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Abstract

This paper provides a formal characterization of the process of rational learning in social

networks. A �nite set of agents select an option out of a choice set under uncertainty in in�nitely

many periods observing the history of choices of their neighbors. Choices are made based

on a common behavioral rule. We �nd that if learning ends in �nite time and the choice

correspondence is union consistent, then every action selected by any agent once learning ends

is optimal for all his neighbors. Local indi¤erence across neighbors, however, does not in general

imply global indi¤erence across all agents in the network. We further provide su¢ cient conditions

for the existence of a �nite time for every state of the world such that every action chosen by an

agent from that time period onward is optimal for all his neighbors in the limit. If only common

knowledge of rationality rather than common knowledge of strategies is assumed, the validity

of the aforementioned results depends on the network structure. If the network is complete, the

result of local indi¤erence across neighbors once learning ends still holds, while it can fail in

incomplete networks. Our results have direct implications for the literature on social learning,

knowledge and consensus, and coordination games.
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1 Introduction

Social networks have a very important function as a source of information. Individuals constantly

communicate with their social peers and use the information obtained through their interactions

when forming opinions and making decisions. Within the economic literature, the importance of

social networks is widely recognized. The relevant role of social networks for employment outcomes1,

technology adoption2, models of collective political action3, and bargaining outcomes4 has been

established5. However, there is a lack of understanding of the formal learning process of rational

individuals in incomplete networks6 and how behavior and opinions of individuals evolve over time if

they interact repeatedly. This paper �lls the current gap in the literature and contains the following

contributions. First, we provide a general model of repeated interactions of rational individuals in

social networks under uncertainty. Second, we formally characterize the learning process and show

that if learning ends for all agents, local indi¤erence across neighbors holds (Theorem 1). Once

learning ends the action that an agent selects is optimal for all his neighbors in the network. We

provide an example to show that the local indi¤erence does not extend to global indi¤erence in

incomplete networks. Next we provide su¢ cient conditions for the existence of a �nite time such

that from that period on every action that an agent selects is optimal for all her neighbors in the

limit (Theorem 2). Furthermore we analyze the case where only common knowledge of rationality,

instead of common knowledge of strategies, is given and show that in a complete network the local

indi¤erence among neighbors once learning ends still holds (Theorem 3). For incomplete networks,

however, this local indi¤erence can fail. We provide an example to highlight the failure of local

indi¤erence in an incomplete network

Our general framework is the following: a �nite set of agents faces uncertainty represented by

a measurable space (
;F): We assume a partitional information structure where agent�s initial
private information regarding the state of the world is given by the realized cell of their partition.

After observing the cell of their partition, agents have to select an option out of a common choice

set A in each of in�nitely many periods. The agents are organized in a social network which is

assumed to be a connected undirected graph. The network structure determines the observability

of the history of actions; each agent observes the history of actions of his neighbors in the social

1See for example Boorman (1975), Calvo-Armengol and Jackson (2004), Iaonnides and Loury (2004), Munshi
(2003), and Topa (2001).

2See for example Besley and Case (1994), Foster and Rosenzweig (1995), Munshi (2004), and Udry and Conley
(2001)

3See for example Chwe (2000). Within the sociology literature Opp and Gern (1993), and Snow, Zurcher and
Ekland-Olson (1980) explored the importance of social networks for political participation.

4See Manea (2008), and Wang and Wen (1998).
5An extensive survey on the relevancy of social networks from an economic perspective is given by Jackson (2008).
6A network is incomplete if there exists at least one pair of agents that are not neighbors of each other.
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network7. Let us state two examples that are captured by the framework described so far.

Suppose all agents share a common prior belief over the state space, have partitional information,

and are concerned with the likelihood of an event, like, for example, the probability of a certain

presidential candidate being elected. Suppose that in each stage agents announce their posterior

probability of the candidate being elected observing the history of previous announcements of their

neighbors. In this case, the choice in each stage equals the posterior probability, and the choice set

is given by the unit interval.

Another example is an expected utility setting. Suppose agents share a common prior belief

over the state space and a common utility function u, where the utility of agent i depends on his

action and the realized state of the world. In each period, agents have to select an action out of the

set of actions observing the history of actions of their neighbors. We assume that agents behave

myopically in the sense of being non-forward looking. This avoids potential strategic behavior and

guarantees that agents select the action in each period that maximizes their expected utility in that

given period. The assumption is common in the literature and can be rationalized8 by assuming

that each node of the network houses a non-atomic continuum of identical agents, and only the

distribution of actions is observed.

In both of the examples mentioned, the optimal action is a function of the available information.

We will analyze a more general version of the examples provided, where agents act according to a

common behavioral rule described by a choice correspondence. The choice correspondence maps

information sets9 to the action space, C : F � A: To each information set, the common choice

correspondence assigns a subset of the choice set: all choices that are optimal given the information.

Note that if two agents face the same information set, they have the same set of optimal actions.

This follows from the assumption that the choice correspondence is common, i.e. identical for all

agents.

We need to also de�ne the strategies of players. The strategies of players assign a single op-

timal action to each information set out of the set of optimal actions prescribed by the choice

correspondence for the given information set. Strategies are assumed to be common knowledge.

We pose one condition on the choice correspondence, which is known asUnion Consistency or
the Sure Thing Principle in the literature on knowledge and consensus10. Consider a collection of
disjoint information sets. A choice correspondence is union consistent under the following condition:

if the intersection of the set of optimal actions across all information sets in the collection is not

empty, then the intersection of the set of optimal actions equals the set of optimal actions assigned

7Agent j is a neighbor of agent i if they are connected by an edge in the network
8See Gale and Kariv (2003).
9An information set is the smallest subset of 
 that a given agent knows to contain the true state of the world.
10See for example Bacharach (1985), Cave (1983), and Krasucki (1996).
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to the union over all information sets in the collection. In other words, if an action is optimal

for all information sets in the collection then it also has to be optimal for the information set

equaling the union over all sets in the collection. Furthermore, any action that is not optimal for

all sets in the collection cannot be optimal under the union over all sets in the collection. Union

consistency is satis�ed in the probability announcement example as long as the partitions are

countable. In the expected utility setting, union consistency holds if the utility function is bounded

and measurable for each action, and all elements of the join11 have positive probability12. In cases

where the join has elements of probability zero, union consistency can fail in the expected utility

setting. We provide a general condition (UC0) to capture those cases. Please see the supplementary
Appendix for an extensive treatment of the special case of the expected utility setting, as well as

the posterior announcements example13. Also see the supplementary Appendix for an example of

a union consistent choice correspondence that can not be expressed in an expected utility setting,

thus highlighting the higher degree of generality of our framework.

The main contributions of the paper are the following. This paper is the �rst to provide a full

characterization of the rational14 learning process in incomplete social networks. The characteriza-

tion is based on the learning process in Geanakoplos and Polemarchakis (1982) and Geanakoplos

and Sebenius (1983). In their setting, two agents repeatedly select an action or announce a poste-

rior belief and the history of actions is common knowledge. In an incomplete network where the

history of choices of all agents is not common knowledge, there are signi�cant complexities involved

in the learning process compared to the complete network case that Geanakoplos et al. analyzed.

The main di¢ culty arises from the fact that for any pair of neighbors in the network, the private

observables determining the information set of agent i from the perspective of his neighbor j do

not only contain a static component, the true cell of i�s partition, but a dynamic component as

well, the history of choices of neighbors of i that are not neighbors of j:

Having obtained a full characterization of the learning process, we can extend and cast new

light on existing results in the literature on social learning and knowledge and consensus, as well

as give answers to questions that have not been addressed before. The results we achieve as a

consequence of the formal and complete characterization of the learning process are presented in

three theorems.

Theorem 1 gives a result regarding local indi¤erence. If learning ends in a �nite period t� for all

11The coarsest common re�nement of all partitions.
12See Proposition 1 in the supplementary Appendix. The supplementary Appendix can be downloaded on the

authors website www.depot.northwestern.edu/~mmu834/indexjm.html
13Note that the posterior announcement example can be captured by the expected utility setting with quadratic

loss functions.
14 In the general setting without probabilities we denote the learning process as rational. In the special cases with

a probability space we refer to Bayesian learning.
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agents in the network, then the choice agent i makes in any period t � t� is also optimal for all his
neighbors: We provide two corollaries of the main result. If agents share a choice function rather

than a correspondence, then all agents in the network select the same action once learning ends.

Theorem 1 implies a generalization of Geanakoplos and Polemarchakis (1982) "We Can�t Disagree

Forever" result. In a connected social network with �nite partitions and where agents communicate

their posterior belief of an uncertain event to their neighbors in each period, all agents will converge

to the same posterior in �nite periods. Within the setting of posterior announcements we ask the

natural question: which network structure leads to optimal aggregation of private information15?

Contrary to one�s intuition, complete networks do not dominate incomplete networks in terms of

quality of information aggregation. We provide an example of an incomplete network converging to

the pooled information posterior while the complete network with the same underlying information

parameters does not.

As the indi¤erence outcome is restricted to pairs of neighbors, in networks with a diameter

larger than one, we have an interesting result in relation to the social learning literature. We

provide an example of a connected social network where a pair of homogeneous agents that are not

neighbors of each other select distinct actions once learning ends while not being indi¤erent among

them.

It is directly apparent that the convergence of posterior beliefs has important implications for

coordination games when pre-play communication within the social network is feasible. We provide

an example of a game of regime change, where through introduction of a message stage prior to

agents deciding whether to attack the status quo or not, the set of equilibrium outcomes is reduced

to either a perfectly coordinated attack among all agents or uniform inaction.

Theorem 2 characterizes su¢ cient conditions under which there exists a �nite time period t�(!)

for each state of the world such that every action an agent chooses from that �nite period on will

be eventually optimal for all his neighbors. In order to be able to analyze asymptotic behavior, we

introduce the concept of a dominant set: A set B is dominant if for all sequences of sets
�
Bt
	1
t=1

converging to B there exists a �nite t0 such that any choice that is optimal for a set Bt with

t � t0 is also optimal in the limit set B: In the expected utility framework with a bounded and

measurable utility function and �nite actions, every set of positive probability is a dominant set16.

Additionally we introduce condition (D), which requires every set containing a dominant set to be
a dominant set. In the special case of the expected utility setting with �nite actions, condition

(D) is ful�lled as every set that contains a set with positive probability has positive probability
as well. The precise result of Theorem 2 is the following: If all elements of the join of partitions

15A network aggregates information optimally if the posterior beliefs of agents converge to the pooled information
posterior, i.e. the belief if the true cell of the join where common knowledge.
16Please see Proposition 2 in the supplementary Appendix.
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are dominant sets, the choice set is �nite, and the choice correspondence is union consistent and

complies with property (D), then for every state of the world there exists a �nite time t�(!) such
that every choice that player i makes in periods t � t�(!) will be optimal for each of her neighbors
in their limit information set.

Theorem 3 uncovers a new result in the literature. We consider an environment where strate-

gies are not common knowledge. Instead, only common knowledge of rationality is assumed, i.e.

common knowledge of the choice correspondence agents base their decisions on. Theorem 3 states

that if the network is complete17, the choice correspondence is union consistent, and learning ends

in a �nite time period t�; then the action chosen by agent i in period t � t� is optimal for all other
agents. Generally, the optimality of one�s neighbors choices fails for incomplete networks. We

provide an example of an incomplete three player network where the optimality of actions across

neighbors fails to hold.

The rest of the paper is organized as follows. In the next section, we give a brief overview of

the related literature. In section 3, we introduce our general framework. In section 4, we present a

simple example to provide intuition about the learning process and characterize the general learning

process. Section 5 presents Theorem 1, corollary results, an example of failure of global consensus,

as well as an example of superior information aggregation in an incomplete network compared to a

complete network with the same underlying information parameters. In section 6, we analyze the

asymptotic case, introduce the concept of a dominant set, and present Theorem 2. In section 7,

we analyze the case of common knowledge of rationality versus common knowledge of strategies.

