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Abstract

I study knowledge spillovers in an industry where firms are mobile and heteroge-

neous in their ability to adopt outside knowledge (absorptive capacity). I develop a

static model of industry agglomeration where, in equilibrium, the force of attraction

induced by spillovers is counteracted by the force of repulsion created by local com-

petition. The model is applied to a sample of the US software firms. I estimate the

structural parameters of the model and obtain the following results: (a) The data are

consistent with highly localized knowledge spillovers; (b) The attraction force induced

by spillovers creates a significant sorting pattern placing firms with higher absorptive

capacity in more agglomerated counties; (c) Ignoring firm heterogeneity in absorp-

tive capacity leads to substantially biased estimates of gains from spillovers in policy

experiments.
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1 Introduction

Knowledge spillovers lie at the heart of many economic theories. In models of endogenous

growth, cross-firm spillovers are essential in creating increasing returns to scale (Romer

(1986)). In urban and regional economic theories, geographically localized spillovers are

used to explain why economic activity tends to be densely concentrated in space (Glaeser

(1999)). In Ricardian models of international trade (e.g., Eaton and Kortum (2001)), the

lack of perfect cross-country spillovers is instrumental in generating trade flows. In the

development literature, localized spillovers are the source of persistent gaps in productivity

across countries (e.g., Feenstra (1996)). In the above theories, it is crucial to know the scope

of knowledge spillovers and the magnitude of their economic impact.

Quantifying knowledge spillovers is a difficult task as they are almost never directly

observed. A usual approach is to correlate each firm’s knowledge-generating activity to

the performance of its neighbors, assuming that the former causes the latter. However,

this approach may be problematic if spillovers affect firms differentially, i.e., if firms are

heterogeneous in absorptive capacity. An advanced technology firm built in a rural area

will not bring any benefits to its geographic neighbors, as they are likely to produce very

basic and simple products and not rely on the frontier technology. The same firm located

in a megapolis with hundreds of advanced competitors who are eager to find and adopt

latest inventions is likely to create a lot of positive externalities. To understand how a

spillover from location A affects firms at location B one has to answer two questions: What

is the spillover’s impact on a firm at B, given this firm’s absorptive capacity? What are the

absorptive capacities of firms attracted to B?

To create a framework for addressing these questions, I construct a structural model

of location choice in the presence of R&D spillovers, assuming unobserved heterogeneity

of firms in absorptive capacity. I demonstrate that, in equilibrium, firms that are more

responsive to spillovers tend to be over-represented in agglomerated locations. I show that

this spatial sorting pattern can be used to identify the model. Then, I apply the model to

data on production and locations of firms in the US software industry. I find evidence that

spillovers within this industry exist and are highly localized in space. I demonstrate that

the spatial sorting of firms by absorptive capacity produces substantial differences in the

economic impact of spillovers across geographic locations.

Location choice is modeled as a static two-period game. There is a fixed mass of firms,

which simultaneously choose locations in the first period. In the second period, which can

1



be thought of as consisting of several years, the firms produce varieties of a final good; the

firms cannot relocate or exit during this time. The firms have innate differences in absorptive

capacity and R&D stocks, which they are endowed with at the time of birth. R&D stocks

generate spillovers that decay with distance, which is consistent with a large literature in-

cluding Jaffe, Trajtenberg and Henderson (1993), Greenstone, Hornbeck and Moretti (2010),

Lychagin et al. (2010), to name just a few examples. Locations differ in wages, capital rental

rates and consumer demand; these location characteristics are exogenous.

In equilibrium, the location choice and hence the spatial distribution of firms is shaped

by three forces. First, there is an agglomerative force induced by spillovers. Since firms vary

in absorptive capacity, they respond differentially to this force: a firm who benefits more

from spillovers is drawn more strongly to agglomerated regions, even if these regions are

expensive and have tough competition. Second, there is a counteracting centrifugal force

induced by local competition in the final goods market. Finally, there is a dispersion force

caused by idiosyncratic location preferences of firm owners and managers.

Since the force induced by spillovers acts differentially on firms, it creates sorting. Iden-

tification of the model’s main parameters relies on detecting the magnitude of this sorting

pattern in the joint distribution of firm locations and absorptive capacities. While absorp-

tive capacities are not directly observed, their distribution can be inferred from a firm-level

panel dataset on the production occurring in the second period of the game. The temporal

dimension of the data permits the estimation of each firm’s absorptive capacity by correlat-

ing the variations in the firm’s total factor productivity to the variations in the R&D stocks

of its geographic neighbors. Although these firm-level estimates would be inaccurate in the

short panel setting, they can be used to precisely identify the joint density of firm absorptive

capacities and locations, if the number of firms in the sample grows to infinity. This density

is then fitted to the predictions of the location choice model in order to identify the model’s

key parameters.

In the empirical application, I focus on the US software industry. Software firms are highly

agglomerated around Silicon Valley in California and Boston, Massachusetts. It is commonly

believed that knowledge spillovers are partly responsible for this extreme agglomeration.

There is a body of anecdotal evidence that spillovers play an important part in software

development and that they are highly localized in space (e.g., Saxenian (1996) provides a

number of supporting stories). There is also evidence that the software industry features

significant firm heterogeneity in absorptive capacity (Matusik and Heely (2005)). The aim of

my empirical application is twofold: first, to determine how the impact and the geographic
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scope of spillovers are affected by the firm heterogeneity, and second, to quantify an overall

agglomerative force induced by spillovers.

The estimation results suggest that spillovers in the software industry are highly localized:

if the receiving firm’s absorptive capacity is kept fixed, the spillover’s productivity effect

declines by half at a distance of 59 kilometers from the spillover’s origin. I also find that the

pattern of spatial sorting by absorptive capacity is statistically significant. Spatial sorting

visibly distorts the scope of spillovers. For instance, simulations of the model show that a

spillover from San Jose, the center of Silicon Valley, has an impact in Alameda county almost

two times larger than in the less populated Santa Cruz county, although both counties are

approximately at the same distance from San Jose. Such difference in the effects of spillovers

takes place because Alameda firms have higher absorptive capacity.

By modeling knowledge spillovers and location choice in one setting, this paper brings

together the literature on knowledge production function, which finds its roots in the work

of Zvi Griliches, and the new economic geography literature pioneered by Krugman (1991).

This paper is also in line with an emerging interest within the urban and regional economic

literature in studying the consequences of the firm- and individual-level heterogeneity on

the spatial distribution of economic activity. Finally, my empirical approach is not only

applicable in the context of knowledge spillovers. It can be used to identify any other

agglomerative force affecting firm locations, for example, forces associated with labor market

pooling, or input sharing.

The literature on the knowledge production function relates each firm’s productivity to

the firm’s own R&D and spillovers from other firms. The effect and the properties of spillovers

are inferred by estimating a firm-level production function that includes R&D stocks of ge-

ographic neighbors in the firm’s total factor productivity term. The most recent examples

of papers that employ this technique include Orlando (2004), who studies spillovers within

a broad US industry defined by SIC 35, and Lychagin et al. (2010), who estimate semi-

parametrically how quickly spillovers decline with distance from the origin. Another related

paper (Keller (2002)) uses the same approach to study country-level knowledge diffusion.

All these works find evidence that spillovers exist, have positive impact on productivity, and

are geographically localized. They all assume that firms (countries, in the context of Keller)

are identical in their absorption of spillovers, and ignore the endogeneity of location choice.

My paper contributes to this literature by relaxing these two assumptions.

The new economic geography literature provides me with an analytically tractable frame-

work for studying agglomeration: a “footloose capital” model by Martin and Rogers (1995).
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I modify their model by introducing distance-mediated knowledge spillovers, which create an

agglomeration force, idiosyncratic location preferences, which ensure that this force does not

generate “black hole” cities, and, most importantly, firm heterogeneity in absorptive capac-

ity. I contribute to this literature by showing that the unobserved heterogeneity in absorptive

capacity can be used to identify the agglomeration force induced by R&D spillovers, if one

has suitable panel data (in my case, balance sheet items) to obtain the joint distribution of

firm locations and absorptive capacity.

