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among the jump components of the quadratic variation, which are measured as the sum of squared jump

sizes over a day. To avoid sequential bias distortion, we do not pretest for the presence of jumps. We

proceed in two steps. First, we derive the limiting distribution of the infeasible statistic, based on the

unobservable jump component. Second, we provide sufficient conditions for the asymptotic equivalence

of the feasible statistic based on realized jumps. When the null is true, and both assets have jumps, the

statistic weakly converges to a Gaussian random variable. When instead at least one asset has no jumps,

then the statistic approaches zero in probability. We then establish the validity of moon bootstrap critical

values. If the null is true and both assets have jumps, both statistics have the same limiting distribution.

in the absence of jumps in at least one asset, the bootstrap-based statistic converges to zero at a slower

rate. Under the alternative, the bootstrap statistic diverges at a slower rate. Altogether, this means that

the use of bootstrap critical values ensures a consistent test with asymptotic size equal to or smaller than

α. We finally provide an empirical illustration using stock market data from China, Japan, UK, and US.
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1 Introduction

There is strong empirical evidence of jumps in asset prices and, to a lesser extent, in their volatility processes

as well. See, among others, Bates (1996), Andersen, Benzoni and Lund (2002), Chernov, Gallant, Ghysels

and Tauchen (2003), Eraker, Johannes and Polson (2003), Eraker (2004), Huang and Tauchen (2005),

Bollerslev, Law and Tauchen (2008), Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2009a,b), and

Todorov and Tauchen (2009, 2011). Apart from their substantial impact in derivatives pricing and hedging

(Merton, 1976; Naik and Lee, 1990), jumps are a significant source of non-diversifiable risk, thereby playing

a major role in portfolio allocation and risk management (Merton, 1971; Liu, Longstaff and Pan, 2003).

Introducing common jumps is an effective means to model systemic risk and, accordingly, financial

contagion. Common jumps may in fact generate asymmetric dependence across securities as well as a

diversification breakdown. In the event that a downward jump occurs, negative returns spread across

markets, implying a higher correlation across a large number of assets in bear markets; Das and Uppal

(2004) examine the impact of this sort of systemic risk in portfolio choice. Given the high correlation,

systemic risk not only reduces the benefits of diversification, but also increases the likelihood of larger

losses for leveraged portfolios. Aı̈t-Sahalia, Cacho-Diaz and Hurd (2009a) study portfolio choice and

diversification in the presence of jumps. They show that the gain from diversification breaks down, and

the optimal portfolio offers as much protection against common jumps as a nondiversified portfolio.

Common jumps capture cross-sectional dependence across markets, but do not explain another im-

portant empirical fact which is jumps clustering, i.e., large jumps tend to cluster together over time (see,

e.g., Maehu and McCurdy, 2004). A natural way to capture the common jump component as well as

jump clustering, is to model the jump intensity of an asset as a time dependent process function of the

past jumps in both the asset itself and in other assets. For instance, the Hawkes jump diffusion model of

Aı̈t-Sahalia, Cacho-Diaz and Laeven (2011) generates both jump self-excitation, as in Bowsher (2007), and

jump cross-excitation.

This paper develops statistical tools for testing conditional independence among jumps in different

assets or markets. More precisely, we test conditional independence among the jump components of the

quadratic variation, which are measured as the sum of squared jump sizes over a day. This is because we

can construct a model-free estimator of the jump component of the quadratic variation, without requiring

functional form assumptions on either the continuous component of the process (drift and variance) or on
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the jump component of the process (intensity and jump size distribution). Further, we are agnostic about

whether volatility is stochastic or is a function of the past asset prices. Our setup easily accommodates

both the affine jump-diffusion model of Duffie, Pan and Singleton (2000) and the Hawkes jump-diffusion

specification of Aı̈t-Sahalia et al. (2011).

Our test is based on the weighted squared difference of two nonparametric estimators of the conditional

distribution, constructed using realized measures of the jump component. We proceed in two steps. First we

derive the limiting distribution of the infeasible statistic based on the ‘true’ unobservable jump component.

Second, we provide a set of sufficient conditions under which the feasible statistic based on a noisy measure

of the jump component is asymptotically equivalent to its infeasible counterpart. To derive the limiting

distribution of the infeasible is a rather daunting task.