We present Theorem 3 and provide an example of an incomplete network where the optimality

of choices among neighbors fails. Section 8 provides a game of regime change as an illustration

of the importance of our results on the set of equilibrium outcomes of coordination games if pre-

play communication in the social network is feasible. Section 9 concludes. The Appendix presents

proofs omitted in the main text. In the supplementary Appendix18, we provide an example of a

union consistent choice correspondence that is incompatible with expected utility representation.

Furthermore, we formally establish the expected utility setting and the probability announcement

setting as special cases of our general model. We also present the general condition (UC0) that
captures the case where the join has elements of probability zero, and state the implication for

Theorem 1 and Theorem 3 under the more general condition (UC0).

17A network is complete if every agent is neighbor of every other agent.
18The supplementary Appendix can be downloaded at www.depot.northwestern.edu/~mmu834/indexjm.html
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2 Related Literature

There is a vast literature on social learning which can be separated into two main categories

depending on whether learning is Bayesian or myopic. Following the categorization of Gale and

Kariv (2003), the Bayesian social learning literature can further be separated into sequential social

learning models and social network models. In sequential social learning models, a countably in�nite

set of agents select a single action in an exogenous sequence observing the history of choices of all

their predecessors. Agents have common values, and the utility each one achieves is a function of

his individual action and the state of nature. Each agent observes a private signal conditioning on

the true state of nature. This line of research was started by Banerjee (1992) and Bikhchandani,

Hirshleifer and Welch (1992), and signi�cantly extended by Smith and Sorensen (2000), who show

that in �nite time a cascade almost surely arises. An informational cascade describes a situation

where agents select the same action as their predecessor independent of their private information.

Smith and Sorensen (2000) prove that under unbounded private beliefs, the optimal action is almost

surely chosen. Acemoglu, Dahleh, Lobel and Ozdaglar (2008) in their recent contribution generalize

the sequential social learning model by relaxing the assumption that agents observe the actions of

all their predecessors. In their model, agents observe only the previous actions of agents in their

neighborhood, where the neighborhood of each agent is stochastically generated and its realization

is private information. They �nd that if private beliefs are unbounded, and the stochastic process

generating the neighborhoods has expanding observations, then individual actions converge to the

optimal action in probability. Our results are aligned with the resulting convergence of actions

in the sequential social learning literature in some cases. We show that if agents select actions

repeatedly and learning ends in �nite time, perfect uniformity among all agents is reached if the

common behavioral rule is a choice function. On the other hand, we provide a counter example

for uniformity and consensus even under common knowledge of strategies. In networks with a

diameter of at least two and an underlying choice correspondence, pairs of homogeneous agents can

select di¤erent actions forever and the indi¤erence of actions across those agents fails as long as

the shortest path among them is larger than one.

Social network models are characterized by simultaneous actions in countable periods where

agents observe only the actions of their neighbors. Gale and Kariv (2003) were the �rst to analyze

Bayesian learning in social network models, and their paper is most closely related to ours. In their

model, a �nite set of agents share a common payo¤ function, a common prior over the state space

and receive a private signal at the beginning of the game. Agents are organized in a social network

represented by a directed graph. In each period, players select an expected utility maximizing action

out of a �nite set observing the history of actions of their neighbors. Gale and Kariv apply the
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Martingale Convergence Theorem as well the Imitation Principle19 to show that for any subsets of

the state space in which two neighbors select two di¤erent actions in�nitely often, both players will

be indi¤erent among those actions in the limit for almost every state in the set. Their main result

is similar in nature to our Theorem 1 and Theorem 2. The main di¤erences from our framework

are in the assumptions regarding (1) the social network, (2) utility, and (3) cardinality of the choice

set. While Gale and Kariv allow for directed graphs as their underlying network, we assume an

undirected graph that implies the following symmetry: if agent i is a neighbor of j then agent j is

a neighbor of i: In terms of the assumptions on the underlying graph, their set-up is more general,

but our results are extendable to a directed graph setting for each pair of agents that are both

neighbors of each other. (2) Gale and Kariv use an expected utility setting where agents share a

common prior belief and a common utility function, which constitutes a special case of our general

approach with a common choice correspondence. (3) While they assume a �nite action space, our

results in Theorem 1 and Theorem 3 hold for countably �nite, countably in�nite and uncountable

choice sets.

Other than the points mentioned, the main di¤erence between Gale and Kariv (2003) and our

paper lies in the analytical approach that we use to achieve the results. We formally characterize the

learning process and prove our results directly from its properties, while they rely on the Martingale

Convergence Theorem and the Imitation Principle.

Within the non-Bayesian stream of literature, Bala and Goyal (1998,2001), DeMarzo, Vayanos

and Zwiebel (2003), Golub and Jackson (2007) and most recently Acemoglu, Ozdaglar and Paran-

dehGheibi (2009) study learning in social networks. Bala and Goyal (1998) establish a payo¤

equalization result in a non-Bayesian setting. They show that asymptotically each agent achieves

the same payo¤as his neighbor. De Marzo, Vayanos and Zwiebel (2003), Golub and Jackson (2007),

and Acemoglu, Ozdaglar and ParandehGheibi (2009) provide conditions under which the beliefs of

all agents in the social network converge.

Our analysis is also closely related to the literature on communication, consensus and common

knowledge started with Aumann (1976). He showed that if two individuals have partitional informa-

tion, share a common prior and their posterior beliefs are common knowledge, then their posteriors

are equal. Geanakoplos and Polemarchakis (1982) generalized Aumann�s result by proving that

if two individuals repeatedly communicate their posterior probability of an uncertain event, their

posterior beliefs will converge in �nite steps if the partitions of both individuals are �nite. Cave

(1983) and Bacharach (1985) generalized Geanakoplos and Polemarchakis�result from consensus

on conditional probabilities to union consistent decision functions mapping subsets of the state

19The Imitation Principle relies on the idea that an agent can always imitate the actions of his neighbor and be at
least as well o¤ on average.
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space into a decision set. The papers mentioned so far analyzed the case of complete networks

where the announcements are common knowledge. Parikh and Krasucki (1990) analyzed the case

of a �nite set of agents that communicate according to a communication protocol. In each period,

a pair of agents is selected and one of them announces his message to the other. They showed

that if the decision function is convex and the protocol fair, i.e. every agent is a receiver and a

sender in in�nitely many periods and receives information from every other agent, then consensus

is reached in �nitely many periods. Krasucki (1996) then strengthened the above result by prov-

ing that a union consistent function is su¢ cient for consensus in �nite steps if the communication

protocol contains no cycles. The most recent contribution to this literature is Menager (2006). She

shows that if agents communicate their expected utility maximizing action according to a pairwise

communication protocol, and if for each possible information set a single action is optimal, then

consensus is reached for any fair protocol in �nitely many steps. Our Theorem 1 generalizes the

existing consensus results in this stream of literature. All previous contributions were based on the

assumption of pairwise communication, decision functions, as well as �nite partitions, while we con-

sider simultaneous communication in incomplete networks, a decision correspondence, and �nite,

countable, and uncountable partitions. In contrast to the usual global consensus result obtained in

this literature, only local consensus or indi¤erence is guaranteed in incomplete networks under a

choice correspondence. Our asymptotic result of Theorem 2 is novel in the literature, as all previous

contributions considered only the �nite partition case. While the union consistency condition we

use constitutes a generalization of the union consistency condition for decision functions used in

the literature, our conditions (D), (UC0) as well as the concept of a dominant set are novel to
the literature. The analysis of common knowledge of rationality rather than common knowledge of

strategies and the result in Theorem 3 are new insights as well.

3 The model

3.1 Synopsis

There is a �nite set of agents M = f1; :::;mg that face uncertainty represented by a measurable
space (
;F); where 
 is the state space and F20 a sigma algebra of subsets of 
: Each agent i has
private information about the realized state given by his partition P i: If the realized state of the
world is !; then i knows that a state in P i(!) has occurred. The set of partitions of all players
fP igi2M is commonly known. Time is discrete, t 2 N; and at the beginning of the �rst period
agents observe the true cell of their partition.

20We assume F to be equal to the power set of the join of partitions
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Players form part of a social network G and in each period t all players simultaneously select

an action out of a set choice A: Agents observe the history of actions of their neighbors in G and

make inference regarding the realized state of nature based on the true cell of their partition and

the history they observe. The information set of an agent i denotes the smallest subset of 
 that i

knows to be true. A set E � 
 is true, if the true state ! is contained in E; ! 2 E:

3.2 The social network G

The social network is represented by an undirected graph G. A graph is a pair of sets G = (M;E)

such that E � [M ]2: The elements ofM are nodes of the graph and the elements of E are the edges

of the graph.

Node i in G represents player i. The neighborhood of agent i; Ni contains all agents that are

connected to i by an edge in G

Ni = fm 2M : im 2 Eg

We assume that the social network G is common knowledge among all agents.

An undirected graph has the following symmetric property, if agent j is contained in agent i0s

neighborhood then agent i is contained in agent j0s neighborhood. The common neighborhood of

two players i and j is denoted by Nij and consists of the set of agents that are neighbors of both i

and j

Nij = Ni \Nj

A graph G is connected if for all nodes i and j there exists a sequence of nodes k1; :::; kl where

k1 = i and kl = j such that kf+1 2 Nkf for f = 1; ::; l � 1: A graph is complete if for all nodes

i; j 2M we have i 2 Nj :

3.3 The common choice correspondence and strategies

Agents select actions based on a common choice correspondence C;

C : F � A

To each information set I 2 F the choice correspondence assigns a subset of A; the set of actions

that are optimal given information set I. A pure strategy si for player i is a function that assigns to
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each information set I a single element of C(I)21; si : F ! A such that si(I) 2 C(I) for all I 2 F .
The choice correspondence assigns a set of optimal actions to each information set and the strategy

si selects one of them. We assume that the strategies of all players are common knowledge.

The history of play of all agents at time t is denoted as ht = (at�1; :::; a1); ak 2 Am for

k = 1; :::; t � 1: The history that player i knows at period t is denoted as hti; and consists of the
history of actions chosen by i and his neighbors up to period t: The history of actions that both

player i and j observe is denoted as htij ; and consists of the history of choices up to period t of

agents i and j; as well as the choices of all agents l that are both neighbors of i and j:

We require the choice correspondence C to be union consistent22: C is union consistent if for
every collection of disjoint sets B we have

(UC)
\
B2B

C(B) 6= ; )
\
B2B

C(B) = C

 [
B2B

B

!

Union consistency requires that the set of actions that are optimal for all sets in the collection B
is equal to set of actions assigned to the union over all sets in B. Let B1;B22 F be collections of

disjoint sets such that [
B2B1

B =
[
B2B2

B

Please note that union consistency is equivalent to the following condition which we will denote as

pairwise consistency

(PC)
\
B2B1

C(B) 6= ; ,
\
B2B2

C(B) 6= ; )
\
B2B1

C(B) =
\
B2B2

C(B)

This equivalent statement of union consistency will be used to derive our results. For a proof of

the equivalence please see the Appendix.

4 The learning process

Agents progressively learn over time through the inferences they make from the history of choices of

their neighbors. Compared to a complete network analysis like in Geanakoplos and Polemarchakis

21The strategy si can additionaly be indexed by time periods allowing agent i to select di¤erent actions over time
even if his information set remains constant.
22The union consistency condition for decision functions was introduced independently by Bacharach (1985) and

Cave (1983).
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(1982), the added di¢ culty in an incomplete network is that the privately observable component

contributing to the information set of a given player from perspective of one of his neighbors j is not

given only by a static component, P i(!); but contains a dynamic component as well, the history
of choices of neighbors of i that are not neighbors of j: In an incomplete network there might be

no set of agents such that their history of play is common knowledge among all agents while in

a complete network the history of all choices is common knowledge and the privately observable

component of the information set of each player consists only of the cell of his partition

We assume fully rational agents that make all possible inferences based on the history they

observe. Their inference consists of direct inference regarding the realized partition cell of their

neighbors as well as, over time, indirect inference regarding the realized cell of all other agents.

Before we introduce the formal learning process we present a simple example for the learning process

in an incomplete three agent network to provide some intuition.

