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Abstract

This paper develops a dynamic stochastic general equilibrium (DSGE) model with rational

inattention. Households and decision-makers in firms have limited attention, and decide how to

allocate their attention. The paper studies the implications of rational inattention for business

cycle dynamics. The model can match empirical findings that are difficult to match with other

DSGE models. Moreover, due to the endogeneity of the allocation of attention, the outcomes

of policy experiments conducted with this model (e.g., the effects of changing parameters of

the monetary policy rule) differ markedly from the outcomes of the same policy experiments

conducted with other DSGE models.
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1 Introduction

Economists have studied for a long time how decision-makers allocate scarce resources. The recent

literature on rational inattention studies how decision-makers allocate the scarce resource attention.

The idea is that decision-makers have limited attention and decide how to allocate their attention.

This paper develops a dynamic stochastic general equilibrium (DSGE) model with rational inat-

tention. Decision-makers in firms and households have limited attention and decide how to allocate

their attention. Following Sims (2003), we model attention as an information flow and we model

limited attention as a constraint on information flow. As an example, consider a household that

decides how much to consume and which goods to consume. To take the optimal consumption-

saving decision and to buy the optimal consumption basket, the household has to know the real

interest rate and the prices of all consumption goods. The idea of rational inattention applied to

this example is that knowing the real interest rate and the prices of all consumption goods requires

attention, households have limited attention, and households decide how to allocate their attention.

We study the implications of rational inattention for business cycle dynamics.

We are motivated by the question of how to model the inertia found in macroeconomic data.

Standard DSGE models used for policy analysis match this inertia by introducing multiple sources

of slow adjustment: Calvo price setting, habit formation in consumption, Calvo wage setting,

and other sources in richer models.1 We pursue the alternative idea that the inertia found in

macroeconomic data can be understood as the result of rational inattention by decision-makers.

We model an economy with many firms, many households, and a government. Firms produce

differentiated goods with a variety of types of labor. Households supply the differentiated types

of labor, consume the different goods, and hold nominal government bonds. Decision-makers in

firms take price setting and factor mix decisions. Households take consumption and wage setting

decisions. The central bank sets the nominal interest rate according to a Taylor rule. The economy

is affected by aggregate technology shocks, monetary policy shocks, and firm-specific productivity

shocks. The only source of slow adjustment to shocks is rational inattention by decision-makers.

We summarize the model’s predictions in four points. The first prediction of the model is that

prices respond rapidly to market-specific shocks, fairly quickly to aggregate technology shocks,

and slowly to monetary policy shocks. We first solve the model assuming rational inattention by

1See, for example, Woodford (2003), Christiano, Eichenbaum and Evans (2005), and Smets and Wouters (2007).

1



decision-makers in firms and perfect information on the side of households to isolate the implications

of rational inattention by decision-makers in firms. We find that: (i) prices respond very quickly to

market-specific shocks, (ii) the price level responds fairly quickly to aggregate technology shocks,

and (iii) the price level responds slowly to monetary policy shocks. The reason for this combination

of fast and slow adjustment of prices to shocks is that decision-makers in firms decide to pay a

lot of attention to market-specific conditions, quite a bit of attention to aggregate technology, and

little attention to monetary policy. The empirical literature finds in the data the same pattern of

fast and slow responses of prices to shocks.2 This pattern of fast and slow adjustment of prices

to shocks is difficult to match with DSGE models that are commonly used for monetary policy

analysis (e.g., the Calvo model or the sticky information model of Mankiw and Reis (2002)).

In our model and in any other model with a price setting friction, firms experience profit losses

due to deviations of the price from the profit-maximizing price. An important feature of our model

is that these profit losses are small. For comparison, in our benchmark economy profit losses due

to deviations of the price from the profit-maximizing price are 30 times smaller than in the Calvo

model that generates the same real effects of monetary policy shocks. The main reason is that in our

model prices respond slowly to monetary policy shocks but fairly quickly to aggregate technology

shocks and rapidly to market-specific shocks. By contrast, in the Calvo model prices respond slowly

to all shocks. The other reason is that under rational inattention deviations of the price from the

profit-maximizing price are less likely to be extreme than in the Calvo model.

The second prediction of the model is that households with rational inattention respond very

slowly with their consumption-saving decision to movements in the real interest rate. When we

solve the model with rational inattention by decision-makers in firms and rational inattention by

households, we find that households decide to pay little attention to movements in the real interest

rate. This finding is important because in a large class of models monetary policy affects the real

economy through the effect of the real interest rate on consumption. Moreover, the finding that

households decide to pay little attention to movements in the real interest rate turns out to hold for

low and high values of the coefficient of relative risk aversion. The reason is the following. For low

2Christiano, Eichenbaum and Evans (1999), Leeper, Sims and Zha (1996), and Uhlig (2005) find that the price

level responds slowly to monetary policy shocks. Altig, Christiano, Eichenbaum and Linde (2005) find that the price

level responds faster to aggregate technology shocks than to monetary policy shocks. Boivin, Giannoni and Mihov

(2009) and Maćkowiak, Moench and Wiederholt (2009) find that prices respond very quickly to disaggregate shocks.
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values of the coefficient of relative risk aversion, deviations from the consumption Euler equation

are cheap in utility terms. For high values of the coefficient of relative risk aversion, the coefficient

on the real interest rate in the consumption Euler equation is small, implying that households do

not want to respond strongly to changes in the real interest rate anyway. Hence, for low and high

values of the coefficient of relative risk aversion, imperfect tracking of the real interest rate causes

only small utility losses and therefore households decide to pay little attention to movements in the

real interest rate. As a result, consumption responds very slowly to monetary policy shocks.

The third set of predictions of the model concern how firms and households interact in general

equilibrium under rational inattention. When we solve the model under rational inattention by

decision-makers in firms and households, we find that adding rational inattention by households

has the following implications for aggregate dynamics. First, the impulse response of aggregate

consumption to a monetary policy shock becomes hump-shaped. The reason is that households

decide to pay little attention to movements in the real interest rate and therefore respond slowly

with their consumption to monetary policy shocks. Second, the impulse response of the price level

to a monetary policy shock becomes even more dampened and delayed, compared to the case with

rational inattention by decision-makers in firms only. The main reason is that households’ optimal

allocation of attention affects firms’ optimal allocation of attention. The dampened and delayed

response of aggregate consumption to monetary policy shocks makes decision-makers in firms pay

even less attention to monetary policy, implying that the price level responds even more slowly to

monetary policy shocks. Third, for the same reasons, adding rational inattention by households also

implies that the responses of aggregate consumption and the price level to an aggregate technology

shock become more dampened and delayed.

One can compare the DSGE model developed here to the DSGE models commonly used for

monetary policy analysis (i.e., the standard New Keynesian model and the sticky information

model). The model developed here can match empirical findings that those models can match as

well (e.g., the slow response of the price level to monetary policy shocks and the hump-shaped

response of consumption to monetary policy shocks). Moreover, the model can match empirical

findings that are difficult to match with those models (a rapid response of prices to market-specific

shocks and a fairly quick response of the price level to aggregate technology shocks). In addition,

the model matches all these empirical findings with an endogenous allocation of attention, i.e., with
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information flows chosen by agents. In principle, one could also match these empirical findings with

a model with exogenous dispersed information. One could simply assume the information structure

that agents in our model choose in equilibrium (rather than deriving the information structure

from an objective and a set of constraints). A natural question to ask is whether the model yields

different counterfactuals than the standard New Keynesian model, the sticky information model,

and a model with exogenous dispersed information.

The fourth set of predictions concern policy experiments. We find that, due to the endogeneity

of the allocation of attention, the outcomes of policy experiments conducted with this model differ

markedly from the outcomes of the same policy experiments conducted with other DSGE models.

For example, in the model monetary policy is described by a Taylor rule and therefore one can

ask what happens when the central bank raises the nominal interest rate more aggressively in

response to inflation. In the Calvo model, increasing the coefficient on inflation in the Taylor

rule implies that the standard deviation of the output gap due to monetary policy shocks declines

monotonically and the standard deviation of the output gap due to aggregate technology shocks

declines monotonically. By contrast, in the rational inattention model, there is a non-monotonic

relationship between the coefficient on inflation in the Taylor rule and output gap volatility. In our

benchmark economy, the standard deviation of the output gap due to monetary policy shocks is

essentially constant until a Taylor rule coefficient of 1.75 and then rises. The standard deviation of

the output gap due to aggregate technology shocks first rises, peaking at a Taylor rule coefficient of

1.75, and then falls. The reason for the different outcomes in the two models is that in the rational

inattention model there is an additional effect. When the central bank stabilizes the price level

more, decision-makers in firms decide to pay less attention to aggregate conditions.

Other experiments also yield markedly different outcomes than in other DSGE models. For

example, consider increasing the degree of strategic complementarity in price setting. There is

a large literature arguing that increasing the degree of strategic complementarity in price setting

increases real effects of monetary policy shocks. For example, Woodford (2003), Chapter 3, makes

this point for the Calvo model, Mankiw and Reis (2002) make this point for the sticky information

model, and Woodford (2002) makes this point for a model with exogenous dispersed information. A

common way to increase the degree of strategic complementarity in price setting is to make a firm’s

marginal cost curve more upward sloping in own output. See Altig, Christiano, Eichenbaum and
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Linde (2005). When we increase the degree of strategic complementarity in price setting by making

the firms’ marginal cost curve more upward sloping in own output, we find that, for reasonable

parameter values, real effects of monetary policy shocks become smaller, not larger. The reason is

that in the rational inattention model there is an additional effect. When the marginal cost curve

becomes more upward sloping in own output, the cost of a price setting mistake of a given size

increases. Therefore, decision-makers in firms decide to pay more attention to the price setting

decision, implying that prices respond faster to shocks. This effect reduces real effects of monetary

policy shocks.

This paper is related to two strands of literature, the literature on rational inattention and the

literature on business cycle models with imperfect information. There are several differences to

the existing literature on rational inattention (e.g., Sims (2003, 2006), Luo (2008), Máckowiak and

Wiederholt (2009), Woodford (2009), Van Nieuwerburgh and Veldkamp (2009, 2010), and Mondria

(2010)). First, this paper develops a dynamic stochastic general equilibrium model with rational

inattention. One could interpret the model in Máckowiak and Wiederholt (2009) as a DSGE model

because the model is dynamic, there are multiple firms, and the price level is endogenous, but in

that model the demand side of the economy is simply an exogenous process for nominal spending

(i.e., households and the central bank are reduced to an exogenous process for nominal spending).3

By contrast, the model developed here has firms, households, and a central bank; decision-makers in

firms and households decide how to allocate their attention; and the central bank sets the nominal

interest rate according to a Taylor rule. In addition, there are more shocks which allows us to study

the responses of prices to aggregate technology shocks and monetary policy shocks. Second, this

paper studies the consumption-saving decision of a household that faces a variable interest rate.

Sims (2003, 2006), Luo (2008), and Tutino (2009) also study consumption-saving decisions under

rational inattention, and Reis (2006) studies the consumption-saving decision of a household that

has to pay a fixed cost to learn the state of the economy. However, in all those papers the real

interest rate is constant. Thus, the point that households have little incentive to track movements

in the real interest rate (for low and high values of the coefficient of relative risk aversion) is not in

3The only monetary policy experiment that can be conducted in that model is a change in the exogenous process

for nominal spending. It is unclear what one can learn from this policy experiment for the actual decision problems

faced by central banks.
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those papers. Moreover, this point is important because in a large class of models monetary policy

acts through the real interest rate and therefore in these models the attention that households

devote to the real interest rate should be crucial for the speed of response of the economy to

monetary policy changes. Third, Paciello (2010) solves a general equilibrium model with rational

inattention analytically. The main differences to the model here are that in his model there is only

rational inattention on the side of decision-makers in firms and the model is static in the sense that:

(i) all exogenous processes are white noise processes, (ii) the price level instead of inflation appears

in the Taylor rule, and (iii) there is no lagged interest rate in the Taylor rule.

Compared to the existing literature on business cycle models with imperfect information (e.g.,

Lucas (1972), Woodford (2002), Mankiw and Reis (2002, 2007), Angeletos and La’O (2009), and

Lorenzoni (2009)), the main difference is that information flows are the outcome of an optimization

problem (i.e., information flows follow from an objective and a set of constraints). This has two

implications. First, the model provides an explanation for equilibrium information flows. Second,

the model predicts how information flows vary with policy, which has an important impact on the

outcomes of policy experiments. In addition, the model can match empirical findings that other

business cycle models with imperfect information have difficulties matching or have not addressed.

Namely, the model can match the empirical finding that prices respond rapidly to market-specific

shocks as well as the empirical finding that the price level responds faster to aggregate technology

shocks than to monetary policy shocks. The sticky information models in Mankiw and Reis (2002,

2007) have difficulties matching these findings. The other papers cited above developing business

cycle models with an exogenous information structure do not address these findings.

The paper is organized as follows. Section 2 describes all features of the economy apart from

information flows. Section 3 derives the objective that decision-makers in firms maximize when they

decide how to allocate their attention. Section 4 derives the objective that households maximize

when they decide how to allocate their attention. Section 5 describes issues related to aggregation.

Section 6 presents the analytical solution of the model under perfect information. Section 7 states

the attention problem of the decision-maker in a firm, and presents numerical solutions of the

model under rational inattention by decision-makers in firms and perfect information on the side of

households. Section 8 states the attention problem of a household, and presents numerical solutions

of the model under rational inattention by firms and households. Section 9 concludes.
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2 Model

In this section we describe all features of the economy apart from information flows. Thereafter,

we solve the model for alternative assumptions about information flows: (i) perfect information,

(ii) rational inattention by firms, and (iii) rational inattention by firms and households.

2.1 Households

There are J households in the economy. Households supply differentiated types of labor, consume

a variety of goods, and hold nominal government bonds.

