′)

}
+ (1− ν)E

{
ψ[m∗n(m, k, z), k; z′]

}
.

Guess initially ψ = 0. Then

1. Solve for an update for c∗n using standard endogenous-grid methods using equation
(42), denote m∗n(m, k; z) the optimal money holdings without capital adjustment.

2. Find for every k′ on-grid some (off-grid) value of m̃∗a(k′; z) such that - combining
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(41) and (40) -

0 = νE

{
∂u[c∗a(m̃

∗
a(k
′, z), k′; z′)]

∂c

[
q(z′) + r(z′)

q(z)
− π(z′)−1

]}
(44)

+ (1− ν)E

{
∂u[c∗n(m̃∗a(k

′, z), k′; z′)]

∂c

[
r(z′)

q(z)
− π(z′)−1

]}
+ (1− ν)E

[
ψ(m̃∗a(k

′, z), k′; z′)

q(z)

]
N.B. that Eψ takes the stochastic transitions in h′ into account and does not replace
the expectations operator in the definition of ψ. If no solution exists, set m̃∗a = 0.
Uniqueness (conditional on existence) of m̃∗a follows from the strict concavity of v.

3. Solve for total initial resources, by solving the Euler equation (41) for c̃∗(k′, z),
such that

c̃∗(k′, z)]

=
∂u

∂c

−1{
βEπ(z′)−1

[
ν
∂u{c∗a[m∗a(k′, z), k′; z′]}

∂c
+ (1− ν)

∂u{c∗n[m∗a(k
′, z), k′; z′]

∂c

]}
(45)

where the right-hand side expressions are obtained by interpolating c∗a(m∗a(k′, z), k′, z′)
from the on-grid guesses c∗a(m, k; z) and taking expected values with respect to z′.

This way we obtain total non-human resources R̃(k′, z) that are compatible with
plans (m∗(k′), k′) and a consumption policy ˜̃c∗a(R̃(k′, z), z) in total resources.

4. Since (consumption) policies are increasing in resources, we can obtain consumption
policy updates as follows: Calculate total resources for each (m, k) pair R(m, k) =

(q+r)k+m/π and use the before obtained consumption policy to update c∗a(m, k, z)
by interpolating at R(m, k) from the set

{
(˜̃c∗a(R̃(k′, z), z), R(k′, z))

∣∣∣k′ ∈ K}.10

5. Update ψ: Calculate a new value of ψ using (39), such that

ψnew(m, k, z) =βW νE

{
∂u{c∗a[m∗n(m, k, z), k; z′]}

∂c
[q(z′) + r(z′)]

}
+ β(1− ν)E

{
∂u{c∗n(m∗n(m, k, z), k; z′)]

∂c
r(z′)

}
+ β(1− ν)E

{
ψold[m∗n(m, k, z), k; z′]

}
. (46)

making use of the updated consumption policies.
10If a boundary solution m̃∗(0) > 0 is found, we use the “n” problem to obtain consumption policies

for resources below m̃∗(0).
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B Equilibrium Forecasting Rules

C Quality of the Numerical Solution

The following Figures 5 and 6 provide Den Haan (2010b) tests and show that the quality
of the numerical approximation of the equilibrium by the Krussel Smith rules is relatively
good. There is no trend of divergence between forecasts and actual equilibria over time.

Figure 5: Den Haan Test of the Quality of Approximation, money growth rule, broad
money
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D Robustness Checks

• Different Calibrations of ρs

• Skewness Shocks

• Timing of uncertainty realizations.

• Price Stickiness
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Figure 6: Den Haan Test of the Quality of Approximation, inflation targeting, broad
money
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