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1 Introduction

Search models of the labor market have traditionally treated the production side

very simplistically: Each firm wants to hire one worker, which is usually equivalent

to having several workers with constant marginal product (see e.g. the surveys

by Mortensen and Pissarides (1999) and Rogerson, Shimer, and Wright (2005)).

While successful in many dimensions, these models are silent about all aspects that

relate to employer size, even though firm size and firm dynamics are important for

both wages and employment. Larger firms are on average more productive and

they tend to pay more (e.g., Brown and Medoff (1989), Oi and Idson (1999)). In

percentage terms, older and larger firms grow less but also exit the market less

(Evans (1987a, 1987b)). After controlling for worker characteristics, young and

fast–growing firms pay higher wages (Brown and Medoff (2003), Belzil (2000)). And

larger firms create and destroy more jobs (Davis, Haltiwanger, and Schuh (1996)),

they are more sensitive to the business cycle than smaller firms (Moscarini and

Postel-Vinay (2009a)), and therefore contribute to aggregate employment dynamics

in very different ways. Abstracting from firm size not only precludes the analysis

of firm-level hiring and growth, it also limits the ability of labor market models to

account for business cycle behavior.

To capture firm size phenomena, a series of recent work has introduced multi-worker

firms with decreasing returns to labor into standard labor search models, consid-

ering among others the implications for wages and unemployment (e.g., Bertola

and Caballero (1994), Smith (1999), Bertola and Garibaldi (2001), Acemoglu and

Hawkins (2006), Cahuc, Marque, and Wasmer (2008), Mortensen (2009)), for la-

bor market regulation (Koeniger and Prat (2007)), for business cycles (Elsby and

Michaels (2010), Fujita and Nakajima (2009)) and for trade-based employment ef-

fects across countries (e.g., Helpman and Itskhoki (2010), Helpman, Itskhoki and

Redding (2010a,b)). A central part of all labor market models concerns the wage

formation, and all of these contributions rely on a combination of random search

together bargaining without commitment over future wages. This bargaining frame-

work based on Stole and Zwiebel (1996) and Smith (1999) might be viewed as the

analogue of standard one-worker-one-firm bargaining for multi-worker settings. The

validity of this wage setting assumption has never been analyzed; nonetheless, it
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dominates the current developments, possibly due to a lack of alternatives.

While these models are successful among many dimensions, the combination of

bargaining without commitment under random search raises several concerns. Em-

pirically, lack of commitment predicts that workers in growing firms see their wages

decline over time, since workers receive part of the productivity and initially labor

productivity is high but drops as more workers are hired. On the normative side a

particular concern is that this setup introduces inefficiencies by assumption. If the

marginal product of labor is decreasing, each individual firm hires too many work-

ers (Stole and Zwiebel (1996), Smith (1999), Cahuc, Marque, and Wasmer (2008)):

When a firm bargains with a worker, it understands that failure to agree with this

worker will mean that it will have to renegotiate wages with the remaining workers

next period and those workers will get a higher wage because they are in a steeper

part of the production frontier. Therefore, the firms is willing to keep workers with

negative marginal product since that reduces the wages to other workers.1 This

arises within the particular match between the firm and its workers, before account-

ing for general equilibrium effects. Therefore, the overall equilibrium can never be

efficient, and beneficial government interventions exist by assumption.

Note that this is very different from the standard one-worker-one-firm (or constant

returns) setup, where each match (worker-firm-pair) takes decisions that are efficient

for the matched parties: They stay together if marginal product is higher than

the continuation values, and do not stay together otherwise. Whether this leads

in equilibrium to efficient job creation and job destruction on the aggregate level

depends on the exact bargaining parameter (Hosios (1990)). Therefore, applied work

in this area has focused on the planner’s solution (see e.g. Merz (1995), Andolfatto

(1996), Shimer (2005b)) or compared it with inefficient solutions (e.g. Hall (2005),

Hagedorn and Manovskii (2008)) to see which seems to be closer to reality. The

current multi-worker setup does not allow for such a horse race between efficient

1 Pissarides (2000) notes that a decreasing marginal product of labor does not affect the results
if the production function has constant returns in multiple inputs, and the other inputs such as
capital can be adjusted instantaneously. In this case the marginal return of labor, after accounting
for adjustment of the other factors, is in fact constant. Cahuc and Wasmer (2001) show that in this
case their is no overhiring because the wages of inframarginal workers are not affected. Therefore,
the idea of decreasing returns to labor effectively means decreasing returns to scale for a production
function with multiple, freely variable inputs.
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and inefficient outcomes, partly because we do not have plausible search models

that justify an analysis of the planner’s problem.

The aim of this paper is to propose an alternative wage formation process that al-

lows for commitment, explore its positive potential for explaining firm dynamics,

and to evaluate its implications for efficiency. We model commitment in a directed

search fashion. The main idea behind directed job search is that firms announce

wage commitments to attract workers rather than to split surplus ex-post. There-

fore, firms with a strong desire to grow do not just post more vacancies, but they

also attract more workers for any given vacancy and hence fill jobs at a higher

rate. Recent empirical work supports this view: Davis, Faberman, and Haltiwanger

(2009) find that firms that double their employment growth rate do so by posting

20% more vacancies (relative to workforce) but they fill a given vacancy with 50%

higher probability.2 While there are also random search models in which job-filling

rates differ between firms,3 this is absent in most papers with bargained wages but

constitutes an integral part of competitive search. In the latter, firms compete by

publicly posting employment contracts and this directs workers’ application deci-

sions: they choose to apply more for attractive contracts. Directed search retains

a lot of tractability that allows us to consider commitment even in business cycle

settings. We model both the extensive and intensive margin by allowing entry of

new firms and exit of existing firms (extensive margins) and hiring and firing of

workers by existing firm (intensive margins). While each firm can post many vacan-

cies at a time, in general it will not immediately jump to its desired size because the

monetary and human resource costs of recruiting and training new employees make

such immediate adjustment prohibitively expensive.

An important question is whether our model delivers on the interesting margins of

firm dynamics mentioned above that inspired the use of multi-worker firms in the

first place. It does. We show analytically that wages are higher in more productive

firms and in firms that grow faster. Conditional on firm age, larger firms pay higher

wages. Conditional on size, firms that grow faster post more vacancies and fill each

vacancy with higher probability.

2 The numbers refer to firms that grow at 20% instead of 10%, and rely on Figures 5 and 9 in
Davis, Faberman, and Haltiwanger (2009).

3 On this issue, see our discussion of on-the-job search models in the next section.
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Furthermore, these factual implications on firm dynamics are indeed socially op-

timal: A social planner would choose the same path of job flows for each of the

firms. Multi-worker firms create and destroy jobs efficiently both on the extensive

and intensive margin, even though bargaining would never lead to efficiency on the

latter. The model retains tractability in steady state and even in the presence of

idiosyncratic and aggregate shocks, and we show that efficiency arises regardless.

The notion of competitive search builds on existing work with one-worker-per-firm

(e.g., Peters (1991), Moen (1997), Acemoglu and Shimer (1999b), Burdett, Shi,

and Wright (2001) Shi (2001), Mortensen and Wright (2002), Shimer (2005a), ?).

While these contributions have long established efficiency on the extensive entry

margin, efficiency on the intensive margin is not obvious: For example Guerrieri

(2008) introduces an intensive margin through moral hazard into one-worker-one-

firm models and finds efficiency in steady state but not out of steady-state. We

show that efficiency on all margins obtains in and out of steady state.4 Our analysis

suggests a plausible environment where the decentralized market achieves efficiency,

giving a justification for the study of the planners’ solution and its comparisons with

other decentralizations. We discuss further related competitive search models such

as Garibaldi and Moen (2010) and Hawkins (2006) in detail below.

Our framework is intended as a possible alternative to the existing bargaining frame-

work. The model has the ability to account for important firm dynamics, and there-

fore can be used to assess their implications for the levels and changes in aggregate

employment. And this is achieved without any systematic imperfections in the

market mechanism. While it will be a matter of empirical investigation whether

alternative wage setting mechanisms lead to inefficient market outcomes, this work

shows that fixed setup costs in combination with decreasing returns at the firm level

does not need to induce any inefficiencies. Unless wages by themselves are of crucial

importance, this model suggests that many of the allocation processes in the labor

market might be analyzed as solutions to a planner’s allocation.

We also show that the planner’s choice of firm dynamics retains tractability because

it can be obtained from the solution of a recursive equation at the level of an in-

dividual firm in combination with an optimal firm–creation condition. This feature

4 On an intuitive level, the main difference to Guerrieri (2008) is that future unemployment
rates do not have unpriced externalities on current productivity.
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remains true in the presence of aggregate shocks, which is particularly helpful for

computational applications. In particular, we show that any planner allocation with

positive firm entry can be calculated without knowledge of the distribution of em-

ployment across existing firms. In this way, our solution method avoids the need

for approximation techniques, such as those of Krusell and Smith (1998), that have

been applied in the multi-worker search models of Elsby and Michaels (2010) and Fu-

jita and Nakajima (2009) to analyze aggregate labor market dynamics. Technically,

our solution method exhibits the feature of “block recursivity” where each agent’s

value and policy functions are independent of the firm and worker distribution, as

in Menzio and Shi (2008).

After a brief review of further related literature, we first present in Section 3 a simpli-

fied setup without aggregate or idiosyncratic shocks, except some initial productivity

differences and exogenous firm death. This allows for a teachable representation, it

establishes the most important insights for dynamics of employment and pay over

the life-time of a firm, and it demonstrates the efficiency of the decentralized al-

location clearly. In Section 4, we lay out the notationally more complex analysis

that takes account of aggregate and idiosyncratic shocks and we characterize the

efficient allocation and the decentralized allocation. Since it is not obvious that

efficiency extends beyond the stationary environment, we formally prove the equiv-

alence of the efficient and the decentralized allocations. Beyond the focus on these

theoretical contributions, we conduct numerical examples in Section 5 to illustrate

that the model has the potential to account jointly for the magnitudes of firm and

unemployment dynamics.

2 Related Literature

Most work on labor search relies on undirected search with bargaining, where the

number of matches is determined as a function of the ratio of unemployed workers to

vacant jobs. Directed search (or competitive search) retains the idea of the matching

function, but different contracts form different markets and workers can decide where

to search. In most of these models, each firm can hire at most one worker in any

given period. Properties of the matching function are reviewed in Petrongolo and

Pissarides (2001), and Mortensen and Pissarides (1999) and Rogerson, Shimer, and
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Wright (2005) review models of undirected and directed search.

Closely related to our contribution is the work by Garibaldi and Moen (2010). They

consider a directed search model where workers can search on-the-job and firms can

hire many workers. They derive a number of new insights for on-the-job search. In

contrast to our paper, though, they consider constant returns production functions,

and the only determinant of firm size arises from convex vacancy creation costs.