4.1 Learning in an incomplete network with three agents and two actions

There are three agents �; �; and 
 organized in an incomplete network where � is the center agent

observing the history of actions of both � and 
; while � and 
 observe only the history of actions of

�; N� = f�g; N� = f�; 
g; and N
 = f�g: The state space consists of four states, 
 = fA;B;C;Dg;
and the partitions are given by P� = fAB;CDg; P� = fABCDg; and P
 = fAC;BDg:

A B

C D

Figure 1: State space of example 1

Thus agent � observes the rows of the matrix while agent 
 observes the columns. Let the

common prior probability measure over the state space be uniform. In every period agents have to

choose one of two actions, A = fa; dg: The utility function is given by

u(a; !) =

(
1 if ! = A

0 otherwise
u(d; !) =

(
1 if ! = D

0 otherwise

Agent � will select action a if P�(!) = fABg is realized, and action d otherwise. Agent � is
indi¤erent between both actions and agent 
 selects action a when observing P
(!) = fACg and
action d otherwise. Let the strategies of all players assign action d in cases of indi¤erence.

Suppose ! = A is realized. The �rst period information sets of the agents are I1�(P�(A)) =
fABg; I1�(P�(A)) = fABCDg; and I1
(P
(A)) = fACg: Agents � and 
 select action a in the �rst
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stage while agent �; being indi¤erent, selects action d. As agent � has no initial private information

and agent � as well as 
 observe only the action chosen by �; the second stage information sets

of both � and 
 are identical to their �rst period information set, I2�(P�(A); h2� (A)) = fABg;
and I2
(P
(A); h2
 (A)) = fACg: Agent � on the other hand observes the �rst period choices of
both agents � and 
 and makes inference regarding their realized partition cells. The second stage

information set of agent � is given by

I2�(P�(A); h2 (A)) = fABg \ fACg = A

Prior to making inference based on ��s second period choice both other agents have to consider

what the possible second stage information sets of agent � are. Among agent � and � it is common

knowledge that agent ��s information set is given by fABg while the information set of agent 
 is
private information of agent �; as � did not observe agent 
�s �rst period choice. Thus agent � has

to consider the possibility that 
 selected action a in the �rst period as well as the possibility of

him having selected action d: It is common knowledge among � and � that agent ��s true second

stage information set is contained in

I2�(h2�� (A) ;A) = ffABg \ fACg; fABg \ fBDgg = fA;Bg

Similar reasoning for agent 
 who does not observe agent ��s �rst period action yields the set of

possible second stage information sets of � from perspective of agent 


I2�(h2�
 (A) ;A) = ffABg \ fACg; fCDg \ fACgg = fA;Cg

Note that agent � selects action a if he observes ! = A and action d if he observes ! = B;C

according to his strategy. As the information sets of � and 
 are identical to their �rst period

information sets they select the same action, a2� = a
2

 = a: Agent � selects action a as well. Based

on the second period action of agent � both agents � and 
 can infer his second stage information

set and thus learn the true state

I3�(P�(A); h3� (A)) = I3�(P�(A); h3 (A)) = I3
(P
(A); h3
 (A)) = A

At the beginning of stage three the true state of the world is common knowledge and all players

select action a in each following period.

We chose this simple example to showcase the indirect inference agents make on the realized

partition cells of all agents in the network based on the history of choices they observe. The sets

Iti (htij(!);!) play the crucial role in the learning process and we give the formal characterization
in the following subsection.
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4.2 The general learning process

Let us now present the formal learning process and introduce the notation we will use throughout

the paper. At the beginning of stage t = 1 the information set of each agent i is given by the true

cell of his partition. For period t = 1 we have

I1i (!) = P i(!)

It is common knowledge among any pair of agents i and j that the true cell of their meet23

P i ^ Pj(!) is realized. We will denote the smallest event that is common knowledge to be true
among two agents in period t = 1 as CK1

ij(!)

CK1
ij(!) = P i ^ Pj(!)

Let ri denote a cell in i�s partition, ri 2 P i: The set of possible �rst stage information sets of agent
i based on the common information CK1

ij(!) of i and j is given by

I1i (!; j) = fri 2 P i : ri \ CK1
ij(!) = rig

Based on his �rst stage information set and strategy player i selects an action, a1i . His neighbor j

can make the following inference regarding player i�s realized partition cell

D1i (a1i ; !; j) =
�
ri 2 I1i (!; j) : a1i = si(ri)

	
As the action selected by i has to be consistent with the strategy of agent i; his neighbor j learns

from the �rst period action a1i that the true partition cell of agent i is contained in D1i (a1i ; !; j): The
set D1i (a1i ; !; j) consists of all cells of agent i�s partition that are a subset of CK1

ij(!) and induce

him to select a1i based on his strategy.

After observing the �rst period choices of his neighbors and making inference regarding the

realized cells of their partitions, player i takes the intersection of the true cell of his partition with

the sets [D1l (a1l ; !; j) over all his neighbors l 2 Ni to compute his second stage information set:
Agent i�s information set in period t = 2 is denoted as I2i (P i(!); h2i (!)); where

I2i (P i(!); h2i (!)) = P i(!) \
\
l2Ni

[ D1l (a1l ; !; j)

23The meet of a set of partitions is the �nest common coarsening of all partitions.
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In period t the information set of agent i is given by

Iti (P i(!); hti (!)) = P i(!) \
\
l2Ni

[ Dt�1l (at�1l ; ht�1il (!) ;!)

Any pair of neighbors i and j share a common history htij(!) at the outset of period t given by

the history of choices up to period t of i and j; as well as the choices of all agents l that are

both neighbors of i and j: The set Iti (htij (!) ;!) consists of possible information sets of player i in
period t that are consistent with the common observables of agent i and j: Iti (htij (!) ;!) is common
knowledge among them and contains the true information set of player i: We have

Iti (htij (!) ;!) =
(
Iti (ri; ĥ

t
i) :

ĥtij = h
t
ij(!)

9It�1i 2 Dt�1i (at�1i ; ht�1ij (!);!) s.t. I
t
i (ri; ĥ

t
i) � It�1i

)

All information sets of player i that are commonly considered possible among i and j have to be

consistent with the common observables in period t; the common history of actions of i and j as

well as the inference on agent �{�s information set in period t� 1 based on his action in period t� 1:

Player i chooses an action ati 2 A in period t according to his strategy which leads to a re�nement
of the set Iti (htij (!) ;!). We have

Dti(ati; htij (!) ;!) =
�
Iti 2 Iti (htij(!);!) : ati = si(Iti )

	
where Dti(ati; htij (!) ;!) is common knowledge among i and j as it relies only on variables that are
commonly known among them: At the beginning of stage t + 1 agent i processes the information

contained in the choices his neighbors made in period t terminating in his private information set

in period t+ 1 given by

It+1i (P i(!); ht+1i (!)) = P i(!) \
\
l2Ni

[ Dtl (atl ; htil (!) ;!)

The alert reader might have realized that the inference made by agent i regarding the in-

formation set of his neighbor j occurs out of a set of commonly known possible information sets

Itj(htij (!) ;!) even though player i0s private information might lead to an exclusion of some elements
of Itj(htij (!) ;!), all those that have an empty intersection with his information set Iti (P i(!); hti (!)):

The information sets of all agents based on the learning process de�ned above equal the infor-

mation sets based on an alternative learning process where inferences are made out of a subset of

Itj(htij (!) ;!) given by excluding all elements that i privately knows not to be realized. The intu-
ition behind the equivalence is that if a certain element is excluded based on private observables

but still contained in Dt�1j (at�1j ; ht�1ij (!) ;!) then the intersection of that element with the true

15



information set of player i in the next stage will still be empty. Thus agent i makes inference on

his neighbors only based on common indicators, i.e. atl and h
t
il; but when processing them across

agents, he takes all his privately available indicators, i.e. hti and P
i(!); into account. Let the infor-

mation sets based on the alternative learning process be denoted by �Iti (): For a formal de�nition of

the alternative learning process please see the Appendix.

Proposition 1 For every player i 2M; for every period t 2 N and every state of the world !

Iti (P i(!); hti(!)) = �Iti (P i(!); hti(!))

For the proof please see the Appendix. Let us next state a very important property of the

rational learning process in networks.

Proposition 2 For all i 2M and all periods t;
�
P i(!); hti (!)

�
6=
�
P i(!0); ĥti (!0)

�
implies

Iti (P i(!); hti (!)) \ Iti (P i(!0); ĥti
�
!0
�
) = ;

Proposition 2 states that any two information sets of player i that rely on unequal observables,

the true cell of i�s partition or the history that i observes, have an empty intersection. This directly

implies that the set of possible information sets of agent i; given the common observables of i and

his neighbors j; is a collection of disjoint sets. This feature of Iti (htij (!) ;!) enables us to apply the
union consistency condition.

Due to the heavy notation we provide a table on the last page with de�nitions and descriptions

of all relevant sets used throughout the paper.

5 The �nite learning case

We now present the �rst main result. We show that all actions chosen by agent i once learning

ends are optimal for his neighbor j and the information set that agent j observes24.

24Within our framework only pure strategies are considered. Our result is not robust against expanding the strategy
space to mixed strategies in the expected utility framework. The optimality of choices across neighbors once learning
ends can fail if mixed strategies are played.
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Theorem 1 If the choice correspondence C is union consistent and for a given state ! there exists
a �nite t0 such that for all t � t0

[Iti (htij (!) ;!) = [It
0
i (h

t0
ij (!) ;!)

for all i 2M and j 2 Ni; then

sj(I
t
j(Pj(!); htj (!))) = atj 2 C(Iti (P i(!); hti (!)))

for all t � t0

Theorem 1 states a local indi¤erence result, the indi¤erence among actions chosen among pairs

of neighbors under a condition on the pairwise informational structure. The following two Lemmas

together with Proposition 2 form the main components of the proof.

Lemma 1 For a given state !; and i 2M , j 2 Ni; if

[It0+1i (ht
0+1
ij (!) ;!) = [It0i (ht

0
ij (!) ;!)

then for at0i = si(I
t0
i ((P

i(!); ht
0
(!))

Dt0i (at
0
i ; h

t0
ij (!) ;!) = It

0
i (h

t0
ij (!) ;!)

Lemma 2 For all states of the world !; time periods t and agents i 2M; j 2 Ni

[Iti (htij (!) ;!) = [Itj(htij (!) ;!)

The proofs of the Lemmas are provided in the Appendix. We now present the proof of Theorem

1.

Proof. Take any pair of neighbors i 2 M; j 2 Ni: As [It
0+1
i (ht

0+1
ij (!) ;!) = [It0i (ht

0
ij (!) ;!); we

have by Lemma 1

si

�
It
0
i (P i(!); ht

0
(!))

�
= at

0
i 2 C(It

0
i ) 8It

0
i 2 It

0
i (h

t0
ij (!) ;!)

Similarly for agent j

sj

�
It
0
j (Pj(!); ht

0
(!))

�
= at

0
j 2 C(It

0
j ) 8It0j 2 It

0
j (h

t0
ij (!) ;!)
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Proposition 2 implies that It0i (ht
0
ij ;!) is a collection of disjoint sets. By Lemma 2 we have

[It0i (ht
0
ij (!) ;!) = [It

0
j (h

t0
ij (!) ;!)

Union consistency of the choice function implies pairwise consistency which gives

sj(I
t0
j (Pj(!); ht

0
j (!))) = a

t0
j 2 C(It

0
i (P i(!); ht

0
i (!)))

and

si

�
It
0
i (P i(!); ht

0
i (!))

�
= at

0
i 2 C(It

0
j (Pj(!); ht

0
j (!)))

As individual learning ends in t0 the same is true for any later period t > t0 �

There are a number of corollary results to Theorem 1. The �rst Corollary considers the special

case where there is a common choice function C : F ! A that assigns a single element of A to each

information set in F : It is intuitively directly apparent, that as only a single action is optimal for
each information set any pair of neighbors have to choose the same action once learning ends. If

the network is connected and every pair of neighbors select the same action, then all agents select

the same action. Thus under a common choice function perfect uniformity of choice occurs once

learning ceases. Formally the result is stated in Corollary 1 below.