Time is discrete and households have an infinite horizon. Each household seeks to maximize

the expected discounted sum of period utility. The discount factor is β ∈ (0, 1). The period utility

function is

U (Cjt, Ljt) =
C1−γjt − 1
1− γ

− ϕ
L1+ψjt

1 + ψ
, (1)

where

Cjt =

Ã
IX

i=1

C
θ−1
θ

ijt

! θ
θ−1

. (2)

Here Cjt is composite consumption by household j in period t, Ljt is labor supply by household j

in period t, and Cijt is consumption of good i by household j in period t. The parameter γ > 0 is

the inverse of the intertemporal elasticity of substitution. The parameters ϕ > 0 and ψ ≥ 0 affect

the disutility of supplying labor. There are I different consumption goods and the parameter θ > 1

is the elasticity of substitution between those consumption goods.4

The flow budget constraint of household j in period t reads

IX
i=1

PitCijt +Bjt = Rt−1Bjt−1 + (1 + τw)WjtLjt +
Dt

J
− Tt

J
, (3)

where Pit is the price of good i in period t, Bjt are holdings of nominal government bonds by

household j between period t and period t+1, Rt is the nominal gross interest rate on those bond

holdings, Wjt is the nominal wage rate for labor supplied by household j in period t, τw is a wage

subsidy paid by the government, (Dt/J) is a pro-rata share of nominal aggregate profits, and (Tt/J)

is a pro-rata share of nominal lump-sum taxes. We assume that all households have the same initial
4The assumption of a constant elasticity of substitution between consumption goods is only for ease of exposition.

One could use a general constant returns-to-scale consumption aggregator.
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bond holdings Bj,−1 > 0. We also assume that bond holdings have to be positive in every period,

Bjt > 0. We have to make some assumption to rule out Ponzi schemes. We choose this particular

assumption because it will allow us to express bond holdings in terms of log-deviations from the

non-stochastic steady state. One can think of households as having an account. The account holds

only nominal government bonds, and the balance on the account has to be positive.

In every period, each household chooses a consumption vector, (C1jt, . . . , CIjt), and a wage rate.

Each household commits to supply any quantity of labor at that wage rate.

Each household takes as given: all prices of consumption goods, the nominal wage index defined

below, the nominal interest rate, and all aggregate quantities.

2.2 Firms

There are I firms in the economy. Firms supply differentiated consumption goods.

Firm i supplies good i. The production function of firm i is

Yit = eateaitLα
it, (4)

where

Lit =

⎛⎝ JX
j=1

L
η−1
η

ijt

⎞⎠
η

η−1

. (5)

Here Yit is output, Lit is composite labor input, Lijt is input of type j labor, and (eateait) is total

factor productivity of firm i in period t. Type j labor is labor supplied by household j. There are J

different types of labor. The parameter η > 1 is the elasticity of substitution between those types

of labor. The parameter α ∈ (0, 1] is the elasticity of output with respect to composite labor input.

Total factor productivity has an aggregate component, eat , and a firm-specific component, eait .

Nominal profits of firm i in period t equal

(1 + τp)PitYit −
JX

j=1

WjtLijt, (6)

where τp is a production subsidy paid by the government.

In every period, each firm sets a price, Pit, and chooses a factor mix,
³
L̂i1t, . . . , L̂i(J−1)t

´
, where

L̂ijt = (Lijt/Lit) denotes firm i’s relative input of type j labor in period t. Each firm commits to
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supply any quantity of the good at that price. Each firm produces the quantity demanded with

the chosen factor mix.

Each firm takes as given: all wage rates, the price index defined below, the nominal interest

rate, all aggregate quantities, and total factor productivity.5

2.3 Government

There is a monetary authority and a fiscal authority. The monetary authority sets the nominal

interest rate according to the rule

Rt

R
=

µ
Rt−1
R

¶ρR
"µ
Πt
Π

¶φπ
µ
Yt
Y

¶φy
#1−ρR

eε
R
t , (7)

where Πt = (Pt/Pt−1) is inflation, Yt is aggregate output defined as

Yt =

XI

i=1
PitYit

Pt
, (8)

and εRt is a monetary policy shock. The price index Pt will be defined later. Here R, Π and Y

denote the values of the nominal interest rate, inflation and aggregate output in the non-stochastic

steady state. The policy parameters are assumed to satisfy ρR ∈ [0, 1), φπ > 1 and φy ≥ 0.

The government budget constraint in period t reads

Tt +Bt = Rt−1Bt−1 + τp

Ã
IX

i=1

PitYit

!
+ τw

⎛⎝ JX
j=1

WjtLjt

⎞⎠ . (9)

The government has to finance maturing nominal government bonds, the production subsidy and

the wage subsidy. The government can collect lump-sum taxes or issue new government bonds.

We assume that the government sets the production subsidy, τp, and the wage subsidy, τw, so

as to correct the distortions arising from firms’ market power in the goods market and households’

market power in the labor market. In particular, we assume that

τp =
θ̃

θ̃ − 1
− 1, (10)

5Dixit and Stiglitz (1977) also assume that there is a finite number of firms and that firms take the price index

as given. Moreover, it seems a good description of the U.S. economy that there is a finite number of firms producing

consumption goods and that firms take the consumer price index (CPI) as given.
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where θ̃ denotes the price elasticity of demand, and

τw =
η̃

η̃ − 1 − 1, (11)

where η̃ denotes the wage elasticity of labor demand.6 We make this assumption to abstract from

the level distortions arising from monopolistic competition.

2.4 Shocks

There are three types of shocks in the economy: aggregate technology shocks, firm-specific produc-

tivity shocks, and monetary policy shocks. We assume that the stochastic processes {at}, {a1t},

{a2t},..., {aIt} and
©
εRt
ª
are independent. Furthermore, we assume that at follows a stationary

Gaussian first-order autoregressive process with mean zero, each ait follows a stationary Gaussian

first-order autoregressive process with mean zero, and εRt follows a Gaussian white noise process.

In the following, we denote the period t innovation to at and ait by εAt and εIit, respectively.

When we aggregate decisions by individual firms, the term 1
I

XI

i=1
εIit appears. This term is a

random variable with mean zero and variance 1IV ar
¡
εIit
¢
. When we aggregate individual decisions,

we neglect this term because the term has mean zero and a variance that can be made arbitrarily

small by increasing the number of firms I.

2.5 Notation

In this subsection we introduce convenient notation. Throughout the paper, Ct denotes aggregate

composite consumption

Ct =
JX

j=1

Cjt, (12)

and Lt denotes aggregate composite labor input

Lt =
IX

i=1

Lit. (13)

6When households have perfect information then θ̃ = θ and τp =
θ

θ−1 − 1. By contrast, when households have

imperfect information then the price elasticity of demand θ̃ may differ from the parameter θ. Therefore, the value

of the production subsidy (10) may vary across information structures. For the same reason, the value of the wage

subsidy (11) may vary across information structures.
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Furthermore, P̂it denotes the relative price of good i

P̂it =
Pit
Pt

, (14)

and Ŵjt denotes the relative wage rate for type j labor

Ŵjt =
Wjt

Wt
. (15)

In addition, W̃jt denotes the real wage rate for type j labor

W̃jt =
Wjt

Pt
, (16)

and W̃t denotes the real wage index

W̃t =
Wt

Pt
. (17)

In each section we will specify the definition of Pt and Wt.

3 Derivation of the firms’ objective

In this section we derive a log-quadratic approximation to the expected discounted sum of profits.

We use this expression for expected profits below when we assume that decision-makers in firms

choose the allocation of their attention so as to maximize expected profits. To derive this expression,

we proceed in four steps: (i) we make a guess concerning the demand function for good i, (ii) we

substitute the demand function and the production function into the expression for profits to obtain

the profit function, (iii) we make an assumption about how decision-makers in firms value profits

in different states of the world, and (iv) we compute a log-quadratic approximation to the expected

discounted sum of profits around the non-stochastic steady state.7

First, we guess that the demand function for good i has the form

Cit = ϑ

µ
Pit
Pt

¶−θ̃
Ct, (18)

7The non-stochastic steady state of the economy presented in Section 2 is characterized in Appendix A. The

inflation rate in the non-stochastic steady state is not uniquely determined. For ease of exposition, we select the zero

inflation steady state (i.e. Π = 1). In the non-stochastic and the stochastic version of the economy, the value of Π

has no effect on real variables.
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where Ct is aggregate composite consumption and Pt is a price index that satisfies the next equation

for some function d that is homogenous of degree one, symmetric and continuously differentiable

Pt = d (P1t, . . . , PIt) . (19)

The price elasticity of demand θ̃ > 1 is an undetermined coefficient and the constant ϑ equals

ϑ = P̂
−(θ−θ̃)
i , (20)

where P̂i is the relative price of good i in the non-stochastic steady state. In Sections 6-8 when

we solve the model for alternative assumptions about information flows, we always verify that this

guess concerning the demand function is correct.8

Second, we substitute the demand function (18), the production function (4)-(5) and Yit = Cit

into the expression for profits (6) to obtain the profit function. This yields

(1 + τp)Pitϑ

µ
Pit
Pt

¶−θ̃
Ct −

⎡⎢⎢⎣ϑ
³
Pit
Pt

´−θ̃
Ct

eateait

⎤⎥⎥⎦
1
α ⎡⎢⎣J−1X

j=1

WjtL̂ijt +WJt

⎛⎝1− J−1X
j=1

L̂
η−1
η

ijt

⎞⎠
η

η−1
⎤⎥⎦ . (21)

Profit of firm i in period t equals revenue minus cost. Cost equals the wage bill. The wage bill

equals the product of the composite labor input and the wage bill per unit of composite labor input.

The wage bill per unit of composite labor input depends on the wages of all types of labor and the

labor mix. Profit of firm i in period t depends on the price set by the decision-maker in the firm,

Pit, the labor mix chosen by the decision-maker in the firm,
³
L̂i1t, . . . , L̂i(J−1)t

´
, and variables that

the decision-maker in the firm takes as given.

Third, we make an assumption about how decision-makers in firms value profits in different

states of the world. Since the economy described in Section 2 is an incomplete-markets economy

with multiple owners of a firm, it is unclear how firms value profits in different states of the world.

Therefore, we assume a general stochastic discount factor. We assume that decision-makers in firms

in period −1 values nominal profit in period t using the following stochastic discount factor

Q−1,t = βtΛ (C1t, . . . , CJt)
1

Pt
, (22)

8For example, when households have perfect information then Pt =
I

i=1
P 1−θ
it

1
1−θ

and θ̃ = θ.
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where Pt is the price index that appears in the demand function (18) and Λ is some twice continu-

ously differentiable function with the property that the value of this function at the non-stochastic

steady state equals the marginal utility of consumption in the non-stochastic steady state9

Λ (C1, . . . , CJ) = C−γj . (23)

Then, in period −1, the expected discounted sum of profits equals

Ei,−1

" ∞X
t=0

βtF
³
P̂it, L̂i1t, . . . , L̂i(J−1)t, at, ait, C1t, . . . , CJt, W̃1t, . . . , W̃Jt

´#
, (24)

where Ei,−1 is the expectation operator conditioned on the information of the decision-maker in

firm i in period −1 and the function F , which we call the real profit function, is given by

F
³
P̂it, L̂i1t, . . . , L̂i(J−1)t, at, ait, C1t, . . . , CJt, W̃1t, . . . , W̃Jt

´
= Λ (C1t, . . . , CJt) (1 + τp)ϑP̂

1−θ̃
it

⎛⎝ JX
j=1

Cjt

⎞⎠

−Λ (C1t, . . . , CJt)

⎡⎢⎢⎢⎢⎢⎢⎣
ϑP̂−θ̃it

⎛⎝ JX
j=1

Cjt

⎞⎠
eateait

⎤⎥⎥⎥⎥⎥⎥⎦

1
α ⎡⎢⎣J−1X

j=1

W̃jtL̂ijt + W̃Jt

⎛⎝1− J−1X
j=1

L̂
η−1
η

ijt

⎞⎠
η

η−1
⎤⎥⎦ . (25)

Fourth, we compute a log-quadratic approximation to the real profit function around the non-

stochastic steady state. In the following, variables without time subscript denote values in the non-

stochastic steady state and small variables denote log-deviations from the non-stochastic steady

state. For example, cjt = ln (Cjt/Cj). Expressing the real profit function F in terms of log-

deviations from the non-stochastic steady state and using equations (10) and (20) as well as the

steady state relationships (114), (115), (117), Yi = Lα
i and Yi = P̂−θi C yields the following real

9For example, the stochastic discount factor could be a weighted average of the marginal utilities of the different

households (i.e. Λ (C1t, . . . , CJt) =
J

j=1
ΛjC

−γ
jt with Λj ≥ 0 and

J

j=1
Λj = 1). Equation (23) would be satisfied

because all households have the same marginal utility in the non-stochastic steady state. See Appendix A.
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profit function

f
³
p̂it, l̂i1t, . . . , l̂i(J−1)t, at, ait, c1t, . . . , cJt, w̃1t, . . . , w̃Jt

´
= Λ (C1e

c1t , . . . , CJe
cJt)

θ̃

θ̃ − 1
1

α
W̃Li

1

J

JX
j=1

e(1−θ̃)p̂it+cjt

−Λ (C1ec1t , . . . , CJe
cJt) W̃Lie

− θ̃
α
p̂it− 1

α
(at+ait)

⎛⎝ 1
J

JX
j=1

ecjt

⎞⎠ 1
α

1

J

⎡⎢⎣J−1X
j=1

ew̃jt+l̂ijt + ew̃Jt

⎛⎝J −
J−1X
j=1

e
η−1
η

l̂ijt

⎞⎠
η

η−1
⎤⎥⎦ . (26)

A second-order Taylor approximation to the real profit function f yields the following proposition.

This proposition gives the profit-maximizing decisions and the loss in profit in the case of suboptimal

decisions after the log-quadratic approximation to the real profit function.