This paper is also related to a new strand of literature on urban and regional economics

that focuses on spatial sorting of heterogeneous firms and individuals across cities, and

aims at distinguishing the effect of sorting from the benefits of agglomeration. For example,

Baldwin and Okubo (2006) construct a model of reallocation that introduces costly migration

into the Melitz framework and shows that the more productive firms are the first to leave

their home regions to serve the biggest market. Combes et al. (2009) show that agglomeration

economies and firm selection have different effects on the distribution of firm productivity

within cities, which helps to identify the relative contributions of these factors into the

cross-city differences in average productivity. Behrens, Duranton and Robert-Nicoud (2010)

study a model of location decisions by heterogeneous workers, which predicts that the more

productive workers choose to be in the bigger cities. Unlike these theories, which focus

on sorting by innate productivity, I construct the model to focus on sorting by absorptive

capacity. My identification technique provides a new way of distinguishing the effect of

agglomeration from the effect of sorting.

Finally, the empirical approach developed in my paper is not restricted to spillovers; it

can be applied to infer the strength of any other agglomeration force. To date, the literature

that aimed at decomposing the contributions of various forces into the spatial distribution of

economic activity relied on reduced form equations where observations represent industries.

A usual approach was to relate some measure of geographic concentration in a given industry

to a set of proxy variables that indicate the importance of different agglomeration forces. Ex-

amples of such work include Audretsch and Feldman (1996), Rosenthal and Strange (2001),

Ellison, Glaeser and Kerr (2010).

The next section of the paper lays out a model of location choice in the presence of

spillovers that can be taken to the data. Section 3 links the model tightly to estimation and

shows that its key elements are identified from firm-level data on locations and balance sheet

items. Section 4 then proposes an estimation method. This method is applied to data on

the US software industry in Section 5. Finally, Section 6 summarizes main findings.
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2 A Model of Location Choice

There are L locations (cities) indexed by either l or m; l,m ∈ {1, . . . , L},. Cities are

populated by immobile consumers with CES preferences defined on all available varieties of

a final good. Consumers in city m spend an exogenous amount Em on the final good, which

captures the size of local demand. There is a unit mass of infinitely small firms indexed by

i ∈ Ω that are free to choose their locations. Each firm produces one distinct variety of the

final good; the varieties can be shipped to any city.

When the firm is born, it has a stock of R&D (Ri). To simplify the analysis, Ri is

assumed to be exogenous. A part of this R&D stock may spill over to other firms, increasing

their profitability. Firms differ in their innate ability to adopt and commercialize spillovers;

this is captured by a firm specific parameter αi (absorptive capacity).1 As shown later in

this section, different locations provide different advantages to the firm: they may vary in

the level of wages, the degree of local competition, or proximity to firms generating high

spillovers. Aside from these factors, the firm’s location preferences are also affected by an

idiosyncratic component εil. This component captures monetary payoffs (e.g., the firm may

be able to secure location incentives from officials at certain places), as well as non-monetary

benefits (e.g., a CEO of the firm may prefer the city where he was born) received by the firm

at location l. Finally, the firm is characterized by an idiosyncratic productivity shock ϕi. In

total, firms are heterogeneous in L+ 3 dimensions: Ri, αi, ϕi, and {εil}Ll=1.

2.1 Timing

Location choice and production are modeled as a Nash equilibrium in a static game with the

following sequence of events:

Period 0 A unit mass of firms is born. At the time of birth, each firm is endowed with a

vector of characteristics: [αi, Ri, ϕi, εi1, . . . , εiL].

Period 1 Firms simultaneously choose locations. A firm is allowed to have only one loca-

tion.

1An influential strand of literature originating from Cohen and Levinthal (1989) suggests that the firm’s
R&D effort and absorptive capacity are endogenous and closely interrelated. By investing into R&D, the firm
improves its awareness of useful knowledge available for adoption, hence increasing its absorptive capacity.
Although in principle this mechanism could be incorporated in the model, it is shut down to keep the
identification argument as simple as possible.
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Period 2 Given locations, firms set prices in each city, produce output, and ship it to the

consumers.

2.2 Demand

Each city is inhabited by consumers with CES preferences:

Um =

(∫
i∈Ω

Q
(σ−1)/σ
im di

)σ/(σ−1)

, σ > 1

where index i is used to denote a variety produced by firm i.

Given that consumers in city m spend an exogenous amount Em on the final good, one

can easily find the demand for each variety:

Qim(pim) =
Em
Pm

(
pim
Pm

)−σ
(1)

The demand depends on Pm, a location-specific price index defined in a standard way:

Pm =

(∫
i∈Ω

p1−σ
im di

)1/(1−σ)

2.3 Supply

There is a unit mass of infinitely small single-variety single-location firms. The firms’ profits

are location specific; they are derived below from equilibrium conditions for the final goods

market in each city.

Firms produce output using capital and labor in a constant returns to scale Cobb-Douglas

technology with a Hicks-neutral total factor productivity (TFP) term Ai:

Qi = AiK
βk
i L

βl
i

Total factor productivity depends on three components: own stock of R&D, Ri, spillovers

from other firms’ R&D received at location l, Sl, and the firm-specific productivity shock,

ϕi:

Ai = Rβr
i S

αi
l ϕi

where the parameter αi captures the absorptive capacity of firm i.2

2Firms in a single narrowly defined industry can differ in absorptive capacity for a number of reasons.
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Spillovers originate from stocks of R&D; their intensity declines with distance from their

origin3:

Sl =
L∑

m=1

e−λρ(l,m)Rm, Rm =

∫
i∈Ω
li=m

Ridi (2)

where m indexes cities, li is the location of firm i, ρ(·, ·) is the geographic distance.

The constant returns to scale production technology implies that the marginal cost func-

tion is constant and has the following form:

mcil =
c(wl, rl)

Rβr
i S

αi
l ϕi

Apart from the productivity term in the denominator, the marginal cost depends on wl and

rl, the location-specific factor prices. Both wl and rl are assumed to be exogenous.

In addition to the cost of production, firms face a cost of transportation4. The value of

a good produced in city l declines with distance to the city where the good is consumed.

This is captured by the iceberg cost τlm. Producer has to ship τlm units of the good from

the origin city l, in order to have one unit arrive to destination m.

2.4 Payoffs to firms

Profit of firm i located in city l earned from sales at market m equals the price-cost markup

multiplied by the quantity sold:

Πilm = max
pilm

(
pilm − τlm

c(wl, rl)

Rβr
i S

αi
l ϕi

)
Qim(pilm)

For example, developing some products entails an inherent uncertainty in the type of knowledge needed to
complete the development project and to tailor the product to the needs of consumers. Firms designing
such products have to rely on the outside knowledge more frequently. Thus, they receive more benefits from
being exposed to spillovers. Other determinants of absorptive capacity are closely studied in the management
literature. One example studying specifically the US software industry is Matusik and Heely (2005).

3The decay of spillovers with distance reflects the costs of communication. Although modern technologies
make phone calls and electronic correspondence very cheap, some part of knowledge cannot be efficiently
transmitted by means other than face-to-face contact. In addition, geographic proximity provides more
opportunities for networking: new research ideas can be informally exchanged during an occasional lunch
with colleagues from other firms.

4In the software industry, transportation of the final product is virtually costless. At the same time,
software products are often accompanied by support and consulting services that involve interactions between
customers and developers. Spatial proximity facilitates these interactions by reducing the costs of face-to-face
contact and thus increasing the total value of the product for consumers.
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The firm chooses its profit-maximizing price pilm, taking the R&D spillovers and the price

index as given, where

pilm =
σ

σ − 1
τlm

c(wl, rl)

Rβr
i S

αi
l ϕi

(3)

Substituting the price back to the profit equation yields an expression for the maximized

value of profits:

Πilm =
EmP

σ−1
m

σ

(
σ − 1

σ

Rβr
i S

αi
l ϕi

c(wl, rl)τlm

)σ−1

=
1

σ

(
σ − 1

σ

Rβr
i S

αi
l ϕi

c(wl, rl)

)σ−1

Em

(
Pm
τlm

)σ−1

By summing firm i’s profits across all destinations, one obtains the total profit of the firm,

given that the firm is located in city l:

Πil =
1

σ

(
σ − 1

σ

Rβr
i S

αi
l ϕi

c(wl, rl)

)σ−1∑
m

Em

(
Pm
τlm

)σ−1

(4)

The price index in market m is found by integrating over the price set by firms:

Pm =
σ

σ − 1

∫
j∈Ω

(
Rβr
j S

αj
lj
ϕi

c(wlj , rlj)τljm

)σ−1

dj

− 1
σ−1

(5)

Note that the R&D stock of firm j affects firm i’s profit via two channels: spillovers and

prices.