Even in the standard search model a linear frontier eliminates inefficiencies as long

as the bargaining power is set according to the Hosios (1990) condition, irrespec-

tive of convex vacancy creation costs, since employment of any one worker does not

diminish the marginal product of another worker.5 In contrast, the difference be-

tween average and marginal product in large firms and the possible complications for

wage setting and efficiency is exactly what is at the heart of this study. Moreover,

due to constant returns the current size of the firm ceases to be a state variable

in Garibaldi and Moen (2010), and therefore firm growth and wage levels depend

only on its productivity type but are independent of firm size. That is, the model is

silent about the role of employer size and age for job creation. Additionally, it might

be non-obvious that it is the convexity of the vacancy posting cost that limits the

immediate jump in employment to the desired size. We additionally consider the

possibility that recruitment activities require time involvement from existing em-

ployees and thus induces high opportunity costs, which naturally limits employment

growth: Vacancies have to be administered and promoted in recruitment events,

and firm-specific knowledge needs to be transmitted to the prospective hires, which

prevents existing employees to take part in production. Finally, our analysis also

allows idiosyncratic and aggregate shocks.6

For settings where each firm can only hire one worker, the combination of wage com-

petition and matching frictions that underlies directed search has been microfounded

as a coordination game e.g. in Peters (1991), Burdett, Shi, and Wright (2001) and

5 By the standard model we mean the model with random search and bargaining when only the
unemployed can search, where the efficiency result for constant returns was shown e.g. in Cahuc
and Wasmer (2001). We are not aware of efficiency results when on-the-job search is introduced
into such a model.

6 Productivity shocks might induce some firms to shed some of their workforce. We note that
a linear frontier such as in Garibaldi and Moen (2010) would imply that a firm that fires some
workers will fire all of them, unless there are strictly convex firing costs.
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Galenianos and Kircher (2009). In such games, sometimes multiple workers apply

for the same job and only one of them can be hired. These micro–foundations can

be extended to our multi–worker firms if one assumes that excess applicants for

one position cannot fill another position at the same firm. This arises if different

vacancies relate to different qualifications: for example, vacancies for an electrician

cannot be filled by applicants for the position of a mechanic or a carpenter, even

though each position yields roughly the same contributions in terms of marginal

product (therefore labor productivity is modeled homogeneously). An alternative

interpretation is that workers are literally identical and excess capacity can be sub-

stituted from one job to another, which means that posting additional jobs exhibits

increasing returns; see Burdett, Shi, and Wright (2001), Hawkins (2006) and Lester

(2009) for variations along these lines. In accordance with most work on large firms,

we adopt the first interpretation and abstract from possible increasing returns in

hiring.

Hawkins’s (2006) contribution considers a directed search model where firms hire

multiple workers and produce output according to a decreasing–returns production

function. He assumes that firms post a finite number of vacancies, and then receive

a stochastic number of applications. Since the number of applicants is stochastic,

he shows that posting a wage alone is not sufficient to induce efficiency. Rather, the

posted contract has to condition on the realized number of applicants. These con-

tingencies make the model somewhat intractable, and results on efficiency and firm

dynamics out of steady state are missing. The standard assumption for large firms

that many vacancies are posted eliminates some of the random elements. In fact, we

assume that any firm advertises a continuum of vacancies (and employs a continuum

of workers), thus eliminating uncertainty about the number of applicants entirely.

By implication, the contract does not have to condition on the number of applicants,

which can be inferred in advance. This feature simplifies the model considerably and

allows us to obtain explicit and tractable solutions for firm dynamics.

Gourio and Rudanko (2009) consider a model of the product market where firms

acquire a customer base. Some of the elements of their model are related, in the

sense that a firm tries to attract a continuum of customers through price offers, and

is limited by the current sales force. The research question is very different, though,

in that their model does not speak to unemployment questions, and their analysis
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does not consider efficiency. Rather, they consider the relation between Tobin’s q

and investment.

This work focuses primarily on job flows, and all worker flows are transitions between

unemployment and employment. Work following the lines of Burdett and Mortensen

(1998), Moscarini and Postel-Vinay (2009b), Menzio and Shi (2008), and Garibaldi

and Moen (2010) focussed additionally on worker flows between firms, and used this

feature to address some puzzles in the literature. Except for the last contribution,

none of these models allows a given firm to increase the number of vacancies that

it posts, and so employment growth has to arise solely out of additional hiring per

vacancy. None of these contributions allow for a difference between average and

marginal productivity of labor.7 A natural next step seems to be the merger of on-

the-job search as in Garibaldi and Moen (2010) with a notion of decreasing returns

on the intensive margin as explored here.

In addition to the relationships to random search models mentioned in the intro-

duction, it is worth pointing out that current applied work on business cycles using

multi-worker random search only focusses on the intensive margin of hiring by con-

sidering a fixed number of firms (Elsby and Michaels (2010), Fujita and Nakajima

(2009)). Similarly, Cooper, Haltiwanger, and Willis (2007) assess business cycle

implications for a fixed number of firms assuming that firms make each period

take-it-or-leave offers without commitment to future wages, which is equivalent to

bargaining with zero bargaining power for the workers. Our paper addresses addi-

tionally the entry and exit of firms, and this feature is in fact decisive to obtain a

tractable solution based on block recursivity. The problem that bargaining might

introduce unwarranted inefficiencies by assumption has also spurred other solutions

than ours. For example, Veracierto (2008) and Samaniego (2008) consider general–

equilibrium versions of the Hopenhayn and Rogerson (1993) model with frictionless

labor markets and competitive wage setting. These approaches eliminate involun-

tary unemployment altogether. Veracierto (2009) introduces unemployment in an

adaptation of the Lucas-Prescott island model that includes recruitment technolo-

gies. Competitive search allows the market to operate through decentralized wage

setting, which attracts workers that optimally choose between search markets and

7 Mortensen (2009) develops a model with on-the-job-search, decreasing-returns production
functions, random search and Stole–Zwiebel wage bargaining.
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are matched according to a standard matching function.

3 A stationary model of firm creation and firm

growth

3.1 The environment

The model is set in discrete time and is stationary; that is, there are neither idiosyn-

cratic nor aggregate shocks. These will be introduced in later sections.

Workers and firms

There is a continuum of workers and firms, and workers are negligibly small relative

to firms. That is, every active firm employs a continuum of workers.8 The mass

of workers is normalized to one. Each worker is infinitely–lived, risk–neutral, and

discounts future income with factor β < 1. A worker supplies one unit of labor

per period and receives income b ≥ 0 when unemployed. On the other side of the

labor market is an endogenous mass of firms. Firms are also risk neutral and have

the same discount factor β. Upon entry, the firm pays a set–up cost K > 0 and

draws productivity x with probability π0(x) from the finite set x ∈ X. In this

section, productivity stays constant during the life of the firm. In each period,

a firm produces output xF (L) with L ≥ 0 workers, where F is a differentiable,

strictly increasing and strictly concave function satisfying F ′(∞) = 0. Firms die

with exogenous probability δ > 0 in which case all its workers are laid off into

unemployment. Furthermore, each employed worker quits the job with exogenous

probability s ≥ 0. Thus, workers’ separation probability is exogenous at η ≡ 1 −
(1− δ)(1− s).

Recruitment

8 Although the set of individuals has the same cardinality as the set of firms, it is helpful to
think of the set of firms as a closed interval in IR, and the set of workers as a two–dimensional
subset of IR2. When both sets are endowed with the Lebesgue measure, an active firm employs a
continuum of workers, albeit of mass zero.
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Search for new hires is a costly activity. A firm with current workforce L that

posts V vacancies incurs recruitment cost C(V, L, x) where C is differentiable and

satisfies C ′
1 > 0, C ′′

1 > 0, C ′
2 ≤ 0, C ′′

12 ≤ 0, C ′′
13 ≥ 0. We also assume that

output net of recruitment cost xF (L)−C(V, L, x) is strictly increasing in x for any

(V, L, x). This formulation trivially covers the benchmark case where recruitment

costs are independent of (L, x) and strictly convex in V (for applications of this

specification, see e.g. Cooper, Haltiwanger, and Willis (2007), Koeniger and Prat

(2007), Garibaldi and Moen (2010)). We also use this simplification in the next

section. The more general formulation has the main advantage that it captures

more intuitive justifications for the strict convexity of the recruitment costs. Most

notably, our specification allows for the possibility that each vacancy requires h

units of labor input to promote and administer. Even if pecuniary vacancy costs

are linear, the overall costs are strictly convex since the workers involved in hiring

cannot participate in this period’s production. In this case C(V, L, x) = xF (L) −
xF (L − hV ) + cV , where the difference in the first two terms captures the loss

in output and the last term captures linear pecuniary costs of vacancy postings.9

Concavity of F implies that C is strictly convex in V .

Search and matching

A recruiting firm announces a flat flow wage income w to be paid to its new hires

for the duration of the employment relation. The assumption that the firm offers

the same wage to all its new hires is no restriction. Indeed, it is straightforward to

show that it is profit maximizing for the firm to post vacancies with identical wages

at a given point in time.10 Further, because of risk neutrality, it is no restriction

to consider flat wage contracts, although this leads to the dispersion of flow wages

within the firm, as we see below.

There is no search on the job. Unemployed workers observe all vacancy postings and

direct their search towards wages promising the highest expected lifetime income.

9 Clearly no more workers can be engaged in hiring than are present at the firm already. To get
the hiring process started, we therefore need to assume that a newborn firm is endowed with some
initial workforce Le (e.g., the entrepreneurs) who can undertake the initial hiring or production.
In this case the production function is defined on the interval L ∈ [−Le,∞); and recruitment
activities of any firm are then constrained by its labor endowment: hV ≤ L + Le.

10 An intuition for this result is provided in the discussion of equation (8) below.
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As is standard in models of competitive search, the labor market segments into a

continuum of submarkets identified by different wages. In any of these submarkets,

unemployed workers and vacant jobs are matched according to a constant–returns

matching technology. When λ is the unemployment–vacancy ratio in such a sub-

market, a vacancy is matched with a worker with probability m(λ) and a worker

finds a job with probability m(λ)/λ. The function m is differentiable, strictly in-

creasing, strictly concave, and it satisfies m(0) = 0 and m(λ) ≤ min(1, λ) for all

λ ∈ [0,∞). The law of large numbers together with the assumption that workers are

small relative to firms ensures that firms know with certainty that they hire m(λ)V

workers when they post V vacancies in some submarket with worker–job ratio λ.

Timing

Every period is divided into four stages. First, new firms are created and draw their

productivity. Second, production and search activities take place. Third, vacancies

and unemployed workers are matched, and a fraction s of workers leave their firm.

And fourth, a share δ of firms dies. Newly hired workers may never work (and

receive no wage income) in the unlucky event that their employer exits the market

at the end of the period.

3.2 Equilibrium

Given that there are no aggregate shocks, we characterize a stationary equilibrium

where a constant number of firms enters the market in every period and where the

workers’ unemployment utility and reservation wage are constant over time.

Workers’ search problem

Consider a worker who is searching for a job in a submarket characterized by wage

w and unemployed-vacancy ratio λ. Let U be the value of being unemployed

in this market. Within this market the worker faces a simple sequential search

problem. This problem has been analyzed extensively going back to McCall. Define

as R ≡ (1 − β)U the flow utility from unemployment, which is often also referred

to as the reservation value. Standard results link it to the market wage and the
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unemployment benefit in the following way:

R = b + β
m(λ)

λ
(w −R) 1− δ

1− β(1− η)︸ ︷︷ ︸
≡ρ

. (1)

This means that the flow value (or reservation value) from unemployment equals

the current period payoff from unemployment and the discounted wage increases

above the flow value in the future. We will denote these future wage gains by ρ.

This future gains take into account the probability of finding a job next period times

the difference between wage and flow value, adjusted for the fact that the worker

will only keep this job for some periods before loosing it again.