Proposition 1 (Expected discounted sum of profits) Let f denote the real profit function given by

equation (26). Let f̃ denote the second-order Taylor approximation to f at the non-stochastic steady

state. Let Ei,−1 denote the expectation operator conditioned on the information of the decision-

maker in firm i in period −1. Let xt, zt and vt denote the following vectors

x0t =
³
p̂it l̂i1t · · · l̂i(J−1)t

´
, (27)

z0t =
³
at ait c1t · · · cJt w̃1t · · · w̃Jt

´
, (28)

v0t =
³
x0t z0t 1

´
, (29)

and let vm,t and vn,t denote the mth and nth element of vt. Suppose that there exist two constants

δ < (1/β) and A ∈ R such that, for all m and n and for each period t ≥ 0,

Ei,−1 |vm,tvn,t| < δtA. (30)

Then the expected discounted sum of profit losses in the case of suboptimal decisions equals

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#
−Ei,−1

" ∞X
t=0

βtf̃ (x∗t , zt)

#
=

∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
, (31)
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where the matrix H is given by

H = −C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̃
α

³
1 + 1−α

α θ̃
´

0 · · · · · · 0

0 2
ηJ

1
ηJ · · · 1

ηJ
... 1

ηJ

. . . . . .
...

...
...

. . . . . . 1
ηJ

0 1
ηJ . . . 1

ηJ
2
ηJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

and the vector x∗t is given by

p̂∗it =
1−α
α

1 + 1−α
α θ̃

⎛⎝ 1
J

JX
j=1

cjt

⎞⎠+ 1

1 + 1−α
α θ̃

⎛⎝ 1
J

JX
j=1

w̃jt

⎞⎠− 1
α

1 + 1−α
α θ̃

(at + ait) , (33)

and

l̂∗ijt = −η

⎛⎝w̃jt −
1

J

JX
j=1

w̃jt

⎞⎠ . (34)

Proof. See Appendix B in Máckowiak and Wiederholt (2010).

After the log-quadratic approximation to the real profit function, the profit-maximizing price in

period t is given by equation (33), the profit-maximizing labor mix in period t is given by equation

(34), and the loss in profit in period t in the case of a suboptimal decision vector is given by the

quadratic form in expression (31). The upper-left element of the matrix H determines the loss in

profit in the case of a suboptimal price. The lower-right block of the matrix H determines the

loss in profit in the case of a suboptimal factor mix. The loss in profit in the case of a suboptimal

price is increasing in the price elasticity of demand, θ̃, and increasing in the degree of decreasing

returns-to-scale, (1/α), while the loss in profit in the case of a suboptimal factor mix is decreasing

in the elasticity of substitution between types of labor, η, and depends on the number of types of

labor, J . Note that the diagonal elements of H determine the profit loss in the case of a deviation in

a single variable, whereas the off-diagonal elements of H determine how a deviation in one variable

affects the loss in profit due to a deviation in another variable. Finally, condition (30) ensures that,

in the expression for the expected discounted sum of profits, after the log-quadratic approximation

to the real profit function, one can change the order of integration and summation and the infinite

sum converges.

Note that the profit-maximizing decision vector (33)-(34) does not depend at all on the function

Λ appearing in the stochastic discount factor (22) because the profit-maximizing price and factor
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mix are the solution to a static maximization problem. Furthermore, the expected discounted sum

of profit losses (31) depends only on the value of the function Λ at the non-stochastic steady state

because of the log-quadratic approximation to the real profit function around the non-stochastic

steady state.

Proposition 1 gives an expression for the expected discounted sum of profit losses in the case

of suboptimal decisions for the economy presented in Section 2 when the demand function is given

by equation (18) and the stochastic discount factor is given by equation (22). From this expression

one can already see to some extent how the decision-maker in a firm who cannot attend perfectly

to all available information will allocate his or her attention. For example, the attention devoted

to the price setting decision will depend on the loss in profit in the case of a deviation of the

price from the profit-maximizing price (i.e., the attention devoted to the price setting decision will

depend on the upper-left element of the matrix H). Moreover, for the decision-maker in a firm it is

particularly important to track those changes in the environment that in expectation cause most of

the fluctuations in the profit-maximizing decisions. As one can see from equations (33)-(34), which

changes in the environment in expectation cause most of the fluctuations in the profit-maximizing

decisions depends on the behavior of other agents in the economy, the calibration of the exogenous

processes, and the technology parameters α and η. Namely, the price setting behavior of other firms

and the consumption and wage setting behavior of households will affect the optimal allocation of

attention by the decision-maker in a firm.

4 Derivation of the households’ objective

In this section we derive a log-quadratic approximation to the expected discounted sum of period

utility. We use this expression for expected utility below when we assume that households choose the

allocation of attention so as to maximize expected utility. To derive this expression, we proceed in

three steps: (i) we make a guess concerning the demand function for type j labor, (ii) we substitute

the labor demand function, the consumption aggregator and the flow budget constraint into the

period utility function to obtain a period utility function that incorporates those constraints, and

(iii) we compute a log-quadratic approximation to the expected discounted sum of period utility

around the non-stochastic steady state.
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First, we guess that the demand function for type j labor has the form

Ljt = ζ

µ
Wjt

Wt

¶−η̃
Lt, (35)

where Lt is aggregate composite labor input andWt is a wage index that satisfies the next equation

for some function h that is homogenous of degree one, symmetric and continuously differentiable

Wt = h (W1t, . . . ,WJt) . (36)

The wage elasticity of labor demand η̃ > 1 is an undetermined coefficient and the constant ζ equals

ζ = Ŵ
−(η−η̃)
j . (37)

In Sections 6-8 when we solve the model for alternative assumptions about information flows, we

always verify that this guess concerning the labor demand function is correct.10

Second, we substitute the consumption aggregator (2), the flow budget constraint (3) and the

labor demand function (35) into the period utility function (1) to obtain a period utility function

that incorporates those constraints. Rearranging the flow budget constraint (3) yields

Cjt =
Rt−1Bjt−1 −Bjt + (1 + τw)WjtLjt +

Dt
J −

Tt
JXI

i=1
PitĈijt

,

where Ĉijt = (Cijt/Cjt) is relative consumption of good i and the denominator on the right-hand

side is consumption expenditure per unit of composite consumption. Dividing the numerator and

the denominator on the right-hand side of the last equation by some price index Pt yields

Cjt =

Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw) W̃jtLjt +
D̃t
J −

T̃t
JXI

i=1
P̂itĈijt

, (38)

where B̃jt = (Bjt/Pt) are real bond holdings by the household, D̃t = (Dt/Pt) are real aggregate

profits, T̃t = (Tt/Pt) are real lump-sum taxes, and Πt = (Pt/Pt−1) is inflation. Furthermore,

rearranging the consumption aggregator (2) yields

1 =
IX

i=1

Ĉ
θ−1
θ

ijt . (39)

10For example, when firms have perfect information then Wt =
J

j=1
W 1−η

jt

1
1−η

and η̃ = η.
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Substituting the labor demand function (35), the flow budget constraint (38) and the consumption

aggregator (39) into the period utility function (1) yields a period utility function that incorporates

those constraints:

1

1− γ

⎛⎜⎜⎜⎜⎜⎜⎝
Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw) W̃jtζ
³
W̃jt

W̃t

´−η̃
Lt +

D̃t
J −

T̃t
J

I−1X
i=1

P̂itĈijt + P̂It

Ã
1−

I−1X
i=1

Ĉ
θ−1
θ

ijt

! θ
θ−1

⎞⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ
− ϕ

1 + ψ

⎡⎣ζÃW̃jt

W̃t

!−η̃
Lt

⎤⎦1+ψ . (40)

Third, we compute a log-quadratic approximation to the expected discounted sum of period

utility around the non-stochastic steady state. Expressing the period utility function (40) in terms

of log-deviations from the non-stochastic steady state and using equations (11) and (37) as well as

the steady state relationships (111)-(113), (116) and Lj = Ŵ−η
j L yields the following period utility

function

C1−γj

1− γ

⎛⎜⎜⎜⎜⎜⎜⎝
ωB
β ert−1−πt+b̃jt−1 − ωBe

b̃jt + η̃
η̃−1ωW e(1−η̃)w̃jt+η̃w̃t+lt + ωDe

d̃t − ωT e
t̃t

1
I

I−1X
i=1

ep̂it+ĉijt + 1
I e

p̂It

Ã
I −

I−1X
i=1

e
θ−1
θ

ĉijt

! θ
θ−1

⎞⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ
−

C1−γj

1 + ψ
ωW e−η̃(1+ψ)(w̃jt−w̃t)+(1+ψ)lt , (41)

where ωB, ωW , ωD and ωT denote the following steady state ratios³
ωB ωW ωD ωT

´
=
³

B̃j

Cj

W̃jLj
Cj

D̃
J
Cj

T̃
J
Cj

´
. (42)

The next proposition gives the utility-maximizing decisions and the loss in utility in the case of

suboptimal decisions after a log-quadratic approximation to the expected discounted sum of period

utility around the non-stochastic steady state.

Proposition 2 (Expected discounted sum of period utility) Let g denote the functional that is

obtained by multiplying the period utility function (41) by βt and summing over all t from zero to

infinity. Let g̃ denote the second-order Taylor approximation to g at the non-stochastic steady state.
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Let Ej,−1 denote the expectation operator conditioned on information of household j in period −1.

Let xt, zt and vt denote the following vectors

x0t =
³
b̃jt w̃jt ĉ1jt · · · ĉI−1jt

´
, (43)

z0t =
³
rt−1 πt w̃t lt d̃t t̃t p̂1t · · · p̂It

´
, (44)

v0t =
³
x0t z0t 1

´
, (45)

and let vm,t and vn,t denote the mth and nth element of vt. Suppose that

Ej,−1
h
b̃2j,−1

i
<∞, (46)

and for all n,

Ej,−1
¯̄̄
b̃j,−1vn,0

¯̄̄
<∞. (47)

Suppose in addition that there exist two constants δ < (1/β) and A ∈ R such that, for all m and

n, for each period t ≥ 0, and for τ = 0, 1,

Ej,−1 |vm,tvn,t+τ | < δtA. (48)

Then the expected discounted sum of utility losses in the case of suboptimal decisions equals

Ej,−1
h
g̃
³
b̃j,−1, x0, z0, x1, z1, . . .

´i
−Ej,−1

h
g̃
³
b̃j,−1, x

∗
0, z0, x

∗
1, z1, . . .

´i
=

∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0H0 (xt − x∗t ) + (xt − x∗t )
0H1

¡
xt+1 − x∗t+1

¢¸
. (49)

Here the matrix H0 equals

H0 = −C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B

³
1 + 1

β

´
γωB η̃ωW 0 · · · 0

γωB η̃ωW η̃ωW (γη̃ωW + 1 + ψη̃) 0 · · · 0

0 0 2
θI · · · 1

θI
...

...
...

. . .
...

0 0 1
θI · · · 2

θI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (50)

the matrix H1 equals

H1 = C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B γωB η̃ωW 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (51)
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and the stochastic process {x∗t }∞t=0 is defined by the following three requirements: (i) b̃∗j,−1 = b̃j,−1,

(ii) in each period t ≥ 0, the vector x∗t satisfies

c∗jt = Et

"
−1
γ

Ã
rt − πt+1 −

1

I

IX
i=1

(p̂it+1 − p̂it)

!
+ c∗jt+1

#
, (52)

w̃∗jt =
γ

1 + η̃ψ
c∗jt +

ψ

1 + η̃ψ
(η̃w̃t + lt) +

1

1 + η̃ψ

Ã
1

I

IX
i=1

p̂it

!
, (53)

ĉ∗ijt = −θ
Ã
p̂it −

1

I

IX
i=1

p̂it

!
, (54)

where the variable c∗jt is defined by

c∗jt =
ωB
β

³
rt−1 − πt + b̃∗jt−1

´
−ωB b̃∗jt+

η̃

η̃ − 1ωW
£
(1− η̃) w̃∗jt + η̃w̃t + lt

¤
+ωDd̃t−ωT t̃t−

Ã
1

I

IX
i=1

p̂it

!
,

(55)

and Et denotes the expectation operator conditioned on the entire history of the economy up to and

including period t, and (iii) the vector vt with xt = x∗t satisfies conditions (46)-(48).

Proof. See Appendix C in Máckowiak and Wiederholt (2010).

After the log-quadratic approximation to the expected discounted sum of period utility, sto-

chastic processes for real bond holdings, the real wage rate, and the consumption mix satisfying

conditions (46)-(48) can be ranked using equation (49). Equations (52)-(55) characterize the deci-

sions that the household would take if the household had perfect information in each period t ≥ 0.

After the log-quadratic approximation to the expected discounted sum of period utility, the optimal

decisions under perfect information are given by the usual log-linear first-order conditions. Fur-

thermore, equation (49) gives the loss in expected utility in the case of deviations from the optimal

decisions under perfect information. The upper-left blocks of the matrices H0 and H1 determine

the loss in expected utility in the case of suboptimal real bond holdings and suboptimal real wage

rates. According to the (1,1) element of the matrix H0, a single deviation of real bond holdings

from optimal real bond holdings causes a larger utility loss the larger γ, ωB, and (1/β) = (R/Π).

According to the (2,2) element of the matrix H0, a single deviation of the real wage rate from the

optimal real wage rate causes a larger utility loss the larger γ, ψ, η̃, and ωW . In addition, the

off-diagonal elements of H0 show that a wage deviation in period t affects the utility cost of a bond

deviation in period t. Moreover, the first row of H1 shows that a bond deviation in period t affects
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both the utility cost of a bond deviation in period t + 1 and the utility cost of a wage deviation

in period t + 1. The lower-right block of the matrix H0 determines the loss in expected utility in

the case of a suboptimal consumption mix. The loss in expected utility in the case of a suboptimal

consumption mix is decreasing in the elasticity of substitution between consumption goods, θ, and

depends on the number of consumption goods, I. Finally, conditions (46)-(48) ensure that, in the

expression for the expected discounted sum of period utility, after the log-quadratic approximation,

one can change the order of integration and summation and all infinite sums converge.

Proposition 2 gives an expression for the expected discounted sum of utility losses in the case

of suboptimal decisions for the economy presented in Section 2 when the labor demand function is

given by equation (35). This expression is important because inattention leads to deviations from

the optimal decisions under perfect information. To choose the optimal allocation of attention, the

household has to compare the cost in terms of expected utility of different types of deviations from

the optimal decisions under perfect information. From Proposition 2 one can already see to some

extent how parameters affect the optimal allocation of attention by a household. For example,

consider the role of γ. Increasing γ raises the utility loss in the case of a given deviation of real

bond holdings from optimal real bond holdings. At the same time, increasing γ lowers the response

of optimal real bond holdings to the real interest rate. The relative strength of these two effects

determines whether for a household with a higher γ it is more or less important to be aware of

movements in the real interest rate.