First, the ‘true’ unobservable jump component is a random variable taking the value zero with positive

probability, and then having a continuous density on R+. In particular, both the dependent variable and

the conditioning variables are censored from below at zero. This differs from Tobit-type nonparametric

regression, in which only the dependent variable is censored (e.g., Chen, Dahl and Khan, 2005), and it

also differs from nonparametric regression with mixed continuous and categorical conditioning variables

(e.g., Li and Racine, 2008). The model free estimator of the jump contribution to the quadratic variation

is based on the difference between a non-robust pre-averaged estimator and a jump-robust pre-averaged

estimator (Podolskij and Vetter, 2009). The use of pre-averaging ensures that our estimator of the jump

component is robust to the presence of microstructure noise. We derive the order of magnitude of the

measurement error, and then establish the asymptotic equivalence of the feasible and infeasible statistic.

It should be stressed that we test the null hypothesis of jumps conditional independence without testing

for jumps. Nonparametric test for jumps, based on either the scaled difference between non-robust and

robust realized measures (e.g., Barndorff-Nielsen, Shephard and Winkel, 2006; Podolskij and Vetter, 2009)

or based on a cumulative jump intensity estimator (e.g., Lee and Mykland, 2008) are tailored for discovering

the presence of jumps over a finite time span. The sequential implementation of the test over rolling time

spans would then induce a severe bias distortion.

The rest of this paper ensues as follows. Section 2 illustrates the channels through which jump spillovers

may arise using a simple multivariate jump-diffusion process. Section 3 first discusses the null hypothesis of

jump spillovers and then establish the limiting distribution of the infeasible statistic. Section 4 establishes
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the asymptotic equivalence between the feasible and infeasible statistic. Section 5 establishes the first-order

validity of the critical values given by the moon bootstrap procedure. Section 6 provides an empirical

illustration based on stock market indices in US, UK, Japan and China. We collect all technical proofs in

the Appendix.

2 Jump transmission: Setup

In this section, we discuss how to analyze jump spillovers through a nonparametric test of conditional

independence. For notational simplicity, we restrict attention to the case of two assets with prices, say, Y

and V (in logs). It is straightforward to consider more than two assets, though the usual concern with the

curse of dimensionality applies.

We start with an outline of the channels through which price jumps in V might affect the jump

component in Y . As customary in financial economics, we assume that asset prices follow a jump-diffusion

process:(
dpA,t

dpB,t

)
=

(
µA,t

µB,t

)
dt+

(
σAA,t σAB,t

σBA,t σBB,t

)(
dWA,t

dWB,t

)
+

(
κAA,t κAB,t

κBA,t κBB,t

)(
dJA,t

dJB,t

)
, (1)

where (WA,t,WB,t) are independent standard Brownian motions, (µA,t, µB,t) are predictable drift processes,

and the volatility and cross-volatility components follow a multivariate càdlàg process regardless of whether

it is stochastic or a measurable function of asset prices.

As for the jump component, JA,t and JB,t are Poisson processes with possibly time-varying intensity.

In particular, κAj,t = ∆pA,t 1( dJj,t = 1) with ∆pA,t = pA,t − pA,t− and κBj,t = ∆pB,t 1( dJj,t = 1)

with ∆pB,t = pB,t − pB,t− correspond respectively to the sizes of the price jumps in assets A and B as

the Poisson process Jj,t jumps one unit at time t. We thus allow for a different jump size depending

on which Poisson process hits the asset price (see, e.g., Chapter 5 in Cont and Tankov, 2004). Finally,

Pr
(

dJj,t = 1
∣∣∣Ft) = dλj,t, where Ft is the filtration at time t and λj,t is the jump intensity for asset

j ∈ {A,B}.

It is natural to decompose the quadratic variation process 〈·〉t of a given asset price, say pA, over

the time interval [t − 1, t] into the part due to the discontinuous jump component p
(d)
A and the part due

to the continuous diffusive component p
(c)
A . In particular, 〈pA〉t =

〈
p

(c)
A

〉
t

+
〈
p

(d)
A

〉
t
, where

〈
p

(c)
A

〉
t
≡∫ t

t−1 σ
2
A,s ds +

∫ t
t−1 σ

2
AB,s ds corresponds to the integrated variance over the time interval [t − 1, t] and
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〈
p