First, Rj affects firm i’s profits positively by increasing spillovers term Sl in equation (4).

The magnitude of this effect depends on the firm specific absorptive capacity, αi, and thus

varies across firms.

Second, an increase in Rj makes firm j and its neighbors more productive, which drives

down the price indices in all cities. Firm j’s R&D stock has a direct and an indirect effect

on price. If Rj is increased, firm j becomes more productive (direct effect). Part of Rj spills

over to other competitors of firm i making them more productive, too (indirect effect). Both

effects put a downward pressure on the price indices in all markets and reduce profits of firm

i. The magnitude of the combined effect is the same for all firms at a given location. It

declines with distance from the location of firm j, due to increasing transport costs and the
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decay of spillovers with distance.

2.5 Location choice

Before starting production and earning profits, each firm has to settle at some location.

Location preferences of firms have two components: the profit, Πil, and the idiosyncratic

preference shock, drawn at the time of the firm’s birth, {εil}Ll=1. Preferences Π∗il are defined as

a product of Πil and eεil . Firms can be thought of as maximizing a monotone transformation

of Π∗il,

π∗il = log Πil + εil

After substituting the expression for profit from (4), one obtains

π∗il = log

[
1

σ

(
σ − 1

σ
Rβr
i ϕi

)σ−1
]

+ log

[∑
m

Em

(
Pm
τlm

)σ−1
]

− (σ − 1) log c(wl, rl) + (σ − 1)αi logSl + εil

To simplify the algebra, I assume that location preference shocks εil have a type I extreme

value distribution with a constant but arbitrary scale parameter b and are independent across

firms and locations. Then, I rescale the payoff equation so that the mean and the variance of

the rescaled preference shocks satisfy the usual assumptions of the multinomial logit model.

The rescaling parameter is 1/b, which gives

π∗il
b︸︷︷︸
π̃∗il

=
1

b
log

[
1

σ

(
σ − 1

σ
Rβr
i ϕi

)σ−1
]

︸ ︷︷ ︸
fi

+
1

b
log

[
c(wl, rl)

1−σ
∑
m

Em

(
Pm
τlm

)σ−1
]

︸ ︷︷ ︸
al

+
(σ − 1)

b︸ ︷︷ ︸
γ

αi logSl +
εil
b︸︷︷︸
ε̃il

The payoff variable and the idiosyncratic component are relabeled as π̃∗il and ε̃il. The constant

coefficient of the spillover term is denoted as γ. The remaining parts of the equation are

collected under a firm specific term fi and a location specific term al:

π̃∗il = fi + al + γαi lnSl + ε̃il
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Firm i chooses a location that maximizes the firm’s payoff:

li = arg max
l

(fi + al + γαi lnSl + ε̃il) (6)

Location choice is driven by three forces. First, there are location-specific factors that are

common to all firms, captured by the location fixed effect, al. These factors include proximity

to consumers, prices in the final good markets, and the level of local input costs. Second,

there are knowledge spillovers that the firm expects to receive at location l. Spillovers

affect firms differentially: firms with higher values of αi are drawn stronger to high-spillover

locations. Parameter γ determines the overall strength of this force. Finally, there is a

random shock ε̃, which reflects the idiosyncratic part of the location preferences. The firm

specific term fi does not affect location choice.

2.6 Equilibrium

An equilibrium of the game is characterized by

1. Locations of all firms, {li}i∈Ω

2. Pricing decisions of every firm in every market m, {pilm}Ll,m=1,i∈Ω, given an arbitrary

own location l (this includes off-equilibrium locations)

Local wages, rental rates, and consumer expenditures are exogenously given. In principle,

labor and capital markets could be explicitly modeled here in exactly the same way as the

final goods market. However, I choose not to do so to keep the model simple.

In equilibrium, each firm chooses the location and the prices that maximize the firm’s

payoffs, given actions of other firms. This defines a best response mapping from the set of

location and pricing decisions of all firms into itself. An equilibrium, by definition, is a fixed

point of this best response mapping.

The equilibrium is guaranteed to exist; the proof using the Brouwer fixed point theorem

can be found in the Appendix. However, it is not always unique. Uniqueness tends to occur

if firms are repelled from each other strongly enough. For example, Seim (2006) shows that

in a special case of her spatial competition model the equilibrium is unique. However, if

the dispersion force induced by competition becomes dominated by the agglomeration force

induced by spillovers, multiple equilibria may arise.

To illustrate, I set up and solve a simple version of the model with two symmetric cities,

assuming that all firms have the same absorptive capacities and R&D stocks (αi = 1, Ri = 1).
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Figure 1: Multiple equilibria in the two-city model

Given τ , the iceberg cost parameter, all equilibria in the game are found as follows. Let n1

be a share of firms located in city 1. Since R&D stocks are deterministic and uniform, one

can find the aggregate R&D stock and the spillovers for both cities, Rl and Sl. The spatial

distribution of firms, {nl}Ll=1, and spillovers, {Sl}Ll=1, determine price indices in equation (5),

which are used to obtain location fixed effects al. Given al and Sl, one can solve the location

choice problem (6) and find a share of firms that are willing to be located in city 1. This

share is depicted in Figure 1a as a solid curve. In equilibrium, it should be equal to n1; that

is, the solid curve should intersect the 45 degree line.

The equilibria are found for a number of values of the iceberg cost parameter. The

results are depicted in Figure 1b. When the transportation cost is high, competition in

the final goods market is highly localized. Hence, firms try to avoid locating in cities with

many competitors, and agglomerations do not arise. As the transportation cost falls, it is

no longer possible to escape competition in less populated cities. The benefits of receiving

more spillovers from geographic neighbors outweigh the negative effect of competition on

profits. This gives rise to equilibria with asymmetric distributions of firms across cities. The

idiosyncratic shock in the location preferences ensures that every city is always populated

by a non-zero share of firms.

2.7 The sorting property

All equilibria of the location choice model have one important property that is used later in

the empirical exercise to test whether the model’s implications are consistent with data.

Firms are heterogeneous in the benefits they draw from spillovers. Consequently, firms

with high absorptive capacity, αi, are attracted to high-spillover locations relatively stronger
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than firms with low αi. This creates spatial sorting of firms by their absorptive capacity.

Proposition 1. Consider any equilibrium of the model. Let l1 and l2 be two locations such

that Sl2 > Sl1 in this equilibrium. In equilibrium, the firms are spatially sorted by α. In

fact, the distribution of firms’ absorptive capacities at location l2 stochastically dominates

the distribution at l1:

F (α|l2) < F (α|l1)

Proof. See Appendix.

In the empirical exercise, it is found that the above sorting pattern does exist in data:

firms with high absorptive capacities tend to be overrepresented in high-spillover cities.

3 Identification

This section shows how to identify the key elements of the model that affect location choice

and the geographic scope of spillovers. It contains the two main innovations of the paper.

First, it is shown that firm-level data on production can be used to identify the pattern

of firm heterogeneity in absorptive capacity and find how this pattern varies across firms in

geographic space. Unlike the related studies in the agglomeration literature that use proxies,

this paper infers absorptive capacity of individual firms directly from fluctuations in firm

productivity attributed to spillovers.

Second, it is demonstrated that the spatial pattern of absorptive capacities found above

can be used to identify the location choice problem. Identification does not require the

econometrician to observe all factors affecting firm location, such as local wages or consumer

demand.

3.1 Production function

First, it is shown that data on output, factor inputs, R&D, and firm locations can be used

to identify the determinants of each firm’s productivity, including the joint distribution of

firms’ absorptive capacities and locations, f(αi, li), and the spillovers’ distance decay rate,

λ.