5 Aggregation

In this section we describe issues related to aggregation. In the following, we work with log-

linearized equations for all aggregate variables. Log-linearizing the equations for aggregate output

(8), for aggregate composite consumption (12) and for aggregate composite labor input (13) yields

yt =
1

I

IX
i=1

(p̂it + yit) , (56)

ct =
1

J

JX
j=1

cjt, (57)
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and

lt =
1

I

IX
i=1

lit. (58)

Log-linearizing the equations for the price index (19) and for the wage index (36) yields

0 =
IX

i=1

p̂it, (59)

and

0 =
JX
j=1

ŵjt. (60)

The last two equations can also be stated as

pt =
1

I

IX
i=1

pit, (61)

and

wt =
1

J

JX
j=1

wjt. (62)

Furthermore, we work with log-linearized equations when we aggregate the demands for a

particular consumption good or for a particular type of labor. Formally,

cit =
1

J

JX
j=1

cijt, (63)

and

ljt =
1

I

IX
i=1

lijt. (64)

Note that the production function (4) and the monetary policy rule (7) are already log-linear

yit = at + ait + αlit, (65)

and

rt = ρRrt−1 + (1− ρR)
¡
φππt + φyyt

¢
+ εRt . (66)

6 Perfect information

Next we present the solution of the model under perfect information. This solution will serve as

a benchmark. We define the solution of the model under perfect information as follows. In each
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period t, all agents know the entire history of the economy up to and including period t; firms choose

the profit-maximizing price and labor mix; households choose the utility-maximizing consumption

vector and wage rate; the government sets the nominal interest rate according to the Taylor rule,

pays subsidies so as to correct the distortions due to market power and chooses a fiscal policy

that satisfies the government budget constraint; aggregate variables are given by their respective

equations; and households have rational expectations.

The following proposition characterizes real variables at the solution of the model under perfect

information after the log-quadratic approximation to the real profit function (see Section 3), the

log-quadratic approximation to the expected discounted sum of period utility (see Section 4), and

the log-linearization of the equations for the aggregate variables (see Section 5).

Proposition 3 (Solution of the model under perfect information) A solution to the system of

equations (33)-(34), (52)-(55), (56)-(66) and yit = cit with the same initial bond holdings and

a non-explosive bond sequence for each household (i.e., lims→∞Et

h
βs+1

³
b̃j,t+s+1 − b̃j,t+s

´i
= 0)

satisfies

yt = ct =
1 + ψ

1− α+ αγ + ψ
at, (67)

lt =
1− γ

1− α+ αγ + ψ
at, (68)

w̃t =
γ + ψ

1− α+ αγ + ψ
at, (69)

rt −Et [πt+1] = γ
1 + ψ

1− α+ αγ + ψ
Et [at+1 − at] , (70)

and

ĉijt = −θp̂it, (71)

p̂it = −
1
α

1 + 1−α
α θ

ait, (72)

l̂ijt = −ηŵjt, (73)

ŵjt = 0. (74)

Proof. See Appendix D in Máckowiak and Wiederholt (2010).

Under perfect information aggregate output, aggregate composite consumption, aggregate com-

posite labor input, the real wage index, and the real interest rate are determined by aggregate
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technology. Relative consumption of good i by household j is determined by firm-specific produc-

tivity, and firm i’s relative input of type j labor is constant. Importantly, under perfect information,

monetary policy has no effect on real variables in this model. Monetary policy does affect nominal

variables. The nominal interest rate and inflation follow from the Taylor rule (66) and the real

interest rate (70). Since (1− ρR)φπ > 0 and (1− ρR)φπ + ρR > 1, the equilibrium paths of the

nominal interest rate and inflation are locally determinate.11

7 Rational inattention by firms

In this section we solve the model assuming rational inattention by decision-makers in firms. For

the moment, we maintain the assumption that households have perfect information to isolate the

implications of rational inattention by decision-makers in firms.

7.1 The firms’ attention problem

Following Sims (2003), we model attention as a flow of information and we model limited attention

as a constraint on the flow of information. We let decision-makers choose information flows, subject

to the constraint on information flow.

To take decisions that are close to the profit-maximizing decisions, decision-makers in firms have

to be aware of changes in the environment that cause changes in the profit-maximizing decisions.

Being aware of stochastic changes in the environment requires information flow. A decision-maker

with limited attention faces a trade-off: Tracking closely particular changes in the environment

improves decision making but uses up valuable information flow. We formalize this trade-off by

letting the decision-maker choose directly the stochastic process for the decision vector, subject to

a constraint on information flow. For example, the decision-maker in a firm can decide to respond

swiftly and correctly with the price of the good to changes in firm-specific productivity but this

requires allocating attention to firm-specific productivity. We assume that the decision-maker in

a firm chooses the level and the allocation of information flow so as to maximize the expected

discounted sum of profits net of the cost of information flow.

11See Woodford (2003), Chapter 2, Proposition 2.8.
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Formally, the attention problem of the decision-maker in firm i reads:

max
κ,B1(L),B2(L),B3(L),C1(L),C2(L),C3(L),η̃,χ

( ∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
− μ

1− β
κ

)
, (75)

where

xt − x∗t =

⎛⎜⎜⎜⎜⎜⎜⎝
pit

l̂i1t
...

l̂i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠−
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p∗it

l̂∗i1t
...

l̂∗i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠ , (76)

subject to the equations characterizing the profit-maximizing decisions

p∗it = A1 (L) ε
A
t| {z }

pA∗it

+A2 (L) ε
R
t| {z }

pR∗it

+A3 (L) ε
I
it| {z }

pI∗it

(77)

l̂∗ijt = −ηŵjt, (78)

the equations characterizing the actual decisions

pit = B1 (L) ε
A
t + C1 (L) ν

A
it| {z }

pAit

+B2 (L) ε
R
t +C2 (L) ν

R
it| {z }

pRit

+B3 (L) ε
I
it + C3 (L) ν

I
it| {z }

pIit

(79)

l̂ijt = −η̃
µ
ŵjt +

V ar (ŵjt)

χ
νLijt

¶
, (80)

and the constraint on information flow

I
³n

pA∗it , p
R∗
it , p

I∗
it , l̂

∗
i1t, . . . , l̂

∗
i(J−1)t

o
;
n
pAit, p

R
it , p

I
it, l̂i1t, . . . , l̂i(J−1)t

o´
≤ κ. (81)

Here A1 (L) to A3 (L), B1 (L) to B3 (L), and C1 (L) to C3 (L) are infinite-order lag polynomials.

The noise terms νAit, ν
R
it , ν

I
it, and νLijt in the actual decisions are assumed to follow Gaussian white

noise processes with unit variance that are: (i) independent of all other stochastic processes in

the economy, (ii) firm-specific, and (iii) independent of each other. The operator I measures the

amount of information that the actual decisions contain about the profit-maximizing decisions.

The operator I is defined below. Finally, Ei,−1 in objective (75) denotes the expectation operator

conditioned on the information of the decision-maker in firm i in period −1. We assume that Ei,−1

is the unconditional expectation operator.

The objective (75) states that the decision-maker in firm i chooses the level and the allocation

of information flow so as to maximize the expected discounted sum of profits net of the cost of

25



information flow. After the log-quadratic approximation to the real profit function, the expected

discounted sum of profit losses in the case of suboptimal decisions is given by equation (31). See

Proposition 1.12 The variable κ ≥ 0 is the information flow (attention) devoted to the price setting

decision and the factor mix decision. The parameter μ ≥ 0 is the per-period marginal cost of

information flow. We interpret this cost as an opportunity cost (i.e., devoting more of the scarce

resource attention to the price setting decision or the factor mix decision requires paying less of the

scarce resource attention to some other decision of the firm that we do not model).

Equations (77)-(78) characterize the profit-maximizing decisions. After the log-quadratic ap-

proximation to the real profit function, the profit-maximizing price is given by equation (33) and

the profit-maximizing factor mix is given by equation (34). We guess that the profit-maximizing

price (33) has the representation (77) after using pit = p̂it + pt and equations (57) and (62) and

after substituting in the equilibrium law of motion for pt, ct, w̃t, at, and ait. The guess will be

verified. Rewriting the equation for the profit-maximizing factor mix (34) using equations (62) and

ŵjt = w̃jt − w̃t yields equation (78).

Equations (79)-(80) characterize the actual decisions. Consider first equation (79). By choosing

the lag polynomials B1 (L) and C1 (L) to B3 (L) and C3 (L), the decision-maker chooses the stochas-

tic process for the price. For example, if the decision-maker chooses B1 (L) = A1 (L), C1 (L) = 0,

B2 (L) = A2 (L), C2 (L) = 0, B3 (L) = A3 (L) and C3 (L) = 0, the decision-maker decides to set the

profit-maximizing price in each period. The basic trade-off is the following. Choosing a process for

the price that tracks more closely the profit-maximizing price reduces the expected profit losses due

to deviations of the price from the profit-maximizing price but requires a larger information flow.

Next, consider equation (80). By choosing the coefficients η̃ and χ, the decision-maker chooses

the wage elasticity of labor demand and the signal-to-noise ratio in the factor mix decision. The

basic trade-off is the following. Choosing a process for the factor mix that tracks more closely

the profit-maximizing factor mix reduces the expected profit losses due to deviations of the factor

mix from the profit-maximizing factor mix but requires a larger information flow so long as the

profit-maximizing factor mix is stochastic.13

12 In equation (76), we use the fact that p̂it − p̂∗it = pit − p∗it.
13We put more structure on the factor mix decision than on the price setting decision. In particular, in equation

(80) we express the factor mix as a function of relative wage rates rather than of fundamental shocks. We do this

because from equation (80) we derive the labor demand function and a labor demand function specifies labor demand
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The constraint on information flow (81) states that actual decisions containing more information

about the profit-maximizing decisions (i.e., the optimal decisions under perfect information) require

a larger information flow.

We follow Sims (2003) and a large literature in information theory by quantifying information

as reduction in uncertainty, where uncertainty is measured by entropy. Entropy is simply a measure

of uncertainty. The entropy of a normally distributed random vector X = (X1, . . . ,XN ) equals

H (X) =
1

2
log2

h
(2πe)N detΩX

i
,

where detΩX is the determinant of the covariance matrix of X. Conditional entropy is a measure

of conditional uncertainty. If the random vectors X = (X1, . . . ,XN) and Y = (Y1, . . . , YN) have a

multivariate normal distribution, the conditional entropy of X given knowledge of Y equals

H (X|Y ) = 1

2
log2

h
(2πe)N detΩX|Y

i
,

where ΩX|Y is the conditional covariance matrix of X given Y . Equipped with measures of un-

certainty and conditional uncertainty, one can quantify the information that the random vector Y

contains about the random vector X as reduction in uncertainty, H (X)−H (X|Y ). The operator

I in the information flow constraint (81) is defined as

I ({Xt} ; {Yt}) = lim
T→∞

1

T
[H (X0, . . . ,XT−1)−H (X0, . . . ,XT−1|Y0, . . . , YT−1)] , (82)

where {Xt}∞t=0 and {Yt}
∞
t=0 are stochastic processes. In words, the operator I quantifies the in-

formation that one process, {Yt}∞t=0, contains about another process, {Xt}∞t=0, by measuring the

average per-period amount of information that the first T elements of one process contain about

the first T elements of the other process and by letting T go to infinity. If {Xt, Yt}∞t=0 is a stationary

Gaussian process, then14

I ({Xt} ; {Yt}) = lim
T→∞

1

T

∙
1

2
log2

µ
detΩX
detΩX|Y

¶¸
. (83)

on and off the equilibrium path. By expressing the labor mix as a function of relative wage rates rather than of

fundamental shocks, we specify firm i’s relative input of type j labor on and off the equilibrium path.
14 If Xt is a scalar, then ΩX is the covariance matrix of the vector (X0, . . . ,XT−1). If Xt is a vector, then ΩX is

the covariance matrix of the vector obtained by stacking the vectors X0, . . . ,XT−1.
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Finally, if a variable in the information flow constraint (81) is integrated of order one, we replace

the original variable by its first difference in the information flow constraint to ensure that entropy

is always finite.15

Note that we have assumed that the actual decisions follow a Gaussian process. One can show

that a Gaussian process for the actual decisions is optimal because objective (75) is quadratic and

the profit-maximizing decisions (77)-(78) follow a Gaussian process.16 We have also assumed that

the noise appearing in the actual decisions is firm-specific. This assumption accords well with the

idea that the friction is the limited attention of individual decision-makers rather than the public

availability of information. Finally, we have assumed that the noise terms νAit, ν
R
it , ν

I
it, and νLijt

are independent of each other. This assumption captures the idea that attending to aggregate

technology, attending to monetary policy, attending to firm-specific productivity, and attending to

relative wage rates are independent activities. We relax this assumption in Section 7.5.

Two remarks are in place before we present solutions of the decision problem (75)-(81). When

we solve the decision problem (75)-(81) numerically, we turn this infinite-dimensional problem into

a finite-dimensional problem by parameterizing each infinite-order lag polynomial B1 (L) to B3 (L)

and C1 (L) to C3 (L) as a lag-polynomial of an ARMA(p,q) process where p and q are finite.17

Furthermore, we evaluate the right-hand side of equation (83) for a very large but finite T .