Corollary 1 If G is connected, the choice function C : F ! A is union consistent and for a given

state ! there exists a �nite t0 such that for all t � t0 we have

[Iti (htij (!) ;!) = [It
0
i (h

t0
ij (!) ;!)

for all i 2M and j 2 Ni; then there exists an a� 2 A such that for all agents i 2M and all periods

t � t0

a� = C(Iti (P i(!); hti (!)))

Proof. C being a function and Theorem 1 imply

at
0
i = at

0
j = C(I

t0
i )

at
0
j = at

0
i = C(I

t0
j )

for all pair of neighbors i; j: G being connected implies that for every pair of agents i; j 2M there

exists a sequence of agents k1; :::; kl where k1 = i and kl = j such that kf+1 2 Nkf for f = 1; ::; l�1;
where

C(It
0
i ) = C(I

t0
k1) = C(I

t0
k2) = ::: = C(I

t0
kl
) = C(It

0
j )
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Thus there exists an a� 2 A such that

a� = at
0
i = C(I

t0
i )

for all agents i 2M:As the information set remains constant from period t0 on, i.e. It0i (P i(!); ht
0
i (!)) =

Iti (P i(!); hti(!)) for all t > t0; we have

a� = ati = C(I
t
i )

for all t > t0 �

Corollary 2 states a su¢ cient condition for learning to end in �nite time. If the partitions of all

agents are �nite, then learning ends in �nite time.

Corollary 2 If the partitions P i are �nite for all i 2M and the choice correspondence C is union

consistent, then there exists a �nite t0(!) for each state of the world such that for all t � t0(!) we
have

sj(I
t
j(Pj(!); htj (!))) = atj 2 C(Iti (P i(!); hti (!)))

for all i 2M and j 2 Ni:

The �niteness of partitions implies that the join is �nite and as a consequence the power set of

the join is �nite as well. As an information set consists of intersections of subsets of the partitions

of all players, it is contained in the power set of the join. For individual learning not to end in

�nite time there would have to exist an in�nite sequence of information sets such that each set is

a strict subset of his predecessor in the sequence contradicting the fact that the power set of the

join is �nite.

Corollaries 1 and 2 have an interesting implication for the "Agreeing to Disagree" literature.

Geanakoplos and Polemarchakis (1982) have shown that two agents who repeatedly communicate

back and forth their updated posterior belief of an event E; will converge on one posterior in

�nite time, if partitions are �nite and agents share a common prior. Our two Corollaries imply a

generalization of their result to �nite players in a connected social network. In order to show this,

we need to add more structure to our model. Let the common choice function

C : F ! [0; 1]

be de�ned as

C(I) =
p (I \ E)
p(I)

8I 2 F
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where p is a common prior probability measure. If the thus de�ned choice function is union

consistent25, then Corollary 1 and Corollary 2 imply that in a connected social network the posterior

beliefs of all agents converge in �nite time if the partitions of all agents are �nite.

In the following subsections we provide two examples that highlight features of the Bayesian

learning process in connected networks that are novel to the literature. The �rst example concerns

a setting where agents share a common prior and announce their posterior belief of an uncertain

event in each period. We consider the following question: which network structure leads to optimal

information aggregation? A network aggregates individual information in an optimal manner if the

posterior beliefs of all agents converge to the pooled information posterior26. On �rst thought one�s

intuition is that a complete network where all agents observe the announcements of everybody

should dominate incomplete networks in terms of quality of information aggregation. We show by

example that this is generally not the case.

Our second example concerns the set of actions chosen in the network once learning ends. For

a choice correspondence, Theorem 1 implies only local indi¤erence across neighbors, not global

indi¤erence across all members of the social network. We �nd that in networks with a diameter

larger than one and with an underlying choice correspondence the global consensus and optimality

of actions chosen once learning ends generally fails to hold for all pairs of agents. This casts new

light on the literature on consensus and knowledge which just considers decision functions27.

5.1 An example for quality of information aggregation in complete versus in-
complete networks

There are three playersM = f1; 2; 3g; and the state space 
 is given by a compact subset of R2:We
assume a uniform probability measure p over 
. For ease of understanding please see the graphical

representation of the state space in Figure 2 below.

25 In the supplementary Appendix we show that the �niteness of partitions together with the countable additivity
property of probability measures implies union consistency for the above de�ned common choice function.
26The posterior of event E conditioning on the true cell of the join.
27See for example Krasucki (1996) and Menager (2006) who prove global consensus across all agents under pairwise

communication and decision functions.
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Figure 2: The state space 
 of example 2

Player 1 partitions 
 horizontally, the cells of his partitions are given by the union of the �rst

two rows, r1; the union of row three and four, r2; and the remaining two rows, r3; P1 = fr1; r2; r3g
Player 2 partitions the state space diagonally, the cells of his partition are the upper triangle, d1;

and the lower triangle d2; P2 = fd1; d2g: Player 3 partitions the state space vertically. The cells of
his partition are given by the union of the �rst two columns, c1; the union of columns three and

four, c2; and the union of the remaining two columns, c3; P3 = fc1; c2; c3g:

The event E whose likelihood we are concerned with is given by E =
10[
i=1

Ei: Suppose that E1

is realized. Let us consider the complete network case �rst, Ni = fj; kg for i; j; k 2M: The players
observe r1; d1 and c1 respectively which leads to �rst stage announcements of q11 =

1
3 ; q

1
2 =

7
18 and

q13 =
5
12 : At the beginning of period t = 2 the information sets of the players are given by

I21 (r
1; h2(!)) = r1 \

�
c1 [ c2

�
I22 (d

1; h2(!)) =
�
r1 [ r2

�
\
�
c1 [ c2

�
\ d1

I23 (c
1; h2(!)) =

�
r1 [ r2

�
\ c1

Leading to second stage announcements of q21 =
1
2 ; q

2
2 =

1
2 and q

2
3 =

1
2 : As

q21(I
2
1 (r

1; h2(!))) = q21(I
2
1 (r

2; h2(!))) =
1

2

and

q23(I
2
3 (s

1; h2(!))) = q23(I
2
3 (s

2; h2(!))) =
1

2

no further information is aggregated. No player learns the cell of the join of their partitions and

the �nal common posterior equals q = 1
2 which is unequal to the pooled information posterior of

1
4 :
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Next let us analyze what occurs in the same example but with an incomplete network. Let

2 be the center player in a star network, i.e. N1 = N3 = f2g and N2 = f1; 3g: Again suppose
that ! 2 E1 is realized. The �rst stage information sets and probability announcements mirror the
complete network case leading to q11 =

1
3 ; q

1
2 =

7
18 and q

1
3 =

5
12 :

At the beginning of stage t = 2 the branch players have less observables than in the complete

case, as they only observe the announcement of the center player. The second stage information

sets are given by

I21 (r
1; h21(!)) = r1 \ d1

I22 (d
1(!); h2(!)) =

�
r1 [ r2

�
\ d1 \

�
c1 [ c2

�
I23 (c

1; h23(!)) = d1 \ c1

There is common knowledge among player 1 and 2 that player 2 faces an information set within

I22 (h212(!);!) where

I22 (h212(!);!) =
��
r1 [ r2

�
\ d1 \

�
c1 [ c2

�
;
�
r1 [ r2

�
\ d1 \ c3

	
The posterior probabilities depending on the information set of agent 2 are

q22
��
r1 [ r2

�
\ d1 \

�
c1 [ c2

��
=

1

2
q22
��
r1 [ r2

�
\ d1 \ c3

�
= 0

Thus at the beginning of stage three agent 1 learned the second stage information set of agent 2:

Based on the common observables of agents 1 and 2 the information set of agent 1 is an element of

I21 (h212(!);!) where
I21 (h212(!);!) =

�
r1 \ d1; r2 \ d1

	
leading to the following probability announcements

q21(r
1 \ d1) =

2

5

q21(r
2 \ d1) =

1

2

Thus player 2 learns the true cell of agent 1 through his second stage announcements. Based on the

common observables of agent 2 and 3 the set of possible information sets of agent 1 from perspective

of agent 2 is either

I21 (h212(!);!) =
�
r1 \ d1; r2 \ d1
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if agent 1 announced a probability of 13 in the �rst stage. Otherwise the information set of agent 1

is commonly known among 1 and 2 to be equal to

I21 (r
3; h21(!)) = r

3 \ d1

For all three possible information sets agent 1 announces a di¤erent probability as

q21(r
3 \ d1) = 0

Thus it is common knowledge among all agents that player 2 learned the true cell of agent 1 at

the outset of stage 3: Based on the common observables of agents 2 and 3 it is common knowledge

that agent 2�s second stage information set is contained in

I22 (h223(!);!) =
��
r1 [ r2

�
\ d1 \

�
c1 [ c2

�
; r3 \ d1 \

�
c1 [ c2

�	
leading to the following second stage announcements of agent 2

q22
��
r1 [ r2

�
\ d1 \

�
c1 [ c2

��
=

1

2
q22
�
r3 \ d1 \

�
c1 [ c2

��
= 0

Thus agent 3 learns the second stage information set of agent 2 through his second stage announce-

ment. Based on the common observables of player 2 and player 3 it is common knowledge that the

second stage information set of agent 3 is contained in

I23 (h223(!);!) =
�
d1 \ c1; d1 \ c2

	
leading to the following second stage announcements of agent 2

q22(d
1 \ c1) =

2

5

q21(d
1 \ c2) =

1

2

Thus player 2 learns the true cell of agent 3 through his second stage announcement. Based on the

common observables of agent 1 and 2 it is common knowledge that the set of possible information

sets of agent 3 from perspective of agent 2 is equal to

I23 (h223(!);!) =
�
d1 \ c1; d1 \ c2

	
if agent 3 announces a posterior of q13 =

5
12 in the �rst period. If agent 3 announced a posterior of

q13 = 0 in the �rst stage it is common knowledge among 2 and 3 that the true information set of
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agent 3 equals

I23 (c
3; h23(!)) = d

1 \ c3

leading to

q22(d
1 \ c3) = 0

All three possible second stage information sets of agent 3 lead to di¤erent posterior announcements.

Thus it is common knowledge among all agents that agent 2 knows the true cell of agent 3 at the

beginning of stage three if the true cell of agent 2 is equal to d1.

Based on the considerations above it is common knowledge among all agents that agent 2 knows

the true cell of the partition of agent 1 as well as of agent 3 at the beginning of stage three28: Agents

announce their second stage posteriors q21 =
2
5 ; q

2
2 =

1
2 and q

2
3 =

2
5 leading to the following third

stage information sets

I31 (r
1; h31(!)) = r1 \ d1 \

�
c1 [ c2

�
I32 (d

1; h3(!)) = r1 \ c1

I33 (c
1; h33(!)) =

�
r1 [ r2

�
\ d1 \ c1

and announcements q3 = (12 ;
1
4 ;
1
2): It is common knowledge among all players that player 2 knows

the true cell of the join at the beginning of stage 3. Thus after observing the third period an-

nouncement of agent 2 the other two agents will announce the third period posterior of agent 2

from period t = 4 on forward. The third period announcement of agent 2 is given by

q32(r
1 \ c1) = 1

4

which equals the pooled information posterior. The third period announcements of agent 1 and 3

are q31 =
1
2 and q

3
3 =

1
2 respectively. For all periods t � 4 we have

qt1(r
1 \ c1) = qt2(r1 \ c1) = qt3(r1 \ c1) =

1

4

Thus for ! 2 E1 the incomplete network aggregates information optimally while the complete

network does not29.