Since workers observe the wages that are offered, the unemployment-vacancy ratio λ

in each market will adjust such that the value from being unemployed in that market

is equalized. If a market would be more attractive than others, then more workers

would join that market and drive up the unemployment-vacancy ratio, making the

market less attractive. Similarly, if a market is less attractive than others and still

has λ > 0, workers would leave this market, reducing the unemployment-vacancy

ratio and making this market more attractive. Therefore, when workers choose

between all combinations (w, λ) ∈ Ω where Ω is the set of existing submarkets,

all markets have the same future value ρ if they attract applicants. Rearranging

means that (w, λ) ∈ Ω with λ > 0 has to fulfill

w = R + λ
m(λ)

1− β(1− η)
1− δ

ρ whenever λ > 0 . (2)

This condition says that a firm can only recruit workers when its wage offer matches

the workers’ reservation wage plus a premium which is needed to attract workers

into a submarket with job–finding probability m(λ)/λ . This premium is increasing

in λ . The determination of worker-job ratios as the outcome of optimal search

decisions by workers is standard in the competitive search literature (e.g., Moen

(1997), Acemoglu and Shimer (1999b)).11

Firms’ recruitment policy

11 Note that we view each vacancy as a separate job requiring individual skills. See the discussion
on increasing returns to hiring in Section 2.
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Let Jx(L, W ) be the profit value of a firm with productivity x, an employment stock

of L workers and a commitment to a total wage bill of W . An entrant firm’s profit

value is then Jx(0, 0).

The firm’s recruitment choice involves deciding the number of posted vacancies V as

well as the submarket where these vacancies are posted, characterized by the tuple

(w, λ). Its recursive profit maximization problem is expressed as

Jx(L,W ) = max
(w,λ,V )

xF (L)−W − C(V, L, x) + β(1− δ)Jx(L̂, Ŵ ) , (3)

s.t. L̂ = L(1− s) + m(λ)V , Ŵ = W (1− s) + m(λ)V w ,

V ≥ 0 , and condition (2) .

The first line reflects the value of output minus wage and hiring costs, plus the value

of continuing with a different labor force and a different total wage bill next period.

The second line captures that employment next period consists of the survivors of

this period and the new hires. For the wages, since separations are random they

reduce the wage bill proportionally, and new elements are added for the new hires.

Because of m(0) = 0, we can substitute (2) into the dynamic equation for the firm’s

wage bill to obtain

The observation that the firm’s objective and constraints are separable in L and

W and linear in W suggests that the value function takes the form Jx(L,W ) =

−BW + Gx(L) for some constant B > 0. Using this conjecture and the fact that

we can substitute for the wage in the constraint using (2), the first–order conditions

with respect to V and λ are

C ′
1(V, L, x) ≥ β(1− δ)

{
m(λ)Gx′(L̂)−B

[
λρ

1− β(1− η)
1− δ

+ m(λ)R
]}

,

V ≥ 0 , (4)

0 ≥ m′(λ)V Gx′(L̂)−
[
ρ
1− β(1− η)

1− δ
+ m′(λ)R

]
V B , λ ≥ 0, (5)

which are both satisfied with complementary slackness. The envelope conditions for

problem (3) are

Gx′(L) = xF ′(L)− C ′
2(V, L, x) + β(1− η)Gx′(L̂) , (6)

B = 1 + β(1− η)B . (7)

13



This shows that B = 1/[1−β(1− η)] is a constant. Condition (6) together with the

first–order conditions (5) and (4) further confirms that the conjecture Jx(L,W ) =

−BW + Gx(L) is correct: the firm’s choices of λ and V depend on the employment

stock L but not on the wage bill W .

Given the employment stock, the firm therefore has a policy function that specifies

the wage and the number of vacancies that are created. Since the wage and the

unemployment-vacancy ratio have a on-to-one relationsship by (2), we can formulate

the choice by the firm as choosing λ and the constraint will yield the wage the firm

has to pay to achieve this. Therefore, the policy function for the firm of productivity

x is λ(L), and for a given λ it still has to decide on the number of vacancies that

it posts. So we can write the policy function as V x(L, λ).

It is no loss of generality to consider only solutions where the first inequality in (4)

binds,12 so this equation can be substituted into (5), and using (7) yields

C ′
1(V, L, x) ≥ βρ

m(λ)− λm′(λ)
m′(λ)

, V ≥ 0 , (8)

with complementary slackness. This condition describes intratemporal optimality

between the two recruitment tools of the firm: the number of posted vacancies V

on the one hand, and the worker–job ratio λ (and thus the posted wage w) on the

other. The RHS is the firm’s marginal revenue from an additional vacancy which

is increasing in λ. The LHS is marginal cost of an additional vacancy; from the

assumptions on C follows that it is (weakly) decreasing in L and strictly increas-

ing in V . Hence the implicit solution to this equation yields the policy function

V =V x(L, λ) which is increasing in λ and (weakly) increasing in L. Intuitively, with

higher λ the probability to fill a vacancy increases, and hence the firm is willing to

bear higher marginal recruitment costs by advertising more jobs. And with higher

L, marginal recruitment costs fall and hence the firm is inclined to post more va-

cancies. Equation (8) also provides an intuition why it is never optimal to offer

different wages at a given point in time: any one of its V vacancies adds marginal

cost C ′
1; this marginal cost must be balanced against the marginal return of the

vacancy which depends upon the job–filling rate; Hence, the firm will choose the

same λ (and thus post the same wage) for any of its vacancies. Moreover, since the

12 It follows from the complementary–slackness condition (5) that λ = 0 implies V = 0. This
“no recruitment” solution is also obtained from (8).
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RHS attains any value between 0 and +∞ as λ varies between 0 and +∞, the firm

will always recruit workers when λ is large enough and it will never recruit at low

enough values of λ (unless C ′
1(0, L, x) = 0).

The firm’s value and policy functions can be characterized as follows.

Proposition 1: For a given value ρ > 0 and the corresponding reservation wage

R defined by (1), the firm’s value function is −BW + Gx(L; ρ) where Gx is strictly

increasing, strictly concave and differentiable in L, continuous and decreasing in ρ,

and increasing in x. The firm’s policy function λx(L) is strictly decreasing in L and

strictly increasing in x whenever λx(.) > 0. Posted vacancies V x(L, λ) are weakly

increasing in L and strictly increasing in λ whenever V x(L, λ) > 0.

Proof: Appendix.

Corollary: Conditional on productivity, younger (and smaller) firms pay higher

wages and have a higher job–filling rate. Conditional on firm size, more productive

firms pay higher wages and have a higher job–filling rate.

To see how the firm grows over time, consider a firm with productivity x that enters

in some period τ . Its job creation policy is then described by a sequence (Lt, λt, Vt)t≥τ

starting from Lτ = 0. Posted vacancies Vt = V x(Lt, λt) are the implicit solution of

equation (8). The employment stock accumulates according to

Lt+1 = (1− s)Lt + m(λt)V
x(Lt, λt) . (9)

And from (4) and (6) follows the Euler equation

xF ′(Lt+1)− C ′
2(Vt+1, Lt+1, x)−R =

ρ
1− δ

[
1

m′(λt)
− β(1− η)

m′(λt+1)

]
. (10)

This equation says that the firm recruits fast in period t (i.e. λt is large) when the

expected marginal product in t + 1 is high. In the example with recruitment cost

C(V, L, x) = xF (L) − xF (L − hV ) + cV , equations (10) and (8) can be further

simplified to an equation which is independent of Lt:
13

βρ
[
m(λt+1)−λt+1m

′(λt+1)
]
− [Rh+c]m′(λt+1) =

ρh
1− δ

[
m′(λt+1)
m′(λt)

−β(1−η)
]

. (11)

13 This equation becomes an inequality in the no–recruitment case V x(Lt+1, λt+1) = 0.
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In Lemma 1 of the Appendix, we show that this equation has a unique steady state

λ∗ > 0 if recruitment costs are low enough, and λt converges to λ∗ from any initial

value λτ > 0. Figure 1 shows the phase diagram for the system (9) and (11). The

curve where the employment stock is constant is downward sloping since (8) implies

that V x(L, λ)/L is increasing in L. If the condition

xF ′(0) > R +
ρ[1− β(1− η)]
(1− δ)m′(λ∗)

holds, there exists a unique stationary employment level L∗ > 0. The corresponding

dynamics imply further that there is a downward–sloping saddle path converging to

the long–run employment level. Graphically, the firm’s policy function λx(L) traces

this saddle path.

Figure 1: The firm’s optimal recruitment policy follows the declining saddle path.

It follows from these considerations that the firm’s recruitment policy is character-

ized by a path of declining wage offers and job–filling rates along the transition to

the firm’s long–run employment level. Concavity of the firm’s production function
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implies that the firm wants to spread out its recruitment costs across several pe-

riods. This statement remains true for other forms of the recruitment technology.

Only when recruitment costs are linear in vacancies, C(V ) = cV , the firm would

choose a constant λ∗ (and hence post the same wage in all periods). In that case,

it would recruit L∗ workers in the entry period and then keep the employment level

constant. As soon as recruitment costs are strictly convex, such a policy is not

optimal, and it may not be feasible due to the capacity constraint on labor input in

recruitment. This feature of our model is similar to models of optimal investment

with convex adjustment costs. A novel feature is that the firm’s wage policy reflects

the desire to recruit fast in the start–up phase and more slowly in the convergence

phase. This finding is in line with the empirical observation that wages are higher

in fast–growing firms. On the other hand, the model’s predictions on the relation

between productivity, firm size and wages are standard; more productive firms pay

higher wages, they are bigger, and they also grow faster in the start–up phase. Fur-

thermore, there is within–firm wage dispersion; workers receive higher wages when

they were hired in an earlier phase of the firm’s life.14

Firm creation

No entrant makes a positive profit when the expected profit income of a new firm

equals the entry cost, that is,

∑
x∈X

π(x)Jx(0, 0) = K . (12)

This condition implicitly pins down the worker’s job surplus ρ and therefore, via

the firm’s optimal recruitment policy, worker–job ratios in all submarkets. In a

stationary equilibrium, a constant mass of N0 firms enters the market in every period,

so that there are Na = N0(1− δ)a firms of age a in any period. Let (Lx
a, λ

x
a, V

x
a )a≥0

be the employment/recruitment path for a firm with productivity x. Then, a firm of

age a with productivity x has Lx
a employed workers, and λx

aV
x
a unemployed workers

are searching for jobs in the same submarket where this firm searches for workers.

Therefore, the mass of entrant firms N0 is uniquely pinned down from aggregate

14 Because of risk–neutrality, there is a payoff–equivalent equilibrium where each firm pays the
same constant flow wage income to all its workers in addition to an initial hiring premium which
is declining as the firm is growing.
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resource feasibility:

1 =
∑
a≥0

N0(1− δ)a
∑
x∈X

π(x)[Lx
a + λx

aV
x
a ]. (13)

where the right hand side captures that there is a unit mass workers in the pop-

ulation, and the left hand side captures the number of workers that are used in

production and search.

General equilibrium

We now define a stationary equilibrium with positive firm creation. When K is

large enough, there may also be an uninteresting equilibrium without firms which is

ignored in the following.

Definition: A stationary competitive search equilibrium is a list(
ρ,R, N0, (L

x
a, λ

x
a, V

x
a )x∈X,a≥0

)

such that

(a) Unemployed workers’ job search strategies maximize utility. That is, the reser-

vation wage R satisfies (1) and the relationship between wage and worker-job

ratio is given by (2).

(b) Firms’ recruitment policies are optimal. That is, given ρ and R, and for all

x ∈ X, (Lx
a, λ

x
a, V

x
a )a≥0 describes the firm’s growth path, obtained from the

policy functions solving problem (3).

(c) There is free entry of firms, equation (12).

(c) The number of entrant firms is consistent with aggregate resource feasibility,

equation (13).

Proposition 2: A stationary competitive search equilibrium with active firms exists

and is unique, provided that K is sufficiently small and F ′(0) is sufficiently large.