7.2 Computing the equilibrium of the model

We use an iterative procedure to solve for the rational expectations equilibrium of the model. First,

we make a guess concerning the stochastic process for the profit-maximizing price (77) and a guess

concerning the stochastic process for the relative wage rate in equation (78). Second, we solve

the firms’ attention problem (75)-(81). Third, we aggregate the individual prices to obtain the

aggregate price level

pt =
1

I

IX
i=1

pit. (84)

15 If a variable in the information flow constraint (81) follows a stationary Gaussian process, replacing the variable

by its first difference in the information flow constraint has no effect on the left-hand side of (81).
16See Sims (2006) or Section VIIA in Maćkowiak and Wiederholt (2009).
17We set p = 2 and q = 2, because we found that increasing p or q further failed to change noticeably the solution

of the model. When approximating an infinite-order MA process, we allow the process to have a unit root.
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Fourth, we compute the aggregate dynamics implied by those price level dynamics. Recall that

in this section we assume that households have perfect information. The households’ optimality

conditions (52)-(54), equations (56)-(66), yit = cit, and the assumption that aggregate technology

follows a first-order autoregressive process imply that the following equations have to be satisfied

in equilibrium:

ct = Et

∙
−1
γ
(rt − pt+1 + pt) + ct+1

¸
, (85)

w̃t = γct + ψlt, (86)

yt = ct, (87)

yt = at + αlt, (88)

at = ρAat−1 + εAt , (89)

rt = ρRrt−1 + (1− ρR)
£
φπ (pt − pt−1) + φyyt

¤
+ εRt , (90)

where Et denotes the expectation operator conditioned on the entire history of the economy up

to and including period t. We employ a standard solution method for linear rational expectations

models to solve the system of equations containing the price level dynamics and those six equations.

We obtain the law of motion for (ct, w̃t, yt, lt, at, rt) implied by the price level dynamics. Fifth, we

compute the law of motion for the profit-maximizing price. The firms’ optimality condition (33),

pit = p̂it + pt and equations (57) and (62) imply that the profit-maximizing price is given by

p∗it = pt +
1−α
α

1 + 1−α
α θ̃

ct +
1

1 + 1−α
α θ̃

w̃t −
1
α

1 + 1−α
α θ̃

(at + ait) . (91)

Substituting the law of motion for pt, ct, w̃t, at and ait into the last equation yields the law of

motion for the profit-maximizing price. In the last equation, we set θ̃ = θ because the households’

optimality condition (54) and equations (57), (59) and (63) imply that the demand function for

good i has the form (18)-(20) with a price elasticity of demand equal to θ. Sixth, if the law of

motion for the profit-maximizing price differs from our guess, we update the guess until a fixed

point is reached.18

18We use Matlab and a standard nonlinear optimization program to solve the firms’ attention problem. The solution

of the firms’ attention problem takes about 20 seconds on a machine on which the LU decomposition of a full matrix

requires about 0.1 of one second (as reported by the Matlab function bench.m). On the way to a fixed point, we make

the guess in iteration n a weighted average of the solution in iteration n − 1 and the guess in iteration n − 1. The
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Finally, we derive equilibrium relative wage rates. When households have perfect information,

equilibrium relative wage rates can be derived analytically. In particular, it is an equilibrium that

relative wage rates are constant. The argument is as follows. Suppose that all firms choose the

same value for η̃ and the same value for χ satisfying η̃ > 1 and χ > 0. Then, equations (80),

(58) and (64) imply that the labor demand function for type j labor has the form (35)-(37) with

a wage elasticity of labor demand that is the same for all types of labor. Since all households face

the same decision problem and have the same information, all households set the same wage rate.

Equation (62) then implies that relative wage rates are constant (ŵjt = wjt − wt = 0). When

relative wage rates are constant, the profit-maximizing factor mix is constant, implying that each

firm can attain the profit-maximizing factor mix without any information flow. Since each firm can

attain the profit-maximizing factor mix without any information flow, no firm has an incentive to

deviate from the chosen values for η̃ and χ.

7.3 Benchmark parameter values and solution

Next we report the numerical solution of the model for the following parameter values. One period

in the model is one quarter. We set β = 0.99, γ = 1, ψ = 0, θ = 4, α = 2/3, and η = 4.

To set the parameters of the process for aggregate technology, we consider quarterly U.S. data

from 1960 Q1 to 2006 Q4. We first compute a time series for aggregate technology, at, using

equation (88) and measures of yt and lt. We use the log of real output per person, detrended with

a linear trend, as a measure of yt. We use the log of hours worked per person, demeaned, as a

measure of lt.19 We then fit equation (89) to the time series for at obtaining ρA = 0.96 and a

standard deviation of the innovation equal to 0.0085. In the benchmark economy, we set ρA = 0.95

and we set the standard deviation of εAt equal to 0.0085.

To set the parameters of the monetary policy rule, we estimate the monetary policy rule (90)

with the quarterly U.S. data on the Federal Funds rate, inflation, and real GDP from 1960 Q1 to

2006 Q4. We obtain ρR = 0.89, φπ = 1.53, φy = 0.33, and a standard deviation of the innovation

number of iterations needed to reach a fixed point depends significantly on parameter values, on the initial guess, on

the weight of the guess in iteration n− 1 in the guess in iteration n, and on the terminal condition.
19We use data for the non-farm business sector. The data source is the website of the Federal Reserve Bank of St.

Louis.
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equal to 0.0021.20 In the benchmark economy, we set ρR = 0.9, φπ = 1.5, φy = 0.33, and we set

the standard deviation of εRt equal to 0.0021.
21

To set the parameters of the process for firm-specific productivity, we follow the recent literature

that calibrates menu cost models with firm-specific productivity shocks to U.S. micro price data.

Nakamura and Steinsson (2008) and Bils, Klenow and Malin (2009) set the autocorrelation of

firm-specific productivity in their monthly models equal to 0.66 and 0.7, respectively. We set the

autocorrelation of firm-specific productivity in our quarterly model equal to 0.3 because (0.3)1/3

equals a number between 0.66 and 0.7. Klenow and Kryvtsov (2008) report that the median

absolute size of price changes excluding sale-related price changes in the U.S. equals 9.7 percent.

For this reason, we set the standard deviation of the innovation to firm-specific productivity such

that the median absolute size of price changes in our model equals 9.7 percent. This choice yields

a standard deviation of the innovation to firm-specific productivity equal to 0.18.22

We compute the solution of the model by fixing the marginal cost of information flow, μ. The

overall information flow devoted to the price setting and factor mix decision is then determined

within the model (i.e., κ is endogenous). See the attention problem (75)-(81). We interpret the

cost of information flow as an opportunity cost. The idea is that attention devoted to the price

20The specification of the monetary policy rule that we estimate is standard in the empirical literature on the

Taylor rule with partial adjustment. See, for example, Section 2 in Rudebusch (2002) for a review of this literature.

We regress a measure of the nominal interest rate on its own lag, a measure of the inflation rate, and a measure of the

output gap. The nominal interest rate is measured as the quarterly average Federal Funds rate. The inflation rate is

measured as 1
4

3
l=0 πt−l, where πt = lnPt− lnPt−1 and Pt is the price index for personal consumption expenditures

excluding food and energy. The output gap is measured as (Yt − Y p
t )/Y

p
t , where Yt is real GDP and Y p

t is potential

real GDP estimated by the Congressional Budget Office. The data sources are the website of the Federal Reserve

Bank of St. Louis and the website of the Congressional Budget Office. Note that in the empirical monetary policy

rule we measure the inflation rate as the four-quarter moving average of inflation rates. We do so following Section

2 in Rudebusch (2002). Using only the current inflation rate in the empirical monetary policy rule yields essentially

identical estimates.
21We investigated the role of all parameters in the model. We report the effects of changes in parameter values

in Section 7.4. Note that restricting the sample to the Great Moderation would have yielded a smaller standard

deviation of the innovation in the monetary policy rule. In the model this would imply less attention to monetary

policy compared with the benchmark economy.
22We match the size of price changes excluding sale-related price changes instead of the size of all price changes,

because this choice yields a smaller standard deviation of the innovation to firm-specific productivity. This implies

that less attention is allocated to firm-specific productivity.
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setting decision and the factor mix decision could have been devoted to other decisions of the

firm that we do not model. We set the marginal cost of information flow equal to 0.1 percent

of the firm’s steady state revenue. We value the cost of information flow in objective (75) using

the value of the stochastic discount factor (22) at the non-stochastic steady state. This yields

μ = (0.001) (1 + τp) P̂iYiC
−γ
j . This value for μ will imply that, in equilibrium, the expected per-

period loss in profit due to deviations of the price from the profit-maximizing price equals 0.15

percent of the firm’s steady state revenue: (0.0015) (1 + τp) P̂iYi. We find this number reasonable.23

We first report the optimal allocation of attention at the equilibrium with rational inattention

by decision-makers in firms. The decision-maker in a firm who has to set a price decides to pay most

attention to firm-specific productivity, quite a bit of attention to aggregate technology, and little

attention to monetary policy. More precisely, of the total attention devoted to the price setting

decision, 65 percent is allocated to firm-specific productivity, 26 percent is allocated to aggregate

technology, and 9 percent is allocated to monetary policy. This equilibrium allocation of attention

implies that prices respond rapidly to micro-level shocks, fairly quickly to aggregate technology

shocks, and slowly to monetary policy shocks, which matches empirical findings that are difficult to

match with other DSGE models. Furthermore, for our choice of the marginal cost of information

flow, the attention devoted to the price setting decision is sufficiently high so that the price set by

a firm tracks the profit-maximizing price very well. In particular, the expected per-period loss in

profit due to deviations of the price from the profit-maximizing price equals 0.15 percent of the

firm’s steady state revenue.24 As we will point out below, this number is 30 times smaller than in

the Calvo model that yields the same responses of the price level and output to monetary policy

shocks.

Figures 1 and 2 show impulse responses of the price level, inflation, output, and the nominal

interest rate at the equilibrium with rational inattention by decision-makers in firms and perfect

23To illustrate this number, consider the following example. Suppose that the firm with a rationally inattentive

decision-maker has a profit margin of 15 percent. If the decision-maker of the firm set the profit-maximizing price in

each period, the profit margin would increase to 15.15 percent. Hence, if one part of the decision-maker’s compensation

is proportional to the profit margin, this part of the decision-maker’s compensation would increase by (1/100).
24The expected per-period profit loss due to imperfect tracking of firm-specific productivity equals 0.07 percent of

the firm’s steady state revenue. The expected per-period profit loss due to imperfect tracking of aggregate technology

equals 0.05 percent of the firm’s steady state revenue. The expected per-period profit loss due to imperfect tracking

of monetary policy equals 0.03 percent of the firm’s steady state revenue.
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information on the side of households (green lines with circles). For comparison, the figures also

include impulse responses of the same variables at the equilibrium under perfect information derived

in Section 6 (blue lines with points). All impulse responses are to shocks of one standard deviation.

A response equal to one means a one percent deviation from the non-stochastic steady state. Time

is measured in quarters along horizontal axes.

Consider Figure 1. Under rational inattention by decision-makers in firms, the price level shows

a dampened and delayed response to a monetary policy shock (compared with the case of perfect

information). The response of inflation to a monetary policy shock is persistent. Since the price

level does not adjust fully on impact of a monetary policy shock, the real interest rate increases

after a positive innovation in the Taylor rule, implying that consumption and output fall. The fall

in output is persistent. The nominal interest rate increases on impact of a monetary policy shock

and then converges slowly to zero. By contrast, under perfect information, the price level adjusts

fully on impact of a monetary policy shock, there are no real effects, and the nominal interest rate

fails to change.

Consider Figure 2. The price level also shows a dampened and delayed response to an aggregate

technology shock (compared with the case of perfect information), but the response of the price

level to an aggregate technology shock is less dampened and less delayed than the response of

the price level to a monetary policy shock. The reason is that decision-makers in firms decide to

pay about three times as much attention to aggregate technology than to monetary policy. Since

the response of the price level to an aggregate technology shock is to some extent dampened and

delayed, the output gap is negative for a few quarters after a positive technology shock, implying

that output shows a hump-shaped impulse response to an aggregate technology shock.25

Figure 3 shows the impulse response of an individual price to a firm-specific productivity shock.

Prices respond rapidly to firm-specific productivity shocks. The reason is that decision-makers in

firms decide to pay close attention to firm-specific productivity.

Figures 1-3 show that the model matches simultaneously the following empirical findings: (i)

the model matches the empirical finding that the price level responds slowly to monetary policy

25The difference between the response of the price level to a monetary policy shock and the response of the price

level to an aggregate technology shock will become even more pronounced once we introduce rational inattention by

households.
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shocks,26 (ii) the model matches the empirical finding by Altig, Christiano, Eichenbaum and Linde

(2005) that the price level responds faster to aggregate technology shocks than to monetary policy

shocks, and (iii) the model matches the empirical finding by Boivin, Giannoni and Mihov (2009) and

Máckowiak, Moench and Wiederholt (2009) that prices respond rapidly to disaggregate shocks. The

model matches this combination of fast and slow adjustment of prices to shocks with an endogenous

allocation of attention. The reason is the following. We choose the parameter values so as to match

key features of the U.S. data like the large average absolute size of price changes in micro data

and the small variance of the innovation in the Taylor rule. For these parameter values, most of

the variance of the profit-maximizing price is due to idiosyncratic shocks, a considerable fraction

of the variance of the profit-maximizing price is due to aggregate technology shocks, and only a

small fraction of the variance of the profit-maximizing price is due to monetary policy shocks.

The decision-maker in a firm who has to set a price therefore pays close attention to firm-specific

productivity, quite a bit of attention to aggregate technology, and little attention to monetary policy.

In addition, there is an amplification effect because the price level appears in the profit-maximizing

price (91). If other firms pay little attention to monetary policy, the profit-maximizing price moves

less in response to a monetary policy shock, which reduces the incentive for an individual firm to

pay attention to monetary policy.

For comparison, we solved the Calvo model with the same preference, technology and monetary

policy parameters. The motivation for this comparison is that the Calvo model is the most com-

monly used model for monetary policy analysis. We set the Calvo parameter so that prices in the

Calvo model change every 2.5 quarters on average, because then the impulse responses to a mone-

tary policy shock are essentially identical in the benchmark economy presented above with rational

inattention on the side of decision-makers in firms and in the Calvo model with perfect information.