(d)
A

〉
t
≡
∑

t−1≤s≤t ∆p2
A,s. It also follows from (1) that

∑
t−1≤s≤t

∆p2
A,s =

JA,t∑
s=JA,t−1

κ2
AA,s +

JB,t∑
s=JB,t−1

κ2
AB,s (2)

∑
t−1≤s≤t

∆p2
B,s =

JA,t∑
s=JA,t−1

κ2
BA,s +

JB,t∑
s=JB,t−1

κ2
BB,s. (3)

As Poisson processes are finite activity processes, in the absence of perfect correlation between JA,t and

JB,t, the probability that they jump together over a finite time span is zero and hence the cross-term

component
∑

t−1≤s≤t κBA,s κBB,s 1( dJA,t dJB,t = 1) is negligible.

It is easy to appreciate from (2) and(3) that, due to the iid nature of the jump sizes,
〈
p

(d)
A

〉
t

does not

depend on
〈
p

(d)
B

〉
s

for any s ≤ t if and only if

(i) κAB,s = κBA,s = 0 almost surely;

(ii) JA,t and JB,t are independent.

Note that there would exist only common simultaneous jumps (or co-jumps) if only (i) fails to hold in view

that a jump in either dJA,t or dJB,t would culminate in simultaneous jumps in both asset prices pA and

pB. This would ultimately result in a small number of relatively large co-jumps in the data due to the

finite variation property of Poisson processes. To reconcile with Bollerslev et al.’s (2008) empirical evidence

of a large number of small common simultaneous jumps among stock returns, it would suffice to replace

Poisson processes with more general Lévy processes so as to allow for infinitely many small co-jumps. Note

that we consider Poisson jumps only for ease of exposition. The realized measures we employ to estimate

the jump component of the quadratic variation are actually consistent even under infinite variation.

If instead only (i) holds, no simultaneous common jumps would come about, though a feedback effect

would still arise given the mutual dependence between JA,t and JB,t. In particular, the link is exclusively

contemporaneous if both JA,t and JB,t have constant intensity in that
〈
p

(d)
A

〉
t

is independent of
〈
p

(d)
B

〉
s

for all s < t even if (ii) does not apply. In contrast, if the intensity processes are measurable functions

of some common serial dependent process, then ∆JA,t may depend on ∆JB,s for s < t. Examples include

Duffie et al.’s (2000) affine jump diffusions, for which(
λA,t

λB,t

)
=

(
λ0
A

λ0
B

)
+

(
λ1
AA λ

1
AB

λ1
BA λ

1
BB

)(
pA,t

pB,t

)
,

as well as Aı̈t-Sahalia et al.’s (2011) Hawkes jump-diffusion model, in which the intensity processes are

5



given by(
λA,t

λB,t

)
=

(
λA,∞ +

∫ t
0 λAA(t− s) dJA,s +

∫ t
0 λAB(t− s) dJB,s

λB,∞ +
∫ t

0 λBA(t− s) dJA,s +
∫ t

0 λBB(t− s) dJB,s

)
.

In principle, it is possible to test directly whether conditions (i) to (ii) hold, if one is ready to specify

the functional forms of the drift, diffusive, and jump terms. The outcome would however depend heavily

on the correct specification of the data generating process. To minimize the risk of misspecification, we

take a nonparametric route. In particular, we construct a test for the null hypothesis that (i) and (ii) hold

without imposing any parametric assumption on the multivariate jump-diffusion process given by (1).

3 The infeasible statistic

Let hereafter At =
∑

t−1≤s≤t ∆p2
A,s and Bt =

∑
t−1≤s≤t ∆p2

B,s. We wish to test whether At does not

depend on Bt after controlling for its past realizations. We thus define the larger information set as

Xt = (At−1, Bt), whereas the smaller information set contains information exclusively about At−1. The

null hypothesis is that the conditional distribution of At given Xt is almost surely equal to the conditional

distribution given only At−1, i.e.,

H0 : Pr
(
At ≥ a

∣∣∣Xt = x
)
− Pr

(
At ≥ a

∣∣∣At−1 = x1

)
= 0 a.s. (4)

We begin by assuming we could observe the ‘true’ jump contribution to the quadratic variation and hence

we may test the null hypothesis H0 in (4) by means of

ST = h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt)− h−1 µ̂1,T − h b−1 µ̂2,T , (5)

where π(x) is an integrable weighting function that trims away observations out of the compact set CX ⊂