Identification relies on the temporal variation in the production function components. To

introduce the time dimension, the production period is subdivided into T years, indexed by
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t = 1, . . . , T . Available data provide a snapshot of every firm’s operations in each of these

years.

Output of firm i in year t is denoted as Qit. The production function has the same

structure as before:

Qit = AitK
βk
it L

βl
it , Ait = Rβr

it S
αi
lit
ϕit

Time variation in output comes from a number of sources, working together as follows:

1. Rit is determined exogenously. It is drawn at the time of the firm’s birth from some

known distribution. This determines the time path of Rit.

2. Variation in spillovers, Slit, is caused by variation in R&D stocks of individual firms.

3. The productivity shock, ϕit, is a catch-all term that accounts for productivity variation

not caused by own R&D or spillovers. It is further subdivided into three parts: ϕit =

ϕiVtWit, where ϕi is the constant component drawn by the firm at the time of birth,

Vt – a common time-varying component, Wit – a residual part.

4. Capital and labor are adjusted by the firm each year, in response to time variation in

factor prices, consumer expenditures and own productivity.

After taking logarithms, the production function becomes linear:

qit = βl logLit + βk logKit + βr logRit + αi logSlit + ui + vt + wit (7)

Lower-case letters denote logarithms.

Assumption 1. Labor and capital are predetermined variables. That is, firms observe wit

only after choosing Kit and Lit.

This assumption rules out a possibility that wit has a time-varying part not observed

by the econometrician, but observed by the firm at the time when capital and labor are

adjusted. Examples of such variables, observable to firms but not the econometrician, may

include the quality of labor, or intangible assets other than the R&D stock.

Assumption 2. The idiosyncratic productivity shock wit is independent across time, inde-

pendent of the firm’s location, own R&D stock, aggregate R&D stocks of all firms, factor

prices and consumer expenditures.
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This is a very restrictive assumption. It fails if the random productivity shock is persistent

in time, or if productivity is more unpredictable and dispersed for more R&D-intensive firms.

Taken together, these assumptions ensure that wit, the error term in the production

function equation, is strictly exogenous. In particular, factor inputs are not correlated with

the error term, even though they are endogenously chosen.

Equation (7) is used to identify parameters β and λ common to all firms5, as well as the

joint distribution of firm locations and absorptive capacities, f(αi, li).

3.1.1 Identifying the common parameters

To identify common parameters β and λ, this paper uses a standard technique from the

literature on random-coefficient panel data models (e.g. Arellano and Bonhomme (2009),

Wooldridge (2005)). This technique relies on transforming equation (7) to eliminate the

firm-specific slope and intercept, αi and ui.

This transformation is convenient to define, if equation (7) is rewritten in the vector

form:

qi =ziβ + xi(λ)

[
αi

ui

]
+ wi, where (8)

xit(λ) = [log Slit(λ), 1]

zit = [logKit, logLit, logRit, δ1t, . . . , δTt]

δ1, . . . , δT – year dummies

Define transformation matrix Mi as

Mi(λ) = IT − xi(x
′
ixi)

−1x′i

A vector multiplied by this matrix gets projected on a linear space orthogonal to x. It is

easy to see from the definition of Mi that Mixi = 0. Multiplying both parts of equation (8)

by Mi removes the firm-specific components:

Miqi = Miziβ + Miwi (9)

Strict exogeneity of the error term, ensured by Assumptions 1 and 2, gives a moment condi-

5Recall, that the spillover term is parametrized by λ (see equation (2))
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tion that is used to identify the common parameters:

E[Mi(λ)(qi − ziβ)|zi, {Rm}Lm=1, li] = 0 (10)

The list of conditioning variables includes {Rm}Lm=1, a vector of aggregate R&D stocks for all

years and locations, and li, firm i’s location. These two variables are required for computing

log Sli ; conditioning on log Sli itself is impossible, since it depends on the unknown parameter

λ.

3.1.2 Identifying the absorptive capacities

Knowing common parameters β and λ, one can use equation (8) to obtain information about

firm specific absorptive capacities, αi.

Identification of αi relies on the dataset’s time dimension. In a short panel setting, which

is implicitly assumed throughout the paper, it is only feasible to obtain a noisy estimate of

αi.

For example, consider a naive least squares estimator for αi and ui:[
α̂i

ûi

]
= (x′ixi)

−1x′i(qi − ziβ), (11)

The estimate of αi is contaminated by a finite error term, νi, which does not vanish as the

number of firms in the sample increases to infinity, while the number of years stays fixed:

α̂i = αi + νi = αi +

∑
t(logSit − logSi)(wit − wi)∑

t(logSit − logSi)
2

(12)

Note, that the magnitude of νi is inversely proportional to the variance of spillovers received

by firm i. If this variance is small, α̂i is a very noisy estimate of αi.

Even though the absorptive capacities cannot be identified separately for each firm, equa-

tion (8) still provides enough information to identify the distribution of absorptive capacities.

Arellano and Bonhomme (2009) show that under the following independence assumption,

one should be able to identify the distribution of absorptive capacities for each location,

fα|l(αi|li).

Assumption 3. The vector of idiosyncratic productivity shocks, wi, and the absorptive

capacity of firm i, αi, are independent given zi, {Rm}Lm=1, and li.
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This assumption would fail to hold if, for example, low absorptive capacity is determined

by a rigid organizational structure of the firm that at the same time isolates the firm from high

productivity shocks. This will create a negative dependence between αi and the covariance

matrix of wi, which violates the latter assumption.

Intuitively, since wi and αi are conditionally independent, the error term νi in equation

(12) is also conditionally independent of αi. Hence, if the distribution of wi is known or can

be somehow identified, one can find the conditional density of νi and separate it from the

conditional density of αi using a non-parametric deconvolution. Arellano and Bonhomme

(2009) provide a detailed treatment of this argument.

Knowing fα|l(αi|li), one can obtain the joint density of firm absorptive capacities and

locations by taking a product of fα|l(αi|li) and the share of firms at location li, nli . Thus,

the joint density f(αi, li) is identified.

3.2 Location choice problem

The spatial pattern of the firms’ absorptive capacities found above is used to identify the

parameters that shape the geographic distribution of firms in equation (6). These parameters

include location fixed effects {al}Ll=1, which capture forces induced by local competition and

factor prices, and the attraction parameter γ, which reflects the overall influence of spillovers

on location choice.

The identification argument goes in two steps. First, it is shown that γ is identified from

the pattern of spatial sorting by absorptive capacity. Then, it is demonstrated that one can

identify {al}Ll=1 given γ.

3.2.1 Identifying spillover-induced attraction force

To find γ, the location choice problem (6) is solved conditional on absorptive capacity, α.

Denote as nl(α) the conditional share of firms choosing location l. Due to the multinomial

logit assumption, the location choice problem has a simple closed form solution:

nl(α) =
exp(al + γα logSl)∑
m exp(am + γα logSm)

(13)

Let l1 and l2 be two locations such that Sl2 6= Sl1 ; let α1 and α2 be arbitrary values of

absorptive capacity. The latter equation can be used to obtain a relationship between shares
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of firms with absorptive capacities α1 and α2 at locations l1 and l2:

nl1(α1)

nl2(α1)
= exp

[
γ(α1 − α2) log

Sl1
Sl2

]
nl1(α2)

nl2(α2)

This equation can be solved for γ:

γ = log

[
nl1(α1)

nl2(α1)

nl2(α2)

nl1(α2)

] [
(α1 − α2) log

Sl1
Sl2

]−1

Note that nl(α) is a conditional distribution, defined as nl(α) = f(α, l)/fα(α), which implies

γ =

[
log

f(α1, l1)

f(α2, l1)
− log

f(α1, l2)

f(α2, l2)

]
[(α1 − α2)(logSl1 − logSl2)]−1 (14)

Intuitively, the attraction parameter γ relates the variation of firms’ absorptive capacities

across locations to the variation in spillovers these locations offer. The equation is well

defined if all four combinations of α and l lie in the support of joint density f(·, ·). The right

hand side of this equation is identified from the production function for any given pair of α1

and α2. Hence, γ is also identified.