See Figure 4. While the impulse responses to a monetary policy shock are essentially identical in

the two models, the impulse responses to an aggregate technology shock are very different in the

two models. See Figure 5. The response of the price level to an aggregate technology shock is much

less dampened and delayed in the benchmark economy compared to the Calvo model. As a result,

26A number of different identification assumptions lead to the finding that the price level responds slowly to

monetary policy shocks. See, for example, Christiano, Eichenbaum and Evans (1999), Leeper, Sims and Zha (1996),

and Uhlig (2005).
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after a positive aggregate technology shock, the output gap is negative for only 5 quarters in the

benchmark economy, whereas the output gap is negative for more than 20 quarters in the Calvo

model. Thus, after an aggregate technology shock, the rational inattention model is much closer

to a frictionless economy than the Calvo model. Moreover, after a firm-specific productivity shock,

the rational inattention model behaves essentially like a frictionless economy.

In the benchmark economy and in the Calvo model, firms experience profit losses due to devi-

ations of the price from the profit-maximizing price. In the benchmark economy, the expected loss

in profit due to deviations of the price from the profit-maximizing price is about 30 times smaller

than in the Calvo model that yields the same impulse responses of the price level and output to

a monetary policy shock.27 The main reason is that, in the benchmark economy, prices respond

slowly to monetary policy shocks, but fairly quickly to aggregate technology shocks, and rapidly

to micro-level shocks, whereas in the Calvo model prices respond slowly to all those shocks. To

generate a slow response of the price level to monetary policy shocks in the Calvo model, one also

has to generate a slow response of prices to other shocks in the Calvo model. In addition, in the

rational inattention model deviations of the price from the profit-maximizing price are less likely

to be extreme than in the Calvo model.

7.4 The effects of changes in parameter values

We now study whether the model yields different counterfactuals than other DSGE models (e.g., the

Calvo model, the sticky information model, and a model with exogenous dispersed information).

Does it matter whether one uses this model or another DSGE model for policy analysis? We

conduct standard experiments like increasing the coefficient on inflation in the Taylor rule and

increasing strategic complementarity in price setting. We find that, due to the endogeneity of the

allocation of attention, the outcomes of experiments conducted with this model differ markedly

from the outcomes of the same experiments conducted with other DSGE models.

For example, let us vary the coefficient on inflation in the Taylor rule. Figure 6 shows the

effect of increasing φπ from 1.05 to 1.5 (our benchmark value) and then to 10 on the volatility of

27The expected loss in profit due to suboptimal price responses to idiosyncratic conditions is about 40 times smaller

than in the Calvo model. The expected loss in profit due to suboptimal price responses to aggregate conditions is

about 20 times smaller than in the Calvo model.
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the output gap.28 We report the standard deviation of the output gap due to monetary policy

shocks and the standard deviation of the output gap due to aggregate technology shocks. As

φπ increases in the rational inattention model, the standard deviation of the output gap due to

monetary policy shocks is essentially constant until 1.75 and then rises. The standard deviation

of the output gap due to aggregate technology shocks first rises, peaking at 1.75, and then falls.

For comparison, as φπ increases in the Calvo model, the standard deviation of the output gap due

to aggregate technology shocks declines monotonically, and the standard deviation of the output

gap due to monetary policy shocks declines monotonically. Hence, the rational inattention model

yields a markedly different answer to the basic policy question of what happens when the central

bank responds more aggressively to inflation.

To understand how the value of φπ affects the economy in the two models, note the following.

As φπ increases in the Calvo model, the nominal interest rate mimics more closely the real interest

rate at the efficient solution. This effect reduces deviations of output from the efficient solution.

In the rational inattention model, there is an additional effect. When the central bank responds

more aggressively with the nominal interest rate to inflation, the price level becomes more stable,

implying that decision-makers in firms decide to pay less attention to aggregate conditions. This

effect increases deviations of output from the efficient solution. When the second effect dominates

the first effect, the volatility of the output gap increases. For monetary policy shocks the second

effect dominates for values of φπ above 1.75, while for aggregate technology shocks the second effect

dominates for values of φπ below 1.75.

Second, consider increasing strategic complementarity in price setting. There is a large literature

arguing that increasing strategic complementarity in price setting increases real effects of monetary

policy shocks. For example, Woodford (2003), Chapter 3, makes this point for the Calvo model,

Mankiw and Reis (2002) make this point for the sticky information model, and Woodford (2002)

makes this point for a model with exogenous dispersed information. A common way to increase

strategic complementarity in pricing is to make a firm’s marginal cost curve more upward sloping

in own output. See Altig, Christiano, Eichenbaum and Linde (2005). Therefore, we consider the

28Here the output gap is defined as the deviation of aggregate output from equilibrium aggregate output under

perfect information. Due to the subsidies (10)-(11) the equilibrium aggregate output under perfect information equals

the efficient aggregate output.
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experiment of increasing the degree of decreasing returns-to-scale, (1/α). When we decrease α from

1 to 2/3 (our benchmark value) and then to 1/2, real effects of monetary policy shocks first increase

and then decrease. The reason is that there are two effects. The first effect is the effect emphasized

in the literature cited above. In the benchmark economy, a decrease in α lowers the coefficient

on consumption in the equation for the profit-maximizing price. Formally, substituting equations

(86)-(88) and θ̃ = θ into equation (91) yields the following equation for the profit-maximizing price

p∗it = pt +
1−α
α + γ + ψ

α

1 + 1−α
α θ

ct −
ψ
α +

1
α

1 + 1−α
α θ

at −
1
α

1 + 1−α
α θ

ait. (92)

A decrease in α lowers the coefficient on consumption in equation (92) if and only if θ (γ + ψ) >

(1 + ψ), which is a parameter restriction that is satisfied in the benchmark economy. In the language

of Ball and Romer (1990), a decrease in α raises the degree of real rigidity, and in the language of

Woodford (2003), a decrease in α raises the degree of strategic complementarity in price setting.

This effect increases real effects of monetary policy shocks. However, in the rational inattention

model, there is an additional effect. As α decreases, the cost of a price setting mistake of a given size

increases. Formally, the upper-left element of the matrix H in Proposition 1 increases in absolute

value. Decision-makers in firms thus decide to pay more attention to the price setting decision,

implying that prices respond faster to shocks. This effect reduces real effects of monetary policy

shocks. We find that the second effect (more attention) dominates the first effect (lower coefficient

on consumption in the equation for the profit-maximizing price) for values of α below 2/3. Hence,

for reasonable parameter values, increasing strategic complementarity reduces real effects.

Third, consider increasing the variance of monetary policy shocks. In the rational inattention

model, decision-makers in firms decide to pay more attention to monetary policy, implying that

prices respond faster to monetary policy shocks and real effects of a monetary policy shock of a

given size decrease. By contrast, in the Calvo model and in the sticky information model of Mankiw

and Reis (2002), increasing the variance of monetary policy shocks has no effect on the responses of

prices and output to a monetary policy shock of a given size. The reallocation of attention in the

rational inattention model is important quantitatively. For example, in the benchmark economy,

doubling the standard deviation of monetary policy shocks implies that real effects of monetary

policy shocks last only 4 quarters instead of 10 quarters.

One could go on and on with more experiments. The point is: the outcomes of experiments are
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markedly different than in other DSGE models. Moreover, there is a clear intuition for why the

outcomes are so different: the allocation of attention varies with the economic environment.

7.5 Extension: Signals

In this subsection we state the attention problem of the decision-maker in a firm using signals. Fur-

thermore, we relax the assumption that attending to aggregate technology, attending to monetary

policy and attending to firm-specific productivity are independent activities.

We now assume that, in period −1, the decision-maker in a firm chooses the precision of the

signals that he or she will receive in the following periods. In each period t ≥ 0, the decision-maker

receives the signals and takes the optimal price setting and factor mix decision given the signals.

The decision-maker chooses the precision of the signals in period −1 so as to maximize the expected

discounted sum of profits net of the cost of information flow. The decision-maker understands that

a more precise signal (more attention) will lead to better decision making but will also use up more

of the valuable information flow. Formally, the attention problem of the decision-maker in firm i

reads:

max
(κ,σ1,σ2,σ3,σ4)∈R5

+

( ∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
− μ

1− β
κ

)
, (93)

where

xt − x∗t =

⎛⎜⎜⎜⎜⎜⎜⎝
pit

l̂i1t
...

l̂i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠−
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p∗it

l̂∗i1t
...

l̂∗i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠ , (94)

subject to equations (77)-(78) characterizing the profit-maximizing decisions, the following equation

characterizing the optimal decision vector in period t given information in period t

xt = E [x∗t |Fi0, si1, si2, . . . , sit] , (95)

38



the following equation characterizing the signal vector in period t

sit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pA∗it
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σ4ν
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, (96)

and the constraint on information flow

I
³n

pA∗it , p
R∗
it , p

I∗
it , l̂

∗
i1t, . . . , l̂

∗
i(J−1)t

o
; {sit}

´
≤ κ. (97)

The noise terms νAit, ν
R
it , ν

I
it, and νLi1t to νLi(J−1)t in the signal are assumed to follow Gaussian

white noise processes with unit variance that are: (i) independent of all other stochastic processes

in the economy, (ii) firm-specific, and (iii) independent of each other. As in the decision problem

(75)-(81), Ei,−1 in objective (93) denotes the expectation operator conditioned on the information

of the decision-maker in firm i in period −1, the parameter μ ≥ 0 in objective (93) is the marginal

cost of information flow, and the operator I in constraint (97) is defined by equation (82). We

assume that Ei,−1 is the unconditional expectation operator. Finally, Fi0 in equation (95) denotes

the information set of the decision-maker in firm i in period zero. To abstract from transitional

dynamics in conditional second moments, we assume that in period zero (i.e., after the decision-

maker has chosen the precision of the signals in period −1), the decision-maker receives information

such that the conditional covariance matrix of x∗t given information in period t is constant for all

t ≥ 0.

We solve the problem (93)-(97) for an individual firm, assuming that the aggregate variables are

given by the equilibrium of the benchmark economy presented in Section 7.3 and that all relative

wage rates are constant. In other words, we assume that the behavior of all other firms and all

households is given by the benchmark economy presented in Section 7.3. We then compare the

solution to problem (93)-(97) to the solution to problem (75)-(81). Consider the left column of

Figure 7. The blue lines with points show the impulse responses of the profit-maximizing price to

the three fundamental shocks. The green lines with circles show the impulse responses of the price

set by the firm to the three fundamental shocks when the firm solves problem (75)-(81). The red
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lines with crosses show the impulse responses of the price set by the firm to the three fundamental

shocks when the firm solves problem (93)-(97). The point is that the green lines with circles and

the red lines with crosses are identical. Furthermore, the impulse responses of the price set by the

firm to the noise terms in equation (79) and to the noise terms in equation (96) also turn out to

be identical. In summary, the decision problem (75)-(81) and the decision problem (93)-(97) yield

the same price setting behavior.29,30

The signal vector (96) captures the idea that paying attention to aggregate technology, paying

attention to monetary policy, paying attention to firm-specific productivity and paying attention

to relative wage rates are independent activities. We now relax this assumption. We replace the

29We solve problem (93)-(97) numerically using Matlab and a standard nonlinear optimization program. We first

approximate each of the following four objects by an ARMA(p,q) process where p and q are finite: the component

of pt driven by aggregate technology shocks, the component of pt driven by monetary policy shocks, the component

of ct driven by aggregate technology shocks, and the component of ct driven by monetary policy shocks. Then, there

exists a state-space representation of the dynamics of the signal (96) with a finite-dimensional state vector. We use

the Kalman filter to evaluate objective (93) and constraint (97) for any given choice of the precision of the signals.

We employ the program kfilter.m, written by Lars Ljungqvist and Thomas J. Sargent, to solve for the conditional

covariance matrix of the state vector. Solving the problem (93)-(97) takes about as much time as solving the problem

(75)-(81). See Footnote 18. Below we also present solutions of problem (93)-(97) with the signal vector (98) instead

of the signal vector (96). Solving that problem turned out to be much more time-consuming. Here we had to evaluate

objective (93) and constraint (97) on a grid. Standard nonlinear optimization programs proved unhelpful because

numerical inaccuracy in the solution for the conditional covariance matrix of the state vector led to spurious variation

in the values of the objective and the constraint.
30This is a numerical result. The fact that there exist some signals that yield the same price setting behavior is not

surprising. See Section V in Maćkowiak and Wiederholt (2009). What is surprising is that signals with noise that is

i.i.d. across time yield the same price setting behavior as the decision problem (75)-(81).
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signal vector (96) by the following signal vector31

sit =
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. (98)

By choosing σ1 to σ5, the decision-maker decides how much attention to devote to the price level,

the firm’s total factor productivity, the firm’s last period sales, the firm’s last period wage bill, and

the relative wage rates.32 The variables in the signal vector (98) are driven by multiple shocks and

it is therefore no longer the case that, say, paying attention to aggregate technology and paying

attention to monetary policy are independent activities. We find that solving the problem (93)-(97)

with the signal vector (98) instead of the signal vector (96) changes the firm’s price setting behavior

hardly at all.33 See the right column of Figure 7. The price set by the firm responds somewhat

slower to monetary policy shocks and somewhat faster to aggregate technology shocks. Overall

the red lines with crosses in the right column of Figure 7 are very similar to the red lines with

crosses in the left column of Figure 7. The reason is that the decision-maker in the firm decides

to pay attention to those variables that are mainly driven by firm-specific productivity shocks and

aggregate technology shocks.

We studied a large number of variations of the signal vector (98) and obtained similar results.