There is wage dispersion both within and across firms. Wages are increasing in firm

productivity and decreasing in firm age. Conditional on firm age, larger firms pay

higher wages.

Proof: Appendix.
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3.3 Efficiency

The social planner decides at each point in time about firm creation, vacancy cre-

ation and worker–job ratios in different submarkets of the economy. The planner

takes as given the numbers of firms that were created in some earlier period, as well

as the employment stocks of all these firms. Formally, the planner’s state vector is

σ = (Na, L
x
a)a≥1,x∈X ,

where Na is the mass of firms of age a ≥ 1, and Lx
a is employment of a firm with

productivity x and age a. It is no restriction to impose that all firms of a given

type (a, x) are equally large. The planner maximizes the present value of output

net of opportunity costs of employment and net of the costs of firm creation and

vacancy creation. With σ̂ to denote the state vector in the next period, the recursive

formulation of the social planning problem is

S(σ) = max
N0,(V x

a ,λx
a)a≥0

{ ∑
a≥0

Na

∑
x∈X

π(x)
[
xF (Lx

a))− bLx
a − C(V x

a , Lx
a, x)

]}
−KN0 + βS(σ̂)

s.t. Lx
0 = 0, L̂x

a+1 = (1− s)Lx
a + m(λx

a)V
x
a , a ≥ 0, x ∈ X , (14)

N̂a+1 = (1− δ)Na , a ≥ 0 ,∑
a≥0

Na

∑
x∈X

π(x)
(
Lx

a + λx
aV

x
a

)
≤ 1 .

The last condition is the economy’s resource constraint. It states that the mass of

of all individuals that are attached to some firm of type (a, x), either as workers Lx
a

or as unemployed workers queuing up for a job at this firm λx
aV

x
a , may not exceed

one. We say that a solution to problem (14) is socially optimal.

Proposition 3: The stationary competitive search equilibrium is socially optimal.

Proof: Appendix.

4 Productivity shocks and firm dynamics

We now extend the previous model to include both idiosyncratic (firm–specific) and

aggregate productivity shocks. This extension allows us to explore not only two
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margins of job creation (firm entry and firm growth), but also the two margins

of job destruction (firm exit and firm contraction). We simplify by assuming that

recruitment costs C(V ) depend on vacancies alone; again, C is an increasing and

convex function. Output of a firm with L workers is xzF (L) where x ∈ X is

idiosyncratic productivity and z ∈ Z is aggregate productivity. Both x and z

follow Markov processes on finite state spaces X and Z with respective transition

probabilities π(x+|x) and ψ(z+|z). An entrant firm pays fixed cost K and draws an

initial productivity level x ∈ X with probability π0(x). For a firm of age a ≥ 0,

let xa = (xa, . . . , x0) ∈ Xa+1 denote the history of idiosyncratic productivity, and

let zt = (zt, . . . , z0) be the history of aggregate shocks at time t. Write ψ(zt) and

π(xa) for the unconditional probabilities of aggregate and idiosyncratic productivity

histories.

We assume that an active firm incurs a fixed operating cost f ≥ 0 per period. This

parameter is required to obtain a non–trivial exit margin.15 Each firm exits with

exogenous probability δ0 ≥ 0 which is a lower bound for the actual exit rate δ ≥ δ0.

Similarly, workers quit a job with exogenous rate s0 ≥ 0 which provides a lower

bound for the actual separation rate s ≥ s0.
16

The timing within each period is as follows. First, aggregate productivity is revealed,

new firms enter, all existing firms draw their idiosyncratic productivities and decide

about exit. Second, firms decide about recruitment and separations, and recruiting

firms are matched with unemployed workers. An unemployed worker who has just

left another job (due to firm exit, quit or layoff) can search for reemployment within

the same period. And third, production takes place. In the following, we first

describe the planning problem before we show its equivalence to a competitive–

search equilibrium in Section 4.4.

4.1 The planning problem

The planner decides at each point in time about firm entry and exit, layoffs and job

creation, as well as worker–job ratios in different submarkets. In a given aggregate

15 A non–trivial exit margin would also obtain in the presence of firing costs when f = 0.
16 Although this model ignores many important worker flows, such as those between jobs and

the flows in and out of the labor force, s0 represents a measure of exogenous worker turnover, as
in Fujita and Nakajima (2009).
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history zt, we denote by N(xa, zt) the mass of firms of age a with idiosyncratic history

xa. Similarly, L(xa, zt) is the employment stock of any of these firms. At every

history node zt and for every firm type xa, the planner decides an exit probability

δ(xa, zt) ≥ δ0, a separation rate s(xa, zt) ≥ s0, vacancy postings V (xa, zt) ≥ 0, and

a worker–job ratio λ(xa, zt) for the submarket in which vacancies of that firm are

matched with unemployed workers.17 The numbers of firm types change between

periods t− 1 and t according to

N(xa, zt) = [1− δ(xa, zt)]π(xa|xa−1)N(xa−1, zt−1) , (15)

and the employment stock at any of these firms adjusts to

L(xa, zt) = [1− s(xa, zt)]L(xa−1, zt−1) + m(λ(xa, zt))V (xa, zt) . (16)

At time t = 0, the planner takes as given the numbers of firms that entered the

economy in some earlier period, as well as the employment stock of each of these

firms. Hence, the state vector at date 0, prior to the realization of productivities,

is summarized by the initial firm distribution (N(xa−1, .), L(xa−1, .))a≥1,xa−1∈Xa . In

a given history zt, the planner also decides the mass of new entrants N0(z
t) ≥ 0, so

that

N(x0, z
t) = [1− δ(x0, z

t)]π0(x0)N0(z
t) and L(x0, z

t) = m(λ(x0, z
t))V (x0, z

t) . (17)

The planning problem is

max
δ,s,V,λ,N0

∑

t≥0,zt

βtψ(zt)

{
−KN0(z

t) + (18)

∑
a≥0,xa

N(xa, zt)
[
xaztF (L(xa, zt))− bL(xa, zt)− f − C(V (xa, zt))

]}

17 To save on notation, we do not allow the planner to discriminate between workers with
different firm tenure. Given that there is no learning-on-the-job, there is clearly no reason for
the planner to do so. Nonetheless, the competitive search equilibrium considered in 4.4 allows
firms to treat workers in different cohorts differently, which is necessary because each firm offers
contracts sequentially and is committed to these contracts. See the proof of Proposition 6 for
further discussion of that issue.
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subject to the dynamic equations for N and L, namely (15), (16) and (17), and

subject to the resource constraints, for all zt ∈ Zt+1,

∑
a≥0,xa

N(xa, zt)
[
(1− s(xa, zt))L(xa−1, zt−1) + λ(xa, zt)V (xa, zt)

]
≤ 1 . (19)

This constraint says that the labor force (employment plus unemployment) cannot

exceed the given unit mass of workers. The first part of the sum, namely

∑
a≥0,xa

N(xa, zt)(1− s(xa, zt))L(xa−1, zt−1) ,

are the workers that are employed in some firm after separations have taken place.

The remaining part of the sum are unemployed workers queueing up for employment

in one of the active firms posting V (.) vacancies in submarkets with worker–job ratios

λ(.). For instance, there are N(xa, zt) active firms with productivity history xa, each

of which posts V (xa, zt) vacancies that meet λ(xa, zt)V (xa, zt) unemployed workers

in a particular submarket.

4.2 Characterization of the planning solutions

There is a convenient characterization of a planning solution which says that exit,

layoff, and hiring decisions follow a recursive equation at the level of the individual

firm. Let βtψ(zt)µ(zt) ≥ 0 be the multiplier on the resource constraint (19) in history

zt. Intuitively, µ(zt) is the social value of a worker in history zt. Let Gt(L, x, zt)

denote the social value of an existing firm with employment stock L, idiosyncratic

productivity x and aggregate productivity history zt. The sequence Gt obeys the

recursive equations

Gt(L, x, zt) = max
δ,s,V,λ

(1− δ)

{
xztF (L̂)− bL̂− f − C(V )− µ(zt)[(1− s)L + λV ]

+β
∑

x̂∈X

∑
zt+1∈Z

π(x̂|x)ψ(zt+1|zt)Gt+1(L̂, x̂, (zt+1, z
t))

}
(20)

s.t. L̂ = (1− s)L + m(λ)V ,

δ ∈ [δ0, 1], s ∈ [s0, 1], λ ≥ 0, V ≥ 0 .

22



The interpretation of these equations is rather straightforward. The planner wants

a firm with characteristics (L, x) to stay active in aggregate history zt whenever

the term in braces is non–negative, otherwise he sets δ = 1. The term in braces

gives the value of an active firm. In the current period, this value encompasses

the firm’s output net of the opportunity cost of employment, net of fixed costs

and recruitment costs, and net of the social cost of workers tied to the firm in

this period; these workers include those that are retained from the previous period,

namely (1−s)L, and also λV unemployed workers who aim to find a job at the firm

(of which m(λ)V ≤ λV eventually find a job).

Proposition 4: There exist value functions Gt : IR+×X × Zt+1 → IR, t ≥ 0,

satisfying the system of recursive equations (20). The firm dynamics obtained from

the solution of the planning problem (18) is the same as the one obtained from (20),

and optimal entry satisfies the complementary–slackness condition

∑
x∈X

π0(x)Gt(0, x, zt) ≤ K , N0(z
t) ≥ 0 . (21)

Whilst Proposition 4 is a convenient characterization of planning solutions, it cannot

be applied for computational purposes. The difficulty is that the multipliers µ(zt) are

non–stationary and depend on the initial firm distribution; furthermore, the firm–

specific value functions Gt are defined on a high–dimensional state space. However,

a much more powerful characterization can be obtained under the provision that

firm entry is positive in all states of a particular planning solution, so that the first

inequality in (21) is binding in all states of the world. When this is the case, the

firm–level value function turns out to be independent of the firm distribution, a

feature coined “block recursivity” by Menzio and Shi (2008). Crucially, the social

value of a worker only depends on the current aggregate state and not on the state

history.

To see this, suppose there are n aggregate states z1 ≤ . . . ≤ zn and let µ =

(µ1, . . . , µn) ∈ IRn
+ be a vector of social values in these states. Let Gi(L, x, µ) be the

social value of a firm with employment stock L, idiosyncratic productivity x and

aggregate productivity zi, for i = 1, . . . , n. G = (Gi) : IR+×X× IRn
+ → IRn

+ satisfies
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the Bellman equations

Gi(L, x, µ) = max(1− δ)

{
xziF (L̂)− bL̂− C(V )− µi[(1− s)L + λV ] (22)

−f + β
∑

x̂∈X

∑
zj∈Z

π(x̂|x)ψ(zj|zi)G
j(L̂, x̂, µ)

}
,

where maximization is subject to the same constraints as in problem (20). Positive

entry in all aggregate states requires that the expected social value of a new firm is

equal to the entry cost ∑
x∈X

π0(x)Gi(0, x, µ) = K . (23)

This characterization of planning solutions by (Gi, µi)i=1,...,n is particularly helpful

for numerical applications. Despite the high degree of heterogeneity, the model can

be solved by a recursive problem on a low–dimensional state space (22) and the (si-

multaneous) solution of a finite–dimensional fixed point problem (23). Importantly,

the distribution of firms is irrelevant for that computation. Ex post, the actual num-

ber of entrants, and hence the evolution of the firm distribution, is obtained as a

residual in the economy’s resource constraint in simulations of the model. Because

the number of entrant firms N0(z
t) does depend on the full history of aggregate

states (or, equivalently, on the current firm distribution), it cannot be proved math-

ematically that the planning solution has indeed positive entry in all state histories.

