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Abstract

The core assumption to identify the treatment e�ect in di�erence-in-di�erences

estimators is the so-called Parallel Paths assumption, namely that the average

change in outcome for the treated in the absence of treatment equals the average

change in outcome for the non-treated. We de�ne a family of alternative Parallel

assumptions and show for a number of frequently used empirical speci�cations

which parameters of the model identify the treatment e�ect under the alternative

Parallel assumptions. We further propose a fully �exible model which has two

desirable features not present in the usual econometric speci�cations implemented

in applied research. First, it allows for �exible dynamics and for testing restrictions

on these dynamics. Second, it does not impose equivalence between alternative

Parallel assumptions. We illustrate the usefulness of our approach by revising the

results of several recent papers in which the di�erence-in-di�erences technique has

been applied.
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1 Introduction

Di�erence-in-di�erences (DID) estimators are a standard econometric tool widely used

to evaluate the impact of a speci�c treatment on an outcome of interest. Arguably,

two reasons stand behind the popularity of DID. First, its basic implementation under

parametric assumptions only requires regression techniques. Second, data requirements

are relatively weak. In its simplest version, only data from two periods are needed.

In the �rst period�the pre-treatment period�none of the agents are exposed to the

treatment. In the second period�the post-treatment period�those labeled as �treated�

are already exposed to treatment while those labeled as �controls� are not. Importantly,

although panel data is not required, the technique is robust to some forms of endogeneity

arising from unobservable group-speci�c heterogeneity.

The appropriateness of the technique depends crucially on the validity of several assump-

tions which have been extensively discussed. For example, several authors focus on the

parametric assumption behind the linear regression approach and discussed adjusting

for exogenous covariates using propensity score methods (Abadie 2006, Blundell, Dias,

Meghir, and Reenen 2004). Other authors generalize the technique in order to identify

the entire counter-factual distribution of potential outcomes (Athey and Imbens 2006,

Bonhomme and Sauder 2011). Worried by the accuracy of standard inference proce-

dures, Donald and Lang (2007) and Bertrand, Du�o, and Mullainathan (2004) discuss

problems with standard methods for computing standard errors. Yet, to our knowledge,

little research has been devoted to the study of a critical assumption of the technique,

the so-called Parallel Paths assumption.

Parallel Paths assumes that the average change in the outcome variable for the treated

in the absence of treatment is equal to the observed average change in the outcome

variable for the controls. This assumption implies that di�erences between the controls

and the treated if untreated are assumed time-invariant. Therefore, Parallel Paths is

consistent with unobservable group-speci�c time-invariant heterogeneity.

We focus on applications in which several pre-treatment periods are available. In this

context, Parallel Paths is appealing if trends do not di�er before treatment (Angrist and

Krueger, 1999). The simplest procedure to check common pre-treatment trends consists

on conducting DID on the last pre-treatment period. In the presence of pre-treatment

trend di�erentials, Parallel Paths becomes less attractive as it implies that di�ering
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pre-treatment trends become equal after treatment under no treatment. In practice, re-

searchers who �nd pre-treatment trend di�erentials often formulate �exible econometric

models to accommodate those trend di�erentials. It would appear that several empiri-

cal strategies are then possible under the Parallel Paths assumption. For example, one

could use group-speci�c invariant linear trends, i.e. group-speci�c linear trends which

survive treatment. Alternatively, one could allow for pre- and post-treatment group-

speci�c trends. After choosing a modeling strategy, the treatment e�ect is presumably

identi�ed as the parameter associated with an interaction of a post-treatment dummy

and the treated indicator. This estimator is claimed to be a DID estimator.

We show that whether the interaction parameter identi�es a DID estimator will depend

both on the trend modeling strategy and the de�nition of the trend variable. For ex-

ample, with group-speci�c pre-treatment linear trends, the trend has to be normalized

to be zero in the last pre-treatment period. With group-speci�c invariant linear trends,

however, the interaction term never identi�es the policy e�ect under the Parallel Paths

assumption. In this last case, the interaction term does identify the treatment e�ect

under the alternative assumption of Parallel Paths for output �rst di�erences (rather

than for output levels). We generalize these �ndings by proposing a family of alternative

Parallel assumptions which widen the set of alternative estimators under fully �exible

dynamics.

As illustration, we discuss in detail the case of assuming Parallel Paths for outcome

�rst di�erences rather than for outcome levels. We refer to this assumption as Parallel

Growths. We �rst show that under Parallel Growths the e�ect of treatment one period

after treatment is identi�ed by a di�erence-in-double-di�erences operator on outcome

levels. We then show that Parallel Growths is equivalent to Parallel Paths in the pres-

ence of common pre-treatment trends. In contrast to Parallel Paths, Parallel Growths

is consistent with group-speci�c trends in the post-treatment period unrelated to treat-

ment. Moreover, the counterfactual outcome for the treated if untreated is obtained

by adding the average acceleration experienced by the controls to the pre-treatment

outcome change of the treated.

We expand this analysis and identify the treatment e�ect under alternative Parallel

assumptions. We show that these alternative assumptions lead in general to di�erences

in the identi�cation of the treatment e�ect. We then provide the conditions under which

di�erent assumptions lead to equivalent identi�cations of the e�ect.
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In empirical work, treatment e�ects are frequently obtained using standard linear regres-

sion techniques. We discuss several econometric speci�cations and show identi�cation

conditions of the treatment e�ect under alternative Parallel assumptions. We further

propose a general additive regression model with fully �exible dynamics. We argue that

the fully �exible model has two advantages over usual models proposed in the literature.

First, it allows for �exible dynamics and for testing restrictions on these dynamics. Sec-

ond, it does not impose equivalence between alternative Parallel assumptions�and tests

for this equivalence are easy to implement.

Finally, we explore how relevant is our proposal in practice by applying it to data

obtained from several recent papers. We study to what extent using a fully �exible model

and considering alternative Parallel assumptions modi�es the conclusions obtained. We

�nd that results and their signi�cance vary depending on which trend assumption is used

and that di�erent Parallel assumptions often lead to signi�cantly di�erent treatment

e�ect estimates.

The rest of the paper is structured as follows. We �rst de�ne Parallel Paths, Parallel

Growths, and present the family of alternative Parallel assumptions in Section 2. Next

we discuss several econometric speci�cations and propose a model with fully �exible

dynamics in Section 3. In Section 4 we review current practice and explore the practical

relevance of our proposal. Finally, we conclude by summarizing our argument and

suggesting a change in the implementation of DID estimation in applications in which

several pre-treatment periods are available.

2 Alternative Parallel assumptions

In the simplest empirical DID application we have information on the variable of interest

in at least two periods: before and after the treatment. More generally, treatment

starts sometime after the last pre-treatment period, t∗, and �nishes before the �rst post-

treatment period, t∗+ 1.1 We have information for T0 ≥ 2 periods before treatment and

S ≥ 1 periods after treatment during which the e�ect of the treatment is to be evaluated

1In some empirical applications, treatment date is individual speci�c and it is not appropriate to
de�ne a pre-treatment and a post-treatment period for the controls. Identi�cation of the treatment
e�ect then additionally exploits heterogeneity in timing of treatment. Although we do not address
directly this situation, a simple modi�cation in the models accommodates this richer data structure.
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(additional post-treatment periods may be available).

Following conventional notation we de�ne Yt as the observed outcome variable at period

t. Let Y 0
t denote outcome in period t when the individual receives no treatment, and Y 1

t

the outcome in period t when the individual receives treatment. For a given individual

either Y 0
t or Y 1

t is observed. Let D = 1 if the individual receives treatment and D = 0

otherwise. Potential and observed outcomes are related to D by Yt = Y 1
t D+Y 0

t (1−D)

for t > t∗. For any pre-treatment periods, Yt = Y 0
t . Finally, let X =

{
X ′t1 , ..., X

′
tT

}′
where Xt ∈ X⊂ Rk is a vector of k individual characteristics.

We study identi�cation conditions for the average treatment e�ect s ≤ S periods after

treatment on the treated with individual characteristics X, i.e. identi�cation conditions

for

α (s|X) = E
[
Y 1
t∗+s − Y 0

t∗+s |X,D = 1
]

(1)

where s = 1, ..., S.

The estimation of α (s|X) is problematic because Y 0
t∗+s is not observable for the treated.

In order to estimate the average counterfactual, one can propose an assumption on how

the trend behavior of the treated if untreated compares to observed trend behavior of

the untreated. The DID estimator, for example, stems from the so-called Parallel Paths

assumption.

2.1 The Parallel Paths assumption

At the core of the DID identi�cation strategy for E
[
Y 0
t∗+s |X,D = 1

]
lies the so-called

Parallel Paths assumption. Let L be the lag operator so that ∆ ≡ (1− L) denotes

the �rst di�erence operator and ∆s ≡ (1− Ls), s ≥ 2, denotes the s-period di�erence

operator. Parallel Paths can be stated as follows.

Assumption 1. Parallel Paths s Periods Ahead

E
[
∆sY

0
t∗+s |X,D = 1

]
= E

[
∆sY

0
t∗+s |X,D = 0

]
, with s > 0. (2)

Parallel Paths states that average changes in output among those treated if untreated

are equal to the observed average changes among comparable controls.
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Given that for any variable zt, zt+s = zt + ∆szt+s, using Parallel Paths and the fact that

Y 0
t = Yt for t ≤ t∗, we write the counterfactual as:

E
[
Y 0
t∗+s |X,D = 1

]
= E [Yt∗ |X,D = 1] + E [∆sYt∗+s |X,D = 0] (3)

The counterfactual scenario for those treated at t = t∗+s is built by adding the observed

average increase in the controls to the last pre-treatment level of the treated. Using this

counterfactual, the policy e�ect in period s, α (s|X), can be expressed as the di�erence

in observed output changes among treated and controls, the di�erence-in-di�erences

operator s-periods ahead:

α (s|X) = E [∆sYt∗+s |X,D = 1]− E [∆sYt∗+s |X,D = 0] (4)

In the simple case in which there is only one post-treatment period, S = 1, this is the

DID operator, α (1|X) = E [∆Yt∗+1 |X,D = 1]− E [∆Yt∗+1 |X,D = 0].

2.2 The Parallel Growths assumption

Consider the three-period situation depicted in Figure 1 in which controls and treated

have constant trends before and after treatment. Assume that trends do not change

because treatment has no average e�ect on output.

Parallel Paths identi�es α (1|X) by assuming that those treated would have experienced,

if untreated, the same average output change as the controls. In a situation like the one

described in Figure 1, this assumption would lead to a spurious overestimation of the

policy e�ect due to the underestimation of the counterfactual trend for those treated.

A plausible solution in this particular case would be to add to the econometric model

for the conditional expectation of the observed outcomes group-speci�c time-invariant

linear trends. Intuitively, these terms would account for the di�ering trends before and

after treatment. In particular, for simplicity assume there is no vector of individual
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Figure 1: Di�erence-in-di�erences estimation with group-speci�c time-invariant linear trends.
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controls X so that the conditional expectation takes the form

E [Yt |D ] = δ0 + δLtimet + δPPostt + γDD + γDL timetD + γDP PosttD (5)

where Postt is a step function with value 1 if the observation is from the post-treatment

period and 0 otherwise, and timet is a linear trend such that timet+1 = timet + 1. Delta

parameters specify common dynamics between controls and treated. Thus, δP captures

a shift in output after treatment common to all individuals. Given that γD and γDL
control for group di�erences in linear trends, one could claim that the parameter of

the interaction term, γDP , equals the DID operator after controlling for group-speci�c

linear trends. Note, however, that this statement does not reveal the true identifying

assumption for the treatment e�ect. The treatment e�ect can only be γDP when the

counterfactual for the average growth among the treated if untreated is equal to

E
[
∆Y 0

3 |D = 1
]

= δL + δP + γDL (6)

so that the identi�cation of the treatment e�ect in this case is no longer based on the

Parallel Paths Assumption, i.e. E [∆Y 0
3 |D = 1] 6= E [∆Y 0

3 |D = 0] = δL + δP .

In this example, one assumption that identi�es the treatment e�ect as γDP is:

Assumption 2. Parallel Growths

E
[
∆s∆Y

0
t∗+s |X,D = 1

]
= E

[
∆s∆Y

0
t∗+s |X,D = 0

]
, s ∈ {1, ..., S} . (7)

One way of thinking about Parallel Growths is that it shifts the variable of interest from

the output in levels to the output in �rst di�erences: changes in output growth for those

treated if untreated would have been equal to the observed changes in output growth

for the controls. Parallel Growths implies that in absence of treatment the treated and

the controls would have had parallel growth paths .

For the case s = 1, under Parallel Growths,

E
[
Y 0
t∗+1 |X,D = 1

]
= E [Yt∗ |X,D = 1] +

E [∆Yt∗ |X,D = 1] + E
[
∆2Yt∗+1 |X,D = 0

]
(8)
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The counterfactual output in period t∗ + 1 for those treated if untreated is constructed

with the average growth for the treated at t∗ plus the average acceleration experienced by

the controls at t∗ + 1. In contrast, the counterfactual under Parallel Paths is obtained

only with the average growth experienced by the controls at t∗ + 1. Hence, Parallel

Growths allows for group-speci�c trends before and after treatment while Parallel Paths

only allows for di�erent trends before treatment.

It follows from equation (8) that under Parallel Growths the treatment e�ect the �rst

period after treatment, α (1|X), equals a �di�erence-in-double-di�erences� operator,

α (1|X) = E
[
∆2Yt∗+1 |X,D = 1

]
− E

[
∆2Yt∗+1 |X,D = 0

]
. (9)

Parallel Growth and Parallel Paths are equivalent if and only if the DID operator equals

this di�erence-in-double-di�erences operator:

E
[
∆2Yt∗+1 |X,D = 1

]
− E

[
∆2Yt∗+1 |X,D = 0

]
=

E [∆Yt∗+1 |X,D = 1]− E [∆Yt∗+1 |X,D = 0] (10)

or, equivalently,

E [∆Yt∗ |X,D = 1] = E [∆Yt∗ |X,D = 0] (11)

Thus, in the presence of pre-treatment group-speci�c trends, the identi�cation for the

treatment e�ect will be di�erent under Parallel Paths or Parallel Growths.

For the case s ≥ 2, from the de�nition of α (s|X), it can be shown that α (s|X) =

α (s− 1|X)+E
[
∆Y 1

t∗+s −∆Y 0
t∗+s|X,D = 1

]
. Given that E [∆Y 1

t∗ −∆Y 0
t∗|X,D = 1] = 0

we have that

E
[
∆Y 1

t∗+s −∆Y 0
t∗+s|X,D = 1

]
= E

[
∆s∆Y

1
t∗+s −∆s∆Y

0
t∗+s|X,D = 1

]
. (12)

Under Parallel Growths, the variable on which the Parallel Paths assumption is applied
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is the variable in �rst di�erences. Thus, instead of the treatment e�ect, a di�erence-in-

di�erences operator identi�es the change in the treatment e�ect:

∆α (s|X) = E [∆s∆Yt∗+s |X,D = 1]− E [∆s∆Yt∗+s |X,D = 0] , s ≥ 2 (13)

where ∆α (s|X) ≡ α (s|X)− α (s− 1|X).

2.3 A general family of Parallel assumptions

Generalizing from the discussion on Parallel Paths and Parallel Growths, we propose a

family of alternative non-nested assumptions:

Assumption 3. Parallel-(q, S)

For a given positive integer q ≤ T 0, and for any s = 1, ..., S,

E
[
∆s∆

q−1Y 0
t∗+s |X,D = 1

]
= E

[
∆s∆

q−1Y 0
t∗+s |X,D = 0

]
. (14)

For q = 1, Parallel-(q, S) is Parallel Paths, while for q = 2, Parallel-(q, S) is Parallel

Growths. In these two particular cases, we have already established the link between

di�erence-in-di�erences operators and the treatment e�ects α (s|X). To generalize this

link to the (q, S) case, we �rst de�ne did (q, s) as the di�erence-in-q-di�erences operator

s periods ahead,

did (q, s) ≡ E
[
∆s∆

q−1Yt∗+s |X,D = 1
]
− E

[
∆s∆

q−1Yt∗+s |X,D = 0
]
.

The next theorem characterizes the treatment e�ect under Parallel-(q, S).

Theorem 1. Under Parallel-(q, S),

∆q−1α (s|X) = did (q, s)

where ∆q−1 ≡ (1− L)q−1
and Lrα (s|x) = 0 for all r ≥ s.

Proof. See the Appendix.
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Theorem 1 can be used to obtain α (s|X) for any value of s under Parallel-(q, S) re-

cursively. For example, for s = 1, ∆q−1α (1|X) = α (1|X) so that Theorem (1) states

that the treatment e�ect is the di�erence-in-q-di�erences operator one period ahead,

did (q, 1).2

When s > 1 the link between the treatment e�ect and the di�erence-in-q-di�erences

operator s periods ahead will depend on q. For example, under Parallel Paths (i.e. when

q = 1) α (s|X) equals did (1, s) for any s = 1, ..., S. In contrast, under Parallel Growths

(i.e. q = 2), α (s|X) is the cumulative e�ect of the di�erence-in-double-di�erences

operators up to s,
∑s

j=1 did(2, j).

De�ne the operator αq (s|X) as the mapping on did (q, s) that identi�es the true e�ect of

treatment under Parallel-(q, s). The conditions under which αq (s|X) equals αq−1 (s|X)

are given by the next theorem.

Theorem 2. For any q ∈ {2, ..., T0} and s ∈ {1, ..., S},

αq (s|X) = αq−1 (s|X)

if and only if

E
[
∆q−1Yt∗ |X,D = 1

]
= E

[
∆q−1Yt∗ |X,D = 0

]
.

Proof. See the Appendix.

Theorem 2 sets pre-treatment trend conditions under which assumptions Parallel-(q, s)

and Parallel-(q − 1, s) are equivalent.

For the important case in which q = 2, it states that in the presence of pre-treatment

group-speci�c trends α1 (s|X) cannot be equal to α2 (s|X) for any s ≤ S. The frequent

comparison in empirical work of pre-treatment trends between treated and controls can

be seen as an informal test for the equivalence of Parallel Paths and Parallel Growths.

2Since under Parallel-(q, 1) the counterfactual output in period t∗ + 1 equals

E
[
Y 0
t∗+1 |X,D = 1

]
=

q−1∑
r=0

E [∆rYt∗ |X,D = 1] + E [∆qYt∗+1 |X,D = 0] , (15)

the treated if untreated and the controls may di�er in their average output di�erences up to order
q − 1.
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3 Regression techniques

In empirical work, treatment e�ects are frequently obtained using standard linear regres-

sion techniques. In the simplest case with only two periods, the treatment e�ect can be

estimated from a regression that includes a constant, the treated indicator D, a dummy

variable for the post-treatment period, Postt, and an interaction term, Postt × D.3

In this set up, the treatment e�ect is identi�ed by the parameter associated with the

interaction term.

On applications in which several pre-treatment periods are available, the standard model

allows for time �xed e�ects δt (Bertrand, Du�o, and Mullainathan, 2004):

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD + γDP Postt ×D (16)

where Iτ is a dummy for period τ . The speci�cation in equation (16) is restrictive

in two ways. The �rst restriction is that pre-treatment dynamics�captured by time

�xed e�ects�are identical for controls and treated. By Theorem 2, this implies that

all Parallel assumptions are equivalent. In other words, average �rst and higher order

di�erences in output levels are equal for the two groups in the absence of treatment.

The second restriction is that there is a permanent shift in output of size γDP in the �rst

period after treatment. Hence, the long-term e�ect of treatment is already present at

t∗ + 1.4

In the presence of group-speci�c trends and when treatment has di�erent short-run

and long-run e�ects, the speci�cation of the conditional expectation in equation (16)

is inappropriate. Consequently, in empirical studies where these considerations arise,

more �exible econometric speci�cations are frequently proposed. We revise several of

these econometric speci�cations and show under which Parallel assumptions, if any, an

interaction parameter identi�es the treatment e�ect.

3A set of controls X is usually included although we omit it in this section for simplicity.
4Given that all Parallel assumptions are equivalent, the easiest way to see the e�ect s periods ahead

is by noting that did (1, s) = γDP .
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3.1 A polynomial trend for the di�erences in group dynamics

One way to extend the standard model in equation (16) to accommodate group-speci�c

trends is by including an interaction between D and a polynomial time trend:5

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD + γDP Postt ×D +
R∑
r=1

γDr t
r ×D. (17)

In the standard model, pre-treatment dynamics are identical for controls and treated.

In contrast, in equation (17) the polynomial
∑R

r=1 γ
D
r t

r captures di�erences in group

dynamics which predate treatment and remain after treatment. The equivalence of

equations (16) and (17) depends on the values for γDr . It is misleading to state that the

inclusion of group-speci�c trends makes a given Parallel assumption, say Parallel Paths,

more plausible. Next, we show that including these trends rather changes the Parallel

assumption under which the interaction term identi�es the treatment e�ect.

By applying Theorem 1 to equation (17) we have that

∆q−1αq (s) = γDP ∆q−1Postt∗+s +
R∑
r=1

γDr ∆s∆
q−1 (t∗ + s)r (18)

so that the treatment e�ect after s periods will generally not be identi�ed as the inter-

action term γDP . Consider, for example, the case s = 1:

αq (1) = γDP +
R∑
r=1

γDr ∆q (t∗ + 1)r . (19)

Since ∆q (t∗ + 1)r = 0 for all q > r, the interaction term γDP does identify the treatment

e�ect one period after treatment if q > R. If this condition is not satis�ed, then γDP
may not identify the e�ect. For example, since ∆R

[
(t∗ + 1)R

]
= R, then when q = R,

αR (1) = γDP +RγDR . In the particular case of a linear polynomial, R = 1, the interaction

term identi�es the treatment e�ect one period ahead if we assume at least Parallel

Growths (q ≥ 2). In contrast, under Parallel Paths, ∆ (t∗ + 1) = 1 and the treatment

5When the cross-section is small and identi�cation of the time �xed e�ects is poor, it is frequently
assumed that dynamics for controls follow a polynomial, usually linear or quadratic, trend. For brevity,
we do not discuss in detail this case but the main identi�cation implications of the model are similar.
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e�ect is compounded by both the permanent shift and the linear trend di�erential,

α1 (1) = γDP + γD1 .

In general, identi�cation of the treatment e�ect s periods ahead is complex to evaluate

because there is no closed form solution for the operator ∆s∆
q−1 onto the term (t∗ + s)r.

However, for the case q > R, ∆s∆
q−1 (t∗ + s)r = 0, for all r ≤ R, and, by Theorem 1,

∆q−1αq (s) = γDP ∆q−1Postt∗+s. Given that ∆q−1αq (s) = ∆q−1Postt∗+sα
q (s), the dif-

ference operators cancel out and αq (s) = γDP for any s ≥ 1. For the case q ≤ R, we

comment the inclusion of a linear or a quadratic time trend (that are the most frequent

empirical cases as in Friedberg, 1998, and Wolfers, 2006).

A linear time trend:
∑R

r=1 γ
D
r t

r = γD1 t. Under Parallel-(q, s) with q ≥ 2, the treat-

ment e�ect after s ≥ 1 periods is γDP . Under Parallel Paths the treatment e�ect is

linear in s, α1 (s) = γDP + γD1 s. Parallel Paths states that in the absence of treatment,

treated and controls are comparable in changes. Any di�erence in observed trends after

treatment are assumed to arise because of treatment. Hence, the parameter for the lin-

ear time trend that captures di�erences in group dynamics (before and, crucially, after

treatment) is included in the e�ect. In sum, the identi�cation of the treatment e�ect

with γDP implies a departure from Parallel Paths but it is still consistent with any other

Parallel assumption.

A quadratic time trend:
∑R

r=1 γ
D
r t

r = γD1 t+γD2 t
2. Under Parallel-(q, s) with q ≥ 3,

αq (s) = γDP . Under Parallel Paths, α
1 (s) = γDP +

(
2t∗γD2 + γD1

)
s+γD2 s

2 and under Par-

allel Growths, α2 (s) = γDP + γD2 (s+ 1) s. Parallel Paths implies that group di�erentials

in output �rst di�erences arise because of treatment. Since these di�erentials follow a

quadratic polynomial, the treatment e�ect track these di�erentials and is also quadratic

in s. Under Parallel Growths, treated and controls are comparable in acceleration rates

in the absence of treatment. Hence, the parameter associated with acceleration in the

quadratic time trend also appears in the treatment e�ect. In contrast to α1 (s), α2 (s)

does not include the parameter γD1 since controls and treated are not comparable in �rst

di�erences. In line with Theorem 2, α1 (s) and α2 (s) are the same only if pre-treatment

changes are equal among treated and controls, i.e. if γD1 − γD2 + 2t∗γD2 = 0.6 To summa-

6If the time trend is normalized so that t∗ = 0, α1 (s) = γDP + γD1 s+ γD2 s
2 and α1 (s) = α2 (s) only

if γD1 = γD2 .
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rize the quadratic case, identi�cation of the treatment e�ect with γDP implies a departure

from both Parallel Paths and Parallel Growths but it is still consistent with any other

Parallel assumption.

3.2 Modeling �exible dynamics for the treatment e�ect

One way to extend the standard model to accommodate �exible dynamics for the treat-

ment e�ect is by adding interactions between D and the time dummies after treatment:

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD +
S∑
s=1

γDs × It∗+s ×D. (20)

By applying the di�erence operators ∆s∆
q−1 on both sides of equation (20) and taking

into account that ∆sγ
D
s = γDs , we have that

E
[
∆s∆

q−1Yt∗+s |D
]

= ∆s∆
q−1δt∗+s + ∆q−1γDs ×D. (21)

Applying Theorem 1, we have that ∆q−1αq (s) = ∆q−1γDs and, given that αq (s) = 0

for s ≤ 0, the di�erence operators cancel out and αq (s) = γDs for all q and s. In

contrast to the standard speci�cation and also to equation (17), equation (20) provides

a fully �exible form to capture the response function to treatment (for an application,

see Wolfers, 2006). A less �exible version of dynamic e�ects often used in empirical work

(see, for example, Groen and Polivka, 2008) assumes a linear time trend for the e�ect

of treatment, γDs = γDp + γDL (t∗ + s), so that:

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD + γDp Postt ×D + γDL Postt × t×D. (22)

An essential aspect in equations (20) and (22) is that pre-treatment dynamics are iden-

tical for controls and treated. Hence, as already stated, all Parallel assumptions are

equivalent. Moreover, as with the standard speci�cation from equation (16), these mod-

els are inappropriate in the presence of group speci�c pre-treatment trends. In two of

his three speci�cations, Wolfers (2006) includes group speci�c linear and quadratic time

trends, i.e. he combines equations similar to equations (17) and (20). The additive com-
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bination of the two models a�ects the identi�cation of the treatment e�ect as expected.

First, for the case q > R, αq (s) = γDs for any s ≥ 1. Second, for the quadratic case,

α1 (s) = γDs +
(
2t∗γD2 + γD1

)
s + γD2 s

2 and α2 (s) = γDs + γD2 (s+ 1) s. Hence, identi�ca-

tion of the treatment e�ect s periods after treatment with γDs implies a departure from

both Parallel Paths and Parallel Growths but it is still consistent with any other Parallel

assumption. Finally, for the linear case, identi�cation of the treatment e�ect with γDs
implies a departure from Parallel Paths but it is still consistent with any other Parallel

assumption.

3.3 A fully �exible model

Consider a general additive model with group-speci�c, fully-�exible pre- and post-

treatment trends:

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD +
T∑

τ=t2

γDτ × Iτ ×D. (23)

Theorem 3. Under Parallel-(q, S) and equation (23):

did (q, s) = ∆s∆
q−1γDt∗+s.

Proof. See the Appendix.

By theorems 1 and 3, it follows that ∆q−1α (s) = ∆s∆
q−1γDt∗+s. The operators ∆q−1 at

each side of the equation do not cancel out because while Lrα (s) = 0 for all r ≥ s by

de�nition, γDτ may be di�erent from 0 for some τ ≤ t∗. This implies that the e�ect

of treatment will generally di�er under alternative Parallel assumptions. Only in the

case in which γDτ = 0 for all τ ≤ t∗, i.e. only when pre-treatment trends are equal on

average between treated and controls, then α (s) = γDt∗+s . Hence, the test of the null

hypothesis of common pre-treatment trends (H0 : γDτ = 0 for all τ ≤ t∗) is a test for the

simultaneous equivalence of all Parallel− (q, S) assumptions.

The inclusion in equation (23) of fully �exible pre-treatment trend di�erentials between

treated and controls allows for the comparison of any two consecutive Parallel-(q, S)

assumptions. From Theorem 2, testing the null H0 : ∆q−1γDt∗ = 0 vs. the alternative
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H1 : ∆q−1γDt∗ 6= 0 with 1 < q ≤ T0 is a test for the equivalence of Parallel-(q, S) and

Parallel-(q − 1, S). In the leading case of Parallel Paths and Parallel Growths, the test

would be H0 : γDt∗ = γDt∗−1 vs. H1 : γDt∗ 6= γDt∗−1.

As in equation (20), the inclusion of fully �exible post-treatment trend di�erentials

allows us to implement tests on the dynamics of the treatment e�ect. For example,

under q = 1 testing the null H0 : γDt∗+s = γDt∗+s+1 with s = 1, ..., S − 1 is a test for the

e�ect to be constant in the post-treatment period.

Despite the �exibility gained in equation (23), we are not aware of any empirical work

which uses this or a similar speci�cation. In some cases, not using equation (23) is

justi�ed because data requirements are simply not met. When data requirements are

met, but results do not change with additional �exibility, there might be a reason to

use a more parsimonious model. Unfortunately this discussion is absent in the empirical

literature. In the next section, we explore how empirical results obtained from less

�exible models are robust to the fully �exible speci�cation in equation (23).

4 A brief review of current practice

In this section we explore to what extent using a fully �exible model and considering

alternative Parallel assumptions modi�es conclusions obtained in several recent papers.

The papers are selected by imposing several conditions. The �rst condition is that the

paper must have been published in the period 2009 : 2012 in one of 10 Economics

journals (see Table 1 for the list). We look at the last four years as we are primarily

interested in current practice. The journals chosen are characterized by being among

the highest ranked economic journals on several criteria and also by having the policy

of allowing access to the data sets used in the published papers (at least during some

part of the searched period).

The second condition is that the paper must include an application of DID. We identify

these papers by a search on the terms �di�erence-in-di�erences� or �di�-in-di�� on the

paper (with the exception of the bibliography section) and, for those papers which

include these terms, by checking that the DID application does exist. We �nd 59 papers

which satisfy this condition.
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The next condition is that the data for the DID application are publicly available online

by the publishing journal. There are 37 papers for which data are not available and one

paper for which a request to access the data was required. Therefore, 22 papers also

satisfy this additional requirement.

The �nal condition is that the data must include more than one pre-treatment period

and that controls and treated must have observations before and after treatment. If

there were only two periods, then the only implementable Parallel-(q, S) assumption is

Parallel-(1, S). We are especially interested in the comparison between Parallel-(1, S)

and Parallel-(2, S), so that at least two pre-treatment periods are required. There are

13 papers which do not satisfy this condition.

Table 1: List of Selected Papers

Author Year Journal Title
Aaronson and Mazumder 2011 JPE The impact of Rosenwald Schools on Black

achievement
Abramitzky, Delavande, and
Vasconcelos

2011 AEJ:AE Marrying Up: The Role of Sex Ratio in Assor-
tative Matching

Currie and Walker 2011 AEJ:AE Tra�c Congestion and Infant Health: Evi-
dence from E-ZPass

De Jong, Lindeboom, and Van
der Klaauw

2011 JEEA Screening disability insurance applications

Jayachandran, Lleras-Muney,
and Smith

2010 AEJ:AE Modern Medicine and the Twentieth Century
Decline in Mortality: Evidence on the Impact
of Sulfa Drugs

Furman and Stern 2011 AER Climbing atop the Shoulders of Giants: The
Impact of Institutions on Cumulative Research

Kotchen and Grant 2011 REStat Does Daylight Saving Time Save Energy? Ev-
idence from a Natural Experiment in Indiana

Moser and Voena 2012 AER Compulsory Licensing: Evidence from the
Trading with the Enemy Act

Redding, Sturm, and Wolf 2011 REStat History and industry location: Evidence from
German airports

Note: Papers are listed by the alphabetical order obtained from the author's name. The papers selected satisfy
the following conditions: (a) There is an application of DID; (b) the sample includes more than one period before
treatment; (c) data is available; and (d) the paper is published in the period 2009:2012 in one of the following 10
Economics journals: AEJ:AE, AER, JAppEcon, JEcon, JEEA, JLabEc, JPE, QJE, REStat, and REStud.

In total, nine papers, listed in Table 1, meet all requirements. In �ve papers, the DID

econometric speci�cation is similar to the standard model described in equation (16).

In one of them, the dependent variable is the output variable in �rst di�erences. In

two other papers where panel data is used, individual-speci�c linear time trends for

di�erences in dynamics are used. One of the two remaining papers presents two models:

a model with group-speci�c linear time trends, equation (17) with a linear time trend,

and an extension of this model to allow for a linear time trend for the e�ect of treatment,

a linear version of equation (22). The other paper considers a short-run treatment e�ect

for a window of three periods, and a permanent treatment e�ect for later periods.
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In all speci�cations but one in Jayachandran, Lleras-Muney, and Smith (2010), the treat-

ment e�ect is identi�ed as the interaction term. Clearly, there are no discussions about

which Parallel-(q, s) assumption is used for the identi�cation of the counterfactual and

the treatment e�ect. This discussion is not relevant�in the sense that the treatment

e�ect is identi�ed by the interaction term for all q�when there are no group-speci�c

pretreatment trends, as in the standard model in equation (16).7 However, when the

econometric speci�cation allows for group-speci�c pre-treatment trends, as in the lin-

ear time trends models proposed in some of the papers, the discussion becomes relevant

because the parameters that identify the treatment e�ect depend on the Parallel assump-

tion. For example, only q ≥ 2 is consistent with the interaction term as the treatment

e�ect when comparing the estimates from the standard and the linear time trend model.

We use the two econometric models considered in Jayachandran, Lleras-Muney, and

Smith (2010) to illustrate the need to state the identifying Parallel assumption for some

speci�cations. The authors study the contribution of sulfa drugs, a groundbreaking

medical innovation in the 1930s, to declines in US mortality. Their �rst speci�cation

includes linear time trends for both treated and controls:

yit = β0 + β1Di × Postt + β2Di × yeart + β3Di + β4yeart + β5Postt + εit (24)

where yit is the yearly average log of the U.S. mortality rate of illness i at year t, Di

is an indicator for illness combated with sulfa drugs after 1937, yeart is a year trend

normalized to 0 in 1937, and Postt is a dummy indicator for year later than 1936.

From the discussion in section 3, α1 (s) = β1 + β2s and α
q (s) = β1 for q ≥ 2. Jayachan-

dran, Lleras-Muney, and Smith (2010) focus on β1 as the coe�cient of interest, which is

consistent with q ≥ 2. In their second speci�cation they add an interaction between Di,

Postt, and yeart to allow for �a change in both the intercept and the slope after 1937�:

yit =β0 + β1Di × Postt × yeart + β2Di × Postt + β3Di × yeart
+ β4Di + β5yeart + β6Postt + εit. (25)

They claim that �(i)n this model, the statistical question of interest is whether β1 and

β2 are jointly signi�cantly di�erent from zero.� Policy e�ects under this speci�cation are

7In Redding, Sturm, and Wolf (2011), q > 1 since the dependent variable is the output in �rst
di�erences.
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more complex under both Parallel-(1, S) and Parallel-(2, S). First, under Parallel-(1, S)

and taking into account the normalization in yeart, α
1 (s) = β2 + β1 (s− 1) + β3s for

any s ≥ 1 . Under Parallel-(q, S) with q ≥ 2, αq (s) = β2 + β1 (s− 1) so that in 1937

(i.e. year1937 = 0) the e�ect depends only on β2 while after 1937, it depends both on β1

and β2.
8 Thus, the dynamic e�ects are captured by β1 and β3 under q = 1 and by β1

under q = 2.

In the remaining part of this section, our goal is to discuss how sensitive DID techniques

are in practice to alternative Parallel assumptions and model speci�cations. We do not

attempt to review the main results of the papers, which in some cases are not derived

from the DID application implemented. We must include all applications that satisfy

the criteria regardless of whether the DID application is the most important evidence

provided. Hence, it is important to stress that our revision exercise should not be used

to question the main results of the original papers. In two papers (Jayachandran, Lleras-

Muney, and Smith 2010 and Redding, Sturm, and Wolf 2011) it is not possible to use

the �exible speci�cation in equation (23) because there is only one treated agent and one

control. In another paper which uses a panel (De Jong, Lindeboom, and Van der Klaauw

2011), we cannot estimate a fully �exible version because the authors include individual-

speci�c linear trends. For these three papers, we discuss how alternative assumptions

may yield di�erent results, but a direct comparison of results using the �exible model

with their own reported ones is not possible.

De Jong, Lindeboom, and Van der Klaauw (2011): The authors analyze the

impact of stricter screening of disability insurance applications on long-term sickness

absenteeism and disability insurance applications. Using a standard DID model with

two years of data (2002 and 2003) for 26 Dutch regions, they �nd that stricter screening

signi�cantly reduces long-term sickness absenteeism reports. They also obtain a negative

estimate on disability insurance applications, but the estimate is not signi�cant. They

implement a DID estimate at the last period before treatment to �test for conditional

random assignment�. This is in fact the equivalence test for q = 2 and q = 1. They

cannot reject that both assumptions provide the same estimated treatment e�ects. They

claim to relax the Parallel Paths assumption by allowing for region-speci�c time trends.

They then estimate the treatment e�ect by regressing the second di�erence in 2003 in

8With an alternative normalization, the e�ect in the �rst period would also depend on β1, but it
would still be di�erent from the e�ect in later periods.
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the outcome variable on the treatment dummy. This is not a relaxation of the Parallel

Paths assumption, but assuming q ≥ 2 with regional speci�c linear time trends. They

obtain signi�cant and larger e�ects on both outcomes.9

Jayachandran, Lleras-Muney, and Smith (2010): As already said, they study

the contribution of sulfa drugs to declines in US mortality. They provide national and

regional evidence using aggregates of US mortality rates of three di�erent conditions

treated with sulfa drugs: maternal complications after child birth, pneumonia, and

scarlet fever. We comment for brevity and data availability the results concerning scarlet

fever and national aggregates. The estimate for β2 in their �rst speci�cation�equation

(24)�is not signi�cant (p-value 0.75) so that Parallel Paths and Parallel Growths cannot

be rejected to be equivalent. By construction the e�ect is constant and captured by

β̂1 = −0.877. For their second speci�cation�equation (25)�β̂3 = 0.049 is strongly

signi�cant (t-ratio 7.27) so that Parallel Paths and Parallel Growths are not equivalent.

Moreover, β̂1 + β̂3 = −0.205 and β̂1 = −0.254 are strongly signi�cant (t-ratios −5.71 and

−6.99, respectively) so that dynamic e�ects are present for all q. Hence, under Parallel

Paths α̂1 (s) = −0.256− 0.205s and under q ≥ 2, α̂q (s) = −0.256− 0.254s.

Redding, Sturm, and Wolf (2011): The authors study how industry location is

not uniquely determined by fundamentals. In particular, they estimate the e�ects of

the division of Germany after World War II and the reuni�cation after 1989 on airport

passenger shares in Berlin and Frankfurt. They �nd a change in passenger shares after

division and no e�ect after reuni�cation. For brevity, we discuss the results concerning

division. Let γi1 be the slope of the linear time trend for airport i during the pre-

war period and γi2 the slope after the war. For the authors' model, it can be shown

that under Parallel Paths the expected gain in passenger shares of Frankfurt relative

to Berlin is α1 (s) =
(
γF2 − γB2

)
× s.10 Hence, under parallel paths the e�ect of the

9As already said, we cannot apply the fully �exible model with region-speci�c trends. Nevertheless,
we can estimate the fully �exible model assuming the same dynamics for all controls and the same
dynamics for the two regions treated. Since there is only one year after treatment, we are able to
estimate the impact of the treatment in only one period: s = 1. The e�ect of the treatment under
q = 2 is not signi�cantly di�erent from the e�ect under q = 1 when looking at sickness absenteeism.
However, for disability insurance applications the e�ects under alternative assumptions are statistically
di�erent, although both of them are negative and strongly signi�cant.

10Note that the authors estimate a model similar to equation (25) with β2 = 0. The pre-war period
goes from 1926 until 1938. The post-war period before reuni�cation is 1950 : 1989. It is implicitly

21



change in Germany's hub is an annual relative increase of 1.25 percentage points in

Frankfurt's passenger shares. In a given year during the 40-year post-war period, the

relative accumulated gain for Frankfurt is, on average, 25.61 percentage points. For

q ≥ 2, α2 (s) =
[(
γF2 − γB2

)
−
(
γF1 − γB1

)]
× s. The authors identify the estimate of this

expression, 3.07, as the e�ect of the division of Germany. It implies an average relative

accumulated gain for Frankfurt of 62.98 percentage points after 40 years. The di�erence

of the estimated e�ects under the two assumptions is strongly signi�cant: the t-ratio for

the equivalence test between Parallel Paths and Parallel Growths is 6.41.11

For the rest of the papers, in Table 2 we compare the original results with results from

the �exible model under Parallel-(1, 1) and Parallel-(2, 1). We also test in the fully

�exible model for the equivalence of Parallel-(1, 1) and Parallel-(2, 1) and for constant

treatment e�ects under Parallel-(1, s) and Parallel-(2, s) with s ≥ 1.

Aaronson and Mazumder (2011): The authors study the educational gains of rural

southern blacks in the U.S. brought about by the construction of nearly 5, 000 schools�

known as the Rosenwald Rural Schools Initiative�from 1914 to 1931. The authors

�nd evidence of the e�ects using several datasets and output measures. They also use

urban blacks and rural whites as additional controls in a di�-in-di�-in-di�s framework.

We comment on school attendance results using cross-sectional samples drawn from the

1900 to 1930 decennial censuses. We also restrict the discussion to the simplest DID case,

i.e. the identi�cation of the treatment e�ect by comparison to rural blacks in counties

without any Rosenwald schools. In some of the counties there was never a Rosenwald

school. In some counties, the �rst Rosenwald school was constructed between 1910 and

1920 while in some other counties it was constructed between 1920 and 1930. As some

units change their treatment status, identi�cation of the treatment e�ect exploits the

timing in which this change takes place. It is still possible to estimate a fully �exible

assumed that the periods between 1938 and 1950 did not exist so that the year after 1938 is 1950. The
pre-war time trend and the post-war time trend must equal zero in the last pre-treatment period, 1938.

11Since there is only one treated unit (Frankfurt's airport) and one control (Berlin's airport), it is
not possible to estimate the fully �exible model from equation (23). We instead run the fully �exible
model on Frankfurt relative to all other airports but Berlin and on Berlin relative to all other airports
except Frankfurt. The e�ects of division are of the expected sign (positive for Frankfurt and negative
for Berlin) but the size is markedly lower. Moreover, while the equivalence test for q = 2 and q = 1
is strongly rejected for Berlin, it cannot be rejected for Frankfurt. Finally, we �nd strong evidence of
signi�cant changes in the accumulated e�ects after several periods, although these dynamics do not
seem to follow a linear trend. These results and those reported in footnotes ?? and 9 are available upon
request.
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model in which the dynamics of the controls is driven by decade dummies while the

dynamics of the treated are also in�uenced by the time distance to treatment. We

report the results for the model with additional controls and county �xed e�ects (i.e.

Column 4 in their Table 1). Our estimates of the treatment e�ect are similar as those

reported in the paper, regardless of the Parallel assumption made. We do not reject

equivalence between Parallel Paths and Parallel Growths and we �nd evidence at 5% of

dynamic e�ects under q = 2.

Abramitzky, Delavande, and Vasconcelos (2011): The authors investigate the

e�ect of male scarcity due to military mortality during World War I on marriage market

outcomes in France. The authors use the class of the bride minus the class of the

groom, a dummy variable for the groom marrying a bride of lower class, and a dummy

variable for the bride being of low social class as three alternative de�nitions of a bad

marriage outcome for men. For all three de�nitions, they �nd that decreases in bad

marriages�compared to prewar years�were signi�cantly larger the larger the regional

male mortality rates during the war. They conclude that higher regional mortality led

to better marriage outcomes. The authors use a postwar dummy variable interacted

with mortality rate in each region to identify the e�ect of mortality rates on marriage

outcomes. We apply a fully �exible model for the three alternative outcomes for the full

sample of grooms (columns 1 to 3 from their Table 3). Although the estimated e�ects

are not signi�cant, we �nd some evidence of dynamic e�ects in all cases and, in one case,

we reject that Parallel Paths is equivalent to Parallel Growths.

Currie and Walker (2011): The authors study the e�ect of the introduction of

electronic toll collection (E-ZPass) on infant health via vehicle emissions near highway

toll plazas. As their data on infant health are not available, we discuss the e�ect of

E-ZPass on pollution levels. The authors compare the e�ects on NO2 levels (for which

cars are an important source) and on SO2 (for which cars are not an important source).

More speci�cally, they look at di�erences between pollution at one monitor near (< 2

km) to a toll plaza and pollution at all monitors farther than 2 km from a toll plaza,

before and after E-ZPass. Hence, there is only one treated agent and many controls. The

empirical model is a restricted version of the model in equation (17) with monitor speci�c

23



Table 2: Fully �exible model results and reported results from selected papers

Reported Fully Flexible Model
Estimated q = 1 q = 2 Equivalence

Article E�ect E�ect Dynamics E�ect Dynamics Test
Aaronson and Mazumder
(2011)

0.072 0.039 3.337 0.053 6.488 1.420
(0.007) (0.012) [0.068] (0.017) [0.011] [0.234]

Abramitzky, Delavande, and
Vasconcelos (2011) - 1

-0.020 0.036 22.651 0.106 23.428 -0.069
(0.010) (0.039) [0.012] (0.073) [0.009] [0.059]

Abramitzky, Delavande, and
Vasconcelos (2011) - 2

-0.010 0.008 15.983 0.010 16.205 -0.003
(0.004) (0.016) [0.100] (0.030) [0.094] [0.435]

Abramitzky, Delavande, and
Vasconcelos (2011) - 3

-0.017 0.003 26.989 0.031 28.664 -0.028
(0.005) (0.013) [0.003] (0.022) [0.001] [0.021]

Currie and Walker (2011) - 1 -0.208 -0.506 13.748 -0.386 13.796 -0.121
(0.028) (0.198) [0.132] (0.395) [0.131] [0.300]

Currie and Walker (2011) - 2 -0.090 -0.582 33.123 -1.071 30.811 0.489
(0.024) (0.198) [0.000] (0.353) [0.000] [0.006]

Currie and Walker (2011) - 3 -0.065 0.029 13.304 0.136 15.950 -0.107
(0.017) (0.101) [0.149] (0.128) [0.068] [0.040]

Currie and Walker (2011) - 4 -0.181 -0.191 25.404 -0.380 27.992 0.189
(0.023) (0.108) [0.003] (0.204) [0.001] [0.051]

Currie and Walker (2011) - 5 0.018 -0.421 20.420 -0.592 14.565 0.171
(0.038) (0.374) [0.016] (0.736) [0.104] [0.357]

Furman and Stern (2011) 0.535 0.471 1.605 0.666 1.562 0.262
(0.142) (0.123) [0.071] (0.417) [0.083] [0.610]

Kotchen and Grant (2011) -1 0.009 0.006 -0.002 0.008
(0.003) (0.003) (0.005) [0.003]

Kotchen and Grant (2011) -2 -0.003 -0.006 -0.013 0.007
(0.003) (0.003) (0.005) [0.004]

Moser and Voena (2012) 0.151 0.075 4.606 0.006 3.995 2.362
(0.036) (0.046) [0.000] (0.081) [0.000] [0.124]

Note: Reported Estimated E�ect refers to the results originally published. E�ect for q = 1 and q = 2 reports the
estimated e�ects at s = 1 in the fully �exible model under q = 1 and q = 2, respectively. Standard errors in parenthesis.
Dynamics tests whether e�ects are constant for S periods. Equivalence tests for the equivalence of Parallel Paths and
Parallel Growths. p-values in square brackets. Aaronson and Mazumder (2011) refers to estimates for Black rural using
additional controls and county �xed e�ects (column 4 in their Table 1). Abramitzky, Delavande, and Vasconcelos (2011)
-1,-2, and -3 correspond to the three alternative de�nitions of a bad marriage outcome for the full sample of grooms
(columns 1 to 3 in their Table 3). Each of Currie and Walker (2011) - 1 to -5 reports the estimates using as controls 1
of 5 randomly chosen monitors (columns 3 to 7 in their Table 7). Furman and Stern (2011) reports results comparable
with those in the second column in their Table 3. Kotchen and Grant (2011) -1 reports the e�ect during DST period
while Kotchen and Grant (2011) -2 reports the e�ect during non-DST period (column d in Tables 4 and 5 in the original
paper). Moser and Voena (2012) reports results comparable with those of their column 1 in Table 2.

linear time trends.12 Note that for this model, the interaction term, γDP , identi�es the

treatment e�ect for q ≥ 2. For q = 1, identi�cation of the treatment e�ect is complex.

First, given that the time trend is an annual step function, we must de�ne s to represent

any day of the calendar year s years after introduction of E-ZPass. Second, estimation

of the treatment e�ect requires the estimation of the average monitor linear trend for the

controls, E [γi1|Di = 0], because α1 (s) = γDP +
(
γD1 − E [γi1|Di = 0]

)
s. The estimate of γDP

for NO2 is negative (−0.108) and signi�cant. We cannot reject the equivalence between

q = 1 and q = 2 (p-value 0.20). For SO2 the interaction term is positive (0.053) and not

signi�cant. In contrast to the NO2 case, we reject the equivalence test between q = 1 and

q = 2. In practice, however, the estimate of the e�ect under both assumptions is rather

12The variable Post takes value 1 the �rst day after the introduction of E-ZPass in the nearest toll
plaza. The time trend is annual.
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similar: Under q = 1, the e�ect is slowly increasing in s, α1 (s) = 0.053 + 0.00012s, and

becomes signi�cant only after 14 years. As a robustness check, Currie and Walker (2011)

also report for NO2 5 additional estimates, each obtained using as control a randomly

chosen monitor. We estimate the fully �exible model using weeks as the periods in

equation (23) and setting the same randomly chosen monitors as controls. In 5 out of

the 10 estimations we �nd negative and signi�cant e�ects one week after the introduction

of E-ZPass at the 5% signi�cance level. In 4 of them we �nd that these e�ects change

within the �rst 10 weeks. Finally, in 2 out of 5 cases, we reject at the 5% signi�cance

level that the e�ects under q = 1 and q = 2 are equivalent.

Furman and Stern (2011): They study the e�ect of biological resource centers

(BRC) on knowledge accumulation. BRCs collect, certify and distribute biological organ-

isms and they have the objective of enhancing cumulative knowledge production. The

authors study if access to biomaterials through a BRC ampli�es the impact of scienti�c

research. The authors �nd evidence of the e�ects using both a DID linear model and

a nonlinear negative binomial that the authors consider more appropriate for inference

given the highly skewed nature of the dependent variable. Their DID model includes

the interaction of treatment (being a BRC-article) with two dummies: the �rst dummy

equals one during the year immediately prior to, the year of, and the year immediately

after treatment. The second dummy equals one since the second year after treatment.

Hence, they distinguish between a �window period� e�ect and a �post deposit� e�ect.

Regarding the post deposit e�ect, they �nd that treatment causes over a 50% increase

to the citation rate. We estimate a fully �exible model in which the controls dynamics

are governed by year dummies while treated dynamics are additionally determined by

the time distance to treatment (second column in their Table 3). We concentrate on

the post deposit e�ects after two years. We do not reject at 5% the absence of dynamic

e�ects for both q = 1 and q = 2. Moreover, we also �nd a positive and signi�cant e�ect

under q = 1. Although under q = 2 the e�ect is not signi�cant, the di�erence between

the e�ects under q = 1 and q = 2 is not signi�cant.

Kotchen and Grant (2011): They estimate the e�ect of daylight saving time (DST)

on residential electricity consumption using monthly microdata from the majority of

households in southern Indiana spanning from January 2004 through December 2006.

To identify the e�ect the authors exploit that, prior to 2006, some of the counties in
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southern Indiana did not practice DST while the other counties did. Starting in 2006, all

counties were required by state law to practice DST. The authors provide evidence using

several model speci�cations that account for unobservable tenant �xed e�ects and di�er

in the way they control for weather and the dynamics of the monthly e�ects during

the DST period. Their main �nding is that DST increases electricity demand in the

DST period but there are no signi�cant e�ects outside the DST period. For brevity, we

comment on their simplest speci�cation in terms of the dynamic e�ects (i.e. the e�ect

is the same across months within the DST period) with the most �exible speci�cation

in the weather e�ects (columns d in Tables 4 and 5 in the original paper). Estimating

the fully �exible model only adds to the authors' speci�cation an interaction term of

treatment with a year dummy for 2005. We �nd that under q = 1 the e�ect during the

DST period is signi�cant (although smaller than the initial estimate) but under q = 2,

the e�ect is not signi�cant. Moreover, we �nd that the di�erence between the e�ects for

q = 1 and q = 2 is signi�cant. During the non-DST period, however, our results show

a negative and signi�cant e�ect both under q = 1 and q = 2. Since there is only one

post-treatment period, we cannot run tests for the dynamics.

Moser and Voena (2012): Using data from 1875 until 1939, they study the e�ect of

the Trading with the Enemy Act (TWEA) in 1918 on the number of patents (aggregated

into 7, 248 classes across chemicals) by US inventors. The authors use several speci�-

cations and estimation strategies. For brevity, we comment on their basic conditional

DID speci�cation in which a class is treated if it contains at least one enemy-owned

patent that was licensed to a US �rm. We report on results comparable with those of

their column 1 in Table 2. They �nd a signi�cant and positive impact of TWEA on the

number of patents. Using a �exible model we only �nd a marginally signi�cant impact

for q = 1 (p-value 10.4%). We �nd signi�cant dynamic e�ects and we do not reject at

5% that q = 1 and q = 2 are equivalent.

In sum, in 11 out of 13 treatment e�ect estimates, the original papers report signi�cant

e�ects. By estimating the fully �exible model, we can evaluate to what extent the

signi�cance of these estimates relies on more assumptions than Parallel Paths or Parallel

Growths. We �nd that under q = 1 in 5 out of the 11 cases the estimated e�ects remain

signi�cant. Under q = 2 only 3 estimates remain signi�cant. We interpret this result

as anecdotal evidence than, in empirical work, the identi�cation of the treatment e�ect
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usually relies on restrictions involving dynamics beyond the stated Parallel assumption.

The fully �exible model also allows us in 11 out of 13 models to test whether e�ects

are constant as in the standard model. The evidence we �nd in these examples is clear:

we reject at 5% the absence of dynamic e�ects in 6 cases both under q = 1 and q = 2.

Finally, the fully �exible model also allows us to test for the equivalence of results under

Parallel Paths and Parallel Growths. Given that the e�ects are not signi�cant in a

number of cases, one could expect that this test would fail to �nd signi�cant di�erences

between estimates under q = 1 and q = 2. However, in 5 out of the 13 cases we reject

at the 5% signi�cance level that the two assumptions lead to equivalent results.

5 Conclusions

In applications in which several pre-treatment periods are available, Parallel Paths is

appealing if trends do not di�er between treated and controls before treatment. In

practice, researchers who �nd pre-treatment trend di�erentials often formulate �exible

econometric models to accommodate those trend di�erentials. We start by noting that

identi�cation of the treatment e�ect does not uniquely depend on the Parallel Path

assumption, but also on the trend modeling strategy and the de�nition of the trend

variable. As inclusion of trend di�erentials between treated and controls does change

the identifying assumption of the treatment e�ect, it is important to characterize the

set of alternative assumptions which lead to identi�cation of the e�ects. With this

purpose, we de�ne a family of alternative Parallel assumptions and show, for a number

of frequently used empirical speci�cations, which parameters of the model identify the

treatment e�ect under the alternative Parallel assumptions.

We further propose a fully �exible model where treatment e�ects under any Parallel

assumption are shown to be linear combinations of the original parameters. The fully

�exible model has two advantages. First, it allows for �exible dynamics and for testing

restrictions on these dynamics. Second, it does not impose equivalence between alter-

native Parallel assumptions though tests for this equivalence are easy to implement.

We view the fully �exible model as a tool to analyze the robustness of estimated ef-

fects to alternative Parallel assumptions and dynamic speci�cations. We illustrate the

usefulness of our approach by revising the results of several recent papers in which the
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di�erence-in-di�erences technique has been applied. We �nd anecdotal evidence that

the identi�cation of the treatment e�ect usually relies on restrictions involving dynam-

ics beyond the Parallel assumption stated.

For example, it is usually imposed that the full long-term e�ect of treatment takes place

immediately after treatment. Our results suggest that this is an important restriction

for the identi�cation of the e�ects. Moreover, another usual restriction is to add a step

or a linear trend di�erential between treated and controls. The step di�erential implies

the equivalence of all Parallel assumptions while the linear trend di�erential implies

the equivalence of all Parallel assumptions beyond Parallel Paths. Our results suggest

that these restrictions play an important role in the identi�cation of the e�ects. In

view of these considerations, we advocate a change in current practice. When the data

structure allows for it, we think that the fully �exible model can be a helpful starting

tool to study robustness to alternative Parallel assumptions and dynamics. Equivalence

and dynamics tests can be used to validate the standard model or more �exible versions

of it. Moreover, the fully �exible model can be used as a guide to more parsimonious

models.
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A Appendix

Theorem 1. Under Parallel-(q, S),

∆q−1α (s|X) = did (q, s)

where ∆q−1 ≡ (1− L)q−1
and Lrα (s|x) = 0 for all r ≥ s.

Proof. By de�nition, α (s|X) ≡ E
[
Y 1
t∗+s|X,D = 1

]
− E

[
Y 0
t∗+s|X,D = 0

]
. Taking q

di�erences,

∆qα (s|X) ≡ E
[
∆qY 1

t∗+s|X,D = 1
]
− E

[
∆qY 0

t∗+s|X,D = 1
]
.

Since, for any variable zt

∆qzt+s = ∆q−1zt+s −∆q−1zt+s−1

=
(
∆q−1zt+s −∆q−1zt

)
−
(
∆q−1zt+s−1 −∆q−1zt

)
=∆s∆

q−1zt+s −∆s−1∆q−1zt+s−1,

then
∆qY i

t∗+s = ∆s∆
q−1Y i

t∗+s −∆s−1∆q−1Y i
t∗+s−1.

Hence, under Parallel-(q, S)

∆qα (s|X) =
(
E
[
∆s∆

q−1Y 1
t∗+s|X,D = 1

]
− E

[
∆s−1∆q−1Y 1

t∗+s−1|X,D = 1
])

−
(
E
[
∆s∆

q−1Y 0
t∗+s|X,D = 0

]
− E

[
∆s−1∆q−1Y 0

t∗+s−1|X,D = 0
])

and, by de�nition of did (q, s)

∆qα (s|X) = did (q, s)− did (q, s− 1) . (26)

Since did (q, 0) = 0, for s = 1 and q ≥ 1 equation (26) immediately implies that

∆qα (1|X) = did (q, 1) .

Hence, the theorem is proved by induction if we show that if it is true for any s− 1 > 0,
it must be true for s. By equation (26),

∆q−1α (s|X)−∆q−1α (s− 1|X) = did (q, s)− did (q, s− 1) .
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If the Theorem is true for s− 1, then ∆q−1α (s− 1|X) = did (q, s− 1). Hence,

∆q−1α (s|X) = did (q, s) .

Theorem 2. For any q ∈ {2, ..., T0} and s ∈ {1, ..., S},

αq (s|X) = αq−1 (s|X)

if and only if

E
[
∆q−1Yt∗ |D = 1

]
= E

[
∆q−1Yt∗ |D = 0

]
.

Proof. We �rst prove the Theorem for q = 2. For s = 1, α2 (1|X) = α1 (1|X) if and
only if did (2, 1) = did (1, 1). By de�nition of the did (q, s) operator, this condition is
equivalent to

E
[
∆2Yt∗+1|X,D = 1

]
− E

[
∆2Yt∗+1|X,D = 0

]
= E [∆Yt∗+1|X,D = 1]− E [∆Yt∗+1|X,D = 0]

or, given that ∆2Yt∗+1 = ∆Yt∗+1 −∆Yt∗ ,

E [∆Yt∗|X,D = 1] = E [∆Yt∗|X,D = 0] .

For s > 1,

α2 (s|X) =
s∑
j=1

did (2, j)

=
s∑
j=1

{E [∆j∆Yt∗+j|X,D = 1]− E [∆j∆Yt∗+j|X,D = 0]}

=
s∑
j=1

{E [∆Yt∗+j −∆Yt∗ |X,D = 1]− E [∆Yt∗+j −∆Yt∗ |X,D = 0]}

=
s∑
j=1

{E [∆Yt∗+j|X,D = 1]− E [∆Yt∗+j|X,D = 0]}

−s {E [∆Yt∗|X,D = 1]− E [∆Yt∗ |X,D = 0]} .
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Taking into account that
∑s

j=1E [∆Yt∗+j|X,D] = E [∆sYt∗+s|X,D] and the de�nition
of did (1, s), we have that

α2 (s|X) = α1 (s|X)

− s {E [∆Yt∗|X,D = 1]− E [∆Yt∗ |X,D = 0]} .

Thus, for s > 1, α2 (s|X) = α1 (s|X) if and only if E [∆Yt∗|X,D = 1]−E [∆Yt∗ |X,D = 0]
and this ends the proof of the Theorem for q = 2.

To prove the theorem for q > 2, we can make use of the following two lemmata.

Lemma 1. For any q ∈ {2, ..., T0} and s ∈ {1, ..., S},

∆q−1αqY (s|X) = α∆q−1Y (s|X)

where

α∆q−1Y (s|X) ≡ E
[
∆q−1Y 1

t∗+s |D = 1
]
− E

[
∆q−1Y 0

t∗+s |D = 1
]
.

Proof. It follows directly from the linear properties of the ∆s operator that

∆q−1αqY (s|X) = E
[
∆s∆

q−1Yt∗+s |D = 1
]
− E

[
∆s∆

q−1Yt∗+s |D = 0
]

=α∆q−1Y (s|X) .

Lemma 2. For any q ∈ {2, ..., T0} and s ∈ {1, ..., S},

αqY (s|X) = αq−1
Y (s|X)

if and only if

α∆q−1Y (s|X) = ∆α∆q−2Y (s|X) .

Proof. We �rst prove su�ciency. By applying the (q − 1)th di�erence we have that if
αqY (s|X) = αq−1

Y (s|X) then it follows that ∆q−1αqY (s|X) = ∆q−1αq−1
Y (s|X). By Lemma

1, this implies that α∆q−1Y (s|X) = ∆α∆q−2Y (s|X).

Now we prove necessity. By Lemma 1, if α∆q−1Y (s|X) = ∆α∆q−2Y (s|X) then

∆q−1αqY (s|X) = ∆q−1αq−1
Y (s|X)

for all s. This implies that both αqY (s|X) and αq−1
Y (s|X) satisfy the same initial condi-

tions and have the same di�erential equations. Hence they must be the same.

33



To prove the Theorem for q > 2, de�ne zt = ∆q−2Yt. By Lemma 2, the Theorem is proved
if α∆z (s|X) = ∆αz (s|X) is true if and only if E [∆zt∗ |D = 1] = E [∆zt∗ |D = 0] . By
Lemma 1, we then need to prove that ∆α2

z (s|X) = ∆αz (s|X) for all s is true if and
only if E [∆zt∗ |D = 1] = E [∆zt∗ |D = 0]. Given that ∆α2

z (s|X) = ∆αz (s|X) for all
s is true if and only if α2

z (s|X) = αz (s|X) for all s, then the Theorem is proved if we
prove that it is true for q = 2, which we did.

Theorem 3. Consider a general additive model with group-speci�c, fully-�exible pre-

and post-treatment trends:

E [Yt |D ] = δ +
T∑

τ=t2

δτIτ + γDD +
T∑

τ=t2

γDτ × Iτ ×D.

Under Parallel-(q, S):
did (q, s) = ∆s∆

q−1γDt∗+s.

Proof. It follows from the de�nition of did (q, s) after noting that

E
[
∆s∆

q−1Yt∗+s |D
]

= ∆s∆
q−1δt∗+s + ∆s∆

q−1γDt∗+s ×D.
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