31We maintain the assumption that the noise terms in the signal follow Gaussian white noise processes with

unit variance that are: (i) independent of all other stochastic processes in the economy, (ii) firm-specific, and (iii)

independent of each other.
32We include last period sales and last period wage bill in the signal vector because we do not know how the firm

can attend to current period sales and current period wage bill before setting the price for its good. Below, when we

do assume that the firm can attend to current period sales and current period wage bill, we mean that the firm can

attend to the components of current period sales and current period wage bill that are independent of the own price,

that is, θpt + ct and wt + (1/α) (θpt + ct − at − ait), respectively.
33When we replace the signal vector (96) by the signal vector (98), we continue to solve the problem of an individual

firm, assuming that the aggregate variables are given by the equilibrium of the benchmark economy presented in

Section 7.3 and that all relative wage rates are constant.
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First, we added other aggregate variables one by one to the signal vector. We found little or

no effect on the price setting behavior because the decision-maker of the firm decided to set the

precision of the additional signal to a small number or zero. Second, in the signal vector (98)

we replaced last period sales and last period wage bill by current period sales and current period

wage bill in the signal vector. The price set by the firm then responds somewhat faster to monetary

policy shocks and to aggregate technology shocks. Still, the price responds more slowly to monetary

policy shocks than to aggregate technology shocks. Third, we added firm-specific demand shocks

to the model by modifying the consumption aggregator (2). We kept constant the variance of the

firm-specific component of the profit-maximizing price. We split this variance equally between firm-

specific productivity shocks and firm-specific demand shocks. We assumed the same persistence in

firm-specific productivity and in firm-specific demand. We then solved again the decision problem

(93)-(97) with the signal vector (98). We found that adding firm-specific demand shocks had

almost no effect on the impulse responses of the price set by the firm to monetary policy shocks,

to aggregate technology shocks, and to firm-specific productivity shocks. We obtained impulse

responses that were almost identical to the red lines with crosses in the right column of Figure 7.34

8 Rational inattention by firms and households

In this section we study the implications of adding rational inattention by households. We solve

the model with rational inattention by decision-makers in firms and households.

In Sections 8.1-8.4, we assume that households have linear disutility of labor and households

set real wage rates. We make these two assumptions because they allow us to exhibit in the most

transparent way the implications of rational inattention by households for the consumption-saving

decision. The reason is the following. When households have linear disutility of labor (ψ = 0), the

intratemporal optimality condition stating that the real wage rate should equal the marginal rate

34Hellwig and Venkateswaran (2009) also study a model in which firms set prices in period t based on signals

concerning sales and wage bills up to and including period t − 1. There are several differences. First, in their

benchmark model the price level and total factor productivity are not included in the signal vector. More importantly,

in their model the noise in the signal is exogenous, whereas in our model the noise in the signal (98) is chosen optimally

subject to the constraint on information flow (97). In other words, they report impulse responses for some exogenously

given precision of the signals, whereas we report impulse responses for the optimal precision of the signals.
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of substitution between consumption and leisure reduces to w̃jt = γcjt. Thus, when ψ = 0 and

households set real wage rates, households only need to know their own consumption decision to

satisfy this intratemporal optimality condition. Knowing the own consumption decision does not

require any information flow. Hence, when ψ = 0 and households set real wage rates, households

satisfy this intratemporal optimality condition both under perfect information and under rational

inattention. This allows us to exhibit in the most transparent way the implications of rational

inattention by households for the intertemporal consumption decision. In Section 8.5, we present

the solution when households set nominal wage rates.

8.1 The households’ attention problem

The attention problem of household j in period −1 reads:

max
κ,B1(L),B2(L),C1(L),C2(L),θ̃,ξ

⎧⎪⎪⎨⎪⎪⎩
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where
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subject to an equation linking an argument of the objective and two decision variables
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the equations characterizing the household’s optimal decisions under perfect information

c∗jt = A1 (L) ε
A
t| {z }

cA∗jt

+A2 (L) ε
R
t| {z }

cR∗jt

(102)

w̃∗jt = γc∗jt (103)

ĉ∗ijt = −θp̂it, (104)
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the equations characterizing the household’s actual decisions

cjt = B1 (L) ε
A
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A
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w̃jt = γcjt (106)
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and the constraint on information flow
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Here A1 (L), A2 (L), B1 (L), B2 (L), C1 (L) and C2 (L) are infinite-order lag polynomials. The noise

terms νAjt, ν
R
jt, and ν

I
ijt in the actual decisions are assumed to follow Gaussian white noise processes

with unit variance that are: (i) independent of all other stochastic processes in the economy, (ii)

household-specific, and (iii) independent of each other. The operator I measures the amount of

information that the household’s actual decisions contain about the household’s optimal decisions

under perfect information. The operator I is defined in equation (82). Finally, Ej,−1 in objective

(99) is the expectation operator conditioned on the information of household j in period −1.

The objective (99) states that the household chooses level and allocation of information flow so

as to maximize the expected discounted sum of period utility net of the cost of information flow.

See Proposition 2.35 The variable κ ≥ 0 is the overall information flow devoted to the intertemporal

consumption decision, the intratemporal consumption decision, and the wage setting decision. The

parameter λ ≥ 0 is the per-period marginal cost of information flow. We interpret this cost as

an opportunity cost. To devote more attention to the questions of how much to consume, which

goods to consume, and which wage to set, the household has to devote less attention to some other

activity.

35Proposition 2 states that, after the log-quadratic approximation to expected lifetime utility and for sequences

satisfying conditions (46)-(48), maximizing expected lifetime utility is equivalent to maximizing the expression on

the right-hand side of equation (49). When we solve the households’ attention problem (99)-(108), we consider only

stochastic processes for real bond holdings, the real wage rate, and the consumption mix that satisfy conditions

(46)-(48). It is important to note that conditions (46)-(48) do not require that the processes for real bond holdings,

the real wage rate, and the consumption mix are stationary. Conditions (46)-(48) do require that second moments

increase less than exponentially in t.
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Equations (102)-(104) characterize the household’s optimal decisions under perfect information

(i.e., the decisions that the same household would take if the household had perfect information

in each period t ≥ 0). After the log-quadratic approximation to the expected discounted sum of

period utility, the household’s optimal decisions under perfect information are given by equations

(52)-(55). See Proposition 2. We guess that c∗jt given by equation (52) has the representation

(102) after substituting in the equilibrium law of motion for rt and πt. The guess will be verified.

Equations (53) and (54) reduce to equations (103) and (104) after substituting in equation (59)

and ψ = 0.

Equations (105)-(107) characterize the household’s actual decisions. Consider first equation

(105). By choosing the lag polynomials B1 (L), C1 (L), B2 (L) and C2 (L), the household chooses

the stochastic process for composite consumption. For example, if the household chooses B1 (L) =

A1 (L), C1 (L) = 0, B2 (L) = A2 (L) and C2 (L) = 0, the household decides to take the optimal

intertemporal consumption decision in each period. The basic trade-off is the following. Choosing a

process for composite consumption that tracks more closely optimal composite consumption under

perfect information reduces losses in expected utility due to suboptimal intertemporal consumption

decisions but requires a larger information flow. Next, consider equation (106). This equation

states that in each period t ≥ 0 the household sets the real wage rate equal to the marginal rate

of substitution between consumption and leisure. The modeling idea behind equation (106) is that

information contained in the household’s own current and past consumption decisions is also used

in the household’s current wage setting decision. More precisely, in Appendix E in Máckowiak

and Wiederholt (2010) we show analytically that if the household can choose the process for the

real wage rate {w̃jt}∞t=0 as a time-invariant one-sided linear filter of the process
n
cAjt, c

R
jt

o∞
t=0
, then

the optimal filter is equation (106) so long as the household has linear disutility of labor (ψ = 0).

Finally, consider equation (107). By choosing the coefficients θ̃ and ξ, the household chooses the

price elasticity of demand and the signal-to-noise ratio in the consumption mix decision. The basic

trade-off is again the following. Choosing a process for the consumption mix that tracks more

closely the optimal consumption mix under perfect information reduces losses in expected utility

due to suboptimal consumption baskets but requires a larger information flow.36

36We put more structure on the consumption mix decision than on the intertemporal consumption decision and

the wage setting decision. In particular, in equation (107) we express the consumption mix as a function of relative
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The constraint on information flow (108) states that actual decisions containing more informa-

tion about the optimal decisions under perfect information require a larger information flow.

We have assumed that the household chooses a consumption vector and a real wage rate. The

deviation of the household’s real bond holdings in period t from the real bond holdings the same

household would have had under perfect information is then given by equation (101). Equation

(101) follows from equation (55) and b̃j,−1 = b̃∗j,−1. Equation (101) is needed because the deviation

b̃jt− b̃∗jt is an argument of objective (99). When the household consumes more than the household

would have consumed under perfect information, bond holdings are lower than they would have

been under perfect information. Note that, since equation (55) is the log-linearized flow budget

constraint, equation (101) determines log bond holdings. Log bond holdings may be negative, but

bond holdings themselves are always strictly positive.

Finally, we have to specify the expectation operator Ej,−1 in objective (99). We assume that

all households have perfect information up to and including period −1 and that the particular

realization of shocks up to and including period−1 is that shocks are zero. We make this assumption

for two reasons. First, this assumption is consistent with the assumption made in Section 2 that

all households have the same bond holdings in period −1. Second, this assumption implies that

all the discounted second moments in objective (99) are finite even when (xt − x∗t ) has a unit root,

and we want to allow for the possibility that (xt − x∗t ) has a unit root.

When we solve the problem (99)-(108) numerically, we turn this infinite-dimensional prob-

lem into a finite-dimensional problem by parameterizing each infinite-order lag polynomial B1 (L),

C1 (L), B2 (L) and C2 (L) as a lag-polynomial of an ARMA(p,q) process where p and q are finite.37

Furthermore, when we solve the problem (99)-(108) numerically, we evaluate the right-hand side

of equation (83) for a very large but finite T .

prices rather than of fundamental shocks. We do this because from equation (107) we derive the demand function

for good i and a demand function specifies demand on and off the equilibrium path. By expressing the consumption

mix as a function of relative prices rather than of fundamental shocks, we specify relative consumption of good i by

household j on and off the equilibrium path.
37We set p = 2 and q = 2, because we found that increasing p or q further failed to change noticeably the solution

of the model. When approximating an infinite-order MA process, we allow the process to have a unit root.
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8.2 Computing the equilibrium of the model

We use an iterative procedure to solve for the rational expectations equilibrium of the model. First,

we make a guess concerning the stochastic process for the profit-maximizing price, p∗it, and a guess

concerning the stochastic process for the utility-maximizing composite consumption, c∗jt. Second,

we solve the firms’ attention problem (75)-(81) and we solve the households’ attention problem

(99)-(108). Third, we aggregate the individual prices to obtain the price level. We aggregate

across households to obtain aggregate composite consumption, ct = 1
J

XJ

j=1
cjt, and the real wage

index, w̃t =
1
J

PJ
j=1 w̃jt. Fourth, we compute the law of motion for the nominal interest rate from

the monetary policy rule (90) and equation (87); we compute the law of motion for the profit-

maximizing price from equation (91); and we compute the law of motion for the utility-maximizing

composite consumption from equation (52). If the law of motion for the profit-maximizing price

or the law of motion for the utility-maximizing composite consumption differs from our guess, we

update the guess until a fixed point is reached.38

8.3 Benchmark parameter values and solution

We choose the same parameter values as in the benchmark economy in Section 7.3. We have to

choose values for five additional parameters: ωB, ωW , η̃, I, and λ. These parameters are: the ratio

of real bond holdings to consumption in the non-stochastic steady state, the ratio of real wage

income to consumption in the non-stochastic steady state, the wage elasticity of labor demand,

the number of consumption goods, and the marginal cost of information flow for a household,

respectively. These five parameters appear in objective (99). The parameters ωB, ωW , and η̃ also

appear in equation (101) because they affect how a percentage deviation in composite consumption

and a percentage deviation in the real wage rate translate into a percentage deviation in real bond

holdings.

To set the parameters ωB and ωW , we consider data from the Survey of Consumer Finances

(SCF) 2007. We pursue the following strategy for choosing values for ωB and ωW . First, since

we want to base our calibration of ωB and ωW on data for “typical” U.S. households, we compute

median nominal net worth, median nominal annual income, and median nominal annual wage

income for the households in the 40-60 income percentile of the SCF 2007. These three statistics

38One iteration takes about 4 minutes on the machine described in Footnote 18.
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equal $88400, $47305, and $41135, respectively. We base our calibration of ωB and ωW on all

households in the middle income quintile rather than on a single household because we are interested

in three variables (net worth, income, and wage income) and the household that is the median

household according to one variable may be an unusual household according to the other variables.

Second, since consumption appears in the denominator of ωB and ωW but the SCF has only very

limited data on consumption expenditure, we calculate a proxy for consumption expenditure. The

assumption underlying the calculation is that consumption expenditure equals after-tax nominal

income minus nominal savings, where nominal savings are just large enough to keep real wealth

constant at an annual inflation rate of 2.5 percent. Specifically, we apply the 2007 Federal Tax Rate

Schedule Y-1 (“Married Filing Jointly”) to nominal annual income given above and we deduct 2.5

percent of nominal net worth given above. This proxy for annual consumption expenditure equals

$38782. Third, we divide annual nominal wage income given above by four to obtain quarterly

nominal wage income. We divide our proxy for annual consumption expenditure by four to obtain

quarterly consumption expenditure. Fourth, we set ωW equal to the ratio of quarterly nominal wage

income to our proxy for quarterly consumption expenditure: ωW = (10283.75/9695.5) = 1.06. We

set ωB equal to the ratio of nominal net worth given above to our proxy for quarterly consumption

expenditure: ωB = (88400/9695.5) = 9.12.

We set the wage elasticity of labor demand to η̃ = 4. With rational inattention on the side

of decision-makers in firms and households, decision-makers on the demand side of each market

have rational inattention. For this reason, the price elasticity of demand θ̃ will typically differ from

the preference parameter θ and the wage elasticity of labor demand η̃ will typically differ from the

technology parameter η. Throughout the rest of the paper, we set θ̃ = 4 and η̃ = 4, and we compute

the parameter θ that yields a price elasticity of demand of θ̃ = 4 and we compute the parameter η

that yields a wage elasticity of labor demand of η̃ = 4. Thus, we interpret the empirical evidence on

price elasticities of demand in the Industrial Organization literature as coming from data generated

by our model.39

We set the number of consumption goods to I = 1000. The parameter I has no effect on the

responses of the household’s composite consumption and the household’s real wage rate to shocks.

39A price elasticity of demand of four is within the range of estimates of the price elasticity of demand in the

Industrial Organization literature.
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The parameter I only affects the household’s choice of θ̃ and ξ. Put differently, the parameter I

only affects the parameter θ that yields θ̃ = 4.