28For ! 2 d1
29For all states ! 2

�
r1 [ r2

�
\ d1 \

�
c1 [ c2

�
this holds true.
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5.2 An example for failure of global indi¤erence

We consider a network consisting of three agents, �; � and 
: They are organized in a line net-

work, N� = f�g; N� = f�; 
g; and N
 = f�g: The state space consists of nine states 
 =

f1; 2; 3; 4; 5; 6; 7; 8; 9g and the probability measure p over 
 is uniform. Agents � and 
 have

private information while agent � has not. The partitions are given by P� = f123; 456; 789g;
P� = f123456789g; and P
 = f147; 258; 369g: The state space is graphically displayed in �gure 3

1 2 3

4 5 6

7 8 9

Figure 3: The state space 
 in example 3

Agent � observes the rows of the matrix while agent 
 observes the columns. In every period

agents have to choose one of three actions, A = fa; b; cg: The utility function is given by

u(a; !) =

(
1 if ! = 1; 2; 4; 5; 6; 8

0 otherwise
u(b; !) =

(
1 if ! = 1; 2; 4; 5; 6; 8; 9

0 otherwise

u(c; !) =

(
1 if ! = 2; 4; 5; 6; 8; 9

0 otherwise

As agents maximize their expected utility in each period conditioning on their information, agent

� selects either action a or b when observing P�(!) = f123g; action a; b; or c when observing
P�(!) = f456g; and action b or c when P�(!) = f789g is realized. Agent � does not have private
information in the �rst period and thus selects action b: Agent 
 on the other hand selects action

a or b if P
(!) = f147g is realized, action a; b or c if he observes P
(!) = f258g; and action b or c
if he observes P
(!) = f369g:

Let us assume the following strategies for the players: agents � and 
 select a whenever a is

optimal and action c whenever c is optimal and a is not, while agent � selects action b whenever it

is optimal30.

Suppose ! = 3 is realized. Agent � selects action a according to his strategy, agent � selects

action b, while agent 
 selects action c according to his strategy. At the outset of stage two the

information sets of � and 
 are identical to their information sets in period one as agent � had no

initial private information to reveal through his �rst period action.

30This does not provide a complete description of the strategy of agent � but is all we require in the given example.
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Agent � on the other hand makes inference through the actions chosen by agents � and 
 and

his second stage information set is I2�(P�(3); h2�(3)) = f36g: Agent � knows his own �rst period
choice but not the action chosen by agent 
: It is common knowledge among � and � that ��s

second stage information set is contained in

I2�(h2��(3);! = 3) = f1245; 36g

For both information sets in I2�(h2��(3);! = 3) agent � selects action b according to his strategy

implying that the information set of agent � in the third stage to be equal to ��s information set in

the second stage. The set of possible information sets of agent � based on the common observables

of � and 
 is given by

I2�(h2�
(3);! = 3) = f36; 9g

For both information sets in I2�(h2�
(3);! = 3) agent � selects action b following his strategy and
thus the third stage information set of agent 
 is identical to her second stage information set. The

set of possible second stage information sets of player � based on the common observables of � and

� is given by

I2�(h2��(3);! = 3) = f123; 456g

and agent � selects action a for both sets in I2�(h2��(3);! = 3) yielding no further insight for agent
�: The set of possible second stage information sets of agent 
 based on common observables among


 and � is given by

I2
(h2�
(3);! = 3) = f369g

thus agent 
 can not transmit further information. In this example learning ends in the second

stage and agent � selects action a in every period while agent 
 selects action c in each period while

action a is not optimal for agent 
 and action c is not optimal for agent �:

The example shows that the result of local indi¤erence across agents does not imply global

indi¤erence, if we assume an underlying choice correspondence. This is an interesting insight in

relation to the usual uniformity result in the sequential social learning literature which generally

assumes common priors and common utility functions. We show that in a setting where agents

select actions repeatedly the result of uniformity of actions once learning ends does not generally

hold. On a local level, among neighbors, any action that an agent selects once learning ends is

optimal for his neighbor, but on a global level, across all agents in the network, this property can

fail.
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6 An asymptotic result

The result of indi¤erence among neighbors between their equilibrium choices has been shown to

hold once learning ends. So far we have established that learning ends in �nite time in the case of

�nite partitions. Next we will present a limit result. For that we need to introduce the concept of

a dominant set under a choice correspondence C

De�nition 1 B 2 F is a dominant set under C if for all sequences fBtg1t=1 in F such that

Bt+1 � Bt and
1\
t=1

Bt = B there exists a �nite t� and

C(Bt) � C(B)

for all t � t�:

A set B is dominant under choice correspondence C if for every sequence of sets that converge

to B there exists a �nite time period such that from that period onward every action which is

optimal for information set Bt is also optimal given the limit information set. In the expected

utility framework with a common prior, bounded and measurable common utility function, and

�nite actions every set with positive probability is a dominant set. Please see Proposition 2 and

the corresponding proof in the supplementary Appendix.

We need to impose one additional condition on the choice correspondence C:

(D) If B 2 F is a dominant set under C; then every set E 2 F that contains B is a dominant set

under C

In the expected utility setting described above property (D) holds as every set that contains
a set of positive probability has positive probability. Before stating the theorem let us de�ne the

limit information set I1i (P i(!); h1i (!)) as

I1i (P i(!); h1i (!)) =
1\
t=1

Iti (P i(!); hti(!))

Remember that Iti (htij(!);!) denotes the set of possible information sets of agent i in period t
based on the common observables of i and his neighbor j:

n
Iti (htij(!);!)

o
t2N

denotes a sequence
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of collections of sets. Let the limit of the sequence be denoted as I1i (h1ij (!);!) and de�ned as

I1i (h1ij (!);!) =
�
I1i (P i(!0); h1i (!0)) : Iti (P i(!0); hti(!0)) 2 Iti (htij(!);!) 8t

	
Note that the limit set I1i (h1ij (!);!) is not empty as the true information set of player i; Iti (P i(!); hti(!))
is contained in Iti (htij(!);!) for every period t:

Theorem 2 If all elements of the join
_
j2M

Pj are dominant sets under C, the choice correspondence

is union consistent and complies with condition (D), and the action set A is �nite, then for a given

state ! 2 
 any action that an agent i selects in�nitely often according to his strategy is optimal
for all neighbors j of i in their limit information set. Let

A1i (!) =
�
a 2 A : a = si

�
Iti (P i(!); hti(!)

�
) for in�nite periods t

	
and j 2 Ni; then

A1i (!) � C(I1j (Pj(!); h1j (!)))

Theorem 2 says that if the stated conditions are satis�ed, then any action an agent selects

in�nitely often is eventually optimal for all her neighbors. The proof appears in the Appendix. The

following Lemmas are used31.

Lemma 3 I1i (P i(!0); h1i (!0)); I1i (P i(!00); h1i (!00)) 2 I1i (h1ij (!);!) implies

I1i (P i(!0); h1i (!0)) \ I1i (P i(!00); h1i (!00)) = ;

Lemma 4 If I1i (P i(!0); h1i (!0)) 2 I1i (h1ij (!);!) then for each period t

si
�
Iti (P i(!); hti(!))

�
= si

�
Iti (P i(!0); hti(!0))

�
Lemma 5 For every state ! and all i 2M; j 2 Ni

[I1i (h1ij (!);!) = [I1j (h1ij (!);!)

Let us outline the steps of the proof. First we establish that every limit information set

I1i (P i(!); h1i (!)) is a dominant set relying on the assumption that every cell of the join is a

31For the proofs of Lemma 3-5 please see the Appendix.
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dominant set together with condition (D). As the action set is �nite there exists a set of actions
A1i (!) for player i in state ! that are selected in�nitely often by i:We use the property of the limit

set being dominant to show that every action in A1i (!) is optimal for agent i in his limit informa-

tion set. By Lemma 4, for any pair of information sets Iti (P i(!0); hti(!0)); Iti (P i(!00); hti(!00)) that
converge to limit information sets in I1i (h1ij (!);!); the strategy assigns the same actions for all
periods t; si

�
Iti (P i(!00); hti(!00))

�
= si

�
Iti (P i(!0); hti(!0))

�
; which implies that all actions in A1i (!)

are optimal for all limit information sets in I1i (h1ij (!);!): Lemma 3 shows that I1i (h1ij (!);!) is a
collection of disjoint sets. We apply the same reasoning for neighbor j of agent i and use Lemma 5

in combination with the union consistency property of the choice correspondence to establish that

any action that i selects in�nitely often is optimal for all his neighbors in their limit information

set.

7 Common knowledge of rationality versus
common knowledge of strategies

So far we have assumed that the strategies of all agents are common knowledge, i.e. there is

common knowledge which action any agent selects out of the set of actions assigned by the choice

correspondence for every information set in F : In this section we will make the assumption that
only rationality of agents is commonly known, i.e. it is common knowledge that agents select an

option according to the common choice correspondence. We will show that whether Theorem 1

holds in this setting depends on the underlying network structure.

Let us start by giving some intuition for why Theorem 1 might fail in this setting. Take any

pair of neighbors i; j and consider the inference that player j makes based on player i0s �rst period

choice. We have

Di(ai) =
�
ri 2 P i : ai 2 C(ri)

	
Whenever there is a cell in player �{0s partition to which the choice correspondence assigns more than

a single action, we have that the collection of sets
�
D1i (ai)

	
ai2A for ai such that D1i (ai) 6= ; does

not constitute a partition of 
 because some elements have a non-empty intersection:Whenever an

agent is making inference on the information set of his neighbor this can cause di¢ culties. Next we

introduce the learning process in a complete network under common knowledge of rationality. We

then state a positive result of global optimality of actions chosen in complete networks once learning

ends, before we provide an example where the optimality across neighbors fails in an incomplete

network.
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7.1 The learning process in a complete network under common knowledge of
rationality

In period t = 1 the smallest event that is common knowledge to be realized among all players is

the true cell of the meet of all players

CK1(!) =
^
i2M

P i(!)

For a given �rst period choice a1i of player i it becomes common knowledge among all agents that

the realized cell of agent i is contained in set D1i (a1i ;!) where

D1i (a1i ;!) =
�
ri 2 P i : a1i 2 C(ri); ri \ CK1(!) = ri

	
When observing a1i it is common knowledge among all agents that player i�s realized partition cell

has the property that a1i is optimal given the realized cell. At the beginning of period t = 2 it is

common knowledge among all agents that CK2(h2;!) is realized where

CK2(h2;!) =
\
i2M

[ D1i (a1i ;!)

Agent i makes inference regarding the realized cells of all agents based on their �rst period actions

and processes the inferences by taking the intersection of the cell of his partition with the intersec-

tion of the set of possible information sets across all other agents. The information set of player i

is given by

I2i (P i(!); h2) = P i(!) \ CK2(h2;!)

The common inference that is made through the second period choice of player i is given by set

D2i (a2i ; h2;!) where

D2i (a2i ; h2;!) =
�
ri 2 P i : a2i 2 C(ri \ CK2(h2;!))

	
At the outset of period t we have

CKt(ht;!) =
\
i2M

[ Dt�1i (at�1i ; ht�1;!)

The private information of player i at time t is given by

Iti (P i(!); ht) = P i(!) \ CKt(ht;!)
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and the inference agents make regarding agent i0s cell based on his choice in period t is given by

Dti(ati; ht;!)
Dti(ati; ht;!) =

�
ri 2 P i : ati 2 C(ri \ CKt(ht;!))

	
The information set of agent i in period t+1 depending on the choices of all other agents in period

t is given by

Iti (P i(!); ht) = P i(!) \
\
i2M

[ Dti(ati; ht;!)

The information set of an agent is given by the intersection of his true partition cell with set

CKt(ht;!)) which is common knowledge among all agents.

7.2 Theorem 3

Theorem 3 provides a positive result in the setting of common knowledge of rationality.

Theorem 3 If G is complete and the choice correspondence union consistent, then common knowl-
edge of rationality is su¢ cient for the following result: If there exists a time t0(!) such that

CKt(ht;!) = CKt0(ht
0
;!) for all t � t0 then

atj 2 C(Iti (P i(!); ht))

for all i; j 2M and t � t0:

The Theorem states that if common learning ends in stage t0; then from that stage on, every

action chosen in the network is optimal for all agents. The driving force of the result is that the

history of choices of all agents is common knowledge leading to a set of states which is common

knowledge among all players in each period. The information set of each agent consists of the

intersection of the true cell of his partition with the set CKt(ht;!):

The proof appears in the Appendix. It relies on the fact that the information set of each player

i for any period t is the intersection of the true cell of his partition with the smallest set of states

that is commonly known to contain the true state; CKt(ht;!): Thus the set of information sets

of player i that are commonly known to be feasible at time t partition the set CKt(ht;! _): The

fact that learning ends in period t0 implies that there exists an action at
0
i that is optimal for all

possible information sets of player i: The union consistency property of the choice correspondence

then implies the result.
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7.3 An example for failure of indi¤erence across neighbors

Let us consider an example of an incomplete network with three agents where there exists a pair

of neighbors i; j such that i and j select a distinct action once learning ends and the action chosen

by i is not optimal for j and vice versa.