3.2.2 Identifying location fixed effects.

Given γ, one can identify the location fixed effects from equation (6). Consider the same

pair of locations l1 and l2 as above. Use equation (13) and the definition of conditional

probability to obtain

f(α, l1) = eal1−al2

(
Sl1
Sl2

)γα
f(α, l2)

Integrate α out to determine the overall popularity of l1:∫
f(α, l1)dα = eal1−al2

∫ (
Sl1
Sl2

)γα
f(α, l2)dα

This equation can be solved for al2 :

al2 = al1 + log

[∫ (
Sl1
Sl2

)γα
f(α, l2)dα

]
− log

[∫
f(α, l1)dα

]
Note that the location fixed effects are identified up to an arbitrary additive constant. If one

normalizes al1 to zero, the latter equation can be used to identify location fixed effect al2 for
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an arbitrary location l2.

4 Estimation

This section discusses an estimation procedure used in the empirical exercise. The procedure

consists of two main steps:

1. The production function (7) is estimated in a GMM framework using the moment

condition given in (10). This yields common production function parameters, β and

λ, and naive OLS estimates of firm-specific absorptive capacities, {α̂i}i∈Ω.

2. The location choice problem (6) is solved and estimated by a method of maximum

likelihood using λ and {α̂i}i∈Θ obtained above. Estimated in this step are the attraction

parameter, γ, and the location fixed effects, {al}Ll=1.

The details on these two steps are outlined in what follows.

4.1 The production function

Using GMM to estimate equation (7) is relatively straightforward; the asymptotic properties

of this estimator are studied in a great detail in Arellano and Bonhomme (2009).

However, there is one important issue that arises due to data limitations. Instead of

using a direct measure of output, this paper has to rely on revenue data. Replacing output

with revenue in equation (7) makes the estimation results more difficult to interpret.

This issue is generic for a big part of literature studying firm productivity. Firm-level

prices or physical output are almost never available in a typical dataset. The consequences

of using revenue in place of output are discussed at length in Griliches and Mairesse (1995)

and Katayama, Lu and Tybout (2009).

In the current setting, replacing output with revenue has two effects on the estimates.

First, β and α become biased by a factor of (σ − 1)/σ. As demonstrated by Griliches and

Mairesse (1995), this may result in a spuriously observed decreasing returns to scale even if

the underlying technology exhibits constant returns, i.e. (βl + βk)(σ − 1)/σ < 1, although

βl + βk = 1.

Second, the estimation mixes knowledge spillovers (a positive effect of firm j’s R&D on

firm i’s productivity) with pecuniary spillovers (a negative effect of firm j’s R&D on the price

index faced by firm i). Since knowledge and pecuniary spillovers both affect the revenue and
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decline with distance from firm j, estimated αi picks up their combined effect and therefore

should be interpreted accordingly.

4.2 Location choice problem

The production function provides an estimate of the spillover decay parameter, λ, and naive

OLS estimates of the firm-specific absorptive capacities, α̂i. These are the two missing pieces

that are needed to estimate the location choice problem (6).

The estimation is implemented as a maximum likelihood procedure. The likelihood func-

tion is obtained from the predictions of the location choice problem, stated in (13). Equation

(13), though, cannot be used directly; it makes predictions about the true absorptive capac-

ities, αi, which are neither observed nor identified. Hence, it has to be transformed to find

the model’s predictions about α̂i, the naive OLS estimate of αi.

Recall, that α̂i, defined in equation (12), is a noisy estimate of αi. The noise, denoted

as νi, depends on the residual from the production function equation, wit. To obtain the

distribution of α̂i from the distribution of αi, and vice versa, one has to know the density of

wit.

Assumption 4. Idiosyncratic productivity shocks wit have normal distribution with zero

mean and an unknown variance σ2
w.

In principle, this assumption (together with the ones made earlier) is enough to identify

and estimate fα(·), the marginal density of αi, non-parametrically. However, to make the

estimation procedure more straightforward, the latter density is parametrized as well.

Assumption 5. The marginal distribution of the firms’ absorptive capacities is normal, with

an unknown mean µα, and an unknown variance σ2
α.

The objective is to find a likelihood function for measured absorptive capacity and firm

location, f(α̂i, li; θ). The unknown parameters include location fixed effects, attraction pa-

rameter γ, and the parameters of the distributions introduced in the latter two assumptions:

θ = [{al}Ll=1, γ, σ
2
w, µα, σ

2
α]′. This vector is likely to have very high dimensionality (if geo-

graphic space is discretized at a level of county, {al}Ll=1 alone has more than 3,000 elements).

High dimensionality may cause problems during numerical maximization of the likelihood

function. Therefore, {al}Ll=1 and σ2
w are estimated separately. The estimation of σ2

w is dis-

cussed in the Appendix. Details on {al}Ll=1 are presented below.

An iteration of the maximum likelihood algorithm is organized as follows:
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1. Choose some initial guess for θ0 = [µα, σ
2
α, γ].

2. Integrate α out from equation (13) and take logarithms:

log nl = al + log

∫
exp(αγ logSl)fα(α;µα, σ

2
α)∑L

m=1 exp(am + αγ logSm)
dα

Spillover decay parameter λ is known from the production function estimates, hence

Sl is also known at this point. The spatial distribution of firms, {nl}Ll=1 is estimated

non-parametrically in advance. Let H be a mapping defined below that takes location

fixed effects a = {al}Ll=1 as an argument

H(a; θ0) = log nl − log

∫
exp(αγ logSl)fα(α;µα, σ

2
α)∑L

m=1 exp(am + αγ logSm)
dα

Berry, Levinsohn and Pakes (1995) show that H(a; θ0) is a contraction mapping, and

that a solution of a = H(a; θ0) is unique up to an additive constant. Starting from

an arbitrary initial guess, a0, one can use this mapping recursively to find â(θ0), an

approximate solution.

3. The estimated location fixed effects are substituted to equation (13), which is then

transformed to yield the density of absorptive capacities conditional on location:

fα|l(α; θ0) =
exp(âl + αγ logSl)∑L

m=1 exp(âm + αγ logSm)

fα(α;µα, σ
2
α)

nl

4. The latter density has to be convolved with the density of νi to obtain the distribution

of α̂i. In the process, everything is conditioned on location l; since spillovers are

determined by location, one can use the density of wit to derive the conditional density

of νi from equation (12) (see Appendix for details). After convolving fα|l(α; θ0) and

fν|l(ν; θ0), one obtains the joint distribution of locations and the naive OLS estimates

of absorptive capacities:

f(l, α̂; θ0) = nl

∫
fα|l(α̂− ν; θ0)fν|l(ν; θ0)dν

5. Compute the log likelihood function L(θ0) =
∑

i log f(li, α̂i; θ0). If θ0 does not attain

the maximum of L(·), start over.
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5 Data and Results

5.1 Data description

The dataset used in the empirical exercise is a subsample of the Standard and Poor’s Com-

pustat, focusing on a single 4-digit industry. The sample includes domestic firms whose

primary activity is in the development of software products (SIC code 7372, NAICS 4-digit

code 5112). The type of primary activity is inferred for each firm from the main Compustat

file, the Segments data, and, whenever the first two sources are conflicting or silent, from the

companies’ 10-K reports. Sometimes a firm may switch or slowly drift away from software

development to another product or service. In such cases, those time periods are excluded

from the firm’s data.

The choice of industry for the empirical application was dictated by three requirements:

high R&D, young age, and large sample size. First, R&D should play an important role

in the industry’s production process; judging by the ratio of R&D expenditures to sales,

software development is one of the most R&D intensive industries in the U.S. economy. As

commonly assumed in the literature, R&D to sales ratio reflects the overall importance of

spillovers in the industry (Audretsch and Feldman (1996), Rosenthal and Strange (2001)).

Second, the software industry is relatively young. In an old industry locations of existing

firms may reflect distant history rather than current economic reality. The U.S. software

industry as we know it emerged in 1970-1980s. Since these years, the main geographic

centers of activity in this industry have not changed much. The forces that attracted firms

to Silicon Valley in early years of this industry seem to stay potent over time.