We set the marginal cost of information flow equal to the utility equivalent of 0.1 percent of

the household’s steady state consumption: λ = (0.001)Cj ∗ C−γj . This value for the marginal

cost of information flow will imply that, in equilibrium, the expected per-period loss in utility

due to deviations of composite consumption and the real wage rate from the optimal decisions

under perfect information equals the utility equivalent of 0.06 percent of the household’s steady

state consumption. Put differently, to fully compensate the household for the expected discounted

sum of utility losses due to deviations of composite consumption and the real wage rate from the

optimal decisions under perfect information, it would be sufficient to give the household 1/1700 of

the household’s steady state consumption in every period. We think these are very small utility

losses.

We first solve the household’s attention problem (99)-(108) assuming that aggregate variables

and relative prices are given by the equilibrium of the benchmark economy presented in Section

7.3. That is, we study the optimal allocation of attention of an individual household when decision-

makers in firms have limited attention and all other households have perfect information. Figure

8 shows the impulse responses of the household’s composite consumption to a monetary policy

shock (upper panel) and to an aggregate technology shock (lower panel). The purple lines with

squares are the impulse responses under rational inattention. The green lines with circles are the

impulse responses under perfect information (i.e., the green lines with circles show what the house-

hold would do if the household had perfect information). The impulse responses of consumption

to shocks under rational inattention are very different from the impulse responses of consumption

to shocks under perfect information, despite the fact that for our parameter values the expected

per-period loss in utility due to deviations of composite consumption and the real wage rate from

the optimal decisions under perfect information is very small. Importantly, the impulse response of

consumption to a monetary policy shock is hump-shaped under rational inattention, whereas the

impulse response of consumption to a monetary policy shock is monotonic under perfect informa-

tion. Furthermore, after a shock to fundamentals composite consumption under rational inattention

differs from composite consumption under perfect information, but in the long run the difference

between the two impulse responses goes to zero. Similarly, after a shock to fundamentals real bond
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holdings under rational inattention differ from real bond holdings under perfect information, but in

the long run the difference between the two impulse responses (not reported here) goes to zero.40

In summary, under rational inattention composite consumption responds very slowly to shocks.

If the household had perfect information in each period like all other households, then composite

consumption of the household would equal the sum of current and future real interest rates (i.e.,

the long rate). The fact that the household responds very slowly with composite consumption to

shocks reflects the fact that the household decides to track movements in the real interest rate

imperfectly.

One might think that the result that a rational inattention household pays little attention to the

intertemporal consumption decision is due to the fact that the coefficient of relative risk aversion

is low, implying that deviations from the consumption Euler equation are cheap in utility terms.

Therefore, we studied what happens when we increase γ by a factor of 10 from our benchmark value

of γ = 1. As γ increases from 1 to 10, the attention devoted to the intertemporal consumption

decision increases by 50 percent and the ratio of the actual response to the optimal response

of consumption on impact of a monetary policy shock increases from 12 percent to 26 percent.

The household devotes more attention to the intertemporal consumption decision and therefore

consumption responds faster to a monetary policy shock. However, note that both for γ = 1

and for γ = 10, the household devotes little attention to the intertemporal consumption decision

and consumption responds slowly to a monetary policy shock. This is because there are two effects

working in opposite directions. Increasing γ raises utility losses in the case of deviations of composite

consumption from optimal composite consumption under perfect information. See equation (49).

This effect raises the attention devoted to the intertemporal consumption decision. On the other

hand, increasing γ lowers the coefficient on the real interest rate in the consumption Euler equation,

implying that being aware of movements in the real interest rate becomes less important. See

equation (52). This effect lowers the attention devoted to the intertemporal consumption decision.

For γ between 1 and 10, the first effect dominates, but only slightly.

Next, we present the equilibrium of the model under rational inattention by decision-makers

40We also find that the impulse responses of composite consumption and real bond holdings under rational inatten-

tion to the noise terms in equation (105) go to zero in the long run. In the version of the model where all households

solve the problem (99)-(108), this finding implies that neither the cross-sectional variance of consumption nor the

cross-sectional variance of real bond holdings diverges to infinity.
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in firms and rational inattention by households. We use the benchmark parameter values. We

compute the rational expectations equilibrium using the iterative procedure described in Section

8.2. Figure 9 shows the impulse responses of the price level, inflation, aggregate composite con-

sumption, and the nominal interest rate to a monetary policy shock. How do the impulse responses

to a monetary policy shock change when we add rational inattention by households? First, the

impulse response of aggregate composite consumption to a monetary policy shock becomes hump-

shaped. This is because households choose to pay little attention to movements in the real interest

rate and therefore respond slowly with their composite consumption to a monetary policy shock.

Second, the impulse response of the price level to a monetary policy shock becomes even more

dampened and delayed compared with the case of rational inattention by decision-makers in firms

and perfect information by households. The dampened and delayed response of aggregate compos-

ite consumption to monetary policy shocks makes decision-makers in firms pay even less attention

to monetary policy, implying that the price level responds even more slowly to a monetary policy

shock. Households’ optimal allocation of attention affects firms’ optimal allocation of attention.

Third, the two effects described above are counteracted to some extent by the Taylor rule. The

dampened response of consumption and inflation on impact of a monetary policy shock implies

that the nominal interest rate responds more strongly on impact of a monetary policy shock. This

increases to some extent the size of the response of consumption and inflation to a monetary policy

shock.

Figure 10 shows the impulse responses of the price level, inflation, aggregate composite con-

sumption, and the nominal interest rate to an aggregate technology shock. How do the impulse

responses to an aggregate technology shock change when we add rational inattention by house-

holds? The main change is that the impulse response of aggregate composite consumption becomes

even more dampened and delayed. This change is important quantitatively. In the case of rational

inattention by decision-makers in firms and perfect information by households, the growth rate of

aggregate composite consumption conditional on an aggregate technology shock has a serial corre-

lation of 0.38. When we add rational inattention by households, this number more than doubles, to

0.77. Carroll, Slacalek, and Sommer (2008) estimate that the growth rate of aggregate consumption

has a serial correlation of about 0.7, on average across countries. Their estimate for the U.S. is

0.83. This means that, once we add rational inattention by households, the model can match the
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large serial correlation of aggregate consumption growth in the data.

8.4 The effects of changes in parameter values

When we recompute the experiments reported in Section 7.4 with rational inattention by decision-

makers in firms and rational inattention by households, we obtain two main findings. The first

finding is qualitative. We confirm that the outcomes of experiments conducted with this model

differ markedly from the outcomes of the same experiments conducted with other DSGE models.

The reason remains that highlighted in Section 7.4: the allocation of attention varies with the

economic environment. The second finding is quantitative. The outcome of a particular experiment

may change in an important way after one adds rational inattention by households.

For example, recall that in Section 7.4 we point out two effects of an increase in the coefficient

on inflation in the Taylor rule on the volatility of the output gap. First, there is the standard

effect. As φπ increases, the nominal interest rate mimics more closely the real interest rate at the

efficient solution. Second, there is the effect due to the optimal allocation of attention by decision-

makers in firms. As φπ increases, decision-makers in firms decide to pay less attention to aggregate

conditions. In Section 7.4, we find that in the case of monetary policy shocks the second effect

dominates for values of φπ above 1.75. We find that the standard deviation of the output gap due

to monetary policy shocks is essentially constant until φπ = 1.75 and then rises. When we add

rational inattention by households, a third effect arises. As φπ increases, the amount of attention

that households allocate to aggregate conditions first rises and then falls. The amount of attention

that decision-makers in firms allocate to aggregate conditions falls monotonically, as before. In

equilibrium, the standard deviation of the output gap due to monetary policy shocks first rises,

peaking at φπ = 1.5, and then falls.

As another example, recall that in Section 7.4 we find that, as φπ increases, the standard

deviation of the output gap due to aggregate technology shocks first rises, peaking at 1.75, and

then falls. After adding rational inattention by households, we find that the peak occurs at φπ = 3.

The same three effects interact: the standard effect, the effect that the amount of attention that

decision-makers in firms allocate to aggregate conditions falls monotonically with φπ, and the

effect that the amount of attention that households allocate to aggregate conditions varies non-

monotonically with φπ.
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These findings suggest that the interaction between decision-makers in firms and households

under rational inattention is important for the outcomes of experiments.

8.5 Extension: Households set nominal wage rates

We have also solved the model assuming households set nominal wage rates instead of real wage

rates. See Sections 8.3 and 8.4 in Máckowiak and Wiederholt (2010). The main change is that

rational inattention by households now also causes deviations from the households’ intratemporal

optimality condition stating that the real wage rate should equal the marginal rate of substitution

between consumption and leisure. This has two implications. First, since inattention to aggregate

conditions now also causes deviations from the households’ intratemporal optimality condition,

households decide to pay somewhat more attention to aggregate conditions. This effect tends to

make the response of aggregate composite consumption to shocks somewhat stronger and faster. On

the other hand, since households set nominal wage rates instead of real wage rates and households

pay limited attention to aggregate conditions, the response of wage rates to shocks becomes more

dampened and delayed. This effect increases real effects of monetary policy shocks and increases the

distance between the efficient response and the actual response of output to an aggregate technology

shock. We chose to present the results with households setting real wage rates here because we

think that this version of the model exhibits in the most transparent way the effects of rational

inattention by households on the intertemporal consumption decision.

9 Conclusion

We develop and solve a DSGE model in which decision-makers in firms and households have limited

attention and decide how to allocate their attention. We find that impulse responses to aggregate

shocks display substantial inertia, despite the fact that profit losses and utility losses due to rational

inattention to aggregate conditions are small. This finding suggests that inertia usually modeled

with Calvo price setting, habit formation in consumption, and Calvo wage setting may have a dif-

ferent origin. Moreover, our model stands in stark contrast to standard business cycle models when

it comes to the mix of fast and slow adjustment of prices to shocks, profit losses due to deviations

of the actual price from the profit-maximizing price, and the outcomes of policy experiments.
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Much work remains ahead. One drawback of the model laid out here is the absence of capital.

The next step will be to add capital to the model and to estimate the two parameters that govern

slow adjustment, the marginal cost of information flow for the decision-maker in a firm and the

marginal cost of information flow for a household.
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A Non-stochastic steady state

In this appendix, we characterize the non-stochastic steady state of the economy described in

Section 2. We define a non-stochastic steady state as an equilibrium of the non-stochastic version

of the economy with the property that real quantities, relative prices, the nominal interest rate and

inflation are constant over time. In the following, variables without the subscript t denote values

in the non-stochastic steady state.

In this appendix, Pt denotes the following price index

Pt =

Ã
IX

i=1

P 1−θit

! 1
1−θ

, (109)

and Wt denotes the following wage index

Wt =

⎛⎝ JX
j=1

W 1−η
jt

⎞⎠ 1
1−η

. (110)

In the non-stochastic steady state, the households’ first-order conditions read

R

Π
=
1

β
, (111)

Cij

Cj
= P̂−θi , (112)

and

W̃j = ϕ
³
Ŵ−η

j L
´ψ

Cγ
j . (113)

The firms’ first-order conditions read

P̂i = W̃
1

α

³
P̂−θi C

´ 1
α
−1

, (114)

and

L̂ij = Ŵ−η
j . (115)

The firms’ price setting equation (114) implies that all firms set the same price in the non-

stochastic steady state. Households therefore consume the different consumption goods in equal

amounts, implying that all firms produce the same amount. Since in addition all firms have the

same technology in the non-stochastic steady state, all firms have the same composite labor input.
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It follows from the definition of the price index (109), the consumption aggregator (2) and the

definition of aggregate composite labor input (13) that

P̂ 1−θi =

µ
Cij

Cj

¶ θ−1
θ

=
Li

L
=
1

I
. (116)

Furthermore, in the non-stochastic version of the economy, all households face the same decision

problem, have the same information and their decision problem has a unique constant solution,

implying that all households choose the same consumption vector and set the same wage rate in

the non-stochastic steady state. Firms therefore hire the different types of labor in equal amounts.

It follows from the definition of aggregate composite consumption (12), the definition of the wage

index (110) and the labor aggregator (5) that

Cj

C
= Ŵ 1−η

j = L̂
η−1
η

ij =
1

J
. (117)

One can show that equations (111)-(117), Yi = Lα
i and Yi = P̂−θi C imply that all variables

appearing in equations (111)-(117) are uniquely determined apart from the nominal interest rate,

R, and inflation, Π. For ease of exposition, we select Π = 1. Equation (111) then implies R = (1/β).

Furthermore, the initial price level, P−1, is not determined. We assume that P−1 equals some value

P̄−1. For given initial real bond holdings
¡
Bj,−1/P̄−1

¢
, fiscal variables in the non-stochastic steady

state are uniquely determined by the requirement that real quantities are constant over time. The

reason is that real bond holdings are a real quantity and real bond holdings are constant over time

if and only if the government runs a balanced budget in real terms (i.e., real lump-sum taxes equal

the sum of real interest payments and real subsidy payments).
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Figure 1: Impulse responses, benchmark economy
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Figure 2: Impulse responses, benchmark economy
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Figure 3: Impulse response of an individual price to a firm-specific productivity shock, benchmark economy
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Figure 4: Impulse responses, benchmark economy and Calvo model
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Figure 5: Impulse responses, benchmark economy and Calvo model
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Figure 6: Standard deviation of output gap vs. parameter φπ, benchmark economy and Calvo model
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Figure 7: Impulse responses, firms' attention problem with signals

Note: Signals concerning pA*, pR*, and pI* (left column), signals concerning the price level, TFP, last period sales, and last period wage bill (right column).



0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Consumption to monetary policy

 

 

Utility-maximizing
Rational inattention, consumption and real wage chosen 

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Consumption to aggregate technology

 

 
Utility-maximizing
Rational inattention, consumption and real wage chosen

Figure 8: Impulse responses, households' problem



0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Price level to monetary policy

 

 
Rational inattention firms
Rational inattention firms and households

0 2 4 6 8 10 12 14 16 18 20

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Inflation to monetary policy

 

 

Rational inattention firms
Rational inattention firms and households

0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Consumption to monetary policy

 

 

Rational inattention firms
Rational inattention firms and households

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

Nominal interest rate to monetary policy

 

 
Rational inattention firms
Rational inattention firms and households

Figure 9: Impulse responses, benchmark economy
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Figure 10: Impulse responses, benchmark economy