Nonetheless, in any quantitative application of the model this possibility should not

play a role. Further, the welfare theorem proven in the next section holds generally

and hence does not rest upon positive entry in all states. Analytically, we can only

prove that a planning solution with positive entry exists in the absence of aggregate

shocks. For small aggregate shocks, we show that equations (22) and (23) have a

solution.

Proposition 5:

(a) If K, f , and b are sufficiently small and if z1 = . . . = zn = z, equations (22)

and (23) have a unique solution G(L, x, µ) with µ1 = . . . = µn. There exists a

planning solution with positive entry and a stationary firm distribution.
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(b) If, moreover, the transition matrix ψ(zj|zi) is strictly diagonally dominant and

if |zi − z| is sufficiently small for all i, equations (22) and (23) have a unique

solution.

4.3 Recruitment and layoff strategies

The reduction of the planning solution to problem (20) permits a straightforward

characterization of the optimal layoff and hiring strategies. A firm with productivity

xz and employment stock L should dismiss workers (that is, s > s0) in state i =

1, . . . , n iff

xziF
′(L(1− s0))− b− µi + β

∑

x̂

∑
zj

π(x̂|x)ψ(zj|zi)G
j′(L(1− s0), x̂, µ) < 0 . (24)

This expression is the marginal social surplus of a worker at the employment stock

L(1−s0) after worker turnover. If marginal worker surplus is negative, the firm lays

off some workers so as to equate the left–hand side to zero.

Conversely, for the firm to recruit workers, it must be that λ > 0 and V > 0. In

that case, it follows from the first–order conditions for λ and V that18

C ′(V ) = µiλ
(

m(λ)
λm′(λ)

− 1
)

. (25)

As in the previous section, it follows from concavity of m and convexity of C that

there is an increasing relation between the worker–job ratio and the number of posted

vacancies at the firm. With higher λ, the probability to fill a vacancy increases, and

hence the planner is willing to post more vacancies at higher marginal recruiting

cost. Denote the solution to equation (25) by V = Vi(λ). It is straightforward to

see that Vi(λ) →∞ when λ →∞, and there is some λi ≥ 0 such that Vi(λ) > 0 iff

λ > λi. Note also that the function Vi(λ) is independent of the firm’s idiosyncratic

productivity and of its current employment stock. The planner’s optimal choice of

λ for firm (L, x) in aggregate state i satisfies

xziF
′(L̂)− b + β

∑

x̂

∑
zj

π(x̂|x)ψ(zj|zi)G
j′(L̂, x̂, µ) =

µi

m′(λ)
,

18 This equation is analogous to (8). See the derivation of (45) in the proof of Proposition 3.
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with L̂ = L(1− s0) + m(λ)Vi(λ). Therefore, the firm recruits workers, if and only if

xziF
′(L(1− s0))− b + β

∑

x̂

∑
zj

π(x̂|x)ψ(zj|zi)G
j′(L(1− s0), x̂, µ) >

µi

m′(λ)
. (26)

The two conditions (24) and (26) illustrate how the firm’s strategy depends on

its characteristics (L, x). Small and productive firms recruit workers and grow,

whereas large and unproductive firms dismiss workers and shrink. Depending on the

functional forms for C(.) and m(.), there can also be an open set of characteristics

where firms do not adjust their workforce.19

4.4 Decentralization

We now describe a competitive search equilibrium that gives rise to the same allo-

cation as the planning solution characterized in Proposition 4. Firms offer workers

a sequence of state–contingent wages, to be paid for the duration of the match.

They also commit to cohort–specific and state–contingent separation probabilities.

Contracts are contingent on the idiosyncratic productivity history of the firm at age

k, xk, and on the aggregate state history zt at time t. Formally, a contract offered

by a firm of age a at time T takes the form

Ca =
(
wa(x

k, zT+k−a), ϕa(x
k, zT+k−a)

)
k≥a

,

where wa(x
k, zt) is the wage paid to the worker in firm history (xk, zt), conditional

on the worker being still employed by the firm in that instant. ϕa(x
k, zt) ≥ δ0 +(1−

δ0)s0, for k > a, is the probability of a job separation prior to the production stage

in history xk. In the hiring period, a separation cannot occur, so ϕa(x
a, zT ) = 0 by

definition.

The workers’ search problem

Let U(zt) be the utility value of an unemployed worker in history zt, and let

W (Ca, x
k, zt) be the utility value of a worker hired by a firm of age a in contract Ca

19 Similar patterns for employment adjustment are obtained in the models of Bentolila and
Bertola (1990) and Elsby and Michaels (2010).
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who is currently employed at that firm in history xk, with k ≥ a. The latter satisfies

the recursive equation

W (Ca, x
k, zt) = ϕa(x

k, zt)U(zt) + (1− ϕa(x
k, zt))

[
wa(x

k, zt) (27)

+β
∑
xk+1

∑
zt+1

π(xk+1|xk)ψ(zt+1|zt)W (Ca, x
k+1, zt+1)

]
.

An unemployed worker searches for contracts which promise the highest expected

utility, considering that more attractive contracts are less likely to find. The worker

observes all contracts Ca and he knows that the probability to sign a contract is

m(λ)/λ when λ is the worker–job ratio in the submarket where the contract is

offered. That is, potential submarkets are parameterized by the tuple (λ,Ca). Un-

employed workers enter those submarkets where expected surplus is maximized:

ρ(zt) = max
(λ,Ca)

m(λ)
λ

[
W (Ca, x

a, zt)− b− βEztU(zt+1)
]

. (28)

Because an unemployed worker gets one chance to search in every period, his Bellman

equation reads as

U(zt) = b + ρ(zt) + βEztU(zt+1) . (29)

The firms’ problem

A firm of age a with history (xa, zt) takes as given the employment stocks of workers

hired in some earlier period, (Lτ )
a−1
τ=0, as well as the contracts signed with these

workers, (Cτ )
a−1
τ=0. The firm chooses an exit probability δ and cohort–specific layoff

probabilities sτ . For these probabilities to be consistent with separation probabilities

specified in existing contracts, it must hold that δ ≤ ϕτ (x
a, zt) for all τ ≤ a − 1,

and sτ = 1− (1− ϕτ (x
a, zt))/(1− δ) when δ < 1, with arbitrary choice of sτ when

δ = 1. The firm also decides new contracts Ca to be posted in V vacancies in a

submarket with worker–job ratio λ. It is no restriction to presuppose that the firm

offers only one type of contract and searches in only one submarket. When Ja is the
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value function of a firm of age a, the firm’s problem is written as

Ja

[
(Cτ )

a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

= max
(δ,λ,V,Ca)

(1− δ)

{
xaztF

( a∑
τ=0

L̂τ

)
−W − f (30)

−C(V ) + β
∑
xa+1

∑
zt+1

π(xa+1|xa)ψ(zt+1|zt)Ja+1

[
(Cτ )

a
τ=0, (Lτ )

a
τ=0, x

a+1, zt+1
]}

s.t. L̂a = m(λ)V, , λ ≥ 0, V ≥ 0, L̂τ = Lτ
1− ϕτ (x

a, zt)
1− δ

, τ ≤ a− 1 , (31)

δ ∈ [δ0, min
0≤τ≤a−1

ϕτ (x
a, zt)], s0(1− δ) ≤ (1− ϕτ (x

a, zt)) , (32)

W =
a∑

τ=0

wτ (x
a, zt)L̂τ , (33)

W (Ca, x
a, zt) ≥ b + βEztU(zt+1) +

λρ(zt)
m(λ)

when λ > 0 . (34)

The last condition is the workers’ participation constraint; it specifies the minimum

expected utility that contract Ca must promise in order to attract a worker queue

of length λ per vacancy. In (31), the ratio (1−ϕτ (x
a, zt))/(1− δ) is (arbitrarily) set

to zero when δ = ϕτ (x
a, zt) = 1.

Definition: A (stationary) competitive search equilibrium is a list
[
U(zt), ρ(zt), Ca(x

a, zt), λ(xa, zt), V (xa, zt), δ(xa, zt), Ja(.), (Lτ (x
a, zt))0≤τ≤a, N(xa, zt), N0(z

t)

]
,

for all t ≥ 0, a ≥ 0, xa ∈ Xa+1, zt ∈ Zt+1, and for a given initial firm distribution,

such that

(a) Firms’ exit, hiring and layoff strategies are optimal. That is, Ja is the value

function and Ca(.), δ(.), λ(.), and V (.) are the policy functions for problem

(30).

(b) Employment evolves according to

Lτ (x
a, zt) = Lτ (x

a−1, zt−1)
1− ϕτ (x

a, zt)
1− δ(xa, zt)

, 0 ≤ τ ≤ a− 1 ,

La(x
a, zt) = m(λ(xa, zt))V (xa, zt) , a ≥ 0 .
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(c) Firm creation is optimal. That is, the complementary slackness condition

∑
x

π0(x)J0(x, zt) ≤ K , N0(z
t) ≥ 0 (35)

holds, and the number of firms evolves according to N(x0, z
t) = π0(x0)[1 −

δ(x0, z
t)]N0(z

t) and (15).

(d) Workers’ search strategies are optimal, i.e. (ρ, U) satisfy equations (28) and

(29).

(e) Aggregate resource feasibility:

∑
a≥0,xa

N(xa, zt)
[
λ(xa, zt)V (xa, zt) +

a−1∑
τ=0

Lτ (x
a, zt)

]
= 1 . (36)

Proposition 6: The competitive search equilibrium is socially optimal.

Proof: Appendix.

Discussion of wages and employment commitment

It is not hard to see that a wage commitment is sufficient for a firm to implement its

desired policy, even if it cannot commit to separation rates. Given risk neutrality, the

firm can set the wages following any future history exactly equal to his reservation

wage which is the sum of unemployment income and the worker’s shadow value

b + µ(zt). It can achieve any initial transfer to attract workers through an initial

hiring bonus. The costs of an existing worker therefore always equal his value in

his best available alternative: unemployment and search for another job. Since the

flow surplus for any retained worker equals his shadow value, the firm’s problem in

this case coincides with the planner’s problem (20), and firing will be exactly up

to the socially optimal level even though the firm only commits to the wages and

not to the employment levels. Workers do not have any incentive to quit the job

unilaterally, either, because they are exactly compensated for their social shadow

value from searching, which in this setting is equal to their personal shadow value.

Similarly, given employment commitment the wage–tenure profiles for individual

workers are arbitrary because of risk–neutrality, as long as they satisfy the workers’
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participation constraint with equality. As we show in the proof of Proposition 6,

firms do not need to discriminate in separation rates between workers in different

cohorts. Nonetheless, such equilibria are also possible; then workers with higher

separation rates will be compensated through higher wage transfers, whereas workers

with more stable jobs earn lower wages. Put differently, this model does not say

anything about individual wage–tenure profiles. It only pins down the surplus split

between workers and firms.

In our numerical examples, we consider the benchmark case where wage profiles are

not dispersed within the firm. That is, all workers within firm (L, x) in history zt

earn the same flow wage w(L, x, zt). In a block–recursive equilibrium, such a wage

profile can be easily calculated using (27) and the binding condition (34).

5 A calibrated example

We illustrate that the block-recursive structure is useful to analyze the implications

of this model by calibrating it to the U.S. labor market. The calibration proceeds in

two steps. First, we choose model parameters to match selected long–run features

of the U.S. labor market. Second, we feed this model with aggregate productiv-

ity shocks that replicate the standard deviation and persistence of empirical labor

productivity.