{x = (x1, x2) : x1 ≤ x1, x2 ≤ x2} and F̂A|X(At|Xt) and F̂A|A1
(At|At−1) are local linear estimators of the

conditional distributions of At given Xt and At−1, respectively. Note that F̂A|X(a|x) = β̂0T (a,x), where

β̂T (a,x) =
(
β̂0T (a,x), β̂1T (a,x), β̂2T (a,x)

)′
is the argument that minimizes

1

T

T∑
t=1

[
1{At ≤ a} − β0 − β1(At−1 − x1)− β2(Bt − x2)

]2
Kh(At−1 − x1)Kh(Bt − x2), (6)

whereas F̂A|A1
(a|x1) is defined analogously, but with b instead of h.

Notice that we do not trim the estimation of the conditional distribution from below. This means

that the statistic considers every zero value in the sample. This is important as in practice we observe
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only a noisy version of the asset prices pA,t and pB,t, implying the (spurious or not) absence of zeroes.

Accordingly, trimming away observations smaller than a threshold would induce unnecessary arbitrariness

to the testing procedure. As for the bias terms,

µ̂1,T =
1

6
C1(K)

1

T

T∑
t=1

π(Xt)

f̂X(Xt)
, (7)

µ̂2,T =
1

6
C1(K)

1

T

T∑
t=1

1
T

∑T
s=1Kb(As−1 −At−1)π(Xs)

f̂A1(At−1) 1
T

∑T
s=1Kb(As−1 −At−1)

, (8)

with K(u) = K(u1)K(u2) denoting a bivariate product kernel, C1(K) =
∫
K(u)2 du, and

f̂X(x) =
1

Thb

T∑
t=1

K

(
At−1 − x1

b

)
K

(
Bt − x2

h

)
. (9)

Note that the density estimation in (9) relies on a bandwidth b for At−1 and a bandwidth h for Xt. This is

necessary to rule out the possibility that the estimated bias term may diverge to minus infinity in Theorem

2.

In the sequel we rely on the following assumptions.

Assumption A1: The kernel function K is of order 2, symmetric, nonnegative, at least twice differentiable

on the interior of is bounded support, and K(0) = C with 0 < c ≤ C ≤ c <∞.

Assumption A2: The density functions FA|X(a|x) and FX(x) are r-times continuously differentiable

in (a,x) ∈ CA,X with bounded derivatives and with r ≥ 2. The same condition also holds for the lower-

dimensional density functions FA|A1
(a|a1). The density fX(x) is bounded away from zero for x ∈ CX .

Assumption A3: The weighting function π(x) is continuous and integrable, with second derivatives in

a compact support.

Assumption A4: The stochastic process (At,Xt) is strictly stationary and β-mixing with βk = O(ρk),

where 0 < ρ < 1.

Assumption A5: (i) Th5 → 0, (ii) Th1/2b4 → 0, (iii) T (h3 + b3) → ∞, (iv) Tb5/2h−2 → ∞, (v)

h b−1 →∞, (vi) h2b−1 → 0.

Assumption A1 holds for most second-order kernels, such as the Epanechnikov, Parzen, and quartic

kernels. We rule out higher-order kernel to ensure the positivity of the objective function in (6). Also,

several high-order kernels violate the condition K(0) = C, which is crucial to control the behavior of

statistic in the absence of jumps in at least one asset. Assumptions A2 and A3 require that the density
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and weighting functions are both well defined and smooth enough to admit functional expansions, whereas

Assumption A4 restricts the amount of data dependence by imposing absolute regularity with geometric

decay rate. Assumption A5 states a set of sufficient conditions for the bandwidths: (i) − (iv) ensure the

asymptotic normality of the statistic in the presence of jumps in both asset, whilst (v) − (vi) guarantee

that the statistic does not go to minus infinity in the absence of jumps in at least one asset.

We are now ready to establish the limiting distribution of the test statistic in (5). Let hereafter

I11,t = 1{At−1 > 0}1{Bt > 0}, I10,t = 1{At−1 > 0}1{Bt = 0}, I01,t = 1{At−1 = 0}1{Bt > 0},

I00,t = 1{At−1 = 0}1{Bt = 0}, and let Tij =
∑T

t=1 Iij,t for i, j ∈ {0, 1}.