There are three agents �; � and 
: Agents � and 
 are neighbors of � but not of each other, i.e.

N� = �; N� = f�; 
g; N
 = �: The state space is �nite and given by 
 = f1; 2; 3; 4; 5; 6; 7; 8; 9g :
The �-algebra F equals the power set of 
: For ease of understanding we present 
 graphically by

the matrix below

1 2 3

4 5 6

7 8 9

Figure 4: The state space of example 4

Agent � partitions the state space horizontally observing the rows of the matrix, P� = f123; 456; 789g :
Agent � has no private information, P� = f123456789g ; while agent 
 partitions the state space
vertically observing the columns of the matrix, P
 = f147; 258; 369g : The choice set A consists

of two elements A = fb; cg: The choice correspondence C prescribes the following choices for the

possible �rst period information sets

C(123) = C(147) = b

C(456) = C(258) = fb; cg
C(
) = C(369) = C(789) = c

Let the state ! = 3 be realized. For ! = 3 player � observes the �rst row and selects b ; player

� selects c; and player 
 observes the third column and selects c: The information sets at the

beginning of the second period for players are I2�(P�(3); h2�) = f123g; I2�(P�(3); h2�) = f2356g and
I2
(P
(3); h2
) = f369g:

Neither player � nor 
 can make any inference based on �0s �rst period choice, but player �

makes inference based on the choice of the other two players. The second stage information sets

that are common knowledge to be possible for agent i among agents i and j based on the common
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observables of agents i and j are

I2�(h2�� ; 3) = f1245; 2356g
I2�(h2�� ; 3) = f123; 456g
I2�(h2�
 ; 3) = f2356; 5689g
I2
(h2�
 ; 3) = f258; 369g

Let the choice correspondence C be such that

C(1245) = C(2356) = C(5689) = C(4578) = c

As the information sets of agent � and 
 in period t = 2 are identical as in period t = 1; they select

the same action as in period one, a2� = b; a
2

 = c: Agent � selects action c as it is the single action

prescribed by his choice correspondence for his second stage information set I2�(P�(3); h2�) = f2356g:
In order to determine the learning process from period t = 3 on the branch player i has to consider

the sets I2j (h2j� ;!) and I2�(h2j� ;!) that are consistent with the common history h2i� in order to
determine the set I3�(h3j� ;!) as well as with h2i� consistent sets I3j (h3j� ;!) and I3�(h3j� ;!): Let us
�rst consider the analysis of agent �: As agent � does not know the �rst period choice of 
 the

following sets are consistent with the history h2�� :

I2�(h2�
 ;!) = f1245; 4578g ; I2
(h2�
 ;!) = f147; 258g if a1
 = b
I2�(h2�
 ;!) = f2356; 5689g ; I2
(h2�
 ;!) = f258; 369g if a1
 = c

As the choice correspondence assigns action c to all possible second stage information sets of player

� for all histories h2�
 that are consistent with h
2
�� ; agent 
 can not infer any additional information

from agent �0s second period choice, a fact that is common knowledge among � and �: Let us now

consider the analysis of agent 
: He does not know the �rst period choice of agent � thus he

considers the following sets which are consistent with h2�


I2�(h2�� ;!) = f1245; 2356g; I2�(h2�� ;!) = f123; 456g if a1� = b
I2�(h2�� ;!) = f4578; 5689g; I2�(h2�� ;!) = f456; 789g if a1� = c

Independent of his �rst period choice, agent 
 can not make additional inference based on player �0s

second period action as the choice correspondence prescribes action c for all possible information

sets of agent �: E¤ective second stage learning can only occur for player � and only if one of his

neighbors selects a second period action that is unequal to his �rst period action. This would reveal

the middle cell of �0s or 
0s partition respectively. But given that ! = 3 has occurred player �

and 
 have a single optimal action given their information set. Thus the private information sets

in the stage t = 3 are identical to stage t = 2: The common information sets I3�(h3�i; 3) contain the
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elements of the second stage information set and an additional element capturing the possibility of

an action switch, while the inference made is identical in each stage as ! = 3 and each agent has a

single optimal action.

In this example the private information sets as well as the union over the pairwise information

sets remain constant for all periods t � 2 and agent � selects action b for all periods t. Action b is
not optimal for his neighbor �; while � selects action c; which is not optimal for agent �: Thus we

have shown that without common knowledge of strategies, the local indi¤erence result of Theorem

1 can fail in an incomplete network.

8 Illustration of results: A game of regime change

Games of regime change are coordination games in which all players have the option to attack

the status quo. Whether attacking leads to an abandonment of the status quo may depend on

the number of agents that attack, as well as the underlying state of nature. This type of game is

commonly used to model phenomena as bank runs, revolution against the political status quo, as

well as currency attacks.

We consider a game of regime change purely to illustrate the relevancy of Theorem 1 for coordi-

nation games when agents can communicate prior to taking an action. Let us consider the following

game. There is a �nite set of agents M = f1; :::;mg organized in a social network G = (M;E)

who simultaneously decide whether to attack the status quo, ai = r; or remain inactive, ai = :r:
Uncertainty is described by a probability space (
;F ; p) where 
 is the state space, F a �-algebra

of subset of 
; and p a common prior. All agents have private information regarding the realized

state of nature given by their �nite partition P i: The common utility function ui : Am �
! R is
given by

ui(r; a�i; !) =

(
1 if ! 2 E and aj = r 8j 2M r i
�1 otherwise

ui(:r; a�i; !) = 0

The individual decision of player i to attack, leads to an overthrow of the status quo and a

bene�ciary outcome only if all other agents attack as well and the status quo is weak, ! 2 E: If an
agent takes part in an uncoordinated attack or a coordinated attack32 on a strong status quo, the

status quo prevails, and the agent is penalized.

32By coordinated attack we mean a simultaneous attack of all agents.
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Let us analyze the set of pure strategy Bayesian Nash equilibria. A strategy si of a player is

a mapping of partition cells into actions, si : P i ! fr;:rg: An equilibrium is a strategy tuple

s = (s1; :::; sm) such that for all player i

Ep[ui(si(P ); s�i; !) jP ] � Ep[ui(ai; s�i; !) jP ] 8P 2 P i; 8ai 2 fr;:rg

As perfect coordination is required among all agents for the status quo to be overcome, a strategy

tuple that involves inaction for each agent and each of his partition cells is an equilibrium for all

(
;F ; p) and set of partitions
�
P i
	
i2M :

For an attack to occur with positive probability it is necessary that there exists a non empty

subset of 
 such that the status quo being weak is common 1
2 -belief on that subset. In other words,

if and only if there exists a collection of sets
�
�P i
	
i2M where �P i 6= ; is a subset of P i and

p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

� 1

2
8P i 2 �P i;8i 2M

then there exists an equilibrium s such that si(P i) = r if and only if P i 2 �P i33: In our game of
regime change there is a variety of possible equilibrium outcomes depending on the underlying

parameters. One might observe uncoordinated attacks, uniform inaction, as well as coordinated

attacks that are either successful or fail.

From an ex ante perspective the probability of a perfectly coordinated attack is strictly smaller

than one whenever there exists an agent i with a cell P i of his partition with p(P i) > 0 such that

p
�
P i \ E

�
p(P i)

<
1

2

as it is always optimal for agent i to remain inactive when observing P i; independent of the choices

of all other agents. Having introduced the game of regime change and its equilibrium let us now

introduce a communication stage that precedes the action stage where all agents can exchange

information regarding the state space within their neighborhood.

Formally the communication stage is modeled in the following way. In discrete steps agents

simultaneously send a message m 2 M observing the history of messages of their neighbors. The

message space takes the form that it separates information sets with a posterior probability of the

status quo being weak of smaller than half, from information sets with a posterior probability of

the status quo being weak of larger or equal to half. Furthermore let the common message function

33Please see the Appendix for the proof.
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f : F !M be union consistent. Let us give two examples of a message space that complies with

the stated conditions. For one, the message being send could be simply the posterior belief of event

E given the information set observed. In that case

f(I) =
p (I \ E)
p(I)

Alternatively agents could communicate either to be willing to attack, m = w; or unwilling to

attack, m = :w; where agents are willing to attack whenever the posterior belief of the status quo
being weak is larger or equal to half34.

As the common message function is union consistent and partitions are �nite Corollaries 1 and

2 imply that all agents will send the same message within a �nite number of steps and reach an

information set which remains constant from that period on. As messages are send truthfully, in

a �nite number of steps all agents will either be willing or all unwilling, a fact which is common

knowledge among all agents, allowing for perfect coordination.

Our analysis shows that if agents in a game of regime change can communicate with their

neighbors and partitions are �nite, there are only two possible equilibrium outcomes35, coordinated

attack among all agents or uniform inaction.

9 Conclusion

Our analysis is motivated by the essential role social networks play in many economic and social

settings and the necessity of a thorough understanding of the underlying learning dynamics. We

provide a general framework for rational learning in social networks and formally characterize the

learning process. This general framework and the characterization of the learning process allow us

to generalize existing results in the literature, as well as give answers to questions that have not

been addressed before.

We present three main results. Our �rst result shows the local consensus achieved in social

networks once learning ends. If agents have a common underlying choice correspondence and

learning ends in �nite time, then any action agent i selects once learning ends, is optimal for all his

neighbors. This local optimality across neighbors is shown generally not to hold globally.

Our second theorem establishes an asymptotic result. We provide a su¢ cient condition for the

34As perfect coordination is required for an attack and as the result of convergence of messages in �nite steps is
common knowledge agents have no incentive to send a non-truthful message.
35We are restricting attention to pure strategy equilibria.
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existence of a �nite time for each state of the world, such that any choice agent i makes from that

time period forward will eventually become optimal for all of his neighbors.

For our third result we consider an environment without common knowledge of strategies. If the

strategies of agents are not common knowledge, then the optimality across neighbors once learning

ends depends on the network structure. If the network is complete, the optimality property holds,

if it is incomplete, the optimality across neighbors can fail.

The theoretical results we provide have signi�cance for several streams in the economic litera-

ture. We contribute to the social learning and networks literature by providing a general framework

for repeated interaction in social networks and by formally characterizing the learning process. Our

three theorems represent new insights in the literature on knowledge and consensus started by Au-

mann (1976). We illustrate the importance for coordination games when pre-play communication

is feasible, through our example of a game of regime change.

Furthermore, our results have important implications for communication networks in �rms and

institutions. We �nd that connected local committees are su¢ cient to achieve perfect coordination.

This is relevant whenever introducing more communication links in a network is costly. Our example

about information aggregation in networks also shows that a complete network does not generally

lead to better information aggregation than an incomplete network. This is a very interesting area

for future research. A general characterization of the optimal communication network depending

on the underlying information parameters would be highly desirable.
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Appendix

Proof of equivalence of Union Consistency and Pairwise Consistency

Proof. Let B1;B2 be collections of disjoint sets in F . Suppose C satis�es (UC). We have

\
B2B1

C(B) = C

0@ [
B2B1

B

1A
and \

B2B2

C(B) = C

0@ [
B2B2

B

1A
As the union over all sets in B1 is equal to the union over all sets in B2;[

B2B1

B =
[
B2B2

B

the choice correspondence assigns the same set of actions

C

0@ [
B2B1

B

1A = C

0@ [
B2B2

B

1A
implying by union consistency \

B2B1

C(B) =
\
B2B2

C(B)

Suppose C satis�es (PC). Let B1 be a collection of disjoint sets such that\
B2B1

C(B) 6= ;

and let B2 consist of one set
B2 =

[
B2B1

B

thus \
B2B2

C(B) = C (B2) = C

0@ [
B2B1

B

1A
by (PC) \

B2B1

C(B) 6= ; ,
\
B2B2

C(B) 6= ; )
\
B2B1

C(B) =
\
B2B2

C(B)
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which implies \
B2B1

C(B) = C

0@ [
B2B1

B

1A
�

Proof of Proposition 1

The alternative learning process

In the �rst period we have
�I1i (!) = I

1
i (!) = P i(!)

and
�I1i (Pj(!)) = fri 2 P i : ri \ �I1j (!) 6= ;g

The inference agent j makes based on agent i�s �rst period action is given by

�D1i (a1i ;Pj(!)) = fri 2 �I1i (Pj(!)) : a1i = si(ri)g

The information set of agent i in period t = 2 is given by

�I2i (P i(!); h2i (!)) = P i(!) \
\
l2Ni

[ �D1l (a1l ;P i(!))