Finally, software development is one of the most populous 4-digit industries in the sample

of Compustat firms. The requirement that the sample size should be large enough ruled out

such candidates as biotechnology and semiconductors.

The sample of Compustat firms is by no means representative of the entire industry.

Table 1 compares the sample used in this paper to the total universe of software companies

in terms of firm size. Compustat firms tend to be an order of magnitude larger both in sales

and employment.

Table 1 also shows that the total R&D expenditures of the Compustat firms are very

close to the total national R&D reported in the NSF Survey. Accounting methods used by

the NSF are known to produce conservative figures6. However, even if the NSF figure is 50%

6For instance, this fact is documented and investigated for the pharmaceutical industry (Congressional
Budget Office (2006)). Independent estimates of R&D in this industry are twice as large as the NSF numbers
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Table 1: Data coverage, NAICS 5112, year 2002

Data set Compustat Economic NSF Survey of
Census 2002 Industrial R&D

Sales average 293 14
total 95,554 103,505

Employees average 1,096 48
total 357,305 356,708

R&D expenditures average 48 3.7
total 15,760 12,927

Number of firms 326 7,370 3,457

Notes:
All monetary values are in 2002 prices, $million.
Compustat data set is based on the companies’ 10-K reports; reported numbers
may include the balance sheet items of foreign affiliates
Census 2002 covers business establishments located within the U.S.
NSF Survey covers R&D performed at domestic facilities. Data source: National
Science Foundation (2006).

lower than the actual expenditures, the Compustat data still captures a decent share of a

research activity in the industry. Summary statistics for all years of the data are presented

in Table 2.

The stock of R&D is constructed for each firm from its annual R&D expenditures, XRit,

using the perpetual inventory method with depreciation7:

Rit = (1− 0.15)Rit−1 +XRit−1

The Compustat dataset lists one location for each firm; this is an address of corporate

headquarters as reported by the firm in its most recent SEC filing. Historical locations are

not available in the Compustat, nor it reports locations of facilities other than headquarters.

Unable to overcome these data limitations8, I assume that R&D and production activity tend

to be concentrated around current headquarters. The location data is depicted in Figure 2.

for certain years.
7Following the rest of the literature (Hall, Jaffe and Trajtenberg (2005) and Bloom, Schankerman and

Van Reenen (2007), to name just a few examples), the depreciation rate is set at 15% per year.
8Historical locations are available in raw SEC filings. However, I could not obtain any of them in electronic

form for years prior to 1994. To check whether headquarters are typically co-located with R&D labs, Orlando
(2004) used the Directory of American Research and Technology. He found that co-location occurs in more
that 90% of his sample. I leave these issues for future work.
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Table 2: Summary statistics

Mean Std. dev. Min Max
Sales, Y 243 1,428 0.001 39,508
Employees, L 955 3,382 1 71,000
Capital, K 30 133 0.001 2,715
R&D expenditures, XR 38 230 0 7,407
R&D stock, R 131 770 0 25,607
Observations per firm 7.4 4.5 3 26
Number of firms 688
Years covered 1978–2006
Observations 4853

Notes:
All monetary values are in 2002 prices, $million.

5.2 Production function estimates

Table 3 reports the estimates of the common production function parameters. Two specifi-

cations of equation (7) are reported. Specification (1) restricts absorptive capacities to be

the same for all firms. This is the usual assumption in the spillovers literature. Ignoring

heterogeneity in αi may bias the estimate of λ; the Appendix provides a detailed discussion

of why this bias may occur. Specification (2) is the preferred one; it does not place any

restrictions on absorptive capacities and is estimated using Arellano-Bonhomme GMM, as

discussed above.

To avoid numerical stability problems at high values of λ9, the logarithms of spillovers

are replaced with the levels. The estimates of common parameters in both specifications

suggests that software development is not a capital intensive industry, which is in line with

the common sense. The technology shows decreasing returns to scale; this contradicts the

CRS assumption of the location model. However, as explained before, the returns to scale

estimate may be biased downwards, due to using sales as a proxy for physical output. To

produce the bias of the necessary size, the CES demand elasticity has to be around σ = 5.

Unlike the rest of the common parameters, the estimate of the spillover decay, λ, varies

greatly across the specifications. The first specification where absorptive capacities are re-

stricted to be the same for all firms, does not give a tight estimate of λ. The nonlinear least

squares objective function that is used to obtain the estimates has two minima: a local min-

9When λ is high, spillovers decline very fast, which causes Sl to be close to zero for remote locations.
Taking a logarithm of a near-zero value produces a lot of noise in the objective function maximized during
estimation.
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Figure 2: Number of firms, by county

imum corresponding to a half-life distance of 30 kilometers, and a global minimum at 1,931

kilometers. Neither of these two candidate estimates is significantly different from zero.

The preferred specification (2) gives a unique solution for λ, which corresponds to a half-

life distance estimate of 59 kilometers significant at 5% level. To put this value in some

perspective, imagine a firm that chooses between locating in San Francisco, and in San Jose,

an approximate center of Silicon Valley. Even though these two cities are only a one hour

commute apart, spillovers originating in San Jose decline in their intensity by roughly 50%

by the time they arrive to San Francisco. If the firm is concerned about spillovers, the San

Jose location provides a substantial advantage.

5.3 Preliminary evidence on sorting

According to the model of location choice, an opportunity to absorb spillovers attracts firms

to high-spillover locations. The force of attraction depends on the firm’s absorptive capacity,

αi. As shown in Proposition 1, this force creates a pattern of spatial sorting by αi, with

high-type firms over-represented in high-spillover regions.

Before imposing the structure of the location choice model, one has to be certain that this

sorting pattern exists in data. First, I check if spatial sorting by αi can be visually detected.

Figure 3 plots OLS estimates of firms’ absorptive capacities, α̂i, against spillovers received

by these firms. These estimates have many outliers caused by the noise term νi in equation

(12). The variance of this noise is especially large for firms located in low-spillover regions.
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Table 3: Production function estimates

(1) (2)
logKit 0.09 (4.7) 0.11 (4.6)
logLit 0.74 (25) 0.66 (17)
logRit 0.11 (6.4) 0.09 (2.7)
Sit 0.01 (2.4)
Spillover half-life (log(2)/λ), km 1,931 (1.0) 59 (2.2)
# of observations 4,852

Notes:
Robust t-statistics are reported in the parentheses.
Specifications:
(1): Firms are homogeneous in αi. NLS FE estimator.
(2): Firms are heterogeneous in αi. A-B GMM estimator.

To minimize outliers, firms from low-spillover counties are dropped10. Consistent with the

story of sorting, Figure 3 suggests that firms in counties with higher levels of spillovers have

on average higher absorptive capacities.

To test the link between α̂i and Sli more formally, consider an equation that relates the

absorptive capacity of a firm to the spillovers received at the firm’s location:

α̂i = δ0 + δ1Sli + εi (15)

The results of estimating this equation are reported in Table 4. To ensure that the test

outcomes are not driven by outliers, two alternative estimators are used: the median and

the robust regression. Both methods are known to be more stable with respect to outliers

than the OLS estimator. As a further robustness check, the estimation exercise is repeated

on two samples: the full sample, and a subsample of firms located in top-20 high-spillover

counties. Since the standard median regression estimator is built on the assumption of error

homoskedasticity, two t-statistics are reported in each specification – the standard, and the

bootstrapped one.

The estimates confirm that the sorting pattern found in Figure 3 is statistically significant.

There is a positive relationship between the firm’s absorptive capacity and the spillovers

received by the firm in its home county11.

10The remaining firms plotted in Figure 3 are predominantly located in Silicon Valley and the area around
Boston.

