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Abstract

In semiparametric binary response models, support conditions on the regressors

are required to guarantee point identification of the parameter of interest. For ex-

ample, one regressor is usually assumed to have continuous support conditional on

the other regressors. In some instances, such conditions have precluded the use of

these models; in others, practitioners have failed to consider whether the conditions

are satisfied in their data. This paper explores the inferential question in these semi-

parametric models when the continuous support condition is not satisfied and all

regressors have discrete support. I suggest a recursive procedure that finds sharp

bounds on the parameter of interest and outline several applications. After deriving

closed-form bounds on the parameter, I show how these formulas can help analyze

cases where one regressor’s support becomes increasingly dense. Furthermore, I in-

vestigate asymptotic properties of estimators of the identification set. I also propose

three approaches to address the problem of empty identification sets when a model

is misspecified. Finally, I present a Monte Carlo experiment and an empirical illus-

tration to compare several estimation techniques.
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1 Introduction

The econometrics literature on inference in semiparametric binary response models have

used support conditions on observable regressors to guarantee point identification of the

vector parameter of interest. These support conditions always require continuity of one

(or more) regressors. In practice though, it is not uncommon to have data sets where all

regressors have discrete support, such as age, years of education, number of children and

gender. In these cases, the parameter of interest is not point identified, that is, a large

set of parameters will be consistent with the model. Therefore, it is important to develop

methods of drawing accurate inferences without continuous support conditions on the data.

This paper examines the question of identification in semiparametric binary response

models in the absence of continuity. Consider

Y = 1(Xβ + U ≥ 0), (BR)

where Y is an observable binary outcome, U is an unobservable, real-valued, scalar random

variable, β is a k-dimensional parameter, and X is an observable random variable with

discrete support. I impose a weak median condition on the error term, as in Manski

(1985):

M(U |X = x) = 0 for any x in support of X. (M)

In this framework, I provide a methodologically new approach to the analysis of binary

response models. The paper makes the following contributions.

I note that the parameter’s identification region is described by a system of a finite

number of linear inequalities and therefore represents a convex polyhedron. To construct

this system, it is enough to know whether conditional probabilities P (Y = 1|X = x)

are greater or less than 0.5. As was shown by Manski and Thompson (1986), under the

median condition the sign of index xβ is the same as the sign of P (Y = 1|X = x) − 0.5.

Moreover, Manski (1988) used this fact to establish a general non-identification result for

the case of discrete regressors. The first contribution of the paper is to provide a recursive

procedure that allows us to easily find sharp bounds on the identification region. Although

this approach was outlined, for example, in Kuhn (1956) and Solodovnikov (1977), it has

not been used in the context of identification.

I derive formulas for bounds on parameters, which prove useful in analyzing cases when

the support of one regressor can become increasingly dense. Furthermore, I show that

the recursive procedure can be used not only to find sharp bounds but also to determine

other characteristics of the identification region. Moreover, it can be employed in the

extrapolation problem when we want to learn about P (Y = 1|X = x0) for a point x0

that is off the support. In addition, because identification regions in ordered response and

in single-index models with a monotone link function are described by systems of linear
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inequalities, the recursive procedure can be applied to them too.

Another contribution of the paper is to link binary response models to support vector

machines (SVMs) in statistical learning theory. When the support of X is discrete and

the median condition (M) holds, binary response models classify points in the support

into two groups and every parameter value from the identification set defines a hyperplane

that separates these groups. SVMs, in their turn, is a learning technique that focuses on

finding a special hyperplane that efficiently separates two classes of given training data.

The major difference is that binary response models aim to find all separating hyperplanes,

whereas SVMs seek only one hyperplane.

Because models might carry some degree of specification error, the recursive procedure

may cease working in some situations. Therefore, it is important to develop techniques

that address the consequences of model misspecification. The third contribution of this

paper is to offer several methods for dealing with the issue, all of which are based on the

optimization of certain objective functions. One approach is the maximum score estima-

tion method presented in Manski (1975, 1985). Another allows us to measure the degree of

misspecification by finding the minimal number of classification errors. Each method fea-

tures a crucial property: The set of solutions coincides with the identification set when the

model is well specified. The third approach is a modification of a soft margin hyperplane

approach in SVMs and it lets us determine the extent of misspecification by determining

the minimal size of a general classification error. For a well specified model, this approach

gives the closure of the identification set.

Another contribution of this paper is to explore the estimation of the identification

region. Although this paper focuses on identification, it is of interest to analyze cases

where conditional probabilities P (Y = 1|X = x) are not known, but their estimates

P̂ (Y = 1|X = x) are available. In this situation, we can find estimators of identification sets

from a system of linear inequalities that uses P̂ (Y = 1|X = x) instead of P (Y = 1|X = x).

I show that when the model is well specified, such set estimators converge to the true

identification set arbitrarily fast (in terms of Hausdorff distances). I find that the sets of

maximum score estimates possess the same property. I also construct confidence regions

for the identification set and show that because of the discrete nature of the problem, they

are usually conservative.

The last contribution of this paper is an empirical application. The empirical portion

of this paper consists of two parts. The first presents the results of a Monte Carlo ex-

periment with a well-specified model. The error term satisfies the median condition but

is not independent of the regressors. I show that the estimator of the identification set

obtained from the system of inequalities that uses estimated conditional probabilities and

the set of maximum score estimates coincides with the identification set. For parameters

corresponding to non-constant regressors, I find the set of maximum rank correlation es-

timates, which turn out to lie inside the identification set but form a much smaller set.
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I also present normalized probit and logit estimates. Though these estimates are located

inside the identification set, they are far from the value of the parameter, which was used

to generate the model.

The second empirical part is based on data regarding the labor force participation of

married women. The decision of women to participate in the labor force is treated as a

dependent binary variable and regressed on education, age, labor market experience and

number of children. I use different estimation techniques and compare their results. Given

that misspecification or sampling error leaves the system of inequalities constructed from

the estimates of conditional probabilities without solutions, I use methods suggested for

dealing with the misspecification problem. I also find normalized probit and logit estimates,

ordinary least squares and least absolute deviation estimates, and compare them to other

estimates.

This paper is related to two strands of the literature. The first one embodies a consid-

erable amount of work on partially identified models in econometrics. Studies on partial

identification were largely initiated and advanced by Manski (see, for example, Manski

(1990, 1995, 2003)), Manski and Tamer (2002) and carried further by other researchers.

The second strand analyzes models with discrete regressors. This topic is relatively

underdeveloped in econometric theory, in spite of its importance for empirical work. An

example of a recent paper that touches upon this subject is Honore and Tamer (2006).

The authors describe how to characterize the identification set for dynamic random effects

discrete choice models when points in the support have discrete distributions. For single-

index models E(Y |X = x) = φθ(xθ) with discrete explanatory variables and no assumption

on the link function φθ except for measurability, Bierens and Hartog (1988) show that

there is an infinite number of observationally equivalent parameters. In particular, the

identification set of the k-dimensional parameter θ = (θ1, . . . , θk) normalized as θ1 = 1 will

be whole space <k−1, with the exception of a finite number of hyperplanes (or a countable

number of hyperplanes if the regressors have a discrete distribution with an infinite number

of values). In binary response models with discrete regressors, Manski (1988) provides a

general non-identification result and Horowitz (1998) demonstrates that the parameter

can be identified only in very special cases. Magnac and Maurin (2005) also address

identification issues in binary response models with discrete regressors. Their framework,

however, is different from the framework in this paper. They consider a case where there is

a special covariate among the regressors and assume that the model satisfies two conditions

related to this covariate - partial independence and large support conditions.

The rest of the paper is organized as follows. Section 2 explains the problem and

defines the identification set. Section 3 contains the mathematical apparatus, describes the

recursive procedure and its applications and draws an analogy to SVMs. It also outlines

applications of the recursive procedure, in particular to single-index and ordered-response

models. Section 4 considers misspecification issues and suggests techniques for dealing
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with them. Section 5 analyzes the case in which the discrete support of regressors grows

increasingly dense. Section 6 considers the estimation of the identification set from a

sample and statistical inference. Section 7 is an empirical section that contains the results

of estimations in a Monte Carlo experiment and an MROZ data application. Section 8

concludes and outlines ideas for future research. The proofs of theorems and propositions

are collected in the Appendix.

2 Identification set

I begin by reviewing the main point identification results in the literature as well as the

support conditions that guarantee point identification.

Manski (1985) proved that, when coupled with the median condition (M), the following

conditions on the support of X guarantee that β in (BR) is identified up to scale:

1. The support of the distribution of X is not contained in any proper linear subspace

of <k.

2. There is at least one component Xh, h ∈ {1, . . . , k} with βh 6= 0 such that for almost

every x̃ = (x1, . . . , xh−1, xh+1, . . . , xk), the distribution of Xh conditional on X̃ = x̃

has a density positive almost everywhere with respect to the Lebesgue measure.

In particular, if we normalize β1 = 1, then β is identified.

The smoothed maximum score method described in Horowitz (1992) and the maximum

rank correlation method presented in Han (1987) require these conditions. Klein and

Spady’s (1993) approach, on the other hand, imposes a stronger assumption: At least one

component of X must be a continuous random variable.

It is worth mentioning that Manski (1988) presents other identification results. For

instance, under certain conditions, even when β is not identified, the signs of β1,. . . ,βk

can be identified. Horowitz (1998) contains a thorough review of identification results for

binary response models.

Now I turn to the case of discrete support. Let X be a random variable with the discrete

finite support

S(X) = {x1, . . . , xd}. (2.1)

Following Manski and Thompson (1986), I notice that the median condition allows us

to rewrite the binary response model in a form that contains only conditional probabilities

P (Y = 1|X = xl) and linear inequalities. Because

Pr(Y = 1|X = x) = Pr(U ≥ −xβ|X = x) = 1− Pr(U < −xβ|X = x),
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the median condition implies that

Pr(Y = 1|X = x) ≥ 0.5 ⇔ xβ ≥ 0. (BRM)

Thus, model (BR) together with (M) is equivalent to model (BRM), and the identification

problem comes down to solving a system of inequalities. Manski and Thompson (1989)

interpret condition (BRM) as a ”single-crossing” condition for response probabilities. Be-

cause S(X) contains a finite number of points, the number of inequalities in the system is

also finite. If Pr(Y = 1|X = xl) ≥ 0.5, the inequality corresponding to xl is

zl1 + zl2β2 + . . . + zlkβk ≥ 0,

where zl = xl. If Pr(Y = 1|X = xl) < 0.5, the inequality corresponding to xl is

zl1 + zl2β2 + . . . + zlkβk > 0,

where zl = −xl. Though this system contains strict and non-strict inequalities, for the

sake of notational convenience, I will write it as encompassing non-strict inequalities

zl1 + zl2β2 + . . . + zlkβk ≥ 0, l = 1, . . . , d.

It is important to keep in mind, however, that some inequalities are strict; this property

is what allows us to separate the points with P (Y = 1|X = x) ≥ 0.5 from the points with

P (Y = 1|X = x) < 0.5.

Throughout this paper, I will use normalization β1 = 1, along with the notations xl,

which will denote points in the support, and d, which will stand for the number of these

points, as in (2.1). I will assume that all points in the support are different. Furthermore,

I will use ql to signify the probability of xl in the population and P l to indicate conditional

probabilities P (Y = 1|X = xl), assuming that 0 < ql < 1 for any l. The parameter’s

identification set will be denoted as B.

N will stand for the number of observations in a sample, q̂l
N will denote the sample

frequency estimate of ql and P̂ l
N will signify the estimate of P l. The sample estimate of B

will be denoted as BN . Throughout the paper, zl = sgn(P l− 0.5)xl, where function sgn(·)
is defined as

sgn(t) =

{
1, t ≥ 0

−1, t < 0.

In several instances zl will mean zl = sgn(P̂ l
N − 0.5)xl. These cases will be clear from the

context.

Theorem 2.1. Parameter β in (BRM) is identified up to a k0-dimensional convex poly-

hedron, where k0 ≤ k − 1.

6



Corollary 2.2. Each βm, m 6= 1, in (BRM) is identified up to a connected interval.

Theorem 2.1 does not need any proof: It is a direct consequence of the definition of

convex polyhedra. To prove Corollary 2.2, I note that the identification interval for βm,

m 6= 1, is the projection of the identification set on the axis xl. Due to the convexity of B,

this interval is a connected set.

A few words about convex polyhedra are in order. By definition, a set B ⊂ <k−1 is a

convex polyhedron if and only if it is the intersection of a finite number of closed half-spaces

in <k−1 space. Formally, a set B ⊂ <k−1 is a convex polyhedron if and only if there is an

m×(k−1) matrix H and a vector h of m real numbers such that B = {b ∈ <k−1 : Hb ≤ h}.
According to this formal definition, the identification set in (BRM) is not a standard

convex polyhedron because the system of linear inequalities defining B contains strict

and non-strict inequalities. For our purposes, however, B can be considered a convex

polyhedron, keeping in mind that it does not contain some surface points.

The solution set of a finite system of linear inequalities in a finite number of variables

is not the only representation of a convex polyhedron. Because every bounded polyhedron

has a double description, it can also be described pointwise as the convex hull of a finite

number of points. (The minimal set of such points is called the set of the vertices of the

polyhedron.) Any unbounded convex polyhedron can be represented as a Minkowski sum

of a bounded convex polyhedron and a convex cone (see, for example, Padberg (1999)).

Several authors provide algorithms for finding all the vertices of convex polyhedra when

they are described by systems of inequalities. Examples of such works are Motzkin et. al.

(1953), Balinski (1961), Chernikova (1965), Manas and Nedoma (1968), Matheiss (1973)

and Matheiss and Rubin (1980). Though applicable in practice, these methods have not

proved useful in theoretically analyzing the properties of convex polyhedra.

An easier, effective approach in the theoretical analysis of the identification set B in

(BRM) is finding the smallest rectangular superset of B. This rectangle is the Cartesian

product of the identification intervals for βm, m 6= 1. Its dimension can be smaller than

k − 1 if some βm, m 6= 1, are point identified.

Figure 1 shows an identification set on the left and its smallest rectangular superset on

the right.

3 Mathematical tools

3.1 Recursive method

In this section, I describe a recursive procedure that finds identification intervals for βm,

m 6= 1. Applied to a system of linear inequalities, this method excludes from the system one

unknown variable at each step until only a single variable is left. From there, identifying

the sharp bounds for the remaining variable is straightforward. Although this approach
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Figure 1. Convex polyhedron and its smallest rectangular superset

is outlined, for instance, in Kuhn (1956) and Solodovnikov (1977), I supplement it by

discussing cases in which the system has an unbounded or empty set of solutions and by

deriving formulas for parametric bounds.

Consider an arbitrary system of linear inequalities with k − 1 unknown variables:

z11 + z12b2 + . . . + z1kbk ≥ 0 (S1)

z21 + z22b2 + . . . + z2kbk ≥ 0

. . .

zd1 + zd2b2 + . . . + zdkbk ≥ 0.

Suppose we want to find sharp bounds for variable bk. Consider i’s inequality in the system:

zi1 + zi2b2 + . . . + zikbk ≥ 0.

If zi2 > 0, then this inequality is equivalent to

−zi1

zi2

− zi3

zi2

b3 . . .− zik

zi2

bk ≤ b2.

If zj2 < 0, then it is equivalent to

−zj1

zj2

− zj3

zj2

b3 − . . .− zjk

zj2

bk ≥ b2.

Suppose system (S1) has I inequalities with z·2 > 0, J inequalities with z·2 < 0 and M

inequalities with z·2 = 0. In this case, (S1) can be equivalently written as the system

b2 ≥ Di, i = 1, . . . , I,

Nj ≥ b2, j = 1, . . . , J,

Zm ≥ 0, m = 1, . . . , M,
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where Di, Nj, Zm do not contain b2 and are linear in b3, . . . , bk. This system implies that

Nj ≥ Di, i = 1, . . . , I, j = 1, . . . , J, (S2)

Zm ≥ 0, m = 1, . . . , M.

(S2) is a system of linear inequalities with k−2 unknown variables. In other words, system

(S2) consists of M inequalities that do not contain b2, and I × J linear combinations of

inequalities i ∈ I and inequalities j ∈ J with positive coefficients −zj2 and zi2, respectively.

This first step is illustrated in example 9.1 in the Appendix.

The next proposition establishes a relationship between the solutions to (S1) and (S2).

Proposition 3.1. If (b∗2, b
∗
3, . . . , b

∗
k) is a solution to(S1), then (b∗3, . . . , b

∗
k) is a solution to

(S2). If (b∗3, . . . , b
∗
k) is a solution to (S2), then there exists b2 such that (b2, b

∗
3, . . . , b

∗
k) is a

solution to (S1).

I repeat the process above and exclude a variable from (S2) (for example, b3) to obtain a

system (S3) of linear inequalities with unknown variables (b4, . . . , bk). I continue repeating

this procedure, removing another variable each time, until I obtain a system with only one

unknown variable bk:

As + Bsbk ≥ 0, s = 1, . . . , S, (Sk−1)

Cq ≥ 0, q = 1, . . . , Q,

where Bs 6= 0, s = 1, . . . , S. The statement of Proposition 3.1, applied at each step of the

recursive process, implies the following fact.

Proposition 3.2. If (b∗2, b
∗
3, . . . , b

∗
k) is a solution to (S1), then b∗k is a solution to (Sk−1).

If b∗k is a solution to (Sk−1) , then there exists (b2, . . . , bk−1) such that (b2, b3, . . . , bk−1, b
∗
k)

is a solution to (S1).

When system (Sk−1) is obtained, I find

bk = max

{
−As

Bs

: Bs > 0

}
,

bk = min

{
−As

Bs

: Bs < 0

}
.

If bk < bk or Cq < 0 for some q, then system (Sk−1) and, therefore, (S1) do not have

solutions. Otherwise, the set of solutions for (Sk−1) is
[
bk, bk

]
. From Proposition 3.2, I

conclude that bk and bk are sharp bounds for bk. This last step is illustrated in example

9.2 in the Appendix.

Evidently, to obtain a system with only variable bk in the last step, I can exclude

variables b2, . . . , bk−1 in an order different from the one described here. For instance, I
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could exclude variables in the order bk−1, bk−2, . . . , b2. So, if the set of solutions for (S1) is

nonempty and bounded, variables can be eliminated in any order.

Now I turn to cases where the system either does not have solutions or has an unbounded

set of solutions. First, I consider what happens when (S1) has no solution, focusing par-

ticularly on situations in which it is easy to detect that the solution set is empty. In this

instance, it is intuitive that the recursive procedure will break at some point. Though I

have implicitly assumed until now that (S1) has solutions, it is possible that systems of

inequalities derived from econometric models will not have solutions due to model misspec-

ification. At some step in this situation, we may get an obvious contradiction C ≥ 0 where

C is a negative constant. We may also be able to reach the last step of the procedure,

only to discover that (Sk−1) contains clear contradictions, such as Cq ≥ 0 where Cq is a

negative constant or bk < bk. These situations are illustrated in examples 9.3 and 9.4 in

the Appendix.

Second, I consider the case in which (S1) has an unbounded set of solutions, a condition

that can be easy to spot if at one step in the process we notice that all the coefficients

corresponding to some variable bi have the same strict sign. Then we can conclude right

away that the solution set is unbounded. Nevertheless, we may still be able to continue

the procedure and learn more about the solution set if there is a variable with coefficients

of both signs. These cases are considered in example 9.4 in the Appendix.

Finally, suppose that at some step in the procedure we notice that, first, no variables

in the system have both negative and positive signs, and second, each variable has zero

coefficients. Then the system needs further investigation because its solution set may be

either unbounded or empty.

Clearly, the recursive procedure can be used to find sharp bounds on any parameter.

For example, to find the sharp bounds on parameter b3, we can exclude b2, then b4,. . . , bk

in the manner described.

Example 3.1. Consider a binary response model

Y = 1(X1 + β2X2 + β3X3 + U ≥ 0),

where X1 takes values from {−5,−4, . . . , 4, 5}, X2 is the constant term (X2 = 1), and X3

takes values from {0, 1, . . . , 7}. Thus, the support of X contains 88 points. Conditional

probabilities P l, l = 1, . . . , 88, are determined by the rule

xl
1 + 1.25− 0.5xl

3 ≥ 0 ⇒ P l ≥ 0.5

xl
1 + 1.25− 0.5xl

3 < 0 ⇒ P l < 0.5.

Because all P l are known, I can construct a system of linear inequalities that defines the
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identification set B:

P l ≥ 0.5 ⇔ xl
1 + xl

2b2 + xl
3b3 ≥ 0, l = 1, . . . , 88.

The recursive procedure finds the bounds for β2 and β3: β2 ∈ (1, 1.6), β3 ∈ (−0.6,−0.42877).

Figure 2 shows both the identification set and bounds.

1 1.2 1.4 1.6 1.8
b2

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

b3

1 1.2 1.4 1.6 1.8
b2

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

b3

Figure 2. Identification set and its smallest rectangular superset in Example 3.1

3.2 Formulas for bounds on βm, m 6= 1

In this section, I use the recursive procedure to derive formulas for the bounds on βm,

m 6= 1, in model (BRM). These bounds are expressed in terms of zi = sgn(P i − 0.5)xi,

i = 1, . . . , d. For clarity, I first show formulas for the cases k = 3 and k = 4 and then

present them in general.

Proposition 3.3. Let k = 3. Suppose the solution set to (S1) is non-empty and bounded.

Then

b3
l ≤ β3 ≤ b3

u, where

b3
u = min

i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2

zi3 zi2

∣∣∣∣∣

: zj2 < 0, zi2 > 0,

∣∣∣∣∣
zj3 zj2

zi3 zi2

∣∣∣∣∣ < 0





= min
i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2 < 0

zi3 zi2 > 0

∣∣∣∣∣ < 0





,

b3
l = max

i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2

zi3 zi2

∣∣∣∣∣

: zj2 < 0, zi2 > 0,

∣∣∣∣∣
zj3 zj2

zi3 zi2

∣∣∣∣∣ > 0





= max
i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2 < 0

zi3 zi2 > 0

∣∣∣∣∣ > 0





.
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Assume there are sets of indices i, j such that the conditions in the definition of b3
u and

b3
l are satisfied. Bounds b3

u and b3
l are not necessarily sharp.

Let me explain the last statement in this proposition. According to the recursive proce-

dure, if in some inequalities the coefficients corresponding to b2 are 0, then we carry over

those inequalities to the next step without any changes. The formulas for b3
u and b3

l, how-

ever, ignore situations in which some coefficients corresponding to b2 can be 0. Therefore,

they do not necessarily describe sharp bounds. Sharp bounds b̃u
3 and b̃l

3 that account for

these cases can be written as follows:

b̃u
3 = min

{
bu
3 , min

i
{−zi1

zi3
: zi2 = 0, zi3 < 0}

}
, b̃l

3 = min
{

bl
3,min

i
{−zi1

zi3
: zi2 = 0, zi3 > 0}

}
.

If there is a constant term among regressors, these formulas are simpler. Without a loss

of generality, xi2 = 1, i = 1, . . . , d. Then zj2 < 0 is possible if and only if zj2 = −1, and

zi2 > 0 is possible if and only if zi2 = 1. The formulas can be written as follows:

b3
u = min

i,j

{
−xi1 − xj1

xi3 − xj3

: xi3 − xj3 < 0

}
, b3

l = max
i,j

{
−xi1 − xj1

xi3 − xj3

: xi3 − xj3 > 0

}
.

Now I consider the case k = 4.

Proposition 3.4. Let k = 4. Suppose the solution set to (S1) is non-empty and bounded.

Then

b4
l ≤ β4 ≤ b4

u, where

b4
u = min

i1,j1,i2,j2





−

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj11 zj12

zi11 zi12

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12

zi13 zi12

∣∣∣∣∣

∣∣∣∣∣
zj21 zj22

zi21 zi22

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22

zi23 zi22

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj14 zj12

zi14 zi12

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12 < 0

zi13 zi12 > 0

∣∣∣∣∣ < 0

∣∣∣∣∣
zj24 zj22

zi24 zi22

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22 < 0

zi23 zi22 > 0

∣∣∣∣∣ > 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

< 0





,
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b4
l = max

i1,j1,i2,j2





−

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj11 zj12

zi11 zi12

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12

zi13 zi12

∣∣∣∣∣

∣∣∣∣∣
zj21 zj22

zi21 zi22

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22

zi23 zi22

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj14 zj12

zi14 zi12

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12 < 0

zi13 zi12 > 0

∣∣∣∣∣ < 0

∣∣∣∣∣
zj24 zj22

zi24 zi22

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22 < 0

zi23 zi22 > 0

∣∣∣∣∣ > 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0





.

Assume there are sets of indices i1, i2, j1, j2 such that the conditions in the definition of

b4
u and b4

l are satisfied. Bounds b4
u and b4

l are not necessarily sharp.

The reason why b4
u and b4

l are not necessarily sharp is similar to the explanation

described earlier, when I considered the case of k = 3: The formulas ignore instances in

which some inequalities are carried over to the next step without any changes. When

k > 3, it becomes difficult to keep track of these inequalities at each step of the procedure.

such inequalities; that is why I do not give formulas for sharp bounds for k > 3.

It is worth noticing the symmetry of the formulas for bl
3 and bu

3 , as well as for bl
4 and

bu
4 . To find the lower (upper) bounds bl

3 or bl
4 (bu

3 or bu
4), we choose inequalities for which

the determinant in the denominator is positive (negative). This symmetry will allow me

to formulate results in section 5, when I consider the situation in which the support of X

becomes increasingly dense.

Proposition 3.4 is a special case of Proposition 3.5, which I formulate below. First,

however, let me introduce some notations. Define

A1(m, i, j) =

∣∣∣∣∣
zjm zj2

zim zi2

∣∣∣∣∣ ,

where zj2, zi2 are such that zj2 < 0, zi2 > 0. Let me write this formula as

A1(m, i, j) =

∣∣∣∣∣
zjm zj2 < 0

zim zi2 > 0

∣∣∣∣∣ .

Then, according to Proposition 3.3,

b3
u = min

i,j

{
− A1(1, i, j)

A1(3, i, j) < 0

}
, b3

l = max
i,j

{
− A1(1, i, j)

A1(3, i, j) > 0

}
.

13



Note that A1(m, i, j) can be written in the form

A1(m, i1, j1, i2, j2) =

∣∣∣∣∣
A0(m, j) A0(2, j) < 0

A0(m, i) A0(2, i) > 0

∣∣∣∣∣ ,

where A0(m, i) = zim. Let

A2(m, i1, j1, i2, j2) =

∣∣∣∣∣
A1(m, i1, j1) A1(3, i1, j1) < 0

A1(m, i2, j2) A1(3, i2, j2) > 0

∣∣∣∣∣ .

Then b4
u, b4

l from Proposition 3.4 can be written as

b4
u = min

i1,j1,i2,j2

{
− A2(1, i1, j1, i2, j2)

A2(4, i1, j1, i2, j2) < 0

}
, b4

l = max
i1,j1,i2,j2

{
− A2(1, i1, j1, i2, j2)

A2(4, i1, j1, i2, j2) > 0

}
.

Now I can formulate a general result.

Proposition 3.5. Let k ≥ 3. Suppose the solution set to (S1) is non-empty and bounded.

Then

bk
l ≤ βk ≤ bk

u,

where

bk
u = min

i1,...,j
2k−3

{
− Ak−2(1, i1, . . . , j2k−3)

Ak−2(k, i1, . . . , j2k−3) < 0

}
,

bk
l = max

i1,...,j
2k−3

{
− Ak−2(1, i1, . . . , j2k−3)

Ak−2(k, i1, . . . , j2k−3) > 0

}
,

where Ak−2(m, i1, . . . , j2k−3) is defined recursively as

Ak−2(m, i1, . . . , j2k−3) =

∣∣∣∣∣
Ak−3(m, i1, . . . , j2k−4) Ak−3(k − 1, i1, . . . , j2k−4) < 0

Ak−3(m, i2k−4+1, . . . , j2k−3) Ak−3(k − 1, i2k−4+1, . . . , j2k−3) > 0

∣∣∣∣∣ ,

A0(m, i) = zim.

Assume there are sets of indices i1, . . . , i2k−3, j1, . . . , j2k−3 such that the conditions in the

definition of bk
u and bk

l are satisfied. Bounds bk
u and bk

l are not necessarily sharp.

3.3 Applications of the recursive method

The recursive method’s effectiveness extends well beyond identification intervals. It can

come in handy, for instance, when we are interested in some specific properties of B or

other related questions. This section presents several applications of the method.

14



3.3.1 A rectangular subset with the largest perimeter

Because not every point in the smallest rectangular superset of B belongs to B, it may

be of interest to find subsets of B that have certain properties. The recursive method

allows us to easily find a rectangular subset of B with the largest possible perimeter. For

simplicity, consider the case where k = 3. The problem that has to be solved is

a2 + a3 → max
b2,b3,a2,a3,

subject to

zi1 + zi2b2 + zi3b3 ≥ 0

zi1 + zi2(b2 + a2) + zi3b3 ≥ 0

zi1 + zi2b2 + zi3(b3 + a3) ≥ 0

zi1 + zi2(b2 + a2) + zi3(b3 + a3) ≥ 0

i = 1, . . . , d,

a2 ≥ 0, a3 ≥ 0.

Denote a = a2 + a3. Substitute expression a3 = a− a2 into the system, and obtain

zi1 + zi2b2 + zi3b3 ≥ 0

zi1 + zi2b2 + zi3b3 + zi2a2 ≥ 0

zi1 + zi2b2 + zi3b3 − zi3a2 + zi3a ≥ 0

zi1 + zi2b2 + zi3b3 + (zi2 − zi3)a2 + zi3 ≥ 0 (3.1)

i = 1, . . . , d,

a2 ≥ 0, a ≥ 0.

Find the upper bound on a from system (3.1), and denote it as au. Let (b∗2, b
∗
3, a

∗
2) be

any solution of (3.1) when a is fixed at its highest value: a = au. Value 2au is the largest

possible perimeter, and points (b∗2, b
∗
3), (b∗2+a∗2, b

∗
3), (b∗2, b

∗
3+au−a∗2) and (b∗2+a2, b

∗
3+au−a∗2)

describe a rectangular subset with this perimeter.

3.3.2 A cubic subset with the largest volume

The recursive procedure can also determine a cubic subset of B with the largest volume.

Again for simplicity assume k = 3. In this instance, we look for a square with the largest

15



area. Denote the side of a square as a and find the upper bound au on a in the system

zi1 + zi2b2 + zi3b3 ≥ 0

zi1 + zi2b2 + zi3b3 + zi2a ≥ 0

zi1 + zi2b2 + zi3b3 + zi3a ≥ 0 (3.2)

zi1 + zi2b2 + zi3b3 + (zi2 + zi3)a ≥ 0

i = 1, . . . , d

a ≥ 0.

Let (b∗2, b
∗
3) be any solution of (3.2) when a is fixed at its largest value: a = au. Value (au)2

is the largest possible area of a square subset, and points (b∗2, b
∗
3), (b∗2 + au, b∗3), (b∗2, b

∗
3 + au)

and (b∗2 + au, b∗3 + au) describe a square subset with this area.

3.3.3 Extrapolation

Suppose we have a point x∗ = (x∗1, . . . , x
∗
k) /∈ S(X) and would like to learn the value of

P (Y = 1|X = x∗). Clearly, this value is not identified, but we may be able to determine

the sign of P (Y = 1|X = x∗)− 0.5.

We proceed by finding the sharp bounds on the values of linear function

x∗1 + x∗2b2 + . . . + x∗kbk, (b2, . . . , bk) ∈ B.

If the lower bound is non-negative, then P (Y = 1|X = x∗)− 0.5 ≥ 0. If the upper bound

is negative, then P (Y = 1|X = x∗) − 0.5 < 0. Finally, if the interval between the lower

and upper bound contains zero, then we cannot draw any conclusions about the value of

sgn(P (Y = 1|X = x∗)− 0.5).

Let me show how we can find these bounds. Introduce a new variable b′ which is the

value of the linear function:

b′ = x∗1 + x∗2b2 + . . . + x∗kbk.

Assume that at least one of x∗i , i = 2, . . . , k, is different from 0. Without a loss of generality,

x∗k 6= 0. Then bk can be expressed through b2, . . . , bk, b
′ as follows:

bk =
1

x∗k
b′ − x∗1

x∗k
− x∗2

x∗k
b2 − . . .− x∗k−1

x∗k
bk−1.

Substitute this expression into the system that defines the identification set:

zl1 + zl2b2 + . . . + zlkbk ≥ 0, l = 1, . . . , d.
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Then obtain a system of linear inequalities with unknown variables b2, . . . , bk−1, b
′:

zl1 − zlk
x∗1
x∗k

+

(
zl2 − zlk

x∗2
x∗k

)
b2 + . . . +

(
zl,k−1 − zlk

x∗k−1

x∗k

)
bk−1 +

zlk

x∗k
b′ ≥ 0, l = 1, . . . , d.

Using the recursive procedure, we can find the sharp bounds for b′ - that is, the sharp

bounds on the values of the linear function.

3.3.4 Single-index models

Consider a single-index model

E(Y |X = x) = G(xβ) (3.3)

with an increasing function G. Normalize β1 = 1. The identification set is the set of

(b2, . . . , bk) such that b = (1, b2, . . . , bk) solve the following system of linear inequalities:

∀(xl, xm ∈ S(X)) E(Y |X = xl) > E(Y |X = xm) ⇒ xlb > xmb.

If, for example, E(Y |X = x1) > E(Y |X = x2) > . . . > E(Y |X = xd), then the identifica-

tion set is described by a system of d− 1 inequalities:

x1b > x2b > . . . > xdb.

In general, there may be many more inequalities defining the identification set. For ex-

ample, if d is even and E(Y |X = xl) = 1 for l = 1, . . . , d/2, and E(Y |X = xl) = 0

for l = d/2 + 1, . . . , d, then the system describing the identification set comprises d2/4

inequalities:

x1b > xmb, l = 1, . . . , d/2, m = d/2 + 1, . . . , d.

Applied to the system of inequalities defining the identification set, the recursive procedure

finds the sharp bounds on the components of β.

3.4 Ordered response models

In ordered response models, agents choose among J alternatives according to the rule

Y =
J+1∑
j=1

j1(αj−1 < Y ∗ ≤ αj),

where α0 < α1 < . . . < αJ < αJ+1, α0 = −∞, αJ+1 = +∞, Y ∗ = xβ + U . In general,

threshold levels αj are not known. If we assume the median condition M(U |X = xl) = 0,
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l = 1, . . . , d, then

P (Y ≤ j|X = xl) = P (xlβ + U ≤ αj) = FU |xl(αj − xlβ), l = 1, . . . , d, j = 1, . . . , J.

The identification set is described by a system of linear inequalities with a maximum

of 2d + J − 1 inequalities. Each xl contributes one or two inequalities to the system, and

each xl has three possibilities: P (Y ≤ 1|X = xl) ≥ 0.5, or P (Y ≤ J |x = xl) < 0.5, or

P (Y ≤ 1|X = xl) < 0.5 and P (Y ≤ J |x = xl) ≥ 0.5. In the first case, xl contributes the

inequality

α1 − xlb ≥ 0.

In the second case, it provides

αJ − xlb < 0.

In the third case, find j(xl) ∈ {2, . . . , J} such that

P (Y ≤ j(xl)− 1|X = xl) < 0.5, P (Y ≤ j(xl)|x = xl) ≥ 0.5.

Then xl contributes two inequalities

αj(xl)−1 − xlb < 0, αj(xl) − xlb ≥ 0. (3.4)

Thus, points from S(X) form a system of at most 2d linear inequalities. However, we also

have to add J − 1 inequalities

αj − αj−1 > 0, j = 2, . . . , J.

Some of these additional inequalities will be excessive because, for example, (3.4) implies

that αj(xl)−1 < αj(xl).

After we normalize b by setting b1 = 1, we get a system of at most 2d + J − 1 linear

inequalities with k − 1 + J unknown variables b2, . . . , bk, α1, . . . , αJ . This system contains

both strict and non-strict inequalities. We can apply the recursive method to find the

sharp bounds on the values of these variables.

3.5 Support vector machines

In this section, I show a connection between the identification problem in binary response

models and support vector machines in statistical learning theory.

To describe this relationship I have to assume that one of the regressors in X is a

constant term. Without a restriction of generality, Xk = 1. Define a set S̃(X) ⊂ <k−1 that

consists of points from S(X) with an omitted last regressor xk. The problem of finding

the identification region in (BRM) is the same as determining all the hyperplanes that
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Figure 3. The optimal hyperplane h∗ with maximal margin m (left) and a non-optimal separating
hyperplane h (right)

separate two classes of points from S̃(X): those for which P (Y = 1|X = x) ≥ 0.5 and

those for which P (Y = 1|X = x) < 0.5.

Support vector machines (SVMs) are learning techniques used for classification prob-

lems. They separate a given set of binary-labeled training data with a hyperplane that

maximizes the distance (or, the margin) between itself and the closest training data point.

It is called the optimal or the maximal margin hyperplane.

SVMs are similar to the identification problem for (BRM) in that both are hyperplane-

based classifiers. However, in contrast with SVMs, which select only one hyperplane, the

identification set in (BRM) contains all the vectors that define separating hyperplanes.

Figure 3 shows optimal and a non-optimal separating hyperplanes for the two classes of

points.

Let me briefly present the mathematical description of SVMs (for more details, see

Vapnik (2000)). For a better comparison with existing literature, I adopt their notations.

Suppose we have a training set of n independent and identically distributed observations

of (X,Y ) drawn according to the unknown probability distribution P (x, y):

{(xi, yi)}n
i=1, x ∈ <k, y ∈ {−1, 1},

where observation i is assigned to one of two classes (-1 or 1) according to its value yi. Also

suppose that the two classes of points in the training set can be separated by the linear

hyperplane w1x1 + . . .+wkxk−a = 0. To find the optimal hyperplane, solve the quadratic

programming problem

min
w1,...,wk,a

k∑
j=1

w2
j (3.5)

subject to

yi[w1xi,1 + . . . + wkxi,k − a] ≥ 1, i = 1, . . . , n. (3.6)
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The solution of this problem is unique, and it defines the optimal hyperplane.

Let me now return to the identification set B in (BRM). As mentioned earlier, any

point in B can serve as a classification rule. Generally, the quality of a classification rule is

measured by a loss function. In Lin (2000, 2002), the following expected misclassification

rate (or generalization error) is regarded as a loss function:

R(η) = P (η(X) 6= Y ) =

∫
0.5|y − η(x)|dP, (3.7)

where η is a classification rule. The classification rule with the smallest generalization error

is

η∗(x) = sgn(P (Y = 1|X = x)− 0.5).

Thus, the median condition (M) in the binary response model (BR) guarantees that any

point in the identification set B constitutes a linear decision rule that is optimal with

regard to the expected misclassification rate criterion (3.7).

It is important to stress that in this section I assumed that (BRM) is well specified.

4 Misspecification

If (BRM) is misspecified, then it is possible that (S1) has no solutions. One way to handle

this situation is to consider an optimization problem with respect to b and find its solution

set. This problem has to satisfy two requirements: first, it should be meaningful, allowing

us to interpret its set of solutions in terms of the properties of model (BR). Second, its

solution set should coincide with the identification set when (BRM) is well specified.

I suggest several optimization techniques to apply when a model is misspecified and

discuss their sets of solutions. There is no best method among them, and preferences

for a certain approach usually change depending on the situation. Of course, procedures

described below are just a few of the possible options. It is also worth mentioning that

one of these techniques yields the closure of the identification set, not the identification set

itself. However, it can be used to deal with the misspecification problem.

4.1 Maximum score method

Manski (1985) defines a maximum score estimator (on the population level) as an estimator

that minimizes the expected absolute distance between the conditional expectation of Y

conditional on X and 1(Xb ≥ 0) (if the median condition (M) holds, then M(Y |X) =

1(Xβ ≥ 0)):

min
b:b1=1

E|E(Y |X)− 1(Xb ≥ 0)|. (4.1)
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Equivalently, a maximum score estimator minimizes the expected squared distance between

between E(Y |X) and 1(Xb ≥ 0):

min
b:b1=1

E(E(Y |X)− 1(Xb ≥ 0))2.

It also solves optimization problems

min
b:b1=1

E|Y − 1(Xb ≥ 0)|,

min
b:b1=1

E(Y − 1(Xb ≥ 0))2.

First, let me show that when (BRM) is well specified, the set of maximum score esti-

mates coincides with the identification set. When all the regressors are discrete, optimiza-

tion problem (4.1) is tantamount to the maximization of the function

Sms(b) = 2
d∑

l=1

ql(P l − 0.5)sgn(xlb), (4.2)

where, I remind, ql = P (X = xl), P l = P (Y = 1|X = xl). Let Bms stand for the set of

the maximum score estimates:

Bms = {(b2, . . . , bk) : (1, b2, . . . , bk) ∈ Argmaxb:b1=1S
ms(b)}.

The next proposition compares sets Bms and B.

Proposition 4.1. Suppose that model (BRM) is well specified. Then Bms is a convex

polyhedron and

∀(xl ∈ S(X)) P l 6= 0.5 ⇒ B = Bms

∃(xl ∈ S(X)) P l = 0.5 ⇒ B ⊂ Bms

with a strict inclusion.

If (BRM) is misspecified, then Bms may be not a convex polyhedron. This may happen,

for instance, when many identical values exist among (P l − 0.5)ql, l = 1, . . . , d. However,

Bms will always be a finite union of several disjoint convex polyhedra.

4.2 Minimal number of classification errors

In (BRM) all points from S(X) can be grouped into two classes. If P l ≥ 0.5, then

xl is assigned to that class; otherwise, it is assigned to the other class. If the model is

misspecified and B = ∅, then some classification errors have been made. In order to find

the values of b that minimize the number of classification errors, consider the following
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optimization problem:

max
b:b1=1

Q(b), where Q(b) =
d∑

l=1

sgn(P l − 0.5)sgn(xlb). (4.3)

If (BRM) is well specified, the set of solutions for (4.3) coincides with B. Because the value

of Q(b) is d minus the number of classification errors, the maximization of Q(b) minimizes

the number of these errors. I can modify problem (4.3) and consider

Q(b) =
d∑

l=1

sgn(P l − 0.5)sgn(xlb)ql. (4.4)

Then the maximization problem is equivalent to the minimization of the expected absolute

distance between M(Y |X) and 1(Xb ≥ 0):

min
b:b1=1

E|M(Y |X)− 1(Xb ≥ 0)|.

The solution sets for (4.3) and (4.4) are finite unions of disjoint convex polyhedra.

4.3 Minimal general classification error

In this section, I discuss a geometric approach to misspecification. It is based on the soft

margin hyperplane method in support vector machines, a technique suggested in Cortes

and Vapnik (1995) for handling cases in which two classes of training data are not linearly

separable. Roughly speaking, this method deals with errors in the data by allowing some

anomalous points to fall on the wrong side of the hyperplane. I describe this approach in

more detail in the end of the section.

The method in SVMs chooses only one soft margin hyperplane: the optimal one. We

are interested in finding a set of these hyperplanes, however, rather than just one. In fact,

we would like to determine the set of all soft margin hyperplanes, if possible. An attractive

feature of the approach outlined here is that it only requires solving linear programming

problems, so it is easy to implement.

As in section 3.5, first assume that there is a constant term among regressors. Without

a restriction of generality, Xk = 1. Let set S̃(X) ⊂ <k−1 consist of points from S(X) with

an omitted last regressor xk. For now, let me abandon normalization b1 = 1. Without this

normalization, the identification set is a subset of <k. Denote it as B̃. Geometrically, B̃

consists of k-dimensional vectors (b1, b2, . . . , bk−1, bk) such that hyperplanes with the slope

coefficients (b1, . . . , bk−1) and the location coefficient bk separate two groups of points in

S̃(X): the class for which P l ≥ 0.5 and that for which P l < 0.5:

∀(l = 1, . . . , d) xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk ≥ 0 ⇔ P l ≥ 0.5.

22



For each class, consider the convex hull of its points. Because the closures of the convex

hulls do not intersect, there are separating hyperplanes that do not contain any points

from S̃(X). In other words, these hyperplanes are separated from either class by a strictly

positive distance:

∃(b ∈ B̃)∃(δ > 0)∀(l = 1, . . . , d) sgn(P l − 0.5)(xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk) ≥ δ. (4.5)

Note that in this assertion, I have incorporated the finite support of X and the constant

term among regressors. Because for any b ∈ B̃, vector αb, α > 0, defines the same

hyperplane as b, δ can be any positive number. Without a loss of generality, suppose that

δ = 1. Let h stand for the separating hyperplane xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk = 0.

Let h1 denote the hyperplane xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk = 1 and h2 denote the

hyperplane xl
1b1 +xl

2b2 + . . .+xl
k−1bk−1 +bk = −1. Then, according to (4.5), all points from

one class lie above or lie on hyperplane h1 and all points from the other class lie below or

lie on hyperplane h2.

If model (BRM) is misspecified, then the two classes of points may be not linearly

divisible. In this case, I introduce non-negative slack variables to allow for some error in

separation and to find a soft margin hyperplane.

Let vl ≥ 0, l = 1, . . . , d, be slack variables. The value of vl is interpreted as a classifica-

tion error of point xl. Consider the following linear programming problem:

min
b,{vl}d

l=1

Q(b, v) =
d∑

l=1

vl (4.6)

subject to

sgn(P l − 0.5)(xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk) ≥ 1− vl,

vl ≥ 0, l = 1, . . . , d.

Denote its set of solutions as D∗ ⊂ <k+d. Let

B∗ = {b ∈ <k : (b, v) ∈ D∗ for some v ∈ <d}, V ∗ = {v ∈ <d : (b, v) ∈ D∗ for some b ∈ <k}.

Notice that when (BRM) is well specified, the optimal value of the objective function

is 0, and V ∗ = {(0, . . . , 0)}.
For any (b∗, v∗) ∈ D∗, a hyperplane x1b

∗
1 + . . .+xk−1b

∗
k−1 + b∗k = 0 defined by b∗ is called

a soft margin hyperplane. Because
∑d

l=1 vl can be interpreted as a general classification

error, soft margin hyperplanes minimize this error.

Take the following example. In Figure 4, points with P l ≥ 0.5 are depicted as dark

circles, and points with P l < 0.5 are depicted as white circles. As we can see, the two

classes of points are not linearly separable. Consider a hyperplane h defined by a vector b
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(with b1 > 0): x1b1 + x2b2 + b3 = 0. Also picture two hyperplanes parallel to h that are

separated from it by an equal distance: hyperplane h1, defined as x1b1 + x2b2 + b3 = 1,

and hyperplane h2, defined as x1b1 + x2b2 + b3 = −1. In the case of separability, we could

find a b such that all dark points would lie above or on hyperplane h1, and all the white

points would lie below or on hyperplane h2. From this point of view, points 7, 8 and 10

are located on the correct side of h and h1. Therefore, their classification errors v7, v8 and

v10 are 0. Point 9, on the other hand, is located on the correct side of h but the incorrect

side of h1; the distance from point 9 to its correct location (that is, to h1) is v9, the point’s

classification error. For 6, located on the incorrect side of h, the distance to h1 is v6. In

the second class only point 3, located on the incorrect side of h, has a classification error;

its distance to h2 is v3. In fact, hyperplane h, as shown on Figure 4, is a soft margin

hyperplane for the depicted two classes of points.

-
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Figure 4. A soft margin separating hyperplane (h) and classification errors

Let me now return to the general problem. If instead of δ = 1 we took a different δ > 0

and solved (4.6) subject to

sgn(P l − 0.5)(xl
1b1 + xl

2b2 + . . . + xl
k−1bk−1 + bk) ≥ δ − vl,

we would obtain the same soft margin hyperplanes, though the solution set D∗(δ) would

differ from D∗. Namely, set D∗(δ) would comprise the elements of D∗ multiplied by δ:

D∗(δ) = δD∗. Given this scale effect, we are interested in the set

B∗
1 = {(b2, . . . , bk) : ∃(γ > 0) (γ, γb2, . . . , γbk) ∈ B∗} ⊂ <k−1

rather than set B∗ itself. (At this stage, without a loss of generality I assume that b∗1 > 0

for any b∗ ∈ B∗.)
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Finding bounds on B∗
1 would be difficult. To do that, we would have to consider every

solution in B∗, divide all of its coordinates by the first coordinate to find ratios, and

summarize the results for all solutions.

The problem becomes much easier if we are satisfied with finding bounds for a subset of

B∗
1 . Let (b∗, v∗) be any element from D∗. Define B∗

1,s ⊂ <k−1 as the solution set (b2, . . . , bk)

of the following system:

sgn(P l − 0.5)(xl
1 + xl

2b2 + . . . + xl
k−1bk−1 + bk) ≥ 1− v∗l

b∗1
, l = 1, . . . , d. (4.7)

Clearly, B∗
1,s ⊂ B∗

1 , and system (4.7) can be rewritten in the form of (S1). Therefore, we

can find the bounds on B∗
1,s with the recursive procedure.

Let me discuss some modifications of the soft margin hyperplane method. In the general

classification error in (4.6), all the slack variables have the same weight. In SVMs, all the

training data points are of equal importance, therefore, SVMs consider a general classifica-

tion error only in this form. Nevertheless, we can discriminate between points in S(X) and

assign different weights to slack variables. In other words, the general classification error

can take the form
∑d

l=1 λlvl, where
∑d

l=1 λl = 1, λl ≥ 0, l = 1, . . . , d. For instance, we may

be willing to assign more importance to points with a higher probability of occurring and

consider the objective function
∑d

l=1 qlvl. Different weights λl will yield different solution

sets B∗
1 and, consequently, different sets B∗

1,s.

In the soft margin approach in SVMs, instead of problem (3.5), the method solves the

following quadratic programming problem:

min
w1,...,wk,a,ξ

k∑
j=1

w2
j + C

n∑
i=1

ξσ
i

subject to

yi[w1xi,1 + . . . + wkxi,k − a] ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n,

for given 0 < σ ≤ 1 and C > 0. The objective function presents the trade-off between the

maximal margin and the minimal penalty. For σ = 1, the penalty function is linear in ξ.

When σ is small, the penalty function is close to the number of classification errors.

The idea of using linear programming problems with slack variables in the context of

identification is suggested in Honore and Tamer (2006). In the authors’ framework, a

system of linear equations describes the identification set. To check whether a particular

parameter value belongs to the set, they introduce non-negative slack variables into the

equation constraints and minimize their sum subject to these modified restrictions. If the

optimal function value is 0, then the parameter value belongs to the identification set.
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5 Dense support

One of the sufficient conditions for point identification in (BR) given by Manski (1988)

is that for almost every x2, . . . , xk the distribution of X1 conditional on x2, . . . , xk, has a

density positive almost everywhere. It is intuitive that when covariates are discrete but

the values of x1 corresponding to a fixed vector (x2, . . . , xk) form a rather dense set for

many values of (x2, . . . , xk), then the identification set should be small. Proposition 5.1

formalizes this suggestion.

Proposition 5.1. Consider system (S1) with k = 3. Suppose that its solution set is

non-empty and bounded. Also, suppose that the system contains four inequalities

zi1,1 + zi1,2b2 + zi1,3b3 ≥ 0

zi2,1 + zi2,2b2 + zi2,3b3 ≥ 0

zj1,1 + zj1,2b2 + zj1,3b3 ≥ 0

zj2,1 + zj2,2b2 + zj2,3b3 ≥ 0

such that

zi1,2 > 0, zi2,2 > 0

zi1,2zi2,3 − zi1,3zi2,2 > 0

(zj1,2, zj1,3) = −(zi1,2, zi1,3), zi1,1 + zj1,1 < ∆

(zj2,2, zj2,3) = −(zi2,2, zi2,3), zi2,1 + zj2,1 < ∆

for a fixed ∆ > 0. Then

bu
3 − bl

3 ≤

∣∣∣∣∣
∆ −zi2,2

∆ zi1,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

= ∆

∣∣∣∣∣
1 −zi2,2

1 zi1,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

,

where bu
3 , b

l
3 are defined as in Proposition 3.3.

This result is obtained using the symmetry of the formulas for bl
3 and bu

3 . If we take four

other inequalities that satisfy the conditions of the proposition, then we obtain a different

bound for bu
3 − bl

3, and we can choose the lower of two.

The role of Proposition 3.3 may be better appreciated if we formulate an analogous

result in terms of the properties of the support.

Corollary 5.2. Let B be non-empty and bounded. Suppose that there exist (x2, x3) and

(x∗2, x
∗
3) such that

x2x
∗
3 − x∗2x3 6= 0, x2 6= 0, x∗2 6= 0.
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Also suppose that

∃(x1, x̃1 : (x1, x2, x3), (x̃1, x2, x3) ∈ S(X))∀(b ∈ B)

x1 + x2b2 + x3b3 ≥ 0, x̃1 + x2b2 + x3b3 < 0, x1 − x̃1 < ∆

and

∃(x∗1, x̃∗1 : (x∗1, x
∗
2, x

∗
3), (x̃

∗
1, x

∗
2, x

∗
3) ∈ S(X))∀(b ∈ B)

x∗1 + x∗2b2 + x∗3b3 ≥ 0, x̃∗1 + x∗2b2 + x∗3b3 < 0, x∗1 − x̃∗1 < ∆

for a given ∆ > 0. Then

bu
3 − bl

3 ≤ ∆
|x2|+ |x∗2|
|x2x∗3 − x∗2x3| . (5.1)

Proposition 5.3 is an analog of Proposition 5.1 for the case of k = 4.

Proposition 5.3. Consider system (S1) with k = 4. Let its solution set be non-empty and

bounded. Suppose that (S1) contains eight inequalities

zi1,1 + zi1,2b2 + zi1,3b3 + zi1,4b4 ≥ 0

. . .

zi4,1 + zi4,2b2 + zi4,3b3 + zi4,4b4 ≥ 0

zj1,1 + zj1,2b2 + zj1,3b3 + zj1,4b4 ≥ 0

. . .

zj4,1 + zj4,2b2 + zj4,3b3 + zi4,4b4 ≥ 0

such that

(zjm,2, zjm,3, zjm,4) = −(zim,2, zim,3, zim,4), zim,1 + zjm,1 < ∆, m = 1, 2, 3, 4,

for some ∆ > 0, and also

zi1,2 > 0, zi2,2 > 0, zi3,2 > 0, zi4,2 > 0,

zi2,3zi1,2 − zi2,2zi1,3 > 0, zi4,3zi3,2 − zi4,2zi3,3 > 0,

D > 0,

where

D =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zi4,4 zi4,2

zi3,4 zi3,2

∣∣∣∣∣

∣∣∣∣∣
zi4,3 zi4,2

zi3,3 zi3,2

∣∣∣∣∣
∣∣∣∣∣

zi2,4 zi2,2

zi1,4 zi1,2

∣∣∣∣∣

∣∣∣∣∣
zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Then

bu
4 − bl

4 ≤
∆

D

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
1 −zi4,2

1 zi3,2

∣∣∣∣∣ −
∣∣∣∣∣

zi4,3 zi4,2

zi3,3 zi3,2

∣∣∣∣∣
∣∣∣∣∣

1 −zi2,2

1 zi1,2

∣∣∣∣∣

∣∣∣∣∣
zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

,

where bu
4 , b

l
4 are defined as in Proposition 3.4.

As in the case k = 3 we can obtain bounds on bu
4 − bl

4 in terms of the properties of the

support S(X). Results for k = 3 and k = 4 can be generalized for the case of any k.

6 Asymptotic properties

6.1 Consistency

The system of inequalities that defines the identification set can be constructed once it is

known whether conditional probabilities P l are below 0.5 or not. Usually, only estimates of

conditional probabilities are available, so a natural question is, how close does an estimated

identification set get to the true set as the sample size increases.

In this section, I assume that model (BRM) is well specified, and I distinguish two

cases. In one case, all conditional probabilities are different from 0.5. In the other one,

some conditional probabilities are 0.5. I differentiate these two situations because in the

latter instance, the problem of finding the identification set is ill-posed in the sense that

small changes in the estimators of conditional probabilities may cause considerable changes

in the estimator of the identification set, no matter how large a sample size is.

Theorem 6.1. Suppose that

P̂ l
N

p→ P l as N →∞, (6.1)

and P l 6= 0.5, l = 1, . . . , d. Let BN be a solution set for the system of linear inequalities

derived by the rule

∀(xl ∈ S(X)) P̂ l
N ≥ 0.5 ⇔ xlb ≥ 0. (6.2)

Then

Pr(BN 6= B) → 0 as N →∞.

Theorem 6.1 allows me to formulate properties of convergence in terms of Hausdorff

distances. The next corollary shows that the Hausdorff distance between the estimated set

and the identification set converges in probability to 0 with an arbitrary rate.

Corollary 6.2. Under the conditions of Theorem 6.1,

τNH(BN , B)
p→ 0 as N →∞
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for any 0 < τN < ∞. (For instance, one can take τN = N c, c > 0.)

The statement of Theorem 6.1 does not hold if there exist P l equal to 0.5. Nevertheless,

in this case a consistent estimator of B can be derived by introducing slack variables εN .

Theorem 6.3. Suppose that

τN(P̂ l
N − P l), l = 1, . . . , d, (6.3)

has a non-degenerate distribution limit as N → ∞, where 0 < τN < ∞, τN is increasing

and τN →∞ as N →∞. Let εN be a sequence of numbers such that

εN > 0 and εN → 0, εNτN →∞ as N →∞. (6.4)

Let BN be a solution set for the system of linear inequalities derived by the rule

∀(xl ∈ SN(X)) P̂ l
N ≥ 0.5− εN ⇔ xlb ≥ 0.

Then

Pr(BN 6= B) → 0 as N →∞.

Given that the support of X is finite, it may be convenient to use frequency estimates

of conditional probabilities:

P̂ l
N =

∑
yi1(xi = xl)∑
1(xi = xl)

, (6.5)

based on a random sample (yi, xi)
N
i=1. These estimates allow me to prove a stronger con-

sistency result.

Theorem 6.4. Let P̂ l
N be defined as in (6.5) and BN be the solution set for the system of

linear inequalities derived by the rule (6.2).

If P l 6= 0.5 for any xl ∈ S(X), then

∃(0 < ρ < 1) Pr(BN 6= B) = o(ρN) as N →∞.

If P l = 0.5 for some xl ∈ S(X), then asymptotically, the estimator BN differs from the

identification set B with positive probability:

∃(p0 > 0) Pr(BN 6= B) ≥ p0 as N →∞.

It is important to note that random sampling errors in estimated response probabilities

may cause the system of inequalities based on P̂ l
N to have no solution. In this case, BN

would be empty. One way to address this problem is to consider sample analogs of the

objective functions in sections 4.1 and 4.2. For instance, for the objective function in
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section 4.2 a sample analog of the objective function is

QN(b) =
d∑

l=1

sgn(xlb)sgn(P l
N − 0.5).

Let B∗
N be the set of maximizers of QN(b):

B∗
N = {(b2, . . . , bk) : (1, b2, . . . , bk) ∈ Argmaxb:b1=1QN(b)}.

If BN 6= ∅, then BN = B∗
N . All results in the current section remain true if we substitute

BN for B∗
N . Other objective functions QN(·) also can be considered. Because the model

is well specified, the only condition required for QN(·) is that the set of maximizers of its

population analog Q(·) coincides with B. In general, it is preferable to consider objective

functions that reflect some of the model’s properties.

If BN = ∅, either sampling errors in conditional probabilities estimates or misspecifi-

cation could be at fault. Though it would be interesting to develop tests to distinguish

between those two cases, I leave this task to future research.

Let me analyze the behavior of the maximum score estimates obtained from a random

sample. In the sample, the maximum score estimates maximize the function

Sms
N (b) =

1

N

N∑
i=1

(2yi − 1)sgn(xib),

which can be equivalently written as

Sms
N (b) = 2

d∑

l=1

q̂l
N(P̂ l

N − 0.5)sgn(xlb),

where P̂ l
N is defined as in (6.5).

Proposition 6.5. Suppose that model (BRM) is well specified. Let

Bms
N = {(b2, . . . , bk) : (1, b2, . . . , bk) ∈ Argmaxb:b1=1S

ms
N (b)}.

If P l 6= 0.5 for any xl ∈ S(X), then

∃(0 < ρ < 1) Pr(Bms
N 6= B) = o(ρN) as N →∞.

If P l = 0.5 for some xl ∈ S(X), then

∃(p0 > 0) Pr(Bms
N 6= B) ≥ p0 as N →∞.
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6.2 Statistical inference

I now describe two methods of building confidence regions for the identification set. Both

are based on the normal approximations of conditional probabilities P l. Because of the

problem’s discrete nature, we cannot always achieve an exact nominal confidence level; in

many cases, the true confidence coefficient is greater than the stated level.

Given a random sample of size N , the objective is to construct regions BN that asymp-

totically cover B with probability 1 − α, where α is a prespecified value between 0 and

1:

lim
N→∞

P (BN ⊃ B) ≥ 1− α. (6.6)

Let P̂ l
N be a frequency estimator of P l as in (6.5). Asymptotically,

√
N

(
P̂ l

N − P l
)
→ N(0, (σl)2), where (σl)2 =

P l(1− P l)

ql
.

Substitute σl with its estimate σ̂l
N :

√
N

P̂ l
N − P l

σ̂l
N

→ N(0, 1), where σ̂l
N =

P̂ l
N(1− P̂ l

N)

q̂l
N

.

In the first method, I choose numbers {γl}d
l=1 such that γl ≥ 0, l = 1, . . . , d, and∑d

l=1 γl = α. Let ζγl
denote the 1 − γl quantile of the standard normal distribution, then

construct a system of linear inequalities in the following way:

if for a given xl

P̂ l
N − ζγl

σ̂l
N√
N

> 0.5,

then add the inequality xlb ≥ 0 to the system. If

P̂ l
N + ζγl

σ̂l
N√
N

< 0.5,

then add the inequality −xlb > 0 to the system. If the interval
[
P̂ l

N − ζγl

σ̂l
N√
N

, P̂ l
N + ζγl

σ̂l
N√
N

]

contains 0.5, then no inequalities in the system correspond to xl. I claim that the solution

set BN for the system constructed according to this method has the property

P (BN ⊃ B) → 1 as N →∞.

Indeed,

P (BN 6⊃ B) ≤
d∑

l=1

(
P

(
P̂ l

N − ζγl

σ̂l
N√
N

> 0.5|P l < 0.5

)
+ P

(
P̂ l

N − ζγl

σ̂l
N√
N

< 0.5|P l > 0.5

))
.
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Notice that

P

(
P̂ l

N − ζγl

σ̂l
N√
N

> 0.5|P l < 0.5

)
= 1− Φ

(
(0.5− P l)

√
N

σ̂l
N

− ζγl

)
→ 0 as N →∞

and, similarly,

P

(
P̂ l

N − ζγl

σ̂l
N√
N

< 0.5|P l > 0.5

)
→ 0 as N →∞.

Clearly,

P (BN ⊃ B) = 1− P (BN 6⊃ B) → 1 as N →∞.

As we can see, confidence region BN is overly conservative: Its actual coverage proba-

bility is 1. In this sense, it is inaccurate.

Furthermore, in practice set BN can be empty. In this case, instead of BN , we can find

a set B∗
N that solves optimization problem

max
b:b1=1

d∑

l=1

sgn(xlb ≥ 0)

(
1(P̂ l

N − ζγl

σ̂l
N√
N

> 0.5)− 1(P̂ l
N + ζγl

σ̂l
N√
N

< 0.5)

)
.

If BN is not empty, BN = B∗
N . Using the technique I employed for region BN , I can prove

that Pr(B∗
N ⊃ B) → 1 as N →∞.

The method of finding B∗
N is equivalent to the following approach. Let

I =
d∏

l=1

[
P̂ l

N − ζγl

σ̂l
N√
N

, P̂ l
N + ζγl

σ̂l
N√
N

]
.

Set I is an asymptotic 1 − α confidence set for P = (P 1, . . . , P d). If for any P̃ =

(P̃ 1, . . . , P̃ d) ∈ I we construct a system of inequalities by the rule

P̃l ≥ 0.5 ⇔ xlb ≥ 0, (6.7)

and find its solution BN,P̃ , then we can show that

B∗
N = ∪P̃∈IBN,P̃ .

(Of course, many of sets BN,P̃ will be empty.)

Let me describe another method for building confidence sets. Note that asymptotically

d∑

l=1

N
(P̂ l

N − P l)2

(σ̂l
N)2

→ χ2(d− 1) as N →∞.
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Instead of I, consider ellipsoid E, which is a 1− α confidence set for P :

E =

{
P = (P̃ 1, . . . , P̃ d) :

d∑

l=1

(P̂ l
N − P̃ l)2

(σ̂l
N)2

≤ χ2
1−α(d− 1)

N

}
.

If for any P̃ = (P̃ 1, . . . , P̃ d) ∈ E we construct a system of inequalities according to (6.7)

and find its solution set BN,P̃ , then region

B∗
N,E = ∪P̃∈EBN,P̃

satisfies (6.6).

Recent studies on the construction of confidence sets for partially identified parameters

include Imbens and Manski (2004), Chernozhukov, Hong and Tamer (2007) and Rosen

(2006), among others. Imbens and Manski (2004) propose confidence intervals that cover

the true value of the parameter rather than the entire identification region. Chernozhukov,

Hong and Tamer (2007) consider models in which the identification region is the set of

the minimizers for a criterion function. They build confidence regions with a specified

probability by using a suggested subsampling procedure. Rosen (2006) examines models

defined by a finite number of moment inequalities and constructs confidence sets through

pointwise testing. In recent years, there has also been increasing interest in finite-sample

methods of inference. For instance, for binary choice and multinomial choice models,

Manski (2007) develops confidence sets that are valid for all sample sizes.

7 Empirical example

7.1 Monte Carlo simulations

The design of the Monte Carlo experiment is based on Example 3.1. The outcome data

are generated as follows:

Y = 1(X1 + 1.25X2 − 0.5X3 + U ≥ 0).

X1, X2 and X3 take the values outlined in Example 3.1 (X2 is the constant term). I specify

distributions for X1 and X3. Let the distribution of the error term be

U |x ∼ x11(x1 < 0)√
2x2

1 + 2x2
3 + 0.001

Z + 0.1x31(x1 ≥ 0)V,

where random variable Z has a standard normal distribution, random variable V is dis-

tributed uniformly on [−1, 1] and Z and V are independent. I report results for a sample

of size N = 5, 000. Note that the conditional median independence assumption is satisfied.
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For comparison, I apply several estimation procedures. There are 87 points in the sam-

ple’s support. From the sample I calculate frequency estimates of conditional probabilities.

Using these estimates I construct a system of linear inequalities by the rule

P̂ l
N ≥ 0.5 ⇔ xl

1 + b2 + b3x
l
3 ≥ 0

and apply the recursive procedure to find bounds on β2 and β3. Because the system has

solutions, its set of maximum score estimates coincides with its solution set. See Table 1

for the estimation results. Observe that the set of maximum rank correlation estimates for

β3 does not contain value -0.5 used to design the experiment, although this value is very

close to its border.

I want to emphasize that the results presented for the recursive procedure and the max-

imum score method are identification intervals for each individual parameter; the iden-

tification set for (β2, β3) is smaller than rectangle (1, 1.6) × (−0.6,−0.42587) (see Figure

2).

I also report probit and logit estimates with 95% confidence intervals for each parameter,

as well as normalized probit and logit estimates (ratios β̂2/β̂1 and β̂3/β̂1). As we can see,

the normalized probit and logit estimates belong to the identification intervals, but they

are far from the parameter values used to generate the outcome data.

X1 X2 = CONST X3

Recursive procedure 1 (1, 1.6) (-0.6, -0.42587)

Set of maximum score 1 (1, 1.6) (-0.6, -0.42587)
estimates

MRC 1 (-0.5714, -0.5001)

Probit 2.9152 4.3893 -1.5922
(2.3794 ,3.4510) (3.4141,5.3646) (-1.9173, -1.2672)

Probit (r) 1 1.5057 -0.5462
(1.1711, 1.8402) (-0.6577, -0.4347)

Logit 5.4318 8.0505 -2.9515
(4.3201, 6.5435) (6.0992, 10.0019) (-3.6126, -2.2904)

Logit (r) 1 1.4821 -0.5434
(1.1229, 1.8414) (-0.6651, -0.4217)

Table 1. Estimation results for the Monte Carlo experiment
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7.2 Women’s labor force participation

In this section I present an empirical application based on MROZ data regarding married

women’s labor force participation (WORK). Let WORK = 1 if a woman participates

in the labor force; otherwise, let WORK = 0. The variables we use to explain labor

force participation are education (EDUC), experience (EXPER), age (AGE) and number

of children under six years old (KIDS). The descriptive statistics for these variables are

presented in Table 2.

EDUC EXPER AGE KIDS
Mean 12.287 10.631 42.538 0.238

SD 2.280 8.069 8.073 0.524

Median 12 9 43 0

Min. 5 0 30 0

Max. 17 45 60 3

Table 2. Descriptive statistics for MROZ data

Thus, we estimate the binary response model

WORKi = 1(EDUCi + β0 + βEXPEREXPERi + βAGEAGEi + βKIDSKIDSi + ui ≥ 0),

where I normalize the coefficient corresponding to EDUC. For comparison, I apply several

estimation procedures. Table 3 contains the results of these estimations.

There are N = 753 observations. After calculating frequency estimates P̂ l
N and com-

bining data for women with identical characteristics, I obtain 670 points in the support.

Based on P̂ l
N , I construct a system of inequalities as usual. This system has no solution,

so I employ the methods suggested in section 4 for dealing with misspecification.

MS stands for the maximum score estimation methods; the set of maximum score esti-

mates is the union of several disjoint convex polyhedra, and the reported bounds are the

sharp bounds for this union. MNCE stands for the method of minimal number of classi-

fication errors described in section 4.2; the set of MNCE estimates is the union of several

disjoint convex polyhedra, and the reported bounds are the sharp bounds for that union.

MGCE stands for the minimal general classification error method outlined in section 4.3.

The set of MGCE estimates is a convex polyhedron. MRC stands for the maximum rank

correlation method; the set of maximum rank correlation estimates is the union of several

disjoint convex polyhedra (in <3), and the bounds shown in Table 3 are the sharp bounds

for this union.

I also include normalized probit, logit, OLS and LAD estimates (ratios β̂0/β̂EDUC ,
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CONST EXPER AGE KIDS
MS (2.5972, 2.7714) (0.92361, 0.9433) (-0.48571, -0.47917) (-5.1429, -4.9931)

MNCE (7.3514, 7.8447) (1.0412, 1.0651) (-0.608, -0.59513) (-12.536, -8.7)

MGCE (6.9065, 6.9224) (0.63395, 0.63427) (-0.51237, -0.51201) (-7.5439, -7.5389)

MRC (0.83343, 0.85997) (-0.59998, -0.58065) (-8.7897, -8.5005)

Probit(r) 7.68301 0.65254 -0.54431 -7.86264
(0.0189, 15.3471) (0.5247, 0.7804) (-0.6799, -0.4088) (-9.8915, -5.8338)

Logit(r) 6.96944 0.65890 -0.53036 -7.68174
(-0.6815, 14.6203) (0.5215, 0.7963) (-0.6686, -0.3921) (-9.7471, -5.6164)

OLS(r) 23.47147 0.68967 -0.57315 -8.20569
(15.6655, 31.2775) (0.5134, 0.7311) (-0.6355, -0.3987) (-9.1492, -5.6577)

LAD(r) 26.53767 0.78495 -0.68817 -10.40862
(17.1571, 35.9182) (0.6402, 0.9297) (-0.8457, -0.5306 ) (-12.7282, -8.089)

Table 3. Estimation of labor force participation

β̂EXPER/β̂EDUC , β̂AGE/β̂EDUC and β̂KIDS/β̂EDUC).

As we can see, the results produced by methods MS, MNCE, MGCE and MRC are in

certain sense consistent with each other. For each regressor, the method MGCE provides

shorter intervals than methods MS, MNCE and MRC. This does not come as a surprise,

because, first of all, MGCE finds only a subset of separating hyperplanes, and, second, it

can be shown that this subset always lies in a hyperplane in the space <k−1 (in our case,

in the space R4).

8 Conclusion

In this paper, I examine binary response models when the regressors have discrete support.

Ignoring the continuity conditions sufficient for point identification can lead to unsound

and misleading inference results on the parameter of interest.

Given these concerns, it is critical to seek a complete characterization of the parameters

that fit the model. This paper provides such a characterization for semiparametric binary

response models. I offer a recursive procedure to find the sharp bounds on the parame-

ter’s identification set. A big advantage of this procedure is the ease of implementation.

Moreover, it allows us to explore other aspects of identification, such as the extrapola-

tion problem or changes in the identification set when one regressor’s support becomes

increasingly dense. Furthermore, the procedure can be used in single-index models with a

monotone link function and in ordered-response models.
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I go beyond the identification issue by investigating the estimation of the identification

region and examining model’s misspecification, which I approach in several different ways

and provide insight into its possible causes and consequences. I also present an empirical

application that compares several estimation techniques and argue that the results critically

depend on our preferences for a certain estimation approach.

Several unresolved issues would benefit from future research. It is interesting to look

deeper into model’s misspecification. Studies that develop tests for misspecification would

be particularly useful. When the identification set estimated from a random sample is

empty, for instance, we would like to have a test that would allow us to determine whether

misspecification or random sampling are behind this problem. Another worthwhile exten-

sion would be to learn how to construct finite-sample confidence sets for the identification

region.

Despite the several issues that remain to be explored, this paper enhances our under-

standing of the structure and properties of the identification region in binary response

models with discrete regressors. It also provides empirical economists with another avenue

for using semiparametric methods when data do not satisfy the sufficient conditions for

point identification.
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9 Appendix

9.1 Examples of the recursive procedure

Example 9.1. Consider the following system of inequalities with three unknown variables:

−b2 + 3b3 − 4b4 ≥ 0

4− b2 ≥ 0

2 + b2 − 2b3 + 6b4 ≥ 0 (9.1)

b2 + 2b4 ≥ 0

−1− b2 − 5b4 ≥ 0.

To eliminate variable b2 from this system, rewrite it as

3b3 − 4b4 ≥ b2

4 ≥ b2

b2 ≥ −2 + 2b3 − 6b4

b2 ≥ −2b4

−1− 5b4 ≥ b2

and obtain that

3b3 − 4b4 ≥ −2 + 2b3 − 6b4

3b3 − 4b4 ≥ −2b4

4 ≥ −2 + 2b3 − 6b4

4 ≥ −2b4

−1− 5b4 ≥ −2 + 2b3 − 6b4

−1− 5b4 ≥ −2b4,

or, equivalently,

2 + b3 + 2b4 ≥ 0

6− 2b3 + 6b4 ≥ 0

1− 2b3 + b4 ≥ 0 (9.2)

3b3 − 2b4 ≥ 0

4 + 2b4 ≥ 0

−1 − 3b4 ≥ 0.
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Example 9.2. Exclude b3 from (9.2) and obtain the following system:

10 + 10b4 ≥ 0

5 + 5b4 ≥ 0

18 + 14b4 ≥ 0 (9.3)

3− b4 ≥ 0

4 + 2b4 ≥ 0

−1− 3b4 ≥ 0.

From system (9.3), find that b4 = −1 and b4 = −1/3. Similarly, find sharp bounds on b2 by

excluding b3 and b4 from the system: b2 = 2/3 and b2 = 4. For b3, find that b3 = −1/2 and

b3 = 1/3.

Example 9.3. Add to system (9.1) one more inequality:

−6− b2 + 4b3 + 10b4 ≥ 0.

Then there will be two more inequalities in system (9.2):

−4 + 2b3 + 16b4 ≥ 0

−6 + 4b3 + 5b4 ≥ 0,

After eliminating b3 obtain system (9.3) plus two more inequalities

2 + 22b4 ≥ 0

−2 + 7b4 ≥ 0,

and find that b4 = 2/7 and b4 = −1/3. Because b4 > b4, the system has no solution.

Example 9.4. Add to system (9.1) one more inequality:

−5− b2 + 2b3 − 6b4 ≥ 0.

Then there will be two more inequalities in system (9.2):

−3 ≥ 0

−6 + 4b3 + 12b4 ≥ 0.

There is an obvious contradiction −3 ≥ 0 in the system, so it does not have solutions.

Example 9.5. Drawing from system (9.1), we modify two inequalities and consider the following
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system:

−b2 + 3b3 − 4b4 ≥ 0

4− b2 + 4b3 ≥ 0

2 + b2 − 2b3 + 6b4 ≥ 0 (9.4)

b2 + 2b4 ≥ 0

−1− b2 + 5b3 − 5b4 ≥ 0.

Eliminating variable b2 from (9.4), we obtain

2 + b3 + 2b4 ≥ 0

3b3 − 2b4 ≥ 0

6 + 2b3 + 6b4 ≥ 0

4 + 4b3 + 2b4 ≥ 0

1 + 3b3 + b4 ≥ 0

−1 + 5b3 − 3b4 ≥ 0.

All coefficients corresponding to b3 are positive, indicating not only that the system has solutions

but also that values of variable b3 are not bounded from above. Although b3 cannot be elimi-

nated from the system, b4 has coefficients of both signs and therefore can be excluded to obtain

information about b3. After eliminating b4, we will obtain eight inequalities, from which we will

find that b3 = −1/7.

If we excluded b3 (9.4) at the first step, we would obtain the following system:

6 + 3b2 + 10b4 ≥ 0

8 + b2 + 12b4 ≥ 0

8 + 3b2 + 20b4 ≥ 0

b2 + 2b4 ≥ 0.

Because all coefficients corresponding to b2 and b3 would be positive, we would conclude that b2

and b3 are bounded from neither below nor above.

9.2 Proofs

Proof of Proposition 3.1.

Even though an analog of this proposition is established in Solodovnikov (1977), it is worth

proving it here. The first part is intuitive, so I focus on the second claim. Let (b∗3, . . . , b
∗
k) be a

solution of (S2). Plug these numbers into Di and Nj and obtain numbers D∗
i and N∗

j such that

N∗
j ≥ D∗

i , i = 1, . . . , I, j = 1, . . . , J.
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Take any b2 such that

min
j=1,...,J

N∗
j ≥ b2 ≥ max

i=1,...,I
D∗

i ,

then (b2, b
∗
3, . . . , b

∗
k) is a solution of (S1).

Proof of Proposition 3.3

In the system

z11 + z12b2 + z13b3 ≥ 0

. . .

zd1 + zd2b2 + zd3b3 ≥ 0,

consider any inequality

zj1 + zj2b2 + zj3b3 ≥ 0

with zj2 < 0. This inequality is equivalent to

−zj1

zj2
− zj3

zj2
b3 ≥ b2.

Now consider any inequality

zi1 + zi2b2 + zi3b3 ≥ 0,

with zi2 > 0 and rewrite it as

b2 ≥ −zi1

zi2
− zi3

zi2
b3.

Necessarily,

−zj1

zj2
− zj3

zj2
b3 ≥ −zi1

zi2
− zi3

zi2
b3;

that is,
zi1

zi2
− zj1

zj2
≥

(
zj3

zj2
− zi3

zi2

)
b3.

If
zj3

zj2
− zi3

zi2
> 0,

then

b3 ≤
zi1
zi2
− zj1

zj2

zj3

zj2
− zi3

zi2

=
zi1zj2 − zj1zi2

zj3zi2 − zi3zj2
= −

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2

zi3 zi2

∣∣∣∣∣

, (9.5)

where ∣∣∣∣∣
zj3 zj2

zi3 zi2

∣∣∣∣∣ = zi2zj2

(
zj3

zj2
− zi3

zi2

)
< 0. (9.6)

Because (9.5) holds for an arbitrary i and j such that zj2 < 0, zi2 > 0 and (9.6) are satisfied,
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then

b3 ≤ min
i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2 < 0

zi3 zi2 > 0

∣∣∣∣∣ < 0





.

Similarly, prove that

b3 ≥ −

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2

zi3 zi2

∣∣∣∣∣

for any i and j such that zj2 < 0, zi2 > 0 and

∣∣∣∣∣
zj3 zj2

zi3 zi2

∣∣∣∣∣ = zi2zj2

(
zj3

zj2
− zi3

zi2

)
> 0;

that is,

b3 ≥ max
i,j




−

∣∣∣∣∣
zj1 zj2

zi1 zi2

∣∣∣∣∣
∣∣∣∣∣

zj3 zj2 < 0

zi3 zi2 > 0

∣∣∣∣∣ > 0





.

Proof of Proposition 3.5

The proof proceeds by induction on k. As has been proved above, this proposition holds for

k = 3. Suppose that it also holds for some value k. For this case, let us prove that it holds for

k + 1 as well. Consider system

z11 + z12b2 + . . . + z1kbk + z1,k+1bk+1 ≥ 0

z21 + z22b2 + . . . + z2kbk + z2,k+1bk+1 ≥ 0

. . .

zn1 + zn2b2 + . . . + znkbk + zn,k+1bk+1 ≥ 0,

and apply the recursive algorithm to exclude b2 from the system. The new system consists of

inequalities of the form

(
zi1

zi2
− zj1

zj2

)
+

(
zi3

zi2
− zj3

zj2

)
b3 + . . . +

(
zi,k+1

zi2
− zj,k+1

zj2

)
bk+1 ≥ 0,

where zi2 > 0 and zj2 < 0. Let us write this system as

rl1 + rl3b3 + . . . + rl,k+1bk+1 ≥ 0, l = 1, . . . , n1.
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Let Ãd, d ≥ 1 stand for the determinants corresponding to this new system and Ad stand for the

determinants corresponding to the original system. Let us show that Ãd is determined by 2d+1

indices i1, j1, . . . , i2d , j2d and that

Ãd(m, i1, j1, . . . , i2d , j2d) =
1

zi12zj12 . . . zi
2d2zj

2d2
Ad+1(m + 1, i1, j1, . . . , i2d , j2d).

To prove this, use the induction method. Consider d = 1:

Ã1(m, l1, l2) =

∣∣∣∣∣
rl2,m+1 rl2,3

rl1,m+1 rl1,3

∣∣∣∣∣ .

Inequality l1 was obtained from some inequalities i1 and j1 of the original system. Similarly,

inequality l2 has some corresponding inequalities i2 and j2. Then

Ã1(m, l1, l2) = Ã1(m, i1, j1, i2, j2) =

∣∣∣∣∣
rl2,m+1 rl2,3

rl1,m+1 rl1,3

∣∣∣∣∣ =

= 1
zi12zj12zi22zj22

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj1m+1 zj12

zi1m+1 zi12

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12

zi13 zi12

∣∣∣∣∣

∣∣∣∣∣
zj2m+1 zj22

zi2m+1 zi22

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22

zi23 zi22

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= 1
zi12zj12zi22zj22

∣∣∣∣∣
A1(m + 1, i1, j1) A1(3, i1, j1)

A1(m + 1, i2, j2) A1(3, i2, j2)

∣∣∣∣∣.

Thus, for d = 1 the statement is true. Suppose that it is also true for some d − 1. Let us prove

that in this case, it is also true for d. Because Ãd−1 depends on 2d−1 indices, then

Ãd(m, . . . , ) =

∣∣∣∣∣
Ãd−1(m, i1, . . . , j2d−1) Ãd−1(k + 1, i1, . . . , j2d−1) < 0

Ãd−1(m, i2d−1+1, . . . , j2d) Ãd−1(k + 1, i2d−1+1, . . . , j2d) > 0

∣∣∣∣∣

depends on 2d indices. For d− 1, the statement of the lemma is true. Therefore,

Ãd(m, i1, . . . , j2d) =

= 1
zi12...zj

2d−12zi
2d−1+1

2...zj
2d2

∣∣∣∣∣
Ad(m + 1, i1, . . . , j2d−1) Ad(d + 2, i1, . . . , j2d−1) < 0

Ad(m + 1, i2d−1+1, . . . , j2d) Ad(d + 2, i2d−1+1, . . . , j2d) > 0

∣∣∣∣∣ =

= 1
zi12zj12...zi

2d2zj
2d2

Ad+1(m + 1, i1, j1, . . . , i2d , j2d).

Because
Ãk−2(1, i1, . . . , j2k−2)
Ãk−2(k, i1, . . . , j2k−2)

= =
Ak−1(1, i1, . . . , j2k−2)

Ak−1(k + 1, i1, . . . , j2k−2)
,

then we conclude that the formula is true for bk+1.

Proof of Proposition 4.1
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The maximal possible value of Sms is 2
∑

xl∈S(X) ql|P l − 0.5|. Evidently, this value is at-

tained on set B; that is, B ⊆ Bms. On the other hand, if P l 6= 0.5 for any xl ∈ S(X), then

maxb:b1=1 Sms(b) = 2
∑

xl∈S(X) ql|P l − 0.5| implies that there exists b that solves the system of

linear inequalities constructed according to the rule

P l ≥ 0.5 ⇔ xlb ≥ 0, l = 1, . . . , d,

which, in turn, defines set B. Thus, Bms ⊆ B, and, therefore, B = Bms.

Now suppose that P l = 0.5 for some l. If, for instance, P 1 = 0.5, then any b satisfying the

system of inequalities

P l ≥ 0.5 ⇔ xlb ≥ 0, l = 2, . . . , d

also gives a maximal value to Sms. So, in this case, set Bms is larger than B; that is, B ⊂ Bms.

Proof of Proposition 5.1

This proof is based on the symmetrical property of the formulas for bl
3 and bu

3 in Proposition

3.3. According to these formulas,

bu
3 ≤ −

∣∣∣∣∣
zj2,1 zj2,2

zi1,1 zi1,2

∣∣∣∣∣
∣∣∣∣∣

zj2,3 zj2,2

zi1,3 zi1,2

∣∣∣∣∣

=

∣∣∣∣∣
zj2,1 −zi2,2

zi1,1 zi1,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

,

bl
3 ≥ −

∣∣∣∣∣
zj1,1 zj1,2

zi2,1 zi2,2

∣∣∣∣∣
∣∣∣∣∣

zj1,3 zj1,2

zi2,3 zi2,2

∣∣∣∣∣

= −

∣∣∣∣∣
zj1,1 −zi1,2

zi2,1 zi2,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

,

and, hence,

bu
3 − bl

3 ≤

∣∣∣∣∣
zj1,1 −zi1,2

zi2,1 zi2,2

∣∣∣∣∣ +

∣∣∣∣∣
zj2,1 −zi2,2

zi1,1 zi1,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

=
zi2,2(zj1,1 + zi1,1) + zi1,2(zj2,1 + zi2,1)∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

≤

≤ ∆(zi2,2 + zi1,2)∣∣∣∣∣
zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

= ∆

∣∣∣∣∣
1 −zi2,2

1 zi1,2

∣∣∣∣∣
∣∣∣∣∣

zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

.

Proof of Corollary 5.2

Suppose that x2x
∗
3 − x∗2x3 > 0, and consider the following four cases.
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Case 1: x2 > 0, x∗2 > 0. Define

(zi1,1, zi1,2, zi1,3) = (x1, x2, x3), (zj1,1, zj1,2, zj1,3) = (−x̃1,−x2,−x3),

(zi2,1, zi2,2, zi2,3) = (x∗1, x
∗
2, x

∗
3), (zj2,1, zj2,2, zj2,3) = (−x̃∗1,−x∗2,−x∗3).

Then all conditions in Proposition 5.1 are satisfied. Therefore,

bu
3 − bl

3 ≤ ∆
x2 + x∗2

x2x∗3 − x∗2x3
.

Case 2: x2 > 0, x∗2 < 0. Define

(zi1,1, zi1,2, zi1,3) = (−x̃∗1,−x∗2,−x∗3), (zj1,1, zj1,2, zj1,3) = (x∗1, x
∗
2, x

∗
3)

(zi2,1, zi2,2, zi2,3) = (x1, x2, x3), (zj2,1, zj2,2, zj2,3) = (−x̃1,−x2,−x3)

Then all condition in Proposition 5.1 are satisfied. Therefore,

bu
3 − bl

3 ≤ ∆
x2 − x∗2

x2x∗3 − x∗2x3
.

Case 3: x2 < 0, x∗2 > 0. Define

(zi1,1, zi1,2, zi1,3) = (x∗1, x
∗
2, x

∗
3), (zj1,1, zj1,2, zj1,3) = (−x̃∗1,−x∗2,−x∗3),

(zi2,1, zi2,2, zi2,3) = (−x̃1,−x2,−x3), (zj2,1, zj2,2, zj2,3) = (x1, x2, x3).

Then all condition in Proposition 5.1 are satisfied. Therefore,

bu
3 − bl

3 ≤ ∆
−x2 + x∗2

x2x∗3 − x∗2x3

Case 3: x2 < 0, x∗2 < 0. Define

(zi1,1, zi2,2, zi2,3) = (−x̃1,−x2,−x3), (zj1,1, zj1,2, zj1,3) = (x1, x2, x3),

(zi2,1, zi2,2, zi2,3) = (−x̃∗1,−x∗2,−x∗3), (zj2,1, zj2,2, zj2,3) = (x∗1, x
∗
2, x

∗
3).

Then all condition in Proposition 5.1 are satisfied. Therefore,

bu
3 − bl

3 ≤ ∆
−x2 − x∗2

x2x∗3 − x∗2x3
.

The case in which x2x
∗
3 − x∗2x3 < 0 can be considered in a similar way.

Proof of Proposition 5.3

The proof of Proposition 5.3 is based on the symmetrical property of the formulas for bl
4 and
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bu
4 . According to the formulas in Proposition 3.4,

bl
4 ≥ −C1

D
, bu

4 ≤
C2

D
,

where

C1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj21 zj22

zi11 zi12

∣∣∣∣∣

∣∣∣∣∣
zj23 zj22

zi13 zi12

∣∣∣∣∣

∣∣∣∣∣
zj31 zj32

zi41 zi42

∣∣∣∣∣

∣∣∣∣∣
zj33 zj32

zi43 zi42

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

, C2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
zj41 zj42

zi31 zi32

∣∣∣∣∣

∣∣∣∣∣
zj43 zj42

zi33 zi32

∣∣∣∣∣

∣∣∣∣∣
zj11 zj12

zi21 zi22

∣∣∣∣∣

∣∣∣∣∣
zj13 zj12

zi23 zi22

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then

bu
4 − bl

4 ≤
C1

D
+

C2

D
=

1
D

∣∣∣∣∣
zj41 zj42

zi31 zi32

∣∣∣∣∣ ·
∣∣∣∣∣

zi22 zi23

zj12 zj13

∣∣∣∣∣−
1
D

∣∣∣∣∣
zi21 zi22

zj11 zj12

∣∣∣∣∣ ·
∣∣∣∣∣

zj42 zj43

zi32 zi33

∣∣∣∣∣+

+
1
D

∣∣∣∣∣
zj21 zj22

zi11 zi12

∣∣∣∣∣ ·
∣∣∣∣∣

zi42 zi43

zj32 zj33

∣∣∣∣∣−
1
D

∣∣∣∣∣
zi41 zi42

zj31 zj32

∣∣∣∣∣ ·
∣∣∣∣∣

zj22 zj23

zi12 zi13

∣∣∣∣∣ =

=
1
D

(zi12(zj21+zi21)+zi22(zj11+zi11))

∣∣∣∣∣
zi42 zi43

zj32 zj33

∣∣∣∣∣+
1
D

(zi32(zj41+zi41)+zi42(zj31+zi31))

∣∣∣∣∣
zj22 zj23

zi12 zi13

∣∣∣∣∣ ≤

≤ ∆
D

(zi12+zi22)

∣∣∣∣∣
zi42 zi43

zj32 zj33

∣∣∣∣∣+
∆
D

(zi32+zi42)

∣∣∣∣∣
zj22 zj23

zi12 zi13

∣∣∣∣∣ =
∆
D

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
1 −zi4,2

1 zi3,2

∣∣∣∣∣ −
∣∣∣∣∣

zi4,3 zi4,2

zi3,3 zi3,2

∣∣∣∣∣

∣∣∣∣∣
1 −zi2,2

1 zi1,2

∣∣∣∣∣

∣∣∣∣∣
zi2,3 zi2,2

zi1,3 zi1,2

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof of Theorem 6.1

BN 6= B ⇒ ∃(xl ∈ S(X)) sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5),

therefore,

Pr(BN 6= B) ≤
∑

xl∈S(X)

P (sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5)).

Because

P l > 0.5 and sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5) ⇒ P l − P̂ l

N > P l − 0.5,

P l < 0.5 and sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5) ⇒ P̂ l

N − P l > 0.5− P l,

then

∀(xl ∈ S(X)) Pr(sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5)) ≤ Pr(|P̂ l

N − P l| > |0.5− P l|).
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The consistency property (6.1) and the fact that |0.5− P l| > 0 for any xl ∈ S(X) imply

∀(xl ∈ S(X)) Pr(|P̂ l
N − P l| > |0.5− P l|) → 0 as N →∞.

It is evident now that

Pr(BN 6= B) → 0 as N →∞.

Proof of Corollary 6.2.

For any ε > 0,

τNH(BN , B) ≥ ε ⇒ H(BN , B) 6= 0 ⇒ BN 6= B.

Therefore,

Pr(τNH(BN , B) ≥ ε) ≤ Pr(BN 6= B) → 0 as N →∞.

Proof of Theorem 6.3

Pr(BN 6= B) ≤
∑

xl∈S(X)

P (sgn(P̂ l
N − 0.5 + εN ) 6= sgn(P l − 0.5)).

If P l > 0.5, then

Pr(sgn(P̂ l
N − 0.5 + εN ) 6= sgn(P l − 0.5)) = Pr(P l − P̂ l

N > P l − 0.5 + εN ) ≤
≤ Pr(P l − P̂ l

N > P l − 0.5) → 0 as N →∞.

Let P l < 0.5. Convergence εN → 0 implies that, when N is large enough, 0.5− P l − εN > δ for

some δ > 0, and, consequently,

Pr(sgn(P̂ l
N − 0.5 + εN ) 6= sgn(P l − 0.5)) = Pr(P̂ l

N − P l > 0.5− P l − εN ) ≤
≤ Pr(P̂ l

N − P l > δ) → 0 as N →∞.

If P l = 0.5, then

Pr(sgn(P̂ l
N − 0.5 + εN ) 6= sgn(P l − 0.5)) = Pr(P l − P̂ l

N > εN ) = Pr(ε−1
N (P l − P̂ l

N ) > 1).

(6.3) and (6.4) imply that

ε−1
N (P l − P̂ l

N ) = (εNτN )−1τN (P l − P̂ l
N )

p→ 0 as N →∞

and, thus,

Pr(ε−1
N (P l − P̂ l

N ) > 1) → 0 as N →∞.

Proof of Theorem 6.4

Pr(BN 6= B) ≤
∑

xl∈S(X)

Pr(sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5))
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Denote

VN (xl) =
N∑

i=1

(2yi − 1)1(xi = xl).

Then

P̂ l
N ≥ 0.5 ⇔ VN (xl) ≥ 0.

Note that random variable (2yi − 1)1(xi = xl) takes values 1, 0 and -1 with probabilities P lql,

1− ql and (1− P l)ql, respectively. Its expected value is (2P l − 1)ql.

Let P l > 0.5. Then Pr(sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5)) = Pr(VN (xl) < 0). By Hoeffding’s

inequality,

Pr(VN (xl) < 0) = Pr(VN (xl)−N(2P l − 1)ql < −N(2P l − 1)ql) ≤ e−N((2P l−1)ql)2/2.

If P l < 0.5, then Pr(sgn(P̂ l
N−0.5) 6= sgn(P l−0.5)) = Pr(VN (xl) ≥ 0). By Hoeffding’s inequality

Pr(VN (xl) ≥ 0) = Pr(VN (xl)−N(2P l − 1)ql ≥ N(1− 2P l)ql) ≤ e−N((2P l−1)ql)2/2.

Thus, if P l 6= 0.5,

Pr(sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5)) ≤ e−N((2P l−1)ql)2/2.

Let ρ < 1 be such that

ρ > max
l=1,...,d

e−((2P l−1)ql)2/2.

Then, if P l 6= 0.5 for any xl,

Pr(BN 6= B) = o(ρN ) as N →∞.

This proves the first part of the theorem.

Now suppose that there is xl such that P l = 0.5. Because

P l = 0.5 and P l
N < 0.5 ⇒ BN 6= B,

then

Pr(BN 6= B) ≥ Pr(VN (xl) < 0).

Note that

P l = 0.5 ⇒ Pr(VN (xl) < 0) = 0.5(1− Pr(VN (xl) = 0)).

If we will find a bound on Pr(VN (xl) = 0) from above, we will find a bound on Pr(VN (xl) < 0)
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from below.

Pr(VN (xl) = 0) =
[N
2

]∑

j=0

CN
j CN−j

j 0.52j(ql)2j(1− ql)N−2j =
[N
2

]∑

j=0

CN
2jC

2j
j 0.52j(ql)2j(1− ql)N−2j =

= (1− ql)N +
[N
2

]∑

j=1

CN
2jC

2j
j 0.52j(ql)2j(1− ql)N−2j .

Use the fact that for j ≥ 1,

C2j
j 0.52j = (−1)j (−0.5)(−0.5− 1) . . . (−0.5− j + 1)

j!
≤ 0.5

to obtain

Pr(VN (xl) = 0) ≤ (1− ql)N + 0.5
[N
2

]∑

j=1

CN
2j(q

l)2j(1− ql)N−2j ≤ (1− ql)N + 0.5.

Then

Pr(VN (xl) < 0) = 0.5(1− Pr(VN (xl) = 0)) ≥ 0.5(1− (1− ql)N − 0.5)

and

Pr(BN 6= B) ≥ 0.5(1− (1− ql)N − 0.5) → 0.25 as N →∞.

Proof of Proposition 6.5

Suppose that P l 6= 0.5 for any xl ∈ S(X). Then

Pr(Bms
N 6= B) ≤

∑

xl∈S(X)

Pr(sgn(P̂ l
N − 0.5) 6= sgn(P l − 0.5)),

and the proof proceeds in the same way as the proof of the first part of Proposition 6.4.

The proof of the second part, when P l = 0.5 for some xl ∈ S(X), is the same as the proof of

the second part of Proposition 6.4.
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