In period t the information set of agent i is given by

�Iti (P i(!); hti(!)) = P i(!) \
\
l2Ni

[ �Dt�1l (at�1l ;P i(!); ht�1i (!))

The set of information sets of agent i considered possible by his neighbor j based on j�s private

observables is given by

�Iti (Pj(!); htj(!)) =

8><>:�Iti (ri; ĥti) :
ĥtij = h

t
ij(!)

9�It�1i 2 �Dt�1i (at�1i ;Pj(!); ht�1j (!)) s.t. �Iti (ri; ĥ
t
i) � �It�1i

�Iti (ri; ĥ
t
i) \ �Itj(Pj(!); htj(!)) 6= ;

9>=>;
Based on the action ati selected by agent i in period t his neighbor j makes the following inference

regarding i�s realized information set

�Dti(ati;Pj(!); htj(!)) = f�Iti (ri; ĥti) 2 �Iti (Pj(!); htj(!)) : ati = si(�Iti (ri; ĥti))g
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The information set of agent i in period t+ 1 is then given by

�It+1i (P i(!); ht+1i (!)) = P i(!) \
\
l2Ni

[ �Dtl (atl ;P i(!); hti(!))

Proof of Proposition 1

Proof. We use an induction argument for the proof. Suppose that for t = 1

P i(!) \
\
l2Ni

[ D1l (a1l ;!) 6= P i(!) \
\
l2Ni

[ �D1l (a1l ;P i(!))

which implies \
l2Ni

[ D1l (a1l ;!) 6=
\
l2Ni

[ �D1l (a1l ;P i(!))

Thus there exists a player l 2 Ni such that D1l (a1l ;!) 6= �D1l (a1l ;P i(!)): Let ~rl 2 D1l (a1l ;!) and
~rl =2 �D1l (a1l ;P i(!)) which by de�nition of �D1l (a1l ;P i(!)) implies

~rl \ P i(!) = ;

and thus implies

~rl \ P i(!) \
\
l2Ni

[ D1l (a1l ;!) = ;

This holds true for all l 2 Ni and ~rl 2 D1l (a1l ;!)r �D1l (a1l ;P i(!)) establishing the base case for t = 1:
For the inductive step let us assume that

P i(!) \
\
l2Ni

[ Dt�1l (at�1l ; ht�1il (!) ;!) = P i(!) \
\
l2Ni

[ �Dt�1l (at�1l ;P i(!); ht�1i (!))

holds in period t which implies

�Itl (P i(!); hti(!)) � Itl (htil(!);!) 8l 2 Ni

Suppose now that the condition is not ful�lled in period t+ 1

P i(!) \
\
l2Ni

[ Dtl (atl ; htil (!) ;!) 6= P i(!) \
\
l2Ni

[ �Dtl (atl ;P i(!); hti (!))

which implies \
l2Ni

[ Dtl (atl ; htil (!) ;!) 6=
\
l2Ni

[ �Dtl (atl ;P i(!); hti (!))

Thus there exists a player l 2 Ni such that Dtl (atl ; htil (!) ;!) 6= �Dtl (atl ;P i(!); hti (!)): Select an ~Itl (:)
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such that
~Itl () 2 Dtl (atl ; htil (!) ;!)r �Dtl (atl ;P i(!); hti (!))

which implies
~Itl (:) \ Îti (P i(!); hti (!)) = ;

and by the induction hypothesis

~Itl (:) \ Iti (P i(!); hti (!)) = ;

By de�nition of the sets Dtl (atl ; htil (!) ;!) we have

It+1i (P i(!); ht+1i (!)) � Iti (P i(!); hti (!))

where

It+1i (P i(!); ht+1i (!)) = P i(!) \
\
l2Ni

[ Dtl (atl ; htil (!) ;!)

Thus we have
~Itl (:) \ P i(!) \

\
l2Ni

[ Dtl (atl ; htil (!) ;!) = ;

This holds true for all l 2 Ni and for all ~Itl (:) 2 Dtl (atl ; htil (!) ;!)r �Dtl (atl ;P i(!); hti (!)) establishing
the induction step and concluding the proof �

Proof of Proposition 2

Proof. Let us �rst consider the case where P i(!) = P i(!0) and hti (!) 6= ĥti (!0) : We use a proof by
induction. First we show that h2i (!) 6= ĥ2i (!0) implies I2i (P i(!); h2i (!)) \ I2i (P i(!0); ĥ2i (!0)) = ;:
By de�nition of I2i (P i(!); h2i (!)) we have

I2i (P i(!); h2i (!)) = P i(!) \
\
l2Ni

D1l (a1l ;!)

P i(!) = P i(!0) implies CKil(!) = CKil(!0) leading to I1l (!; i) = I1l (!0; i): Thus
�
D1l (a;!)

	
a2A =�

D1l (a;!0)
	
a2A for a such that D

1
l (a;!) 6= ; form identical partitions of I1l (!; i) which implies for

a1l 6= â1l
D1l (a1l ;!) \ D1l (â1l ;!0) = ;

h2i (!) 6= ĥ2i (!0) implies that there exists an agent l 2 Ni such that a1l 6= â1l which implies

I2i (P i(!); h2i (!)) \ I2i (P i(!0); ĥ2i
�
!0
�
) = ;
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Suppose now that for all ht�1i (!) 6= ĥt�1i (!0) we have

It�1i (P i(!); ht�1i (!)) \ It�1i (P i(!0); ĥt�1i

�
!0
�
) = ;

Take any hti (!) 6= ĥti (!
0) : There are two cases to consider. The �rst case is where the history

of actions of the previous period is unequal, ht�1i (!) 6= ĥt�1i (!0) : By the induction hypothesis we

have

It�1i (P i(!); ht�1i (!)) \ It�1i (P i(!0); ĥt�1i

�
!0
�
) = ;

This together with the fact that the information set of player i in period t is a subset of the

information set in period t� 1; i.e.

Iti (P i(!); hti (!)) � It�1i (P i(!); ht�1i (!))

Iti (P i(!0); ĥti
�
!0
�
) � It�1i (P i(!0); ĥt�1i

�
!0
�
)

yields the desired result

Iti (P i(!); hti (!)) \ Iti (P i(!0); ĥti
�
!0
�
) = ;

Now let us consider the case where hti(!) 6= ĥti(!0) and ht�1i (!) = ĥt�1i (!0): This implies that there

are some agents l in i�s neighborhood that select a di¤erent action in period t � 1 under hti(!)
than under ĥti(!

0); i.e. at�1l 6= ât�1l for some l 2 Ni: The equality of histories until time t � 1;
ht�1i (!) = ĥt�1i (!0) implies

It�1l (ht�1il (!) ;!) = It�1l (ĥt�1il

�
!0
�
;!0)

for all l 2 Ni: The collection of sets
�
Dt�1l (a; ht�1il (!) ;!)

	
a2At�1l (ht�1il (!);!)

; where

At�1l (ht�1il (!) ;!) =
�
a 2 A : 9 It�1l 2 It�1l (ht�1il (!) ;!) s.t. sl(I

t�1
l ) = a

	
constitutes a partition of It�1l (ht�1il (!) ;!): Thus for any at�1l 6= at0�1l we have

Dt�1l (at�1l ; ht�1il (!) ;!) \ Dt�1l (at
0�1
l ; ht�1il

�
!0
�
;!0) = ;

As the information set Iti (P i(!); hti (!)) is given by

Iti (P i(!); hti (!)) = P i(!) \
\
l2Ni

[ Dt�1l (at�1l ; ht�1il (!) ;!)

and there are some l 2 Ni with at�1l 6= ât�1l we have

Iti (P i(!); hti (!)) \ Iti (P i(!0); ĥti
�
!0
�
) = ;
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Furthermore it is directly apparent that for P i (!) 6= P i (!0) we have

Iti (P i(!); hti (!)) \ Iti (P i(!0); hti
�
!0
�
) = ;

as P i (!) 6= P i (!0) implies P i (!) \ P i (!0) = ; concluding the proof �

Proof of Lemma 1

Proof. Take any pair of information sets It
0
i ; Î

t0
i 2 It

0
i (h

t0
ij(!);!): Suppose

si(I
t0
i ) 6= si(Ît

0
i )

If It
0
i is the true information set of player i; he selects the action a

t0
i = si(I

t0
i ) leading toDt

0
i (a

t0
i ; h

t0
ij(!);!)

with

Ît
0
i =2 Dt

0
i (a

t0
i ; h

t0
ij(!);!)

As It0+1i (ht
0+1
ij (!);!) contains only elements It

0+1
i such that there exists an It

0
i 2 Dt

0
i (a

t0
i ; h

t0
ij(!);!)

with It
0+1
i � It0i and by Proposition 2 It

0
i (h

t0
ij(!);!) is a disjoint collection of sets we have

[It0+1i (ht
0+1
ij (!);!) \ Ît0i = ;

which yields a contradiction to

[It0i (ht
0
ij(!);!) = [It0+1i (ht

0+1
ij (!);!)

�

Proof of Lemma 2

Proof. By de�nition

Iti (htij (!) ;!) =
(
Iti (ri; ĥ

t
i) :

ĥtij = h
t
ij(!)

9It�1i 2 Dt�1i (at�1i ; ht�1ij (!);!) s.t. I
t
i (ri; ĥ

t
i) � It�1i

)

taking the union over all elements of Iti (htij (!) ;!) yields

[Iti (htij (!) ;!)

= [Dt�1i (at�1i ; ht�1ij (!) ;!) \
�
[Dt�1j (at�1j ; ht�1ij (!) ;!)

�
\
\
l2Nij

0B@ [
ĥt�1il 2Ht�1

il (ht�1ij (!))

[ Dt�1l (at�1l ; ĥt�1il ;!)

1CA
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where

Ht�1
il (htij (!)) =

n
Ht�1
il : ĥt�1il consistent with ht�1ij (!)

o
Equally

[Itj(htij (!) ;!)

= [Dt�1i (at�1i ; ht�1ij (!) ;!) \
�
[Dt�1j (at�1j ; ht�1ij (!) ;!)

�
\
\
l2Nij

0B@ [
ĥt�1il 2Ht�1

il (ht�1ij (!))

[ Dt�1l (at�1l ; ĥt�1il ;!)

1CA
implying

[Iti (htij (!) ;!) = [Itj(htij (!) ;!)

�

Proof of Corollary 2

Proof. If �nite partitions imply that learning ends in �nite time we have the stated result through

application of Theorem 1. First we show that �nite partitions imply

Iti (P i(!); hti(!)) = It
0
i (P i(!); ht

0
i (!))

for some t0 and all t > t0:

Let us assume that there is no t0 such that for all t > t0 we have the desired equality of

information sets. This implies the existence of an in�nite sequence of information sets fIt1i ; I
t2
i ; :::g

such that

I
tk+1
i (P i(!); htk+1i (!)) � Itki (P

i(!); htki (!)) and I
tk+1
i (P i(!); htk+1i (!)) 6= Itki (P

i(!); htki (!))8k 2 N

For all players i and time t; the information set Iti
�
P i(!); hti(!)