We choose the period length to be one month and set β = 0.996 so that the

annual interest rate is about 5 percent. We assume a CES matching function

m(λ) = (1 + kλ−r)−1/r and set the two parameters k and r to target a monthly

job–finding rate of 0.45 (Shimer (2005b)) and an elasticity of the job–finding rate

with respect to the vacancy–unemployment ratio of 0.5 which belongs within the

range of reasonable values reported in Petrongolo and Pissarides (2001). Since we

also target the aggregate vacancy–unemployment ratio at 1/λ = 0.72, we calculate

the parameters k and r to attain the two targets at λ = 1/0.72.

The production technology is Cobb–Douglas with xLα and a simple Markov process

for idiosyncratic productivity. Particularly, we let idiosyncratic productivity attain

one of ten equally distant values in the range [xmin, 1], uniformly drawn upon entry.

The transition process is such that idiosyncratic productivity changes from one
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Table 1: Parameter choices.

Parameter Value Description Target

β 0.996 Discount factor Annual interest rate 5%

k 1.623 Matching fct. scale Job–finding rate

r 1.475 Matching fct. elasticity Pissarides and Petrongolo (2001)

α 0.7 Prod. fct. elasticity Labor share

c 0.1 Vacancy cost parameter Hiring cost 14% of quarterly wage

xmin 0.31 Lowest productivity Firm size (mean relative to min)

π 0.65 Transition probability Job–creation rate

b 0.2 Flow value of leisure Vacancy–unemployment ratio = 0.72

K 13.09 Entry cost Job creation at opening firms

f 0.6 Flow operating cost Job destruction at closing firms

δ0 0.0011 Exogenous exit rate Job destruction at closing large firms

s0 0.02 Quit rate Monthly quit rate

month to the next with probability π and switches to a neighboring state with

identical probabilities. Parameter α is set to 0.7 to target a labor share of 2/3.20

The parameters xmin and π are chosen to match two targets. Given that labor is a

continuous variable in our model, we identify the labor input of one worker with the

minimum firm size in the sample distribution, and we then target the ratio between

the mean firm size and the minimum firm size at 21.6, which is the average number

of workers in BED data for the years 1990-2005. Second, we target quarterly firm–

level rates of job creation and job destruction of around 6.5%, which are the averages

obtained from the Business Employment Dynamics (BED), 1990–2005 (see Helfand,

Sadeghi, and Talan (2007)).

We deliberately choose a quadratic vacancy cost function C(V ) = cV 2 and we

set parameter c so that recruiting cost per hire are about 14 percent of quarterly

wage income, following Hall and Milgrom (2008) and Elsby and Michaels (2010).

20Our calculation of the labor share is based on wage profiles which treat all workers within
a firm equally. Clearly in a stationary equilibrium, the result would be the same for any other
individual wage profiles.
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We set the opportunity cost of employment (parameter b) to target a vacancy–

unemployment ratio of 0.72 which is the number chosen by Pissarides (2009) and

Elsby and Michaels (2010), based on the Job Openings and Labor Turnover Survey

(JOLTS). We set the entry cost parameter K and the operating flow cost parameter

f to target the extensive margins of job creation and job destruction. Based on BED

data between 1990 and 2005, 16.6% of all quarterly job gains occur at opening firms

and 17.2% of all job losses occur at closing firms (see Helfand, Sadeghi, and Talan

(2007)).21 With this choice of parameters, all firms with the lowest idiosyncratic

productivity x = xmin leave the market, whereas all others stay. By implication,

only the smallest firms (those at the lowest four productivity levels) can make a

transition to the lowest productivity state (and thus leave the market) from one

quarter to the next. Nonetheless, in BED data 0.33 percent of jobs are lost at firms

whose employment is larger than mean employment (i.e. 20 workers or more). Hence

we set the exogenous monthly exit rate at δ0 = 0.0011 to account for job destruction

at exiting larger firms.22 The exogenous worker quit rate is set at s0 = 0.02, which

is roughly the monthly quit rate in JOLTS (Davis, Faberman, and Haltiwanger

(2006)). Table 1 summarizes the parameter choices.

Due to the non–linearity of the model, we cannot match all targets exactly, but

the fit is rather close (see Table 2). The job–finding rate is a bit lower than the

target which is due to the fact that the matching function is concave and vacancy–

unemployment ratios are dispersed across submarkets.

Figure 2 shows value and policy functions (separations and recruitment policies) for

firms in the nine active productivity states x > xmin. These policy functions confirm

the insights from Section 3: conditional on size, more productive firms advertise more

vacancies and fill any of them with a higher rate. And conditional on productivity,

smaller firms recruit faster and create more jobs. The figure also shows that, for any

productivity, there is a range of employment levels where firms neither shed workers

nor recruit new workers, and hence shrink by the natural turnover s0L.

In a simulated stationary firm distribution, we find positive relations between firm

21The respective shares for establishments are somewhat larger (20.9% and 20.1%).
22Obviously, transitions that generate exit of large firms endogenously can be accommodated

in calibrations with more elaborate transition matrixes that have entry’s farther away from the
diagonal.
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Table 2: Data moments and model statistics.

Variable Data Model

Job-creation rate (quarterly) 6.7% 6.9%

Job-destruction rate (quarterly) 6.3% 6.9%

Labor share 0.67 0.68

Workers per firm 21.6 21.3

Hiring cost (share of quart. wage) 0.14 0.14

Share of JC at openings (quarterly) 16.6% 17.5%

Share of JD at closings (quarterly) 17.2% 16.0%

Vacancy–unemployment ratio 0.72 0.72

Job–finding rate (monthly) 45% 44%

Notes: The model statistics are calculated as a stationary firm distribution obtained from a

simulation of 10000 entrant firms where each firm is subject to the idiosyncratic shock process and

exits at productivity x = xmin. This gives a total of about 843000 observations.

growth and the two means of recruitment, vacancy postings and vacancy fill rates.

The two relationships are shown in Figure 3(a) for the vacancy rate (i.e., vacancies as

a share of employment) and in Figure 3(b) for the monthly job–filling rate. Qualita-

tively, these graphs correspond to the findings of Davis, Faberman, and Haltiwanger

(2009) who also document a positive relationship between employer growth, the

monthly vacancy rate and the vacancy yield in JOLTS data (their Figures 5 and

6). In their study, vacancy postings seem to play a smaller role in accounting for

differences in employment growth, whereas they are the larger driving force in our

simulation.23

The model performs reasonably well in matching the dispersion of employment

growth rates across firms. Using the Longitudinal Business Database (1992–2005),

Davis, Haltiwanger, Jarmin, and Miranda (2006) obtain a cross–sectional dispersion

23In our model, convexity in the recruitment technology is the key factor for the spread in job–
filling rates between fast–growing and slow–growing firms. Indeed, when we choose a more general
function C(V ) = cV a, we find that differences in job–filling rates vanish for values of a close to
one. On the other hand, the spread does not become much larger when we choose values of a

greater than two. Hence we decided to simply use a quadratic function.
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Figure 2: The firms’ value functions (upper left), and the policy functions for sepa-

ration rates s (upper right), for vacancies (lower left), and for job–filling rates m(λ)

(lower right).

(employment–weighted standard deviation) of annual employment growth rates for

continuing firms of 0.37 (see Figure 8 in their paper). In our simulated stationary

distribution, this dispersion measure is somewhat larger at 0.44. Table 3 also shows

that the model does a good job in matching the distribution of employment growth

rates.

Because our calibration does not target the cross–sectional employment distribu-

tion, the variation in employer size is much lower than in the data.24 Nonetheless,

24Accounting for the large variance and skewness of the employment distribution with finitely
many idiosyncratic productivity states is not easy to reconcile with reasonable rates of job creation
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(a) Vacancy rate (b) Job-filling rate

Figure 3: Vacancy share (vacancies relative to employment) and job–filling rates

(monthly hires per vacancy) across firm growth rates. Notes: The curves are calculated

from a simulated firm distribution with 843000 observations and 30 equally spaced intervals of the

firm growth distribution.

Table 3: Distribution of employment growth

Growth rate interval Data Model

-2 (exit) 0.7 0.55

(−2,−0.2] 7.5 9.6

(−0.2,−0.05] 16.5 7.6

(−0.05,−0.02] 9.6 14.9

(−0.02, 0.02) 30.9 22.8

[0.02, 0.05) 9.9 14.0

[0.05, 0.2) 16.7 21.9

[0.2, 2) 7.5 8.0

2 (entry) 0.7 0.61

Notes: The table reports employment shares for intervals of quarterly employment growth rates.

The empirical distribution is taken from Table 2 of Davis, Faberman, Haltiwanger, and Rucker

(2008). The model statistics are calculated from a stationary firm distribution with 843000 obser-

vations.

and job destruction across firms. One possible remedy is to split x = x0x1 into a permanent and a
transitionary component where the former is set to match the employment distribution (see Elsby
and Michaels (2010)). We leave this extension for future work.
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when we rank firms along the percentiles in the employment distribution, the model

reproduces the negative relation between firm size (as measured by the rank in the

size distribution) and rates of job creation and job destruction, and it also captures

the negative relation between firm size and the rates of job creation and destruction

at the extensive margin; see Figure 5.

Figure 4: Quarterly job creation and job destruction rates (total and extensive mar-

gins) across firm sizes (percentiles of the employment distribution). Notes: The green

curves are based on the nine reported firm–size classes in the BED. The red curves are calculated

from a simulated firm distribution with 843000 observations and 20 equally spaced intervals of the

employment distribution. Whenever firms change size classes, job flows are attributed according

to the dynamic–size allocation of the BLS (see Moscarini and Postel–Vinay (2009)).

We can also compare wages between firms, using the wage profiles where any firm

does not discriminate between its workers. We find that wage dispersion across

firms is rather small, with a standard deviation of log wages equal to 3.6%, in

line with other work that abstracts from on-the-job search (see e.g. Hornstein,

Krusell, and Violante (2009)). The model does link the dispersion to firm size and

firm growth. For instance, the wage difference between firms with log employment

one standard deviation above average to those with log employment one standard

deviation below average is about 2.5% percent (hence two thirds of the standard

deviation of log wages). Differences in firm growth account for more variation in

wages: the difference between wages at firms that grow by more than 20 percent and
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those that do not grow or shrink is 6.7 percent (almost two standard deviations).

To explore the impact of aggregate shocks, we presuppose that entry is positive in

all periods and solve the model as explained in Section 4.2. Aggregate productivity

attains five equally distant values in the interval [zmin, 2 − zmin], and the Markov

process for z is a mean–reverting process with transition probability ψ, as described

in Appendix C of Shimer (2005b). Starting from a stationary firm distribution

obtained from the numerical solution of the stationary model, we simulate the evo-

lution of these firms over 2000 months, using the policy functions from the numerical

solution of (22) and (23). In every simulation period, the number of firm entrants is

obtained as a residual of the economy’s resource constraint by the following sequen-

tial procedure. Every entrant draws idiosyncratic productivity x ∈ X and attracts

λ(0, x, zt)V (0, x, zt) unemployed workers. These workers are then added to the sum

of those workers who are either employed or who search for jobs at one of the ex-

isting firms. The result is then compared with the constant labor force. When it is

smaller, another firm enters, and when it is larger, entry stops.

We compare two calibrations. In the first, the entry cost K is constant across

aggregate states. With this choice, firm entry turns out to be four times as volatile

as in the data. Nonetheless, entry was always bounded away from zero in our

2000 period simulations although it could fall to zero occasionally for somewhat

larger productivity shocks.25 In the second calibration, we let the entry cost vary

procyclically to match the empirical standard deviation of job creation at opening

firms. To match this target, we set the elasticity of K with respect to z to 0.39.