Theorem 1: Let Assumptions A1-A5 hold. If T11/T
p→ c11 > 0, then ST

d→ N(µ
(3)
1 − 2µ

(1)
3 , σ2) under

H0, where µ
(3)
1 and µ

(1)
3 are respectively given by (17) and (18) in Lemmata 1A and 4A in the Appendix,

and

σ2 =
1

45

∫ (∫
K(u)K(u− v) du

)2

dv

∫
x>0

π(x)2 dx. (10)

In addition, Pr
(
c−1

11 T
−1h−1 |ST | > ε

)
→ 1 under HA.

Theorem 1 establishes that, if the fraction of days in which both assets display jumps grows at the same

rate as the sample size, then the statistic has a standard normal limiting distribution under the null and

diverges under the alternative. As shown in Lemmata 1A to 5A in the Appendix, the limiting distribution

of the statistic depends on the subset of the sample over which both asset prices display a strictly positive

jump component. On the other hand, whenever the statistic is computed over a subset of the sample in

which at least one asset does not display jumps, it shrinks to zero in probability.

We next deal with the case in which at least one asset features no price jumps. In particular, we show

that the statistic approaches zero in probability and hence we end up not rejecting the null. Needless to

say, this situation would never arise if we could observe the true jump component. However, as it will

become clearer in the next section, we observe only a realized measure of the jump contribution to the

quadratic variation, which is not necessarily equal to zero in the absence of jumps.

Theorem 2: Let Assumptions A1-A5 hold.

(i) If At = 0 almost surely for all t, then ST = h−1 b {1 +Op(1)} = op(1).

(ii) If Bt = 0 almost surely for all t, then ST = (h1/4 + h−1 b) {1 +Op(1)} = op(1).
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(iii) If At = Bt = 0 almost surely for all t, then ST = b {1 +Op(1)} = op(1).

In practice, we do not know whether T11/T
p→ c11 > 0 as in Theorem 1 or T11/T

p→ 0 as in Theorem

2. This means we cannot simply derive asymptotic critical values for ST based on Theorems 1 and 2. We

nonetheless show in Section 5 how to derive moon bootstrap critical values that gives way to a consistent

test with asymptotic size equal either to α if T11/T
p→ c11 > 0 or to zero if T11/T

p→ 0. Another advantage

of bootstrapping is that it automatically accounts for the bias terms µ
(3)
1 and µ

(1)
3 without requiring their

estimation.1

4 The feasible statistic

The statistic ST is infeasible as we do not observe At and Bt. However, in the presence of intraday

observations, we can construct a valid proxy for the jump variation. More precisely, given a sample of M

intraday observations over a time span of T days, we denote by AM,t and BM,t the realized measures for

the jump contribution to the quadratic variation at day t. We next derive the conditions under which the

feasible statistic resting on observable realized jumps measure AM,t and BM,t is asymptotically equivalent

to its unfeasible counterpart. We also show that the contribution of measurement error is still of smaller

probability order even if the statistic approaches zero in probability due to the absence of jumps in a t

least one asset.

Given the presence of measurement error in financial transaction data due to market microstructure

noise, we employ Podolskij and Vetter’s (2009) realized measure of the jump contribution to the quadratic

variation of the process. Their estimator measures the difference between two realized measures. The first

is consistent for the total quadratic variation, whereas the second consistently estimates the integrated

variance of the process. This is well in line with the literature dealing with testing for jumps and with

the estimation of the degree of jump activity (see, e.g., Huang and Tauchen, 2005; Barndorff-Nielsen et

al., 2006; Aı̈t-Sahalia and Jacod, 2009b; Cont and Mancini, 2011; Todorov and Tauchen, 2011). The only

difference is that Podolskij and Vetter’s (2009) realized measure of the jump contribution is robust to the

presence of market-microstructure noise due to a pre-averaging procedure.

Let kM denote a deterministic sequence such that kM√
M

= θ + o(M−1/4) and let g denote a continuous

and piecewise differentiable function with piecewise Lipschitz derivative such that g(0) = g(1) = 0 and

1 Actually, estimating these bias terms would invalidate the asymptotic validity of the moon bootstrap procedure. See
discussion in Section 5.
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∫ 1
0 g

2(s) ds < ∞. Typical examples are g(u) = u ∧ (1 − u) and g(u) = u(1 − u2)1{0 ≤ u ≤ 1}. