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Abstract

We introduce a two-stage ranking of multidimensional alternatives, in-
cluding uncertain prospects as particular case, when these objects can be
given a suitable matrix form. The first stage defines a ranking of rows
and a ranking of columns, and the second stage ranks matrices by apply-
ing natural monotonicity conditions to these auxiliary rankings. Owing to
the theory of additive separability developed here, this framework is suf-
ficient to generate very precise numerical representations. We apply them
to four types of multidimensional objects: (1) streams of commodity bas-
kets through time, (2) uncertain social prospects, (3) uncertain individual
prospects, and (4) monetary input-output matrices. Application (1) en-
ters the paper mostly as an illustration, and the main results of the paper
concern the other three. In application (2), we prove the strongest ex-
isting form of Harsanyi’s (1955) Aggregation Theorem and cast light on
the comparison between the ex ante and ex post Pareto principle, when
expected utility assumptions do not hold. In application (3), we pro-
vide a novel derivation of subjective probability similar to Anscombe and
Aumann (1963). Lastly, application (4) delivers a numerical measure of
economic integration.

1 Introduction and overview

Consider the classic problem in consumer theory, i.e., to define a preference over
intertemporal consumption plans ranging over several goods. A convenient way
to tackle this problem is to begin with two sets of simpler preferences, the first
set comprising of preferences defined on time sequences of consumption for each
given good, and the second set comprising of preferences defined on goods bas-
kets for each given time period. Then, an overall ranking of consumption plans

∗The authors are grateful to Bob Nau and Peter Wakker for helpful comments. They have
also benefited from the remarks made by seminar audiences, when the paper was presented
at the London School of Economics and the Australian National University.
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will follow from aggregating the information contained in these two auxiliary
rankings.

Now suppose that a social observer wants to compare social prospects, which
allocate money across both individuals and states of the world. This can be
dealt with as before, by first supposing two sets of simpler preferences, and then
aggregating them. Here, one set is obtained by fixing the individual and letting
the states vary, and the other, by fixing the state and letting the individuals
vary. Put differently, the observer will judge the social prospects both from an
ex ante individual perspective and from an ex post social perspective, and his
final preferences will take these two sets of judgments into account.

Changing the model again, suppose that an individual decision-maker wants
to compare uncertain prospects, which are defined by their consequences in each
state of the world, while these consequences themselves are risky lotteries on a
set of final outcomes. The same technique leads one to introduce two distinct
sets of preferences over the probabilities of outcomes - the first set being obtained
by fixing the state, and the second one, by fixing the outcome - and then define
preferences over uncertain prospects by aggregating these two sets.

In the previous cases, the objects are practical alternatives, and preferences
must be defined between them, but in related settings, multidimensional quanti-
ties are compared more abstractly. Suppose that a statistician aims at comparing
national economies in terms of the extent to which they integrate their differ-
ent sectors, and for this purpose, relies on their monetary input-output tables.
(We assume the tables involve the same list of sectors for all economies, and
the transactions of a larger economy are made commensurable with those of a
smaller one by dividing the raw figures by a size factor.) Taking the problem
as before, the statistician would define two sets of integration rankings, one in
which sectors stand as sellers, and the other in which they stand as purchasers,
and then synthesize these partial comparisons into a final ranking. Thus, the
framework of this paper applies to information-processing, as well as preference
construction.

In this article, we develop an aggregative theory to formalize the method and
account for all four examples at one go. The first example is mentioned primarily
for didactic purposes, and our real stake lies with the remaining three. Initially,
the theory was meant only for the second example, having been motivated
by earlier work by the first author on social choice under uncertainty,1 but it
proved easy and rewarding to state it in fuller generality, so as to cover more
applications. This said, social choice under uncertainty looms large in what
follows, being an area to which the theory applies especially well.

Before proceeding, we briefly sketch the main technical ideas of the paper.
In general, the objects of preference or ranking take the form of matrices of real
numbers, with the indexes of rows and columns representing two qualitatively
different attributes of these objects. To take more than two attributes into con-
sideration, it is enough to increase the number of rows, columns, or both; thus,
states of nature may be introduced into the intertemporal choice application,

1See the unpublished paper by Blackorby et al. (2004). A comparison follows Theorem 3.

2



and multiple commodities or time periods into the applications to uncertain
prospects. More subtly, it could happen that the attributes exhibit some kind
of logical interdependency. In this case, the matricial form of the alternatives
would be inappropriate.2

We assume that objects are ranked as follows. Each row index generates
a ranking of those rows which are feasible given that index. Likewise, each
column index generates a ranking of the feasible columns for that index. The
overall ranking of feasible matrices takes these auxiliary rankings into account
by monotonically increasing with them, i.e., if two matrices differ only in one
row, and one matrix has this row ranked above the corresponding row of the
other, then the first matrix is higher than the second in the overall ranking. The
same holds for columns instead of rows. By a further monotonicity condition,
two matrices that differ in only one coordinate (ie. row-column pair), are ranked
as the numbers in that coordinate; this fixes the direction of the overall ranking
in another way. These three axioms — called Row Preferences, Column
Preferences and Coordinate Monotonicity —often become familiar and
plausible conditions once the application context is fixed. In the intertemporal
choice problem, with the matrix components representing dated quantities of
goods, the axioms are very standard dominance or monotonicity conditions. In
the uncertain social choice problem, with the matrix components representing
state-dependent utility values, they translate into statewise dominance condi-
tions at the individual level and unanimity-preservation (Pareto) conditions at
the social level. In the individual decision making problem, they boil down to
dominance again. We also impose Continuity on the overall ranking.

Under technical assumptions to be spelled out below, the four conditions
together deliver a representation theorem of a classic format: the overall ranking
of matrices can be represented by a fully additively separable value function,
i.e., a sum of value functions defined for each coordinate (Proposition 2). This
functional form was axiomatized by Debreu (1960) and Gorman (1968b), and
it has since then pervaded microeconomic theory (see Blackorby, Primont, and
Russell, 1978) and multiattribute decision theory (see Fishburn, 1970, Keeney
and Raiffa, 1976, Wakker, 1989). However, it is not obtained here in exactly
the same way as in these works. They assume that the ranking of vector-valued
alternatives is totally separable —roughly speaking, defined componentwise —
but we deduce this property from the aforementioned monotonicity axioms. Also,
we take account of feasibility constraints by relaxing the assumption, made by
both Debreu and Gorman, that the set of alternatives is a full Cartesian product.

Another important connection is with the early microeconomic literature
on consistent aggregation (see Green (1964), and van Daal and Merkies (1984,
1988) for surveys; the pioneering result is due to Nataf (1948)). Once translated
into numerical representations, our four axioms are seen to entail consistent ag-
gregation, which is known from this literature to entail additive separability.
However, our theory goes farther by dispensing with two unpalatable assump-

2However, it is possible that a finer description of the attributes make them suitably
independent. For a discussion, see Keeney (1981).
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tions of these earlier works: first, the Cartesian product structure, and second,
the differentiability of numerical representations. The latter assumption pre-
cludes one from stating a proper axiomatic basis since it has no counterpart at
the preference level.

As it reexpresses the two-stage analysis of the four examples, Proposition 2
shows that, for all its naturalness, this analysis is constraining and sometimes
undesirable. Depending on the applications, it can be seen to deliver either
a positive characterization or an impossibility theorem. The same ambivalence
underlies the main results of the paper, Theorem 3, Theorem 5, and Proposition
6, to be described now.

These results need more axioms and structure, and in particular, require
the overall ranking to be invariant between rows (Row Invariance), or be-
tween columns (Column Invariance), or both at the same time. With these
additional assumptions, Theorem 3 strengthens the additively separable repre-
sentation of Proposition 2 into a weighted sum of value functions, where the
value functions may differ only across columns, or only among columns, or not
at all, depending on the chosen invariance condition(s). We apply Theorem 3 to
uncertain social choice, taking the numbers in the matrices to be utility values
rather than physical quantities; this welfarist interpretation makes our formal-
ism very effective to handle issues in normative economics. As is well-known,
when social alternatives are uncertain, the Pareto principle can have two forms,
either ex ante or ex post, and the question arises whether they can be made
compatible. This has been debated in welfare economics (Hammond (1981)), in
moral philosophy by (Broome (1991)), and in axiomatic decision theory (Mon-
gin (1995)). The widespread answer is that the two forms of the Pareto principle
are compatible only if the individuals’ and the social observer’s ex ante prefer-
ences obey stringent restrictions. However, this conclusion depends on the prior
assumption that the individuals and the social observer satisfy the axioms of
expected utility theory, and little is known on the compatibility problem when
this major assumption is relaxed. Because the decision-theoretic properties en-
capsulated in our axioms are so weak, Theorem 3 shows what happens in this
case. Somewhat shockingly, the conclusion remains negative: the same stringent
conditions are necessary to achieve compatibility between ex ante and ex post
Pareto.

A related connection is with Harsanyi’s (1955) Aggregation Theorem, which
states that a Paretian and von Neumann-Morgenstern aggregate of individual
von Neumann-Morgenstern utility functions is a weighted sum of these util-
ity functions. Viewed in this light, Theorem 3 is a generalization that replaces
Harsanyi’s von Neumann-Morgenstern assumptions by mere dominance condi-
tions. In the end, von Neumann-Morgenstern theory turns out to indispensable,
because our theorem deduces it at the same time as the weighted sum rule, so
this is another ambivalent finding. On the one hand, we reinforce Harsanyi’s
intriguing argument for utilitarianism; on the other, we establish once and for
all that his argument cannot live outside of the narrow framework of some form
of expected utility decision theory.

Theorem 5 relies on a different trade-off in assumptions. It weakens the
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domain assumptions of Proposition 2 and Theorem 3, and in exchange, it rein-
forces the ranking conditions by combining dominance with betweenness. This
condition emerged in discussions of non-expected utility theory as an attrac-
tive stopping place, because, like von Neumann-Morgenstern independence, it
entails linear indifference curves, but unlike it, permits these curves not to be
parallel (see Chew, 1983, and Dekel, 1986). In the conclusions of Theorem 5,
the ranking of matrices is represented by a twice weighted sum of numbers,
with one set of weights holding for rows and the other for columns. At this
stage, straight linearity has replaced the additively separable representations.
Theorem 5 completes the discussion of ex ante and ex post forms of the Pareto
principle by reconciling them at a still very stringent price, and when compared
with Harsanyi’s Aggregation Theorem, it provides another generalization, in
which the full von Neumann-Morgenstern theory is now replaced with domi-
nance plus betweenness (and this axiomatic choice licences the relatively weak
domain assumptions).

Theorem 5 also casts light on individual decision theory, through yet an-
other interpretation of the rows and columns of alternatives; this is the third
example above. Matrices now become mixed prospects in the sense of Anscombe
and Aumann (1963) —i.e., prospects that associate states of nature with von
Neumann-Morgenstern lotteries. Theorem 5 then provides a derivation of sub-
jective probability from preferences under uncertainty. Its novelty lies with the
weak assumptions. We require the induced preference over lotteries to satisfy
only dominance and betweenness, not the whole of von Neumann-Morgenstern
theory, as Anscombe and Aumann do, and we take feasibility constraints into
account, which they did not do, since they only consider what is in effect a
Cartesian product of prospects.

Our final result, Proposition 6, extends Proposition 2 to tackle the problem
of measuring economic integration, as in the fourth example above. Since the
statistician is likely to work with normalized monetary input-output data, we
face a constraint that was not present in the other applications. As we however
show, the problem can be circumvented, and the additively separable represen-
tation that emerges clarifies the sense in which our axioms, when interpreted in
terms of economic integration, entail a numerical measurement for this concept,
unlike in current production analysis, where it is captured by discrete criteria.
This is a possibility result, and it confirms the wide expressive power of the
framework proposed here.

2 Basic framework, with an application to in-
tertemporal choice

We fix two sets of indexes, N := {1, . . . , i, ..., n} and M := {1, . . . , j, ...,m},
with n,m ≥ 2, in order to represent the relevant attributes of the objects to be
ranked. These are identified with bundles of quantities xij for all (i, j) ∈ N×M),
which we analyze as follows. First, we define an alternative X to be an element
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of the Cartesian product RN×M . We will usually write X in matrix form, i.e.,
X = [xij ]

i∈N
j∈M , but sometimes also as a vector of rows or as a vector columns,

i.e.,
X = (x1,x2, . . . ,xn) and X = (x1,x2, . . . , xm),

where, for each j ∈ M , xj := [xij ]
i∈N , an element of RN , and for each i ∈ N ,

xi := [xij ]j∈M , an element of RM .
Second, we assume that feasibility constraints restrict the set of alternatives.

For technological reasons, it may be impossible to realize all and every distribu-
tion of goods through time periods or amongst individuals; for economic reasons,
some distributions of money among individuals may be excluded in some states
of the world, and so on. To cover many cases at once, we take the set of fea-
sible alternatives to be an open, connected subset X ⊆ RN×M . This is in line
with some advanced utility-theoretic literature (Segal, 1992; Chateauneuf and
Wakker, 1993). The next sections will introduce more restrictions on X . We
assume that only feasible alternatives can be compared or need comparing, and
thus introduce an order � on X rather than RN×M . Define X i := {xi; X ∈ X},
for all i ∈ N . Define Xj := {xj ; X ∈ X}, for all j ∈ M . The following axioms
will be maintained throughout on �.

Continuity: The order � is continuous, i.e., its upper and lower contour sets
are closed subsets of X .

Row Preferences: For all i ∈ N , there is an order �i on X i such that, for all
X, Y ∈ X , and all i ∈ N , if xh ≈h yh for all h ∈ N \ {i}, then X � Y
if and only if xi �i yi.

Column Preferences: For all j ∈ M , there is an order �j on Xj such that,
for all X, Y ∈ X , and all j ∈ M , if xk ≈k yk for all k ∈ M \ {j}, then
X � Y if and only if xj �j yj .

Coordinate Monotonicity: For all i ∈ N and j ∈ M , and all X,Y ∈ X
with xhk = yhk for all (h, k) ∈ N ×M \ {(i, j)}, we have X � Y if and only
if xij ≥ yij .

The last of these axioms is best understood in terms of two sufficient conditions
stated in the following lemma. Here and below, vector inequalities have the
usual componentwise definition.3

Lemma 1 Let X ⊆ RN×M be an open set, and let � be an order on X that
has Column Preferences and Row Preferences. If � satisfies either of
the following conditions, then � satisfies Coordinate Monotonicity.

Row Monotonicity: For all i ∈ N and j ∈ M , and any x,y ∈ X i with
xk = yk for all k ∈M \ {j}, we have x �i y if and only if xj ≥ yj.

3If v = (v1, ..., vq) and v′ = (v′1, ..., v
′
q), we write v ≥ v′ if vp ≥ v′p, for all p ∈ {1, ..., q},

and v > v′ if the same holds with v 6= v′. We say that v is non-negative (strictly positive)
if v ≥ 0 (resp. v > 0).
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Column Monotonicity: For all j ∈ M and i ∈ N , and any x,y ∈ Xj, with
xh = yh for all h ∈ N \ {i}, we have x �j y if and only if xi ≥ yi.

Conversely, if X is convex, then Coordinate Monotonicity is equivalent to
each of Row Monotonicity and Column Monotonicity.

The proofs of Lemma 1 and all other results are in the Appendix.
In the intertemporal choice problem, N and M will conventionally represent

time periods and goods, respectively. Thus, with the numbers xij measuring
physical quantities, Row Preferences says that, for each given time, � is in-
creasing with respect to the instantaneous preferences over baskets of goods, and
Column Preferences says that, for each given good, the overall preference �
is increasing with respect to the preferences over consumption streams. These
are dominance properties in the sense considered by multiattribute preference
theory (see, e.g., Keeney and Raiffa, 1976, ch. 3). Coordinate Monotonic-
ity, Row Monotonicity and Column Monotonicity are familiar mono-
tonicity conditions from consumer theory, saying in effect that all the goods, at
all times, are valuable.

In the uncertain social choice problem, N and M will conventionally repre-
sent individuals and states of nature, respectively. We can take the xij to be
physical quantities, as in the previous case, or to be utility values, which concep-
tually amounts to endorsing a welfarist position in normative economics.4 We
consider the latter interpretation, both because it illustrates another use of the
formalism, and because it connects with the theoretical issues highlighted in the
introduction. Thus, what the social preference � ranks are ex ante social allo-
cations viewed in utility terms, and Row Preferences has two implications:
(a) if all individuals are indifferent between two social prospects, then so is the
social preference; (b) if an individual ranks a social prospect above another, and
all others are indifferent, then the social preference ranks the former above the
latter. Statement (a) is the ex ante Pareto Indifference condition. Statement
(b) is not quite the ex ante Strict Pareto condition, since it must be applied
iteratively to deliver this condition, and the domain must be rich enough for the
iteration to take place.5 Thus, the ex ante Pareto Principle holds in a somewhat
weakened way.

Now, Column Preferences means that the ex ante social preference � is
increasing with respect to each of its ex ante preferences conditional on states.
Since the xij are utility numbers, Row Monotonicity makes the same claim

for the �i vis-à-vis their own conditionals. This is a classic dominance property
in the theory of decision under uncertainty; it is satisfied not only by expected
utility, but also by rank-dependent utility and most received non-expected utility

4In normative economics, welfarism is the claim that individual utility values capture all
the information on alternatives that may be relevant to the social evaluation.

5Given our basic domain assumption, we can only conclude that ex ante Strict Pareto holds
locally. (That is: for any X ∈ X , there is an open neighbourhood YX ⊆ X with X ∈ YX

such that, for any Y ∈ YX with xi �i yi for all i ∈ N , and xi �i yi for some i ∈ N , it is
the case that X � Y.) If X is convex, one can take YX = X for all X ∈ X .
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construals.6 Column Monotonicity means that in every realized state, the
ex post social preference satisfies both Pareto Indifference (trivially) and an
individual-by-individual version of Strict Pareto (nontrivially). This is the ex
post Pareto Principle, though in the same weaker form as the ex ante principle.
As before, this interpretation takes the xij to be utility numbers.

In the individual decision-making example, a suitable reinterpretation of
rows and columns delivers the dominance property just stated, as well as a dual
form of it, where conditionals are taken on prizes instead of outcomes. The full
meaning of the axioms for this case is spelled out in Section 4.

In the assessment of economic integration, Coordinate Monotonicity
is natural, and Row and Column Preferences express an equally natural
division of the initial problem. Presumably, the statistician will have more feeling
on which of two economies is more integrated if she compares them sector by
sector, or commodity by commodity; this is what these two axioms say.

We now move to more technical assumptions, which are essential to the
proofs. For all Y ∈ X , and all i ∈ N and j ∈M , the (i, j)-section of X through
Y is the set {X ∈ X ; xij = yij}, an (N ·M−1)-dimensional subset of RN×M . We
say X is sectionally connected if each (i, j)-section is connected. This condition
is neither stronger nor weaker than ordinary connectedness; see the examples
by Segal (1992), Wakker (1993), and Chateauneuf and Wakker (1993), which
also illustrate why this is an important restriction. In words, to say that X is
(path-)connected means that, given any two feasible alternatives X and Y, it
is possible continuously to transform X into Y by moving along a continuous
path of feasible alternatives.7 Sectional connectedness resembles connectedness,
except that it requires one to transform X into Y while holding constant the
value of one coordinate. The set X ⊆ RN×M is both connected and sectionally
connected if it is convex or (an even more restrictive condition) it is a box —i.e.
X =

∏
i∈N

∏
j∈M Bij , where Bij is a real interval for all i ∈ N and j ∈M .

Finally, we say that X is �-indifference connected if, for all Y ∈ X , the
indifference set { X ∈ X ; Y ≈ X} is a connected subset of X . The above papers
also illustrate why this restriction matters to additive separability. Here are two
cases in which it holds.

(a) If X is an open box in RN×M , then X is �-indifference connected. (See
Appendix for proof.)

(b) Suppose X is a convex and comprehensive subset of RN×M+ . If � is qua-
siconcave, then X is �-indifference connected.8

For all i ∈ N and j ∈M , let X ij := {xij ; X ∈ X} ⊆ R. Now to our first result.

6As in Savage (1972) and elsewhere in decision theory, this interpretation identifies ex ante
preferences conditional on j with ex post preferences occurring when j is realized.

7Any open subset of a Euclidean space is connected if and only if it is path-connected, so
that we may identify the two notions here.

8The set X ⊆ RN×M is comprehensive if for all X ∈ X , and all X′ ∈ RN×M , if X′ ≤ X
then X′ ∈ X . The order � is quasi-concave if all of its upper contour sets are convex.
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Proposition 2 Let X ⊆ RN×M be open. Let � be an order on X that has Row
Preferences and Column Preferences, and which satisfies Continuity
and Coordinate Monotonicity. Then:

(a) For all X ∈ X , there is an open neighbourhood Y ⊆ X with X ∈ Y,
and for all i ∈ N and j ∈ M , there are continuous increasing functions
uij : X ij−→ R such that � is represented on Y by the additive function
U : Y−→R defined by

U(Y) :=
∑
i∈N

∑
j∈M

uij(y
i
j), for all Y ∈ Y.

Furthermore, in this representation, the uij are unique up to positive affine

transformations with a common multiplier.9

(b) Suppose X is also connected, sectionally connected, and �-indifference con-
nected. Then we can take Y = X in part (a).

(c) In this case, for all i ∈ N , the order �i is represented by the function
U i : X i−→ R defined by

U i(x) :=
∑
j∈M

uij(xj), for all x ∈ X i.

(d) Likewise, for all j ∈ M , the order �j is represented by the function Uj :
Xj−→ R defined by

Uj(x) :=
∑
i∈N

uij(x
i), for all x ∈ Xj.

Proposition 2 is related to Debreu (1960)’s theorem on additively separa-
ble representations, but unlike this classic result, it does not explicitly assume
that the preference order is totally separable. Indeed, the proof first estab-
lishes total separability via the theory of overlapping separability developed in
Gorman (1968b), and only then, using Debreu (1960), it concludes that there
exists a local additively separable representation around any given alternative.
Part (b) consists in gluing these local representations together, via the special
connectedness conditions. We leave it for the reader to check that consistent
aggregation, in Green’s (1964) or van Daal and Merkies’s (1984) sense, holds of
the numerical functions representing the orders defined here. Had we retained

9That is, if the functions ũij : X i
j −→R are such that � is represented on Y by the function

Ũ defined by

Ũ(Y) :=
∑
i∈N

∑
j∈M

ũij(yij), for all Y ∈ Y,

then there exist a > 0 and bij ∈ R such that, for all i ∈ N and j ∈ M , ũij(yij) = a uij(yij) + bij
for all Y ∈ Y.
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Nataf’s (1948) strong Cartesian product and differentiability assumptions, we
could have applied his theorem and obtained Proposition 2(b) at once.10

In general, the functions uij are all different, and to obtain a relationship
between them is the object of the following sections and their more advanced
results. Our applications to uncertain social choice, individual decision-making,
and economic integration, require these later results, but Proposition 2 offers
a perspective on the application to intertemporal choice, as we now discuss. In
this case, uij is a utility function for consumption of good j at time i, U i is a
utility function over consumption bundles at time i, Uj is a utility function over
streams of good j, and U is a utility function for consumption plans. There is
a classical stock of arguments for rejecting additive separability with respect to
goods, and be suspicious of it when it applies to time periods.

Jevons and Walras discussed the “equation of exchange” —today’s textbook
equality between marginal utility ratios and marginal rates of substitution —in
terms of separable, and even additively separable, utility functions for consump-
tion goods, and they also stated their demand theory in this way. Edgeworth
pointed out that this was unnecessary for the purpose, still a mild point, but
later neo-classicals found more distressing objections. Implying as it does that
the marginal rate of substitution of a for b only depends on the quantities of
a and b, separability (more generally than additive separability) makes the law
of demand automatic under diminishing marginal utilities, thus wiping out the
possibility of a prevailing income effect. Moreover, separability makes it im-
possible to classify consumer goods into complements and substitutes. These
critical messages were taken aboard long ago by demand theory, and it comes
to no surprise that postwar theorist Gorman11 expressed doubts about the very
assumptions that he was exploring mathematically.

Additively separable representations have on the whole been more success-
ful when they concern time preferences. Ramsey may have been the first to
employ such a functional form in his saving model, and it has persisted in the
neoclassical literature on intertemporal choices of consumption, investment or
money balances. This can be explained by analytical convenience, but no doubt
also by the fact that the objections from demand theory lose their force here.
However, there are worrying specific objections, in particular that for some
goods, the quantity of today’s consumption influences the utility of tomorrow’s
consumption through habit formation.12

Given this controversial pedigree, Proposition 2 sounds like a mixed blessing.
Some might use to axiomatize old style neo-classical economics, but many others
will rather argue from the strong functional forms against the applicability of
the axioms to the case. The ambivalence is typical of our results; it will transpire
throughout Sections 3 and 4.

10Though Nataf’s (1948) theorem is correct, its proof is rather obscure. The curious reader
may consult the clarifications and improvements adduced by van Daal and Merkies (1988).

11More obviously in Gorman (1968a) than in the other papers.
12This by now classic objection is discussed in detail by Browning (1991). Other problems

raised by temporal separability are discussed in the theoretical management literature (see,
e.g., Keeney and Raiffa, 1976), as well as in health economics (see, e.g., Gold et al. (1996).
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3 Social choice under uncertainty

Although too strong in one sense, the conclusion of Proposition 2 is too weak in
another, because the additively separable representation does not impose any
relation between the utility functions defined coordinatewise. Sections 3 and 4
make it more informative by introducing both more axiomatic conditions and
more structural assumptions. In the former group, we will require that there
be a single preference order on rows, or a single preference order on columns, or
both. Formally, define

XM :=
⋃
j∈M
Xj and XN :=

⋃
i∈N
X i.

We will require at least one of the following axioms.

Row Invariance: There is a single preference order �N defined on XN , such
that for all i ∈ N , the order �i is the restriction of �N to X i.

Column Invariance: There is a single preference order �M defined on XM ,
such that for all j ∈M , the order �j is the restriction of �M to Xj .

Since our framework treats rows and columns symmetrically, and their meaning
can be fixed at will, there is no point in considering both conditions unless they
apply at the same time. When only one of them applies, we will conventionally
select Column Invariance.

In the group of structural conditions, we will require that there be a single
set of feasible rows, or a single set feasible columns, or both. Formally, we
will require the domain X to satisfy at least one of the following structural
conditions:

Identical Row Spaces: X 1 = X 2 = · · · = Xn = XN .

Identical Column Spaces: X1 = X2 = · · · = Xm = XM .

Under the first condition, there is a common projection X ∗j of the X i on j ∈M ,

and XN ⊆
∏
j∈M X ∗j . Under the second condition, there is a common projection

X i∗ of the Xj on i ∈ N , and XM ⊆
∏
i∈N X

i
∗. Here are formal cases where they

hold.

Examples. (a) If X is an open box in RN×M , then X satisfies both Identical
Row Spaces and Identical Column Spaces.

(b) Suppose that, for all y ∈ XM , there exists X ∈ X such that xj = y for
all j ∈M . Then X satisfies Identical Column Spaces. ♦

Note that Row and Column Invariance are so formulated that no logical
implication holds between them and Identical Row Spaces and Identical Column
Spaces, respectively. However, the two sets of restrictions are often acceptable or
rejectable together. In the intertemporal choice problem, Row Invariance and
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Identical Row Spaces are implausible, while Column Invariance and Identical
Column Spaces are stringent without being absurd. (The former says that one
time ranks commodity baskets like another when they are available at both
times; this excludes habit formation. The latter adds that exactly the same
baskets are available at both times; this excludes technical interdependencies
between periods. Existing time-separable representations in consumer theory
often make these assumptions.)

In the uncertain social choice problem, with xij representing utility, Row
Invariance becomes the implausible claim that the individuals have the same
preferences. But Identical Row Spaces is not so easy to discard. It says that
the set of utility vectors is common to all individuals, which makes sense if
some interpersonal utility comparisons have already taken place. Meanwhile,
Column Invariance says that ex post social preferences are state-independent,
while Identical Column Spaces says that the same social outcomes exist in each
state. These two state-independence assumptions are made by Savage (1972)
and Anscombe and Aumann (1963) when they derive a subjective probability
from preferences under uncertainty, and they have prevailed in the theoretical
discussion of ex ante versus ex post Paretianism that concern us.13 On their
part, the individuals may have state-dependent preferences; this is explained
below.

Now to our first main result. Given a set L = {1, 2, . . . , `} and a vector
p = (p1, ..., p`) ∈ RL, we say that p is a weight vector on L if pk ≥ 0 for all
k ∈ L, and

∑
k∈L pk = 1. The expression probability vector is mathematically

appropriate, but we reserve it for those cases in which elements of L represent
states of nature. The set of weight vectors on L is denoted by ∆L.

Theorem 3 Suppose X ⊆ RN×M is open, connected, sectionally connected,
�-indifference connected, and satisfies Identical Column Spaces. Then � has
Row Preferences and Column Preferences and satisfies Coordinate
Monotonicity, Continuity, and Column invariance if and only if:

(a) For all i ∈ N , there is an increasing, continuous function ui : X i∗−→R, such
that the order �

M
is represented by the function WM : XM−→R defined

by

WM (x) :=
∑
i∈N

ui(xi), for all x ∈ XM . (1)

(b) There is a strictly positive weight vector p ∈ ∆M , such that for all i ∈ N ,
the order �i is represented by the function U ip : X i −→R yielding the

p-weighted value of ui. That is:

U ip(x) :=
∑
j∈M

pj u
i(xj), for all x ∈ X i. (2)

13The papers by Mongin (1998), Chambers and Hayashi (2006), and Gajdos et al. (2008)
are exceptions.
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(c) The order � is represented by the function W : X−→R which computes the
p-weighted value of the function WM from part (a). That is:

W (X) :=
∑
j∈M

pjWM (xj) =
∑
j∈M

∑
i∈N

pj u
i(xij) =

∑
i∈N

U ip(xi), for all X ∈ X .

(3)

(d) In this representation, the weight vector p is unique, and the functions
u1, . . . , un are unique up to positive affine transformations with a common
multiplier.

In terms of intertemporal choice, Theorem 3 says that time j does not influence
the shape of the utility functions ui defined for each commodity i, its role
being channelled through the weights pj , which should be viewed as discounting
factors.

In terms of uncertain social choice, the functions U ip and W of Theorem
3(b,c) are the individuals’ and the social observer’s ex ante utility functions.
If p is regarded as a probability vector, then these functions are shown to be
of the expected utility type. This is a striking result if one thinks of the non-
committal decision theory that we assumed at the start. We required only two
things: first, that both the individuals and social observer satisfy dominance
(a property that most non-expected utility models fulfil), and second, that the
social observer has Paretian and state-independent preferences. Theorem 3(b)
does not impose state-independent preferences on the individual agents, because
the xij are taken to be preexisting utility values which may very well come from
some state-dependent utility functions, exogenous to our modelling.

Theorem 3(a,c) gives another description of the social observer’s preferences,
this time in terms of social welfare functions. The ex post welfare functions WM

and the ex ante welfare function W are sums of the corresponding individual
utility functions, i.e., have the mathematical form of a weighted utilitarian rule.
This is another striking result in view of the purely ordinal form of the axioms.
Whether the derived representation bears more than a formal analogy with
classical utilitarianism is a complex question that we do not discuss here.

Finally, Theorem 3(d) confers uniqueness to the functional representations,
under the usual proviso that the mathematical pattern in which they appear
must be respected.14 Without such uniqueness, the representations would have
no conceptual bearing; for instance, it would not be sensible to view p as rep-
resenting a probability.

With these interpretations at hand, Theorem 3 states that the ex ante and
ex post Pareto principles are compatible only if (1) the individuals and the
social observer are all expected utility maximizers, and (2) they compute their
expected utilities by using the same subjective probabilities. Hammond’s (1981)
welfare economics paper is the classic source for both the compatibility problem
and the answer that (2) is necessary for its solution. When investigating con-
sistent ways of aggregating Savage preferences, Mongin (1995) implicitly raised

14Non-affine monotonic transforms of the ui would represent the �i equally well, but destroy
the expected utility form of the representations in Theorem 3(b,c).
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the compatibility problem. His axiomatic treatment enlarges the set of possi-
bilities somewhat. If the individuals’ and the social observer’s utility functions
are all alike up to positive affine transformations, then the ex ante and ex post
principles are compatible, and more subtly, they can be so when weaker Pareto
conditions than the Pareto principle apply. These other possibilities lie outside
the present framework, so it comes as no surprise that only condition (2) sur-
vives. The main news concerns the necessary condition (1). The above papers
(and others as well) assume that both the individuals and the social observer sat-
isfy the axioms of subjective expected utility, whereas we now prove this in the
representation theorem. To appreciate the step forward, take probabilistically
sophisticated agents, i.e., agents who have well-defined subjective probabilities
despite satisfying not subjective expected utility, but some generalization of it.
They would satisfy our weak decision-theoretic conditions; thus, if the observer
insisted on respecting both the ex ante and ex post Pareto principle, they would
inexorably turn into subjective expected utility maximizers!

It is unclear whether (2) signals an impossibility or only a severe, though im-
plementable restriction. Among the interpreters, Broome (1991) seems to take
the latter view, whereas Mongin and d’Aspremont (1998) favour the former.
The choice of answer depends on one’s underlying philosophy of probability,
and on the further issue of when probabilities are computed: is it at the com-
pletely ex ante stage, or rather at some interim stage? On one interpretation,
probabilities are subjective in the sense promoted by Savage, and moreover,
they are pure priors, i.e., embody no outside information at all; this would
make their interpersonal agreement very unlikely. On another interpretation,
they are still subjective in the same sense, but count as imperfect priors, thus in
effect as posteriors, because they embody some outside information; this would
make their interpersonal agreement less unlikely. (Some will argue that a pure
prior is a fiction and that this is the only appropriate alternative of the two.)
Finally, probabilities could be objective in one of the senses that philosophers
of probability have argued for.15 This last interpretation would make (2) un-
problematic, but it does not fit in with the present frame of analysis, which is
exclusively preference-based, like Savage’s. For the weight function to represent
an objective probability, at least some probabilistic information would have to
be included into the assumptions.

Several solutions have been proposed to escape from (2) when it is inter-
preted as an impossibility, many of which prioritize the ex post form of the
Pareto principle over the ex ante form,16 while a few others defend the opposite
priority, and still others reach compatibility by relaxing some decision-theoretic
component of the framework. We will not evaluate these theoretical possibilities
here, but Theorem 3 has a clear bearing on them, especially on the last group.17

15An interesting recent option is objective Bayesianism (see Williamson, 2010)
16This is the classic solution since Hammond, (1981). For a more refined treatment, see

Fleurbaey (2011).
17Mongin and d’Aspremont (1998) evaluate the solutions proposed at the time. More re-

cently, Gilboa et al. (2004), Chambers and Hayashi (2006), and Keeney and Nau (2011) have
taken up the challenge.
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By the same token, Theorem 3 is closely related in spirit to Harsanyi’s (1955)
Aggregation Theorem. According to this classic result, if the individuals have
von Neumann-Morgenstern preferences on a lottery set, and if the social observer
satisfies the Pareto principle and herself entertains von Neumann-Morgenstern
preferences on the lottery set, then her preferences can be represented by a pos-
itively weighted sum of the von Neumann-Morgenstern representations of the
individual preferences. Harsanyi interpreted this piece of reasoning as constitut-
ing an argument for utilitarian ethics. Our framework does not contain lotteries,
so in order to bridge the gap with Harsanyi, we should replace his theorem by
one of the variants that were devised for state-contingent prospects instead of
lotteries.18 When this is done, Theorem 3 appears to be a stronger form of the
classic result: expected utility theory now belongs to the conclusions, and the
utilitarian-looking social welfare functions follow from weaker assumptions than
before.

Two previous works suppressed the expected utility assumptions in Harsanyi’s
theorem, and they call for a comparison. In the unpublished paper that the
present one supersedes, Blackorby et al. (2004) started from a Cartesian prod-
uct set of state-contingent prospects, expressed conditions related to the present
ones but stated in utility terms directly, and eventually derived an additively
separable representation for social preference. At a closer look, this represen-
tation boils down to expected utility, so that this early result can be swept
under Theorem 3 as a particular case. Not so for the theorem by Gajdos et al.
(2008), which requires a specialized framework in the style of Anscombe and
Aumann (1963). The individual and social preferences there obey weaker forms
of von Neumann-Morgenstern independence and the sure-thing principle, and
they can be state-dependent. Under an appropriate Pareto condition, the strin-
gent conclusion (2) of a unique subjective probability emerges in more general
form, and the social utility representation can be expressed as a weighted sum
the individual ones. This result is closer to Harsanyi’s original than ours by its
choice of framework and assumptions.19

When M is interpreted as a set of time periods, Theorem 3 becomes a state-
ment about intertemporal social choice. Coordinate Monotonicity, Row
Preferences and Column Preferences express Pareto or dominance con-
ditions, while Row Invariance says that the social observer’s preferences are
unchanging over time. The weight vector p now describes a sequence of dis-
count factors, which are common to all agents. This conclusion reveals a tension
between applying the Pareto principle at each moment of time, and applying
it to entire social histories, granting the mild decision-theoretic conditions. As
before, it may be interpreted as either a sheer impossibility or only a severe

18Mongin (1995) provides a state-contingent version for Savage’s framework, and Blackorby
et al. (1999) provides another for Anscombe and Aumann’s.

19The aggregative results of Crès et al. (2011) and Nascimento (2012) are also non-expected
utility variants of Harsanyi’s Aggregation Theorem. Unlike ours and those of Gajdos et al.
(2008), they rely on identical utility functions. This explains the difference in conclusions -
in particular, the initial non-expected utility component is not destroyed by the aggregation
process as it is here.
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restriction; we lean towards the former view.

It remains to investigate the case in which the four conditions introduced
by this section jointly apply. If X has both Identical Column Spaces and
Identical Row Spaces, there is a single open subset X ∗∗ such that X ij = X ∗∗ for
all (i, j) ∈ N ×M .

Corollary 4 Suppose X ⊆ RN×M is open, connected, sectionally connected, �-
indifference connected, and has both Identical Row Spaces and Identical Column
Spaces. Then � has Row Preferences and Column Preferences and
satisfies Coordinate Monotonicity, Continuity, Row Invariance and
Column Invariance if and only if there is a single increasing, continuous
function u : X ∗∗ −→ R, and two strictly positive weight vectors q = (q1, . . . , qn) ∈
∆N and p = (p1, . . . , pm) ∈ ∆M , such that:

(a) The order �
M

is represented by the function WM : XM −→ R defined by

WM (x) :=
∑
i∈N

qi u(xi), for all x ∈ XM .

(b) The order �N is represented by the function WN : XN −→ R defined by

WN (x) :=
∑
j∈M

pj u(xj), for all x ∈ XN .

(c) The order � is represented by the function W : X −→ R defined by

W (X) :=
∑
j∈M

∑
i∈N

qi pj u(xij), for all X ∈ X .

(d) In this representation, the weight vectors q and p are unique, and the
function u is unique up to a positive affine transformation.

Since Row (Column) Invariance is unacceptable when the rows (columns)
refer to individuals, we must shift away from collective interpretations. Here
is one from individual decision theory. Take N to be a set of time periods,
while keeping M to be a set of states of nature. Thus, � represents intertem-
poral preferences under uncertainty. Elements of XN represent instantaneous
prospects (which by Identical Row Spaces could be realized at any moment in
time), while elements of XM represent ex post consumption streams (which
by Identical Column Spaces could be realized in any state of nature). Now,
by Row Invariance and Column Invariance, respectively, preferences are
state-independent over ex post consumption streams, and time-independent over
instantaneous prospects. The conclusion is that the agent maximizes the ex-
pected value of a discounted utility sum.
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4 Individual choice and subjective probability

We will now consider a variation of Theorem 3, which drops the structural
conditions that X be sectionally connected and indifference connected, and have
identical column spaces. In exchange, we will need to impose a stronger axiom
on �.

Let Y ⊆ RM be an open set. A subset Z ⊂ Y will be said to be flat if
Z = Y∩H, whereH is an affine hyperplane in RM . We also call flat a preference
order � on Y all indifference sets of which are flat. This is obviously the case
if � is represented by a linear utility function u(y) =

∑
j∈M cj yj , but the

converse is false, because flatness does not force the indifference hyperplanes to
be parallel. If Y is convex, then � is flat only if its indifference sets are convex.
More specifically, if Y is a convex set of probability vectors, then � is flat if
and only if it satisfies the betweenness property. The latter is a restriction of
von Neumann-Morgenstern independence to indifferent lotteries, and it implies
linear, but not necessarily parallel indifference sets. The derived representation
replaces the expected utility form by a weighted utility form (see Chew, 1983,
and Dekel, 1986). It has sometimes been suggested that betweenness offers a
plausible middle ground between empirical and normative validity.20

Theorem 5 Suppose X ⊆ RN×M is open and connected, and XM is also con-
nected. Suppose that either �

M
is flat, or �i is flat for every i ∈ N . Then � has

Row Preferences and Column Preferences and satisfies Continuity,
Coordinate Monotonicity, and Column Invariance if and only if there
is a strictly positive weight vector q ∈ ∆N , and a strictly positive weight vector
p ∈ ∆M , such that:

(a) �
M

is represented by the linear function WM : XM−→R defined by

WM (x) :=
∑
i∈N

qi xi, for all x ∈ XM .

(b) For all i ∈ N , the order �i is represented by the linear function WN :
X i−→R defined by

WN (x) :=
∑
j∈M

pj xj , for all x ∈ X i.

(Thus, � also satisfies Row Invariance.)

(c) � is represented by the linear function W : X −→R defined by

W (X) :=
∑
i∈N

∑
j∈M

qi pj x
i
j , for all X ∈ X .

(d) Furthermore, q and p are unique in this representation.

20See Epstein (1992) and Sarin and Wakker (1998) for more discussion along this line.
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The flatness restriction, hence Theorem 5, are relevant to the uncertain social
choice problem. Here, x ∈ X i is a personal prospect for i, xj is the utility
this individual receives if state j is realized, and flatness of �i is a variant
form of betweenness, as applied to state-contingent alternatives X instead of
lotteries (and furthermore without X being necessarily convex). The two weight
vectors obtained in the conclusions have a clear meaning: q compares the
individuals and p (a probability vector) compares the states. Thus, Theorem
5 reinforces the message of Theorem 3. As part (b) indicates, the individual
ex ante preferences obey the expected utility form with the same subjective
probability p, and moreover —this is the new implication —these preferences
have something in common. Indeed, they transform utility amounts xj in the
same way —by taking their p-weighted sum. In parts (a) and (c), WM is an
ex post social welfare function, and W is an ex ante social welfare function,
and both are of a classical utilitarian form, while W is also of the expected
utility type.21 Thus, the conclusions together express the reconciliation of ex
ante with ex post Paretianism and the high price that this imposes on the
diversity of individual characteristics; this time, a price is payed also on the
preference side.22

Like Theorem 3, this result can be likened to Harsanyi’s, or rather, to its
state-contingent variations. Suppose that the individuals satisfy the betweenness
property on top of dominance, and that the observer similarly satisfies domi-
nance, and is ex ante and ex post Paretian as far as his social welfare criteria
are concerned. Weak as they are compared with Harsanyi’s, these assumptions
suffice to entail his sum-of-utility formulas. Again, it is interesting to compare
Theorem 5 with the earlier results of Blackorby et al. (2004) and Gajdos et al.
(2008).

We now change directions, and give an interpretation of Theorem 5 in terms
of the Anscombe and Aumann (1963) axiomatization of subjective probabil-
ity. Famously, these authors modify Savage’s axiomatization by allowing some
probabilistic information to enter their primitives. They define prospects as as-
sociating states of nature with consequences taken in a set of lotteries, instead
of Savage’s nondescript set of consequences. Technically, this change was moti-
vated by the need to derive subjective probability for finite sets of states, like
those considered in this paper. Let us interpret M as being the set of states and
N as being the (also finite) set of final outcomes on which the set of lotteries
is constructed. If we take xij to represent the probability of getting outcome i
in state j, then alternatives in X become Anscombe-Aumann prospects, with
xj being the lottery associated with state j, and xi stating the probabilities of

21Unlike those of Theorem 5, the social welfare functions delivered by Theorem 3 were
unweighted. However, this is a purely apparent difference, since the initial utility amounts
xij could be subjected to increasing transformations, and then. a weighted sum of individual
utilities would also result in Theorem 3.

22Bearing in mind that the xij represent utility values, we should refrain from claiming that

individual preferences are alike. The conclusion in (b) is only that if individuals attribute the
same utility vector to a prospect, they will end up with the same utility for this prospect.
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outcome i conditional on the states in M . This sketch must however be refined,
because it would make XM —a lottery set —only (N−1)-dimensional, and thus
violate our full-dimensionality requirement on X .

We will single out an outcome, to be denoted by 0, redefine N to be the set
of all outcomes except the 0 element, and rewrite the set of lotteries as

∆0
N := {x ∈ RN+ ;

n∑
i=1

xi ≤ 1},

where for all x, the probability that outcome 0 occurs is 1−
∑n
i=1 x

i. This is an
N -dimensional set, so the framework applies if we take prospects to be elements
of (∆0

N )M . Supposing as before that feasibility restrictions hold, we take X ⊆
(∆0

N )M to be open and connected in RN×M . Because 0 does not explicitly enter
the definition of X , it can be restricted only through the application of the
axioms to the other outcomes, and this happens only through Coordinate
Monotonicity. This axiom now says that it is better, ceteris paribus, to
shift probability mass away from 0 to any other outcome in N . (If xhk = yhk
for all (h, k) ∈ N ×M \ {(i, j)} as the antecedent requires, then xij > yij only

if x0j < y0j .) Thus, Coordinate Monotonicity means that 0 is the worst
possible outcome. There is a single decision-maker in the present application,
so this can be assumed without loss of generality.

As for the other conditions, Column Preferences is entailed by the dom-
inance (or “monotonicity”) axiom in Anscombe and Aumann (1963), to the
effect that the agent’s preference for prospects increases with respect to each of
her preferences conditional on states. Meanwhile, Column Invariance makes
the agent’s preferences conditional on states effectively state-independent; this
is also entailed by their axiom. Implicitly, they have Identical Column Spaces,
but we can avoid this loss of generality. An addition to their system is made by
Row Preferences, which extends dominance from conditionals on states to
conditionals on outcomes.

Now to the conclusions of Theorem 5. The vectors q and p define a normal-
ized utility function over N and a subjective probability vector on M , respec-
tively, and they together serve to compute expected utility values in WM (x)
(part (a), this is in effect the von Neumann-Morgenstern representation theo-
rem for lotteries) and in W (X) (part (c), this is the important one). With the
uniqueness statement (d), (c) reproduces the conclusions of the Anscombe and
Aumann (1963) subjective probability representation theorem.

The added value lies in the derivation from weak assumptions. Our driving
condition is betweenness, and if we choose to apply it to �

M
, we see that it ex-

actly plays the role of Anscombe and Aumann’s assumption that von Neumann-
Morgenstern independence regulates preferences over lotteries.23 In other words,
only part of von Neumann-Morgenstern theory is needed to derive a subjec-
tive probability from the agent’s preferences under uncertainty (and the full

23If we applied betweenness to the �i preferences, an alternative derivation would result.
Then, the betweenness condition would evoke Savage’s sure-thing principle in weaker form.
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von Neumann-Morgenstern theory will be obtained as a bonus). We also gener-
alize by allowing the set of uncertain prospects not to be a Cartesian product.
Subjective probability theorists have often been taken to task for the large sets of
prospects they rely one, the problem being that states put feasibility constraints
on outcomes and that there may be dependencies, typically complementarities,
holding between different states. Our domain assumption does some justice to
this classic objection. The price for these improvements is that we need the
unconventional Row Preferences condition. However, it is justified after the
fact by conclusion (b), which holds true in Anscombe and Aumann (1963) even
if they do not mention it.

5 Economic integration

We now return to the framework of Section 2, and apply it to our last example,
i.e., the assessment of economic integration across a set of national economies.
In this application, the sectors define both rows and columns, so N = M , and X
is a space of square (n× n) matrices. We suppose that row i records the inputs
to sector i from other sectors, while column j records the outputs of sector j
to the other sectors. If monetary input-output matrices are to be compared in
terms of the degree of economic integration prevailing in the economy, and in
terms of no other property, such as the size of the economy, some normalization
of the data is clearly in order. However, this will make the set X less than full
dimensional in Rn×n, a problem not unlike that encountered in the decision-
theoretic application.

One possibility is to reexpress the xij as fractions of total GDP, which

amounts to setting
∑n
i=1

∑n
j=1 x

i
j = 1 in the original matrices, hence confin-

ing X within an (n2 − 1)-dimensional subspace of Rn×n. Alternatively, for all
i ∈ N , the entry xij could be the fraction of total input into sector i coming from

sector j; this would imply that
∑n
j=1 x

i
j = 1 for all i ∈ N . A third possibility

is to stipulate, for all j ∈ N , that xij is the fraction of the total output from

sector j which goes to sector i; this would imply that
∑n
i=1 x

i
j = 1 for all j ∈ N .

Either way, X would be confined within an (n2 − n)-dimensional subspace of
Rn×n. Any of these three normalizations secures a fixed total sum of xij , which
resolves the problem addressed by different sizes of the economy. However, with
any of these normalizations, the domain X is no longer an open subset of Rn×n,
so one key structural condition of Proposition 2 fails. Furthermore, some of our
axioms become vacuous. Specifically, Coordinate Monotonicity is vacuous
if matrices are normalized by total GDP, and on top of this, Row Prefer-
ences (or Column Preferences) becomes vacuous if the rows (or columns)
are normalized by the total input (or output) of each sector.

These technical difficulties can be superseded by making use of a feature that
any economic integration ranking should arguably possess. Diagonal elements of
the matrix represent a flow within one sector, rather than between sectors, and as
such, they are irrelevant to the comparison. Formally, let L := {(i, j) ∈ N ×N ;
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i 6= j} be the set of off-diagonal elements in the square N × N . Instead of
assuming that X is a subset of RN×N , we will define it to be a subset of RL.
When xij are fractions of either GDP, or total inputs, or total outputs, the
hidden flows of goods from each sector to itself act as slack variables, so X is
open in RL and incurs no loss of dimensionality.

It is easy to adapt the axioms to this modified framework. Coordinate
Monotonicity becomes:

For all (i, j) ∈ L, and all X,Y ∈ X with xhk = yhk for all (h, k) ∈
L \ {(i, j)}, we have X � Y if and only if xij ≥ yij.

For all i ∈ N , let Li := {(i, j); j ∈ N and j 6= i}, and let X i be the projection

of X onto RLi

. For all j ∈ N , let Lj := {(i, j); i ∈ N and i 6= j}, and let Xj
be the projection of X onto RLj . Row and Column Preferences are now
understood to apply with these new definitions of X i and X j .

Arguably, there is still another feature to the ranking problem. For the pur-
pose of assessing economic integration, the off-diagonal entries should not be
treated differently from one another. If they are equal in value, the flow of
commodities from sector i to sector j contributes just as much to the overall
index as the flow of commodities from sector h to sector k. But nothing yet
forces the ranking to satisfy this property.

Let ΠN be the group of all permutations of N . For any π ∈ ΠN , and any
X ∈ RL, we define a new matrix π(X) ∈ RL by permuting both the rows and

the columns of X simultaneously. Formally, π(X) := Y, where yij := x
π(i)
π(j) for

all (i, j) ∈ L. This is a well-defined operation, because (i, j) ∈ L if and only if
(π(i), π(j)) ∈ L.24 A subset X ⊆ RL will be said to be permutation-invariant
if π(X) ∈ X for all X ∈ X and all π ∈ ΠN . Given one such X , the following
axiom prohibits discriminating between sectors.

Impartiality: For all π ∈ ΠN and all X,Y ∈ X , X � Y if and only if
π(X) � π(Y).

Here is the final result of the paper.

Proposition 6 Let X be a connected, sectionally connected, relatively open
subset of RL , and let � be an order on X such that X is �-indifference con-
nected.

24For example, take n = m = 3, let

X =

 • 0.05 0.08
0.12 • 0.17
0.15 0.13 •

 ,
and suppose π(1) = 2, π(2) = 3 and π(3) = 1. Then

σ(X) =

 • 0.17 0.12
0.13 • 0.15
0.05 0.08 •

 .

21



(a) The order � has Row Preferences and Column Preferences, and
satisfies Coordinate Monotonicity and Continuity if and only if
for all (i, j) ∈ L, there exist continuous, increasing functions vij : X ij−→ R
such that � is represented by the function V defined by

V (X) :=
∑

(i,j)∈L

vij(x
i
j) for all X ∈ X .

In this case, for all i ∈ N , the order �i is represented by the function V i

defined by

V i(xi) :=
∑

(i,j)∈Li

vij(x
i
j) for all xi ∈ X i,

and for all j ∈ N , the order �j is represented by the function Vj defined
by

Vj(xj) :=
∑

(i,j)∈Lj

vij(x
i
j) for all xj ∈ Xj.

In these representations, the functions {vij}i,j∈N are unique up to positive
affine transformations with a common multiplier.

(b) If X is permutation-invariant, then there is a single open interval X ∗∗ ⊆ R
such that X ij = X ∗∗ for all (i, j) ∈ L. If the order � is as in part (a), then
it also satisfies Impartiality if and only if there is a single continuous
increasing function v : X ∗∗ −→R such that vij = v for all (i, j) ∈ L. Thus,

the representations in part (a) simplify to
∑

(i,j)∈L′
v(xij) (where L′ is either

Li, or Li, or L, as appropriate).

In words, under the revised monotonicity conditions, the ranking of economic
integration takes the form of an additively separable function, which sums up
quantities evaluating the flows between every pair of distinct sectors in the
economy. Furthermore, if the ranking treats all sectors the same, then these
basic quantities are obtained from a single function. While the existing theory
of input-output analysis approaches economic integration in terms of discrete
concepts, the main of which is the algebraic decomposability of matrices, we
propose a new ranking that is amenable to a numerical index.25

6 Conclusion

The paper has developed a new theory for ranking multiattribute alternatives,
which permits multiple applications. The applications covered here are suffi-
cient to illustrate its power, but other applications will be developed elsewhere.
Even in the field of normative economics broadly conceived, where the the-
ory originates, there seems to be more room for concrete work. We may put

25Compare with Miller and Blair (2009) or Kurz and Salvadori (1995).
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GDP time-series, wealth distributions, or systems of interpersonal utility com-
parison into suitable matrix forms, and each time check whether or not the
axioms introduced here meaningfully apply. Some of these cases will raise the
loss of dimensionality problem that complicated our application to input-output
tables. Not all them will accommodate the special invariant preference and iden-
tical spaces axioms that enhanced our treatment of uncertain prospects. So the
forthcoming applications are likely to range all the way down from the generic
additive separability result in Section 2 to the specific ones in Sections 3, 4 and
5.

Appendix: Proofs

Proof of Lemma 1. Clearly, Row Monotonicity or Column Monotonicity
imply Coordinate Monotonicity. We show the nontrivial converse. Sup-
pose X is convex, and satisfies Coordinate Monotonicity; we will show that
it satisfies Column Monotonicity. Let j ∈M and i ∈ N , and let x,y ∈ Xj .
Suppose xh = yh for all h ∈M \ {i}; we must show that x �j y if and only if
xi ≥ yi.

Case 1. First suppose X is a box. Then we can find X̃, Ỹ ∈ X such that
x̃j = x and ỹj = y, while ỹk = x̃k for all k ∈M \ {j}. Thus, we have:

(x �j y) ⇐⇒
(
X̃ � Ỹ

)
⇐⇒

(
x̃ij ≥ ỹij

)
⇐⇒

(
xi ≥ yi

)
,

as desired, by applying first Column Preferences, then Coordinate Mono-

tonicity, and finally the definition of X̃ and Ỹ.

Case 2. Now let X be any open convex set. Then the coordinate projection
Xj is also open and convex, so the line segment L between x and y is in Xj .
For each z ∈ L, we can find an open box Bz ⊆ Xj that contains z, and an open

box B̃z ⊆ X that projects onto Bz. Apply the argument from Case 1 to B̃z to
show that �j satisfies Column Monotonicity when restricted to Bz. Since
L is compact, it can be covered with a finite collection of boxes like Bz, and �j
satisfies Column Monotonicity on each one. An inductive argument leads
one to conclude that x �j y if and only if xi ≥ yi.

The proof of Row Monotonicity is similar, only using Row Prefer-
ences instead of Column Preferences.�

Proof of Example (a) just above Proposition 2. Without loss of generality,

we can take X = (0, 1)
N×M

. Fix X ∈ X , letting Y := {Y ∈ X ; Y ≈ X}.
GivenY1,Y2 ∈ Y, we must find a path in Y connectingY1 to Y2.

Define 1 ∈ RN×M by setting 1ij := 1 for all i ∈ N and j ∈ M . By Con-
tinuity and Coordinate Monotonicity, there exists r1 ∈ (0, 1) such that
r1 1 ∈ Y. Let Z1 ⊂ X be the open line segment from Y1 to 1. For all Z ∈ Z1,
Coordinate Monotonicity implies that Z � Y1. Again by Continuity
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and Coordinate Monotonicity, there exists rZ ∈ (0, 1] such that rZ Z ∈ Y.
The set L1 := {rZ Z; Z ∈ Z1} is a continuous path in Y from Y1 to r1 1.

Likewise, a continuous path L2 can be found in Y from Y2 to r1 1. A path
in Y from Y1 to Y2 results from joining it to L1. �

The proof of Proposition 2 is based on the Debreu-Gorman theory of addi-
tive representations for separable preference orders, which requires some back-
ground. Let I be an indexing set (e.g. I = N ×M), let Y be an open subset
of RI , and for all i ∈ I, let Yi be the projection of Y onto the i-th coordinate.
A preference order � on Y has a fully additive representation if there exist
functions ui : Yi−→R, for all i ∈ I, such that if we define U : Y−→R by

U(y) :=
∑
i∈I

ui(yi),

then U represents �.
For any y ∈ Y, we say that � admits a fully additive representation near y

if there is an open neighbourhood Y ′ ⊆ Y around y, such that � admits a fully
additive representation when restricted to Y ′. We will use the following result.

Lemma A1 Let Y be an open, connected, sectionally connected subset of RI ,
and let � be a continuous, indifference-connected preference order on Y, which
is strictly increasing in every coordinate. If � admits a fully additive represen-
tation near every y ∈ Y, then � admits a fully additive representation on Y.
Furthermore, this global additive representation is unique up to a positive affine
transformation.

Proof. See Theorem 2.2 of Chateauneuf and Wakker (1993). �

Let J ⊆ I, and let K := I \ J . For any y ∈ Y, define yJ := [yj ]j∈J (an
element of RJ) and yK := [yk]k∈K (an element of RK). We say that � is J-
separable (or that J is a �-separable subset of I) if the following holds. For all
x,y,x′, y′ ∈ Y, if

xK = yK , xJ = x′J ,
x′K = y′K , and yJ = y′J ,

then (x � y) ⇐⇒ (x′ � y′). We say that � is totally separable if every
subset J ⊆ I is �-separable. A well-known result applies these concepts to the
case where Y is an open box.

Lemma A2 If � is a continuous, totally separable preference order on an open
box B ⊆ RI , and � is increasing in every coordinate, then � has a fully additive
utility representation.

Proof. See Theorem 3 in Debreu (1960). �

Let J ⊆ I and K := I \ J . We say that J is strictly �-essential if, for any
y ∈ Y, there exist x,x′ ∈ Y such that xK = x′K = yK , but x � x′. (In
words, it is possible to create a strict preference by only manipulating the J
coordinates, while keeping the K coordinates fixed at any stipulated values.)
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Lemma A3 Let � be a continuous preference order on an open box B ⊆ RI .
Let J,K ⊆ I be two �-separable subsets, such that J ∩K 6= ∅. Suppose that J ,
K, and J ∩K are all strictly �-essential. Then:

(a) J ∪K is �-separable.

(b) J ∩K is �-separable.

Proof. See Theorem 1 by Gorman (1968b) for the original result, Theorem 4.7
of Blackorby et al. (1978) for a restatement, and Theorem 11 and Proposition
16 of von Stengel (1993) for the most general treatment. �

Now, for any i ∈ N , define Mi := {(i, j); j ∈ M}. We can write RN×M =
RM1 ×RM2 ×· · ·×RMn . For any j ∈M , define Nj := {(i, j); i ∈ N}. Similarly,

we can write RN×M = RN1 × RN2 × · · · × RNm .

Lemma A4 As in Lemma A3, let � be a continuous preference order on an
open box B ⊆ RN×M . For all i ∈ N and j ∈ M , suppose the sets Nj and Mi

are �-separable, and the set {(i, j)} is �-strictly essential. Then � is totally
separable.

Proof. Clearly, the union of two strictly � -essential subsets of N×M is strictly
essential. Since every singleton subset of N×M is strictly �-essential, it follows
that every subset of N ×M is strictly �-essential.

To show from the assumptions that � is totally separable, consider the cases
of singleton and doubleton subsets of N×M . Singletons {(i, j)} are intersections
of the �-separable subsets Mi and Nj , hence �-separable by Lemma A3(b). A
slightly more roundabout application of Lemma A3 shows that doubletons are
�-separable. Finally, prove that any subset J ⊆ N × M is �-separable, by
induction on |J |, doubleton separability, and Lemma A3(a). (See also Corollary
to Theorem 3.7 in Keeney and Raiffa, 1976.) �

Remark. To show that doubletons are separable in the proof of Lemma A4, we
need n ≥ 2 and m ≥ 2. This is the key place in the proofs where this assumption
is necessary.

Proof of Proposition 2. (a) Given X ∈ X , there is an open box B of RN×M such
that X ∈ B ⊆ X . We first show that if � is restricted to B, then it is Mi-
separable for all i ∈ N . Let Y,Z, Y,Z ∈ B, and suppose that (a) yh = zh for
all h ∈ N \ {i}, (b) yi = yi, (c) yh = zh for all h ∈ N \ {i}, and (d) zi = zi.
Then

(Y � Z) ⇐⇒
(
yi �i zi

)
⇐⇒

(
yi �i zi

)
⇐⇒

(
Y � Z

)
,

showing that � is Mi-separable. (The first equivalence is by (a) and Row
Preferences, the second by (b) and (d), and the last one by (c) and Row
Preferences.)
By a similar argument based on Column Preferences, if � is restricted to
B, then it is Nj-separable for all j ∈M .
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It remains to show that � has a fully additive representation on B. By Con-
tinuity, � is continuous on B. Coordinate Monotonicity implies that
every coordinate is strictly essential. We have just shown that Mi and Nj are
separable for all i and j; thus Lemma A4 implies that � is totally separable on
B. Finally, Lemma A2 and Coordinate Monotonicity yield an additive

representation of � on B. This proves part (a) with Y =B.

Proof of (b). This follows from part (a), along with Coordinate Mono-
tonicity, Continuity and Lemma A1.26. (Alternately, we could have directly
proved (b) by applying Theorem 1 of Segal (1992).)

Proof of (d). Fix X ∈ X , and consider the section of X in the jth dimension
through X, as defined by:

Sj(X) := {Y ∈ X ; yk = xk, for all k ∈M \ {j}}.

Let Xj(X) := {yj ; Y ∈ Sj(X)} ⊆ Xj . Column Preferences implies that �,
when restricted to Sj(X), is equivalent to �j on Xj( X). Thus, part (b) implies
that the order �j on Xj(X) is represented by the function UX

j defined by

UX
j (y) :=

a constant︷ ︸︸ ︷∑
k∈M\{j}

∑
i∈N

uik(xik) +
∑
i∈N

uij(y
i),

for all y ∈ Xj(X). Thus, the function Uj :=
∑
i∈N u

i
j(y

i) also represents �j on

Xj(X). This holds for all X ∈ X ; thus Uj represents �j on Xj =
⋃

X∈X

Xj(X).

Proof of (c). Similar to the proof of (d), only using Row Preferences
instead of Column Preferences. �

To prove Theorem 3, we must solve a Pexider functional equation on a general
domain. The solution is provided by the following result.

Lemma A5 Let Y ⊆ RJ be an open, connected set. For all j ∈ [1 . . . J ], let

Yj be the projection of Y onto the jth coordinate, and let Y0 := {
∑J
j=1 yj;

y ∈ Y}.27 For all j ∈ [0 . . . J ], let fj : Yj−→R be functions, at least one of
which is continuous, and suppose they satisfy the Pexider equation:

f0

 J∑
j=1

yj

 =

j∑
j=1

fj(yj), for all y ∈ Y.

Then there exist (unique) constants a, b0, b1, b2, . . . , bJ ∈ R such that b0 =∑J
j=1 bj, and such that, for all j ∈ [0 . . . J ], fj(y) = a y + bj for all y ∈ Yj.

26This is the one place in the proof that makes use of sectional connectedness and indifference
connectedness.

27Thus, Y0,Y1, . . . ,YJ are all open intervals in R.
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Proof. See Theorem 1 and Corollary 2 in Radó and Baker (1987) . �

Proof of Theorem 3. The “if” direction is obvious; we will prove the “only if”
direction.

Proof of (a). This follows from adapting the representations in Proposition
2(d) to the fact that X now satisfies Identical Column Spaces and � now
satisfies Column Invariance. (Specifically, for all i ∈ N , and all x ∈ XM ,
define ui(xi) := ui1(xi), and put WM = U1, where U1 is defined by setting j = 1
in Proposition 2(d).)

To prove parts (b)-(d), we we need the following claim.

Claim 1: For any j ∈ M , there exist constants aj > 0 and bij ∈ R such that

uij(x
i) = aj u

i
1(xi) + bij for all x ∈ XM and i ∈ N .

Proof. By Identical Column Spaces, XM is the same as Xj for any j ∈ M , so
it is an open and connected set of Rn by the usual properties of the projection
map. Let j ∈ M , and let U1 and Uj be as in Proposition 2(d). By Column
Invariance, both U1 and Uj , represent �

M
on XM . Thus, there are continuous,

increasing transformations gj : R −→R such that Uj = gj ◦ U1, or

∑
i∈N

uij(x
i) = gj

(∑
i∈N

ui1(xi)

)
, for all x ∈ XM . (A1)

The image set Z := {(u11(x1), . . . , un1 (xn)) ; x ∈ XM} is also open and connected
in RN , because the ui1 are continuous and increasing, hence open.28 If we make
the change of variables zi := ui1(xi) for all i ∈ N , then (A1) becomes the Pexider
equation:

∑
i∈N

uij ◦ (ui1)−1(zi) = gj

(∑
i∈N

zi

)
, for all z ∈ Z.

Lemma A5 applied to Z yields constants aj and b1j , . . . , b
n
j ∈ R such that uij ◦

(ui1)−1(zi) = aj z
i + bij for all z ∈ Z and all i ∈ N , hence such that uij(x

i) =

aj u
i
1(xi) + bij for any x ∈ XM . Finally, aj > 0 because uij and ui1 are both

increasing. ♦ Claim 1

Proof of (c). Let A :=
∑
j∈M aj and pj := aj/A for all j ∈ M , so that

p = (p1, . . . , pm) is a strictly positive weight vector on M . Claim 1 implies
that, for all i ∈ N and j ∈M , and all X ∈ X ,

uij(x
i
j) = Apj u

i(xij) + bij . (A2)

28Any function φ from an open subset of R to R that is continuous and increasing is also
open. We will make repeated use of this property.
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If we let U : X−→R be as in Proposition 2(a,b), and define B :=
∑
i∈N

∑
j∈M bij ,

then for all X ∈ X ,

U(X) =
∑
i∈N

∑
j∈M

uij(x
i
j) = A ·

∑
i∈N

∑
j∈M

pj u
i(xij) +

∑
i∈N

∑
j∈M

bij

= A ·
∑
j∈M

pj

(∑
i∈N

ui(xij)

)
+B = A ·W (X) +B,

where W is defined as in equation (3). Thus, W is an increasing transform of
U , so it represents � on X .

Proof of (b). Let U i be as in Proposition 2(c). Then for all x ∈ X i, we have

U i(x) =
∑
j∈M

uij(xj) = A
∑
j∈M

pj u
i(xj) +

∑
j∈M

bij = AU ip(x)+[a constant],

where the second equality is by (A2). Thus, U ip represents �i.

Proof of (d). For all i ∈ N , let ũi : R−→R be a continuous and increasing
function, and let p̃ ∈ ∆M be a strictly positive weight vector. Suppose that �

M

is represented by the function W̃M : XM−→R defined by

W̃M (x) :=
∑
i∈N

ũi(xi), for all x ∈ XM .

and that � is also represented by the function W̃ : X−→R defined by

W̃ (X) :=
∑
j∈M

∑
i∈N

p̃j ũ
i(xij), for all X ∈ X .

Now,
∑
i∈N ũ

i(xi) = g(
∑
i∈N u

i(xi)) for some increasing and continuous trans-
formation g.29 Thus carrying the same functional equation argument as for
Claim 1, we conclude that there are constants a > 0 and b1, . . . , bn ∈ R such
that

ũi(xi) = a ui(xi) + bi, (A3)

for all i ∈ I and x ∈ XM . Thus, u1, . . . , un are unique up to a common affine
transformation, as was to be proved.

Meanwhile, the uniqueness part of Proposition 2(a) yields constants A > 0
and bij ∈ R, for all i ∈ N and j ∈M , such that

p̃j ũ
i(xij) = Apju

i(xij) + bij , (A4)

29If f and h are continuous real-valued functions on some connected subset B ⊆ R, and g
is an increasing real-valued function such that h = g ◦ f , then g is continuous on f(B). We
will make repeated use of this fact.

28



for all X ∈ X , i ∈ N and j ∈ M . Let x ∈ X 1. The set X 1 is open, and u1 is
continuous and increasing; thus, there exist some ε > 0 and some y ∈ X 1 such
that u1(xj)− u1(yj) = ε for all j ∈M . But then, for all j ∈M ,

aεp̃j = ap̃j u
1(xj)− a p̃j u1(yj) = p̃j ũ

1(xj)− p̃j ũ1(yj) (by Eq.(A3))

= Apj u
1(xj)−Apj u1(yj) = Aεpj , (by Eq.(A4)).

It follows that a εp̃ = Aεp, and thus A = a, since p and p̃ are weight vectors.
Thus, p = p̃, which completes the proof of (d). �

Proof of Corollary 4. Again, we prove the “only if” direction. Theorem 3(c)
says that � is represented by the function W : X−→R defined by equation ( 3).
Now, by the variant of this theorem using Row-independent Preferences
and Identical row spaces, there is a weight vector q = (q1, q2, . . . , qn) ∈ ∆N ,
and, for all j ∈ M , there is an increasing, continuous function vj : X ∗j−→R,

such that �N is represented by the function WN : X−→ R defined by

WN (x) :=
∑
j∈M

vj(xj), for all x ∈ XN , (A5)

while � is represented by the function W̃ : X −→R defined by

W̃ (X) :=
∑
j∈M

∑
i∈N

qi vj(x
i
j), for all X ∈ X . (A6)

Now fix x0 ∈ X ∗∗ . By Theorem 3(d) and its variant, we can subtract relevant
constants from the functions {vj}j∈M and {ui}i∈N , to ensure that

vj(x0) = 0 for all j ∈M , and ui(x0) = 0 for all i ∈ N . (A7)

Since � is represented by both W and W̃ , there is some continuous, increas-
ing function f : R−→ R such that:

f

∑
j∈M

∑
i∈N

pj u
i(xij)

 =
∑
j∈M

∑
i∈N

qi vj(x
i
j), for all X ∈ X . (A8)

For all i ∈ N and j ∈M , define gij(ζ) := qi vj ◦ (ui)−1(ζ/pj) for all ζ ∈ R where

this definition makes sense. Define Ξ := {[pjui(xij)]i∈Nj∈M ; X ∈ X}, an open,

connected subset of RN×M . Then substituting ξij := pju
i(xij) into both sides of

equation (A8) yields

f

∑
j∈M

∑
i∈N

ξij

 =
∑
j∈M

∑
i∈N

gij(ξ
i
j), for all ξ ∈ Ξ.

Now Lemma A5 implies that there exists a constant a > 0 such that f(ζ) =
a ζ = gij(ζ) for all i ∈ N and j ∈ M . (Equation (A7) implies that the added
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constants of Lemma A5 are all 0.) By rescaling {vj}j∈M if necessary, we can
assume that a = 1; hence gij(ζ) = ζ. But gij(ζ) = qi vj ◦ (ui)−1(ζ/pj), so this

implies that pj u
i = qi vj , for all (i, j) ∈ N ×M . Dividing these equations by

qi pj (which are nonzero), we obtain

ui/qi = vj/p
j , for all (i, j) ∈ N ×M.

It follows that there is a single increasing continuous function u : X ∗∗ → R such
that

(a) ui/qi = u for all i ∈ N and (b) vj/pj = u for all j ∈M . (A9)

Substituting equation (A9)(a) into equation (1) yields part (a) of the result.
Substituting (A9)(b) into (A5) yields part (b), while substituting (A9)(b) into
(A6) yields part (c). Part (d) is straightforward. �

The proof of Theorem 5 relies on the following Lemma.

Lemma A6 Let Z ⊆ RM be an open set. For all j ∈ M , let Zj be the
projection of Z onto the jth coordinate, and let uj : Zj−→R be a continuous
increasing function. Define U(z) =

∑m
j=1 uj(zj) for all z ∈ Z, and let � be

the preference order on Z represented by U . Then � is flat if and only if the
functions u1, . . . , um are affine.

Proof. If u1, . . . , um are affine, then clearly � is flat. To prove the converse, fix
z ∈ Z, and let Y(z) := {y ∈ Z; z ≈ y} be its indifference surface. If � is flat,
then there is some hyperplane H ⊂ RM such that Y(z) = H∩Z. The equation
of this hyperplane is

∑m
j=1 aj yj = b, with all the aj being non-zero because uj

is increasing and Z is open in RM .30 Without loss of generality, suppose a1 = 1.
Then for all y ∈ R[2...m],y1 = b−

m∑
j=2

aj yj

 =⇒
(

(y1,y) ∈ H
)

.

Let Y ′ be a connected component of Y(z); then Y ′ is a relatively open subset of
H. If C := U(z), then U(y) = C for all y ∈ Y ′. Define Y ′j to be the projection of

Y ′ onto the jth coordinate, and Y ′[2...m] to be the projection of Y ′ onto R[2...m].

The set Y ′[2...m] is an open and connected in R[2...m] by the usual properties of
the projection map.

For all y ∈ Y ′[2...m], if y1 = b−
∑m
j=2 aj yj , then (y1,y) ∈ Y ′ and U(y1,y) =

C. In other words,

u1

b− m∑
j=2

aj yj

+

m∑
j=2

uj(yj) = C, for all y ∈ Y ′[2...m].

30For example, suppose a1 = 0; then there exists ε > 0 such that y = (z1 +ε, z2, z3, . . . , zM )
is in H∩ Z = Y(z), and thus, U(y) = U(z), which contradicts the fact that u1 is increasing.
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and this can be rewritten as a Pexider equation:

u1

 m∑
j=2

ỹj

 =

m∑
j=2

ũj

(
ỹj − b/m

aj

)
, for all y ∈ Y ′[2...m].

by putting ỹj := b
m − aj yj and ũj := C

m − uj for all j ∈ [2...m]. Lemma A5
implies that, for all j ∈ M , the function ũj is affine on Y ′j . Thus, uj is affine
when restricted to Y ′j .

By repeating this argument for all connected components of Y(z), and for
all z ∈ Z, we can cover Zj with open subsets such that uj is affine on each
subset. But Z is connected, so Zj also is, and by a standard argument based on
path-connectedness, we can conclude that for all j ∈M , uj is an affine function
on Zj . �

Proof of Theorem 5. We prove the “only if” direction.
Claim 1: For any X ∈X , there exists an open neighbourhood BX ⊆ X and
constants cij,X > 0 for all i ∈ N and j ∈ M , such that � is represented on BX
by the function UX : BX−→R defined by UX(B) :=

∑
i∈N

∑
j∈M cij,X · bij for all

B ∈ BX. We can assume max{cij,X; i ∈ N and j ∈M} = 1.
Proof. Proposition 2(a) yields an open rectangular neighbourhood

BX =
∏
i∈N

∏
j∈M
Bij,X ⊂ X ,

as well as continuous, increasing functions uij,X : Bij,X−→R, for all i ∈ N and j ∈
M , such that � is represented on BX by the function UX defined by UX(B) :=∑
i∈N

∑
j∈M uij,X(bij) for all B ∈ BX . We consider the two flatness assumptions

of the theorem in turn.

Case 1. Suppose �i is flat for all i ∈ N . Let BiX :=
∏
j∈M Bij,X; then

BiX ⊆ X i. Proposition 2(c) says that �i is represented on BiX by the function
U iX defined by U iX(b) :=

∑
j∈M uij,X(bj) for all b ∈ BiX. Lemma A6 implies

that for all j ∈ M , uij,X is affine on Bij,X; i.e., that for all j ∈ M , there exist

constants cij,X > 0 and dij,X ∈ R such that uij,X(b) = cij,X b+d
i
j,X for all b ∈ Bij,X.

Without loss of generality, we can set dij,X = 0 in these equations. By the first

assumption of the theorem, they hold for all i ∈ N . Noting that cij,X > 0 by

Coordinate Monotonicity, we can multiply the coefficients {cij,X}i∈Nj∈M by a
positive constant without changing the representations, and thus ensure that

max{cij,X; i ∈ N, j ∈M} = 1.

Case 2. Suppose �
M

is flat. Fix j ∈M , and let BXj :=
∏
i∈N Bij,X; then BXj ⊆

Xj . Proposition 2(d) and Column Invariance imply that �
M

is represented

on BXj by the function UX
j defined by UX

j (b) :=
∑
i∈N u

i
j,X(bi) for all b ∈ BXj .
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Lemma A6 implies that for all j ∈M , uij,X is affine on Bij,X. This holds for all
j ∈M . Now proceed as in Case 1. ♦ Claim 1

Claim 2: There exist constants cij > 0 for all i ∈ N and j ∈ M , such
that � is represented on X by the function U : X−→R defined by U(X) :=∑
i∈N

∑
j∈M cij · xij for all X ∈X .

Proof. Take X,X′ ∈ X and the associated rectangular neighbourhoods BX
and BX′ of Claim 1, supposing that B′ = BX ∩ BX′ 6= ∅. Then Claim 1 implies
that the functions UX and U X′ , defined by UX(B) =

∑
i∈N

∑
j∈M cij,X · bij and

UX′(B) =
∑
i∈N

∑
j∈M cij,X′ · bij for all B ∈ B′, both represent � on B′, so

they are ordinally equivalent on B′. Thus, there is some continuous, increasing
function g : R−→R such that:

g

∑
i∈N

∑
j∈M

cij,X · bij

 =
∑
i∈N

∑
j∈M

cij,X′ · bij , for all B ∈ B′.

Lemma A5 for this Pexider equation yields A > 0 such that cij,X′b
i
j = Acij,Xb

i
j

for all i ∈ N and j ∈M and B ∈ B′. Since B′ is open in RN×M , we may divide
by bij in each of these equations, and conclude that cij,X′ = Acij,X for all i ∈ N
and j ∈ M . However, max{cij,X; i ∈ N and j ∈ M} = 1 = max{cij,X′ ; i ∈ N
and j ∈M}, hence A = 1, and cij,X = cij,X′ for all i ∈ N and j ∈M .

Now, by another argument based on the path-connectedness of X , we cancel
the dependence on X in the cij,Xcoefficients and conclude that � is represented
on all of X by the function U defined as above. ♦ Claim 2

Claim 3: For all j ∈ M , the order �
M

is represented on Xj by the function

Uj defined by Uj(x) :=
∑
i∈N

cij x
i, for all x ∈ Xj .

Proof. The proof is the same as for Proposition 2(d), but with Column In-
variance. ♦ Claim 3

Claim 4: For all j, k ∈M , if Xj ∩Xk 6= ∅, then there exists a constant ajk > 0
such that cij = ajk c

i
k for all i ∈ N .

Proof. Let Xjk be any connected component of Xj ∩ Xk. Claim 3 implies that
the functions Uj and Uk both represent �

M
on Xjk. Thus, they are ordinally

equivalent, yielding another Pexider equation. Just as in the proof of Claim 2,
we can use Lemma A5 to find ajk > 0 such that cij x

i = ajk c
i
k x

i for all x ∈ Xjk
and i ∈ N . Since Xjk is an open subset of RM , this implies that cij = ajk c

i
k for

all i ∈ N . ♦ Claim 4

Claim 5: For all j, k ∈ M , then there exists a constant ajk > 0 such that
cij = ajk c

i
k for all i ∈ N .

Proof. Fix j and k, and observe that there are a subset of indexes Λ =
{λ1, ..., λL} ⊆M with λ1 = j, λL = k, such Xλ`

∩Xλ`+1
6= ∅ for all ` ∈ [1 . . . L].
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(This follows from the fact that XM is a connected set; we skip the easy topo-
logical argument.) Let ajλ2 , aλ2λ3 , . . . , aλL−1k > 0 be the constants obtained in
Claim 4. Then define ajk := ajλ2

· aλ2λ3
· · · aλL−1k. Then iterated application

of Claim 4 yields the result. ♦ Claim 5

Proof of (a). For all i ∈ N , define qi := ci1, and for all j ∈ N , define pj := aj1.
Then for all i ∈ N and j ∈M , Claim 5 implies that

cij = aj1 c
i
1 = pj q

i. (A10)

Thus, fixing j and using the definition of Uj(x) in Claim 3, we have that for all
x ∈ Xj ,

Uj(x) =
∑
i∈N

cij x
i =

∑
i∈N

pj q
i xi = pj

∑
i∈N

qi xi = pjWM (x),

Then Claim 3 implies that WM represents �
M

on Xj . Since this holds for all
j ∈M , WM represents �

M
on XM =

⋃
j∈M Xj .

Proof of (c). Define U as in Claim 2. Then, for all X ∈ X , equation (A10)
yields

U(X) =
∑
i∈N

∑
j∈M

cij · xij =
∑
i∈N

∑
j∈M

qj p
i xij = W (X).

Thus, Claim 2 implies that W represents � on X .

Proofs of (b) and (d). Similar to the proofs of Theorem 3(b,d). �

Proof of Proposition 6. The “if” direction is obvious; we will prove the “only
if” direction. If n = 2, then |L| = 2. Then an ordering � on RL satisfies
Coordinate Monotonicity if and only if it is totally separable; the additive
representation then follows from Debreu (1960).

So, suppose n ≥ 3. Then the proof is very similar to the proof of Proposition
2, except that Lemma A4 is replaced with the following claim.

Claim 1: Let n ≥ 3, and � be a continuous preference order on an open box
B ⊆ RL. For all i ∈ N and j ∈M , suppose the sets Li and Lj are �-separable,
and the set {(i, j)} is �-strictly essential. Then � is totally separable.

The proof of Claim 1 is very similar to the proof of Lemma A4 (suitably
adapted to the n × n square minus the diagonal). The proof of part (a) now
follows the proof of Proposition 2 verbatim, only using Claim 1 in place of
Lemma A4. (To see this, observe that the proof of Proposition 2 makes no
reference to the structure of the set N ×M . Thus, the same argument works
if we replace N ×M with L. The separability of the subsets Li and Lj again
follows from Row Monotonicity and Column Monotonicity. Lemmas A1
and A2 apply to any abstract Cartesian product.)
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Proof of (b). Let π ∈ Π. Since π(X ) = X , we have X π(i)π(j) = X ij for all

i, j ∈ N . Repeating this for all π ∈ Π, we conclude that X ij = X hk for all pairs
(h, i) ∈ L and (j, k) ∈ L which are in the same Π-orbit. But it is easy to see
that Π acts transitively on L. Thus, we obtain X ∗∗ ⊆ R such that X ij = X ∗∗
for all (i, j) ∈ L.

Now, for any π ∈ Π, define Vπ := V ◦ π−1 : X−→R. Thus, for all X ∈ X ,
we have

Vπ( X) =
∑

(i′,j′)∈L

vi
′

j′

(
x
π−1(i′)
π−1(j′)

)
=

∑
(i,j)∈L

v
π(i)
π(j)(x

i
j).

(Here, the last step is by the change of variables i := π−1(i′) and j := π−1(j′),
because π is a bijection of N .) But Impartiality implies that Vπ also rep-
resents the order �. Thus, by uniqueness up to affine transformations, we
obtain some constant a > 0 and constants bij for all i, j ∈ N × N such that

v
π(i)
π(j) = a vij + bij for all (i, j) ∈ N . It follows that v

π2(i)
π2(j) = a2 vij+[a constant],

and v
π3(i)
π3(j) = a3 vij+[a constant], and so on. But πn is the identity map on L.

Thus, we get vij = an vij+[a constant], which means that an = 1, which means
a = 1.

Thus, v
π(i)
π(j) = vij+b

i
j for all (i, j) ∈ N . Repeating this argument for all π ∈ Π,

we conclude that there is a single continuous increasing function v : X ∗∗ −→ R
and constants cij for all (i, j) ∈ L such that vij = v + cij for all (i, j) ∈ L.

Since adding a constant does not change the representation, we can remove
the constants cij , and assume without loss of generality that vij = v for all
(i, j) ∈ L. �
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