The two parameters (zmin, ψ) for the aggregate shock process are set to target a

quarterly standard deviation and autocorrelation of labor productivity around trend

of 0.011 and 0.83 (the empirical moments for the period 1992–2009). The result is

that (zmin, ψ) = (0.985, 0.28) for calibration 1 (fixed entry cost) and (zmin, ψ) =

(0.98, 0.24) for calibration 2 (procyclical entry cost).

Table 3 shows the outcome of this exercise for business cycle volatility. For both

calibrations, the model clearly has too low amplification: both unemployment and

vacancies are less volatile than in the data, as is the case in Shimer’s (2005) calibra-

25In any period with zero entry, the sum of employment and unemployment in the simulation
exceeds the constant labor force. Our solution method is then not exact but it should still be
considered as a reasonable approximation when such events are rare.
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tion of the search and matching model with homogeneous (constant return) firms

and socially efficient job creation. One way to understand low amplification is the

gap between productivity and the opportunity cost of work; the larger this gap is, the

smaller should be the response of job creation to productivity shocks (see Hagedorn

and Manovskii (2008), Hall and Milgrom (2008)). In fact, in our calibration, aggre-

gate labor productivity (which is obviously identical to the employment–weighted

average product of labor across firms) is 0.45 and the employment–weighted marginal

product is 0.315, so that the opportunity cost of work (parameter b) is just 44% of

average product and 66% of marginal product. When we double parameter b to 0.4

(and adjust the operating cost to f = 0.19 so as to make sure that again only firms

with x = xmin leave the market), average firm size falls, the average and marginal

products of labor increase (albeit by a factor less than two), so that b is at 55% of

average product and at 80% of marginal product. In the calibration with variable

entry costs, the standard deviation of the vacancy–unemployment ratio increases

somewhat from 1.3% to 2.2%. Still, this number is substantially below the volatility

in the data. Hence, additional features of the hiring and firing process are likely

to be important beyond our simple illustrative example. In particular, we only use

a quadratic hiring cost in this part, which means that both large and small firms

face the same restrictions in hiring additional workers. If the costs of hiring arises

because of input by existing workers - as in the flexible specification C(V, L, x) that

we adopted in the previous section - then larger firms might have an advantage in

the hiring process. If costs are proportional to labor force, labor might adjust pro-

portional to workforce rather than in terms of absolute levels. Other possibilities

that can be explored with such an extension of our framework are economies of scale

in the recruitment technology (Rotemberg (2006)) or training costs (Rogerson and

Shimer (2010)), both of which are likely to raise unemployment volatility.

Finally, it is worth mentioning that our model produces a downward–sloping Bev-

eridge curve, that is, a strong negative comovement of unemployment and vacancies.

This is despite the feature that job destruction is endogenous in this model. With

variable (fixed, resp.) entry costs, the quarterly correlation between vacancies and

unemployment is -0.82 (-0.42), and also the job–finding rate is strongly procyclical

and almost twice as volatile as the separation rate.
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Table 4: Business cycle volatility.

Data Fixed Variable

entry cost entry cost

Unemployment 13.1% 1.4% 0.7%

Vacancies 15.4% 0.6% 0.6%

Labor productivity 1.1% 1.0% 1.1%

JC-openings 4.7% 20.5% 4.2%

JC-expansions 5.3% 2.1% 0.7%

JD-closings 5.2% 1.7% 1.7%

JD-contractions 5.6% 1.0% 0.5%

Notes: The first column shows standard deviations of logged quarterly time series which are

HP filtered with parameter 105 (U.S. data 1992–2009, Vacancies are from JOLTS 2001-2009). The

model statistics are obtained from a simulation of about 410000 firms over a period of 2020 months

where the first 40 months are discarded. The first three quarterly time series are calculated by

time aggregation of monthly observations, whereas the four time series for job flows are obtained

from quarterly employment changes at the firm level. Reported are standard deviations of the

logged time series.

6 Conclusion

The introduction of multi-worker firms into labor search models bridges the separate

literatures on firm dynamics and labor search. It has the potential to address issues

in both fields, and most importantly to create new insights into the interplay be-

tween firm size, entry and exit and the levels and fluctuations in employment. This

particular project proposes a wage formation process for such environments that

takes into account standard competitive elements adjusted for the fact that search

behavior does not allow for perfect market clearing. The model turns out to match

the stylized facts regarding firm growth and pay, and implements a socially efficient

allocations both in and out of steady state. It can be viewed as a benchmark against

which to judge actual labor market allocations.

To conclude, it might be worthwhile to highlight a particular asymmetry between

the bargaining approach and the competitive search approach to wage setting with
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large firms. While the former never yields an efficient benchmark, the latter does

allow to capture both efficient and inefficient scenarios. In particular, in a search

environment individuals are faced with uncertainty regarding their success in finding

a job. If workers are risk-averse, then treating them as if they are risk-neutral is

only applicable in the benchmark case where risk is perfectly insurable through

other assets. In reality some insurance through buffer savings seems possible, but

full insurance might not be attainable. Lack of perfect insurance induces workers

to search too much for low-paying but safe jobs, and leads to excess employment

in low-productivity jobs and overall to inefficient over-employment in the absence

of unemployment insurance, and they arise even in one-worker-one-firm models (see

Acemoglu and Shimer (1999a)). Our environment can therefore be regarded as a

benchmark not only relative to bargaining models, but also relative to alternative

scenarios within the class of competitive search models.

Appendix

Proof of Proposition 1:

We have already shown that the value function can be written as −BW + Gx(L; ρ)

with B = 1/[1 − β(1 − η)]. Moreover, from (3) follows that Gx(L; ρ) satisfies the

recursive problem

Gx(L; ρ) = max
(λ,V )≥0

xF (L)− C(V, L, x)− β[λρ + (1− δ)Bm(λ)R(ρ)]V

+β(1− δ)Gx(L̂; ρ) , (37)

s.t. L̂ = L(1− s) + m(λ)V , V ≥ 0 .

This problem is equivalently defined on a compact state space L ∈ [0, L] where

L is so large that it never binds. This is possible because of the Inada condition

limL→∞ F ′(L) = 0. The RHS in problem (37) defines an operator T which maps

a continuous function Gx
0(L; ρ), defined on [0, L] × [0, ρ] into a continuous function

Gx
1(L; ρ) = T (Gx

0)(L; ρ) defined on the same domain. This operator is a contraction

and it maps functions which are increasing in L and decreasing in ρ into functions

with the same property. Furthermore, it maps functions which are concave in L

and differentiable in (L, ρ, x) into functions with the same property. Therefore,
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the unique fixed point Gx inherits all these properties. Strict concavity and strict

monotonicity of F further implies that Gx is strictly increasing and strictly concave.

Moreover, the fixed point must be decreasing in ρ and strictly increasing in x, which

follows from differentiation of Gx with respect to ρ and x (and the assumptions on

C).

Because of strict concavity of the problem, policy functions λx(L) and V x(L, λx(L))

exist. Properties of V x(L, λ) follow from the discussion in the text. To see how λx(L)

depends on L, differentiate the first–order condition (4) at a point where λx(L) > 0

and V x(L, λx(L)) > 0 to obtain

dλx(L)
dL

= −
Gx′′(L̂)

[
(1− s) + m(λ)

dV x

dL

]

ρ

1− δ

m′′(λ)

(m′(λ))2
+ Gx′′(L̂)

[
m′(λ)V x + m(λ)

dV x

dλ

] < 0 .

This shows that λx is decreasing in L. To verify the last claim, observe first that

(8) and C ′′
13 ≥ 0 imply that V x is (weakly) decreasing in x. Furthermore, since the

operator T maps a function Gx
0 whose derivative Gx′

0 is increasing in x into a function

Gx
1 whose derivative Gx′

1 is strictly increasing in x, the unique fixed point Gx also

has a marginal product which is strictly increasing in x. Hence, differentiation of

(4) with respect to x implies that

dλx(L)
dx

= −
Gx′′(L̂)m(λ)

dV x

dx
+

dGx′

dx
ρ

1− δ

m′′(λ)

(m′(λ))2
+ Gx′′(L̂)

[
m′(λ)V x + m(λ)

dV x

dλ

] > 0 .

This shows that λx(L) is increasing in x. 2

Lemma 1: Equation (11) has a unique steady state solution λ∗ > 0 if, and only if,

h <
β(1− δ)m

1− β(1− η)
, (38)

with m = limλ→∞ m(λ) − λm′(λ) > 0. Under this condition, any sequence λt > 0

satisfying this equation converges to λ∗.

Proof: A steady state λ∗ must satisfy the condition

βρ[m(λ)− λm′(λ)] =
ρh[1− β(1− η)]

1− δ
+ [Rh + c]m′(λ) . (39)
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The LHS is strictly increasing and goes from 0 to βρm as λ goes from 0 to +∞.

The RHS is decreasing in λ with limit ρh(1− β(1− η))/(1− δ) for λ →∞. Hence,

a unique steady state λ∗ exists iff (38) holds. Furthermore, differentiation of (11) at

λ∗ implies that
dλt+1

dλt

∣∣∣
λ∗

= h
β(1− δ)m(λ∗) + hβ(1− η)

,

which is positive and smaller than one iff

h <
β(1− δ)m(λ∗)
1− β(1− η)

.

But this inequality must be true because (39) implies

h =
βρ[m(λ∗)− λ∗m′(λ∗)]− cm′(λ∗)

ρ[1− β(1− η)]

1− δ
+ Rm′(λ∗)

<
β(1− δ)m(λ∗)
1− β(1− η)

.

Therefore, the steady state λ∗ is locally stable. Moreover, equation (11) defines a

continuous, increasing relation between λt+1 and λt which has only one intersection

with the 45–degree line. Hence, λt+1 > λt for any λt < λ∗ and λt+1 < λt for any

λt > λ∗, which implies that λt converges to λ∗ from any initial value λτ > 0. 2

Proof of Proposition 2:

It remains to prove existence and uniqueness. From Proposition 1 follows, that

the entrant’s value function Jx(0, 0) is decreasing and continuous in ρ. Hence the

expected profit prior to entry,

Π∗(ρ) ≡
∑
x∈X

π(x)Jx(0, 0)

is a decreasing and continuous function of ρ. Moreover, the function is strictly

decreasing in ρ whenever it is positive. This also follows from the proof of Proposition

1 which shows that Gx(0; ρ) is strictly decreasing in ρ when the new firm x recruits

workers (V (0, x) > 0). If no new firm recruits workers, expected profit of an entrant

cannot be positive. Hence, equation (12) can have at most one solution for any K >

0. Such a solution exists provided that K is sufficiently small and F ′(0) is sufficiently

large. To see this, when F ′(0) is sufficiently large, Π∗(0) is strictly positive: some

entrants will recruit workers since the marginal product Gx′(m(λ)V ; ρ) is sufficiently

large relative to the cost of recruitment and relative to the wage cost which are, for
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ρ = 0, equal to m(λ)V b (see equation (37). But when Π∗(0) > 0, a sufficiently small

value of K guarantees that (12) has a solution since limρ→∞ Π∗(ρ) = 0. 2

Proof of Proposition 3:

Because the social planner’s problem (14) is concave, it suffices to show that the

stationary competitive search equilibrium satisfies the first–order conditions of this

problem. We denote by SN,a the derivative of S with respect to Na and by SL,a,x

the derivative of S with respect to Lx
a. The multiplier on the resource constraint is

µ ≥ 0. First–order conditions with respect to N0, V x
a , and λx

a, a ≥ 0, are

∑
x∈X

π(x)
[
xF (0)− C(V x

0 , 0, x)
]
−K + β(1− δ)SN,1 − µ

∑
x∈X

π(x)λx
0V

x
0 = 0 , (40)

−Naπ(x)
[
xF ′(Lx

a) + C ′
a(V

x
a , Lx

a, x) + µλx
a

]
+ βSL,a+1,xm(λx

a) ≤ 0 , V x
a ≥ 0 , (41)

βSL,a+1,xm
′(λx

a)− µNaπ(x) = 0 . (42)

Here condition (41) holds with complementary slackness. The envelope conditions

are, for a ≥ 1 and x ∈ X,

SL,a,x = Naπ(x)
[
xF ′(Lx

a)− C ′
2(V

x
a , Lx

a, x)− b− µ
]

+ β(1− s)SL,a+1,x , (43)

SN,a =
∑
x∈X

π(x)
[
xF (Lx

a)− C(V x
a , Lx

a)− bLx
a

]
+ β(1− δ)SN,a+1

−µ
∑
x∈X

π(x)
(
Lx

a + λx
aV

x
a

)
. (44)

Use (42) to substitute SL,a,x into (43) to obtain

xF ′(Lx
a+1)− C ′

2(V
x
a , Lx

a, x)− b− µ =
µ
β

[
1

(1− δ)m′(λx
a)
− β(1− s)

m′(λx
a+1)

]
.