�
is element of the power set of the

join of all partitions, 2

0@_
j2M

Pj
1A
: As P i are �nite for all i 2 M and M is �nite, so is 2

0@_
j2M

Pj
1A
:

Thus there can be no in�nite sequence
n
Itki (:)

o1
k=1
with the above property and there exists a �nite

t0 such that

Iti (P i(!); hti(!)) = It
0
i (P i(!); ht

0
i (!))

for all i 2M; t � t0:

For �nite partitions and �nite M the set Iti (htij(!);!) consists of �nitely many elements. As
the set of agents is �nite thus for every state of the world there exists a �nite time t� such that
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from then onward we have

Iti (P i(!); hti(!)) = I
t�(!)
i (P i(!); ht

�(!)
i (!)) 8t � t�(!), 8i 2M

As the join is �nite and for every period t and for !0 2
_
j2M

Pj(!) we have Iti (P i(!); hti(!)) =

Iti (P i(!0); hti(!0)) there exists a �nite time t� such that

Iti (P i(!); hti(!)) = It
�
i (P i(!); ht

�
i (!)) 8t � t�, 8i 2M; 8! 2 


Thus for t � t�

It�i (ht
�
ij (!);!) = Iti (htij(!);!) 8! 2 


for all i 2M; j 2 Ni thus implying

[It�i (ht
�
ij (!);!) = [Iti (htij(!);!)

concluding the proof �

Proof of Lemma 3

Proof. Take any two distinct limit information sets I1i (P i(!0); h1i (!0)); I1i (P i(!00); h1i (!00)) that
are contained in I1i (h1ij (!);!): For P i(!0) 6= P i(!00) we have by Proposition 2

Iti (P i(!0); hti(!0)) \ Iti (P i(!00); hti(!00)) = ; 8t

implying

I1i (P i(!0); h1i (!0)) \ I1i (P i(!00); h1i (!00)) = ;

Suppose P i(!0) is equal to P i(!00) and h1i (!0) 6= h1i (!00): The inequality of histories then implies
that there exists a t̂ such that ht̂i(!

0) 6= ht̂i(!00). Proposition 2 then yields

I t̂i (P i(!0); ht̂i(!0)) \ I t̂i (P i(!00); ht̂i(!00)) = ;

For each period t and each state !0 by de�nition of the limit set

I1i (P i(!0); h1i (!0)) � Iti (P i(!0); hti(!0))

which implies

I1i (P i(!0); h1i (!0)) \ I1i (P i(!00); h1i (!00)) = ;

�
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Proof of Lemma 4

Proof. Take any period t and any information set Iti (P i(!0); hti(!0)) 2 Iti (htij(!);!) that converges
to a limit set I1i (P i(!0); h1i (!0)) in I1i (h1ij (!);!): Suppose

â = si
�
Iti (P i(!); hti(!))

�
6= si

�
Iti (P i(!0); hti(!0))

�
= a0

which implies by Proposition 2

Iti (P i(!0); hti(!0)) \ Dti(â; hti(!);!) = ;

By de�nition [It+1i (ht+1ij (!);!) is a subset of [Dti(ati; hti(!);!) implying

Iti (P i(!0); hti(!0)) \ [It+1i (ht+1ij (!);!) = ;

As It+1i (P i(!0); ht+1i (!0)) � Iti (P i(!0); hti(!0)) we have

It+1i (P i(!0); ht+1i (!0)) \ It+1i (ht+1ij (!);!) = ;

yielding a contradiction with I1i (P i(!0); h1i (!0)) 2 I1i (h1ij (!);!) �

Proof of Lemma 5

Proof. The de�nition of I1i (h1ij (!);!) implies

[I1i (h1ij (!);!) =
\
t2N

[ Iti (htij(!);!)

By Lemma 2 we have in every stage t

[Iti (htij(!);!) = [Itj(htij(!);!)

which implies

[I1i (h1ij (!);!) =
\
t2N

[ Itj(htij(!);!) = [I1j (h1ij (!);!)

�

Proof of Theorem 2

Proof. If
_
j2M

Pj (!) is a dominant set for all ! 2 
 and property (D) holds for the choice corre-

spondence, then for all states ! 2 
 the limit information set I1i (P i(!); h1i (!)) is a dominant set
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as it contains the true cell of the join,_
j2M

Pj (!) � I1i (P i(!); h1i (!))

Let us de�ne the set A1i (!) as

A1i (!) =
�
a 2 A : a = si

�
Iti (P i(!); hti(!)

�
) for in�nite periods t

	
A1i (!) contains all actions that agent i selects in�nitely often in state !: As the set of actions

is �nite, the set A1i (!) is not empty. Next we will establish that the set A
1
i (!) is contained

in the set of optimal actions for every I1i (P i(!0); h1i (!0)) 2 I1i (h1ij (!);!): Each information set
I1i (P i(!); h1i (!)) is a dominant set which implies the existence of a �nite time ti(!) such that for
all t � ti(!)

C
�
Iti (P i(!); hti(!))

�
� C(I1i (P i(!); h1i (!)))

Take any action a0 2 A1i (!): As a0 is selected in in�nitely periods, for every time period t there
exists a time period t0 > t such that

a0 = si
�
It0i (P i(!); ht

0
i (!))

�
2 C

�
It0i (P i(!); ht0i (!))

�
As ti(!) is �nite there exists a t0 > ti(!) such that

a0 = si
�
It0i (P i(!); ht

0
i (!))

�
2 C

�
It0i (P i(!); ht0i (!))

�
t0 > ti(!) then implies

a0 2 C
�
It0i (P i(!); ht0i (!))

�
� C(I1i (P i(!); h1i (!)))

Thus we have

A1i (!) � C(I1i (P i(!); h1i (!)))

For any two information sets I1i (P i(!); h1i (!)); I1i (P i(!0); h1i (!0)) in the set I1i (h1ij (!);!) we
have by Lemma 4 for every period t

si
�
Iti (P i(!); hti(!))

�
= si

�
Iti (P i(!0); hti(!0))

�
which implies that all elements of A1i (!) are optimal in each limit information set in I1i (h1ij (!);!);

A1i (!) � C(I1i ) 8I1i 2 I1i (h1ij (!);!)
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Applying the same reasoning for agent j 2 Ni yields

A1j (!) � C(I1j ) 8I1j 2 I1j (h1ij (!);!)

Lemma 3 states that I1i (h1ij (!);!) is a collection of disjoint sets. Lemma 5 establishes the following
equality

[I1i (h1ij (!);!) = [I1j (h1ij (!);!)

Thus we can use the union consistency property of the choice correspondence which implies

A1i (!) [A1j (!) �
\

I1i 2I1i (h1ij (!);!)
C(I1i )

and thus for the true limit information set

A1j (!) � C(I1i (P i(!); h1i (!)))

concluding the proof �

Proof of Theorem 3

Proof. By assumption, common learning ends in period t0

CKt0+1(ht
0+1;!) = CKt0(ht

0
;!)

The set of cells of i0s partition that are commonly known to be feasible at t0 is given byn
ri 2 P i : ri \ CKt0(ht

0
;!) 6= ;

o
Suppose there is an r0i 2 P i such that

r0i 2
n
ri 2 P i : ri \ CKt0(ht

0
;!) 6= ;

o
and

r0i =2 Dt
0
i (a

t0
i ; h

t0 ;!)

By de�nition

CKt0+1(ht
0+1; !) =

\
i2M

[ Dt0i (at
0
i ; h

t0 ;!)

r0i =2 Dt
0
i (a

t0
i ; h

t0 ;!) then contradicts

CKt0+1(ht
0+1; !) = CKt0(ht

0
; !)
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Thus action at
0
i has to be optimal for each of agent i

0s possible information sets in period t0

at
0
i 2 C(ri \ CKt0(ht

0
;!))

for all

ri 2
n
ri 2 P i : ri \ CKt0(ht

0
;!) 6= ;

o
Note that the collection of sets

n
ri \ CKt0(ht

0
;!)
o
ri2Dt

0
i (a

t0
i ;h

t0 ;!)
constitutes a partition of CKt0(ht

0
;!):

Similar reasoning for agent j yields

at
0
j 2 C(rj \ CKt0(ht

0
;!))

for all

rj 2
n
rj 2 Pj : rj \ CKt0(ht

0
;!) 6= ;

o
Union consistency then implies

at
0
j 2 C(ri \ CKt0(ht

0
;!))

for all

ri 2
n
ri 2 P i : ri \ CKt0(ht

0
;!) 6= ;

o
As the true cell P i(!) is contained inn

ri 2 P i : ri \ CKt0(ht
0
;!) 6= ;

o
we have

at
0
j 2 C(It

0
i (P i(!); ht

0
))

concluding the proof �
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Proof of equilibrium in the game of regime change

Proof. Let us �rst establish that if
�
P i
	
i2M with the above property exists, the strategy s with

si(P
i) = r if and only if P i 2 �P i; is indeed an equilibrium. Take any agent i and suppose that

all other players follow the strategy. Let P i 2 �P i: Agent j attacks whenever his partition cell P j

is element of �Pj : Thus all other agents will attack whenever ! 2
\
j 6=i

[ �Pj : A successful attack

requires the government to be weak meaning ! 2 E: So a decision to attack of agent i will lead to
an abandonment of the status quo whenever

! 2 E \
\
j 6=i
[ �Pj

The updated belief of agent i of that event given his private information P i is given by

p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

Attacking thus yields a expected utility of

Ep[ui(a; s�i; !)
��P i� =

p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

� 1�

0BBBBBB@1�
p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

1CCCCCCA� 1

while choosing to be inactive always yields a utility of 0: Thus it is optimal for agent i to attack

whenever

p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

� 1

2

which is the case for all P i 2 �P i:

Now suppose there exists no collection of sets
�
�P i
	
i2M ;

�P i 6= ; for all i such that the above
property holds. This implies that there exists an agent i such that for every collection of sets
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n
P̂j
o
j2Mri

where P̂j � Pj and P̂j 6= ; we have for all P i 2 P i

p

0@P i \ E \\
j 6=i
[ �Pj

1A
p(P i)

<
1

2

which implies
p
�
P i \ E

�
p(P i)

<
1

2

leading agent i to remain inactive for each of the cells of his partition. As perfect coordination is

required all agents will remain inactive and there exists no equilibrium where si(P i) = r for some

i 2M �
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Cheat Sheet

Union Consistency: Let B be a collection of disjoint sets

\
B2B

C(B) 6= ; )
\
B2B

C(B) = C

 [
B2B

B

!

Let B1;B2 be a collection of disjoint sets such that[
B2B1

B =
[
B2B2

B

Pairwise Consistency:

\
B2B1

C(B) 6= ; ,
\
B2B2

C(B) 6= ; )
\
B2B1

C(B) =
\
B2B2

C(B)

Iti (P i(!); hti(!)) = P i(!) \
\
l2Ni

[ Dt�1l (at�1l ; ht�1il (!) ;!)

The information set of player i in period t as a function of his private

observables, the history of choices of his neighbors hti(!) and the true

cell of his partition P i(!)

Iti (htij (!) ;!) =

(
Iti (ri; ĥ

t
i) :

ĥtij = h
t
ij(!)

9It�1i 2 Dt�1i (at�1i ; ht�1ij (!);!) s.t. I
t
i (ri; ĥ

t
i) � It�1i

)
Set of possible information sets of player i in period t that are consistent

with the common observables of i and his neighbor j; where the common

observables are given by the common history htij (!) as well as the meet

P i ^ Pj(!)
Dti(a

t
i; h

t(!);!) =
n
Iti 2 Iti (htij(!);!) : ati = si(Iti )

o
Set of information sets in Iti (htij (!) ;!) such that the strategy of player i
assigns action ati
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I1i (P i(!); h1i (!)) =
1\
t=1

Iti (P i(!); hti(!))

The limit information set of player i

I1i (htij (!) ;!) =
n
I1i (P i(!0); h1i (!0)) : Iti (P i(!0); hti(!0)) 2 Iti (htij(!);!) 8t

o
Set of possible limit information sets of player i that are consistent with

the common observables of i and his neighbor j
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