11In a series of unreported exercises, α̂i is replaced with a proxy widely used in the agglomeration literature:
the ratio of R&D expenditures to sales (e.g. Audretsch and Feldman (1996) and Rosenthal and Strange
(2001)). The results obtained in these exercises are qualitatively the same as here, irrespective of the
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Figure 3: Spatial sorting by αi. Firms from high-spillover counties (Sl > 3 $bil)

Table 4: Preliminary evidence on sorting by αi

Dependent variable: α̂i Median, Robust, Median Robust,
all all top-20 top-20

Sli 0.011 0.019 0.013 0.025
Regular t-statistic (4.3) (2.4) (5.1) (7.4)
Bootstrapped t-statistic (1.7) (2.1) (2.1) (3.7)
# of firms 688 688 268 268

Notes:
All: sample includes all firms.
Top-20: firms from top-20 high-spillover counties.
Median: median regression. Robust: robust regression.

5.4 Geographic scope of spillovers in the presence of sorting

As the main prediction of the location choice model is found to be consistent with data, the

structure of the model can be imposed and used to estimate the parameters of the choice

equation (6).

The estimates are reported in Table 5. First, note that γ, the parameter capturing the

attraction force induced by spillovers, is positive, consistent with the preliminary evidence

and Proposition 1.

Second, as suggested by the estimate of µα, more than a half of firms have negative αi.

The reason why αi may be negative was discussed at length in the estimation section. R&D

estimation method or the subsample used.
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Table 5: Parameters of the location choice problem

Attraction parameter, γ 0.053
Distribution of αi:
µα -0.05
σ2
α 0.41

# of firms 688

stocks generate knowledge spillovers and pecuniary spillovers, which have opposite effects

on the outside firm’s sales. Since output in the production function is proxied by sales, the

estimate of αi picks up both effects and can potentially be negative depending on which

effect dominates.

To get a feel of the strength of spatial sorting and the magnitude of spillovers, consider

an average firm located in Santa Clara county, the center of Silicon Valley, with an R&D

stock of $0.22 billion in year 200212. Suppose that the firm enters in 2002. As reported in

Table 6, this entry has a sizeable effect on other Santa Clara software firms: their aggregate

revenue increases by 1.49 percent. The aggregate revenue earned by software establishments

in Santa Clara county in 2002 is $7,640 million13, hence the total gain in sales caused by

spillovers from the entering firm amounts to $114 million in year 2002 alone.

Effects from spillovers experienced by firms in other counties depend on two factors:

the distance from Santa Clara and the composition of local firms in terms of absorptive

capacity. To compare the contributions of these factors, Table 6 isolates their effects on

sales. In column 3, only the distance decay mechanism is allowed to work. Spatial sorting

by αi is ignored: the gains in sales are calculated in assumption that absorptive capacities

of all Silicon Valley firms have the same distribution as in Santa Clara county. In column 4,

the predictions of gains are calculated assuming that spillovers do not decline with distance,

but at the same time accounting for the cross-county differences in absorptive capacities.

Finally, column 5 reports estimates of productivity gains that take into account both sorting

and distance decay.

Comparing predictions in columns 3 and 5 reveals the importance of accounting for

firm heterogeneity in αi and endogenous location choice when studying the scope of R&D

spillovers. In this example, ignoring spatial sorting seriously overestimates the effects of

spillovers on firms from San Francisco and Santa Cruz counties.

12For comparison, this is approximately a one-fifth of the R&D stock of Adobe Systems.
13Data source: Economic Census 2002.
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Table 6: Spillovers from a $220 million firm entering in Santa Clara county.
Effects on firms from neighbor counties

County Distance from Increase in sales Increase
Santa Clara, km Mechanisms active: in sales,

Dist. decay Sorting Both $million
Santa Clara 0 1.49% 1.49% 1.49% 114
Santa Cruz 34 0.90% 0.61% 0.32% 0.67
San Mateo 45 0.78% 1.33% 0.69% 36
Alameda 48 0.74% 1.06% 0.50% 13
San Francisco 68 0.56% 0.79% 0.25% 3.75

6 Conclusion

In this paper, I construct a theoretical model of an industry where firms generate spillovers,

are heterogeneous in absorptive capacity and mobile in geographic space. This model predicts

that firms are spatially sorted by their absorptive capacity. Equilibria of the model feature

agglomerations that attract firms with high absorptive capacity, and sparsely populated

regions that are more popular among firms indifferent to spillovers. Due to this sorting

pattern, the overall effect of spillovers varies across regions.

The model is fitted to data from the US software industry. It is often believed that

knowledge spillovers are ubiquitous in this industry, and that they are strong enough to

have an agglomerative effect on firm locations. Spillovers are viewed to be partly responsible

for high geographic concentration of software firms around few large urban areas. The data

provide evidence that knowledge spillovers between software companies indeed exist and are

highly localized in geographic space. It is also found that firms which are more responsive

to spillovers are more likely to be located in big clusters.

The above findings have direct implications for policy. The model was used to simulate

the gains from spillovers that would occur if local officials of Santa Clara county in California

managed to attract one additional average-sized firm to their location. As the results suggest,

the gains would be shared by the neighbor counties. These gains roughly decline with

distance. However, distance is not the only factor that determines the gains from spillovers

here. For example, Santa Cruz county is located next to Santa Clara but receives less gains

per firm than the more distant Alameda county. The size of the gains from spillovers is

almost equally affected by the distance to Santa Clara, and the pattern of spatial sorting

of firms. Knowing who are the main beneficiaries of the policy and what are its benefits is

important; this knowledge would help to avoid free-riding by the adjacent counties on the
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efforts of the Santa Clara officials. The model also suggests that the similar policy targeted at

attracting new firms is less likely to yield any big percentage gains in output if implemented

in some state with a sparse population of software companies.

The model developed in this paper assumes away an endogeneity of R&D and its potential

effect on absorptive capacity. Relaxing this assumption is the most important direction for

future work. Common sense suggests that doing R&D is cheaper in agglomerated cities, as

specialized labor and materials are likely to be in abundant supply there. If R&D positively

affects the firm’s absorptive capacity (as suggested by Cohen and Levinthal (1989)), the

observed pattern of spatial sorting may have nothing to do with sorting at all. The observed

heterogeneity of firms may develop ex-post, after the firms enter and start investing in R&D.

Firms in agglomerated cities will become more R&D-intensive and thus will have higher

absorptive capacity. Therefore, it is important to make R&D endogenous and allow for its

correlation with absorptive capacity. This will also make possible the use of the model for

simulation of policies promoting R&D, such as R&D subsidies.
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7 Appendix

7.1 The equilibrium of the location game

Let Ω = [0, 1] be a set of firms; a firm is represented by a point i ∈ Ω. All firms have the

same set of actions, A = {1, . . . , L}. Each firm is characterized by an R&D stock Ri, innate

productivity ϕi, absorptive capacity αi, and a vector of idiosyncratic location preference

shocks [ε̃i1, . . . , ε̃iL]. These are well-defined random variables, in a sense that they are all

Borel-measurable functions from Ω to R. A pure-strategy profile Λ is a measurable function

from Ω to A. Payoffs to firm i are given by π̃∗i , a mapping from the set of all profiles Θ = {Λ}
to R.

π̃∗i (Λ) =
1

b
log

[
1

σ

(
σ − 1

σ
Rβr
i ϕi

)σ−1
]

+
1

b
log

[∑
m

Em

(
Pm(Λ)

τΛ(i)mcΛ(i)

)σ−1
]

+
(σ − 1)

b
αi logSΛ(i)(Λ) + ε̃iΛ(i) (16)

where

Sl(Λ) =
L∑

m=1

e−λρ(l,m)Rm, Rm =

∫
Λ−1(m)

Ridi,

Pm(Λ) =
σ

σ − 1

∫
Ω

(
Rβr
i S

αi
Λ(i)ϕi

cΛ(i)τΛ(i)m

)σ−1

di

− 1
σ−1

cl = c(wl, rl)

To ensure that all expressions above are well-defined, assume that there is no city with zero

costs (i.e., cl > 0), and that the following two integrals exist:

R =

∫
Ω

Ridi,

∫
Ω

(
Rβr
i Rαiϕi

)σ−1

di
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Given an arbitrary strategy profile Λ ∈ Θ, each firm chooses an action that maximizes

the firm’s payoff. This defines the best response mapping h : Θ → Θ. The equilibrium of

the game is a fixed point of h.