This equation describes the planner’s optimal recruitment policy; it coincides with

equation (10) for µ = R − b = βρ. This is intuitive: when the social value of an

unemployed worker µ coincides with the surplus value that an unemployed worker

obtains in search equilibrium, the firm’s recruitment policy is efficient. Next substi-

tute (42) into (41) to obtain the socially optimal vacancy creation, for a ≥ 0 and

x ∈ X,

C ′
1(V

x
a , Lx

a, x) ≥ µ
[

m(λx
a)

m′(λx
a)
− λx

a

]
, V x

a ≥ 0 . (45)
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Again for µ = βρ, this condition coincides with the firm’s choice of vacancy postings

in competitive search equilibrium, equation (8). Lastly, it remains to verify that

the social value of a jobless worker is indeed equal to R − b. The planner’s choice

of firm entry, condition (40), together with the recursive equation for the marginal

firm surplus SN,a, equation (44), shows that

K =
∑
a≥0

[β(1− δ)]a
∑
x∈X

π(x)
[
xF (Lx

a)− bLx
a −C(V x

a , Lx
a, x)− µ(Lx

a + λx
aV

x
a )

]
. (46)

On the other hand, the expected profit value of a new firm is

∑
x∈X

π(x)Jx(0, 0) =
∑
a≥0

[β(1− δ)]a
∑
x∈X

π(x)
[
xF (Lx

a)−W x
a − C(V x

a , Lx
a, x)

]
.

Hence, the free–entry condition in search equilibrium, equation (12), coincides with

condition (46) for R = b + µ if, for all x ∈ X,

∑
a≥0

[β(1− δ)]a
[
(b + µ)Lx

a + µλx
aV

x
a −W x

a

]
= 0 . (47)

Now after substitution of

Lx
a =

a−1∑

k=0

(1− s)a−1−km(λx
k)V

x
k , and

W x
a =

a−1∑

k=0

(1− s)a−1−kV x
k

[
ρλx

k

(1− δ)B
+ m(λx

k)R
]

into (47), it is straightforward to see that the equation is satisfied for µ = R−b = βρ.

2

Proof of Proposition 4:

The RHS in the system of equations in (20) defines an operator T that maps a

sequence of bounded functions G = (Gt)t≥0, with Gt : [0, L] × X × Zt → IR such

that ‖G‖ ≡ supt ‖Gt‖ < ∞, into another sequence of bounded functions G̃ = (G̃t)t≥0

with ‖G̃‖ = supt ‖G̃t‖ < ∞. Here L is sufficiently large such that the bound L̂ ≤ L

does not bind for any L ∈ [0, L]. This follows from the Inada condition for F : the

marginal product of an additional worker xzF ′(L̂) − b must be negative for any

x ∈ X, z ∈ Z, for any L̂ ≥ L with sufficiently large L; hence no hiring will occur
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beyond L. Because the operator satisfies Blackwell’s sufficient conditions, it is a

contraction in the space of bounded function sequences G. Hence, the operator T

has a unique fixed point which is a concave function of L. This implies that the

solutions to problem (20) are characterized by its first–order conditions.

To see that the two problems (18) and (20) lead to the same choices of δ, s, λ and

V for any given firm, rewrite the Lagrange function of problem (18) in the following

way, with multipliers βtψ(zt)µ(zt) ≥ 0 on constraints (19),

L = max
∑

t≥0,zt

βtψ(zt)

{
−KN0(z

t) +
∑

a≥0,xa

N(xa, zt)

[
xaztF (L(xa, zt))− bL(xa, zt)

−f − C(V (xa, zt))− µ(zt)
[
(1− s(xa, zt))L(xa−1, zt−1) + λ(xa, zt)V (xa, zt)

]]}

The planner’s policy is obtained by maximization of this Lagrange function with

respect to δ(.), s(.), λ(.), V (.), and N0(.). Using the sequential formulation of the

recursive problem (20), the maximum of the Lagrange function is the same as the

sum of the social values of entrant firms and the social values of the firms that

already exist at t = 0, namely,

L = max
N0(.)

∑

t,zt

βtψ(zt)N0(z
t)

[
−K +

∑
x

π0(x)Gt(0, x, zt)
]

+
∑
z∈Z

ψ(z0)
∑

a≥1,xa−1

π(xa|xa−1)G0(L(xa−1, .), xa, z
0) .

This also proves that the complementary–slackness condition (21) describes optimal

entry. 2

Proof of Proposition 5:

Part (a) Solving (20) in the stationary case involves to find a single value function

G(L, x, µ). Application of the contraction mapping theorem implies that such a

solution exits, is unique, and is continuous and non–increasing in µ and strictly

decreasing in µ when G(.) > 0.

Therefore, the function Γ(µ) ≡ ∑
x π0(x)G(0, x, µ) ≥ 0 is continuous, strictly de-

creasing when positive, and zero for large enough µ. Furthermore, when f and b are
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sufficiently small, Γ(0) > 0; hence when K > 0 is sufficiently small, there exists a

unique µ ≥ 0 satisfying equation (21).

Part (b) For any given vector (µ1, . . . , µn) ∈ Rn
+, the system of recursive equations

(20) has a unique solution G = (Gi). Again this follows from the application of

the contraction–mapping theorem. Furthermore, G is differentiable in µ, and all el-

ements of the Jacobian (dGi/(dµj)) are non–positive. The RHS of (20) defines an op-

erator mapping a function Gi(L, x, µ) with a strictly diagonally dominant Jacobian

matrix (dGi/(dµj)) into another function G̃j whose Jacobian matrix (dG̃i/(dµj))

is diagonally dominant. This follows since the transition matrix ψ(zj|zi) is strictly

diagonally dominant and since all elements of (dG̃i/(dµj)) have the same (non–

positive) sign. Therefore, the unique fixed point has a strictly diagonally dominant

Jacobian. Now suppose that (z1, . . . , zn) is close to (z, . . . , z) and consider the solu-

tion µ1 = . . . = µn = µ from part (a). Since the Jacobian matrix dGi(0, x, µ)/(dµj)

is strictly diagonally dominant, it is invertible. By the implicit function theorem, a

unique solution to equation (21) exits. 2

Proof of Proposition 6: The proof proceeds in two steps. First, substitute the

participation constraint (34) into the firm’s problem and make use of the contracts’

recursive equations (27) to show that the firms’ recursive profit maximization prob-

lem is identical to the maximization of the social surplus of a firm. Second, show

that the competitive equilibrium is socially optimal.

First, define the social surplus of a firm with history (xa, zt) and with predetermined

contracts and employment levels as follows:

Ga

[
(Cτ )

a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]
≡ Ja

[
(Cτ )

a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

(48)

+
a−1∑
τ=0

Lτ

[
W (Cτ , x

a, zt)− U(zt)
]

.

Without loss of generality, the participation constraint in (34) always binds, and the

wage in the hiring period can be expressed as

wa(x
a, zt) = b+βEztU(zt+1)+

λρ(zt)
m(λ)

−β
∑
xa+1

∑
zt+1

π(xa+1|xa)ψ(zt+1|zt)W (Ca, x
a+1, zt+1) .

46



Now substitute this equation, (27) and (31) into (48), and write

S ≡
[
(Cτ )

a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

and Ŝ ≡
[
(Cτ )

a
τ=0, (L̂τ )

a
τ=0, x

a+1, zt+1
]

,

with L̂τ as defined in (31), to obtain

Ga(S) = max
δ,λ,V,Ca

(1− δ)

{
xaztF (L̂)− f − C(V )−

a−1∑
τ=0

1− ϕτ (x
a, zt)

1− δ
Lτwτ (x

a, zt) (49)

−m(λ)V
[
b + βEztU(zt+1) +

λρ(zt)
m(λ)

]

+βExaEzt

[
Ja+1(Ŝ) + m(λ)V W (Ca, x

a+1, zt+1)
]}

+
a−1∑
τ=0

Lτ (1− ϕτ (x
a, zt))

[
wτ (x

a, zt)− U(zt) + βExaEztW (Cτ , x
a+1, zt+1)

]

= max
δ,λ,V,Ca

(1− δ)

{
xaztF (L̂)− f − C(V )− ρ(zt)λV − bL̂− ρ(zt)

a−1∑
τ=0

Lτ (1− ϕτ (x
a, zt))

+βExaEzt

[
Ja+1(Ŝ) +

a∑
τ=0

L̂τ

(
W (Cτ , x

a+1, zt+1)− U(zt+1)
)]}

= max
δ,λ,V,Ca

(1− δ)

{
xaztF (L̂)− f − C(V )− ρ(zt)

[
λV + L̂−m(λ)V

]
− bL̂

+βExaEztGa+1(Ŝ)

}
.

Here maximization is subject to (31) and (32), and the second equation makes use

of (29). This shows that the firm solves a surplus maximization problem which is

identical to the one of the planner specified in (20) provided that ρ(zt) = µ(zt) holds

for all zt, where µ is the social value of an unemployed worker as defined in section

4.2. The only difference between the two problems is that the firm commits to state–

contingent and cohort–specific separation probabilities, whereas the planner chooses

in every period an identical separation probability for all workers (and he clearly has

no reason to do otherwise). Nonetheless, both problems must have the same solution:

they are dynamic optimization problems of a single decision maker in which payoff

functions are the same (with ρ(zt) = µ(zt)) and the decision sets are the same.

Further, time inconsistency is not an issue since there is no strategic interaction
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and since discounting is exponential. Hence solutions to the two problems, with

respect to firm exit, layoffs and hiring strategies, are identical. In both problems

the decision maker could principally treat different cohorts differently. Because our

notation for the planner solution did not capture that possibility, there is also no

reason for competitive search to produce such an outcome. Nonetheless, there can be

equilibria where different cohorts have different separation probabilities, but these

equilibria must also be socially optimal because they maximize social firm value.

It remains to verify that worker surplus ρ(zt) in the competitive search equilib-

rium coincides with the social value of a worker in the planning solution. When

µ(zt) = ρ(zt), G0(x, zt) as defined in (48) coincides with G0(0, x, zt), as defined in

(20). Hence, the free–entry condition (35) coincides with the condition for socially

optimal firm creation (21). Because of labor market clearing (36), the planner’s

resource constraint (19) is also satisfied. Since the allocation in competitive search

equilibrium satisfies the first–order conditions and the constraints of the planner’s

problem, it is socially optimal. 2
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