In order to prove that the equilibrium exists, some notation has to be introduced. First,

denote

dl =

[∑
mEm

(
Pm(Λ)
τlmcl

)σ−1
]1/b

∑
k

[∑
mEm

(
Pm(Λ)
τkmck

)σ−1
]1/b

; d = {dl}Ll=1

Intuitively, d would be the distribution of firms across cities, if spillovers were not affecting

location choice. Vector d belongs to an (L− 1)-dimensional simplex ∆L−1.

Second, note that the total R&D always sums up to R, irrespective of the strategy profile

being played:
L∑

m=1

Rm = R

Hence, the distribution of R&D stocks, denoted as r = {Rm/R}Lm=1, also belongs to ∆L−1.

Denote Ψ a set of all pairs (d, r); this set forms a Cartesian product of two (L−1)-simplexes.

The proof of existence follows the steps of a similar argument in Rath (1992).

Lemma 1. The best response mapping h can be expressed as a composition of two mappings:

h = h2 ◦ h1 : Θ
h1→ Ψ

h2→ Θ

Proof. Mapping h1 is given by the definitions of d and r. To find h2, one has to show that

knowing (d, r) alone is sufficient to determine the best response of every firm without relying

on any additional information on other firms’ actions contained in Λ. Note, that the payoff

function (16) has only two elements that depend on actions of other firms: the spillover term

and the term containing the price index. By definition, the spillover term depends on r only.

One can use the definition of d to transform the payoff function and obtain

π̃∗i (Λ) =
1

b
log

[
1

σ

(
σ − 1

σ
Rβr
i ϕi

)σ−1
]

+ log dΛ(i) +
1

b
log

[∑
k

∑
m

Em

(
Pm(Λ)

τkmck

)σ−1
]

+
(σ − 1)

b
αi logSΛ(i)(r) + ε̃iΛ(i)

The third term still depends on Λ, but it does not depend on the firm’s own actions, since

33



the firm is infinitely small and cannot affect the price index P (Λ) by changing Λ(i). Hence,

one can drop this term from the location choice problem without affecting the solution. The

rest of the expression on the right hand side depends on other firms’ actions only via d and

r. Therefore, to find the best response, it is enough to know the vector (d, r), which proves

the lemma.

Lemma 2. If h1 ◦ h2 has a fixed point, then h also has one.

Proof. Let (d0, r0) be such fixed point, that is,

(d0, r0) = h1(h2(d0, r0))

Take h2 of both sides of this equation:

h2(d0, r0) = h2(h1(h2(d0, r0))) = h(h2(d0, r0))

Define a strategy profile Λ0 = h2(d0, r0). As evident from the latter equation, Λ0 is a fixed

point of h.

Lemma 3. h1 ◦ h2 has a fixed point.

Proof. h1 ◦ h2 is a continuous mapping (continuity is not strictly proven here) from Ψ to Ψ.

Ψ is a convex compact set (as a Cartesian product of two multidimensional simplexes). By

the Brouwer fixed point theorem, h1 ◦ h2 has a fixed point.

Theorem 1. The location game has an equilibrium.

Proof. Apply sequentially lemmas 3 and 2. Best response mapping h has a fixed point, which

is by definition an equilibrium.

7.2 Proof of Proposition 1

Location choice problem (6) can be solved to obtain the cities’ shares of firms conditional

on the firms’ absorptive capacity, nl(α)

nl(α) =
exp(al + γα logSl)∑
m exp(am + γα logSm)
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Using Bayes’ theorem, one can transform this equation to yield the density of absorptive

capacities conditional on location

fα|l(α|l) =
exp(al + γα logSl)∑
m exp(am + γα logSm)

fα(α)

nl

To prove that fα|l(α|l2) stochastically dominates fα|l(α|l1), it suffices to show that these two

distributions satisfy the increasing likelihood ratio property. The likelihood ratio equals

fα|l(α|l2)

fα|l(α|l1)
= exp((al2 − al1) + γα(logSl2 − logSl1))

nl1
nl2

Let α2 > α1 be two arbitrary values of absorptive capacity. It follows from the latter equation

that
fα|l(α2|l2)

fα|l(α2|l1)
= exp(γ(α2 − α1)(logSl2 − logSl1))

fα|l(α1|l2)

fα|l(α1|l1)

Since Sl2 > Sl1 , and γ > 0, the likelihood ratio increases in α:

fα|l(α2|l2)

fα|l(α2|l1)
>
fα|l(α1|l2)

fα|l(α1|l1)

Increasing likelihood ratio implies first-order stochastic dominance.

7.3 Inferring the geographic scope of spillovers when firms are

mobile and heterogeneous in absorptive capacity

In contrast to this paper, the spillovers literature usually assumes that firms are homogeneous

in αi and that firm locations are exogenous. This allows applying a much simpler standard

fixed effects estimator to obtain the production function parameters, β and λ. However, if

firms differ in αi and do choose locations, these estimates are in general biased either upwards

or downwards, depending on the true parameters of the model and the spatial distribution

of firms in equilibrium.

To see how the bias may occur, consider a sample of pairwise distances between spillover-

generating and spillover-receiving firms. Suppose that the firms are of two types: the ones

that uniformly benefit from spillovers, and the ones that do not benefit at all. The produc-

tivity effects of a spillover on these two types of firms is depicted by two blue-colored curves

in Figure 4, as a function of distance from the spillover’s origin.

The equilibrium in the location choice model produces a mixture of high-type and low-
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Figure 4: Potential bias in the estimates of spillover decay, λ

type firms in each city. One could use the same axes in Figure 4 to plot an average produc-

tivity effect of spillovers for firms in this equilibrium. A point on the horizontal axis, d, rep-

resents a subsample of all firms that are located at distance d from some spillover-generating

firm. A point on the vertical axis represents an average effect of spillovers traveling from

distance d on this subsample.

Intuitively, whenever one assumes that αi are homogeneous and tries to fit equation (7)

to data, he finds an average effect of spillovers in all such subsamples, corresponding to every

d, and then approximates the resulting curve by an exponential function. This curve may

take any shape that lies between the solid and the dashed line in Figure 4, depending on

which type of firms dominates at different distance ranges.

For instance, if there is one agglomeration in the country, the high-type firms are on

average located closer to the sources of spillovers, than the low-type firms. Hence the high-

type firms are over-represented in the subsamples corresponding to small d’s. Consequently,

the curve representing the average effect of a spillover will be closer to the dashed line (the

effect of spillovers on high-type firms) around zero, and to the solid line (the effect of spillovers

on low-type firms) at high distances. Therefore, the estimate of λ, the rate of spillover’s

decline, will be biased upwards, which corresponds to case 1 in Figure 4. Simulations show

that downward bias, depicted as case 2, is also possible under some spatial distributions of

firms.
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7.4 The distribution of noise in estimated absorptive capacities

Assume that the error in the production function equation, wit, is an i.i.d. random variable

with constant variance σ2
w. Let Ŵi = Miŵi be the residual from the within-transformed

equation (9). Find firm i’s sum of squared residuals:

Ŵ ′
iŴi = ŵ′iM

′
iMiŵi = ŵ′iMiŵi = ŵ′iA

′
iAiŵi

where Ai is a (T − 2) × T matrix whose rows form an orthonormal basis in the subspace

orthogonal to xi. By construction, AiA
′
i = IT−2; it can be shown that Mi = A′iAi.

To see what is approximated by the sum of squared residuals, consider the covariance

matrix of Aiwi:

cov(Aiwi) = E[Aiwiw
′
iA
′
i] = E[AiE[wiw

′
i|Ai]A′i] = σ2

wE[AiA
′
i] = σ2

wIT−2,

Firm i’s sum of squared residuals approximates the trace of this matrix, (T − 2)σ2
w. Taking

a sum across firms, obtain an estimator for σ2
w:

σ̂2
w =

1

n(T − 2)

∑
i

Ŵ ′
iŴi

Assume that wit has normal distribution. According to equation (12), νi is a linear func-

tion of wit with coefficients dependent on location, l. Hence, it is also normally distributed

conditional on l. Its variance is easily found from (12):

σ2
ν|l =

σ2
w∑

t(slt − sl)2
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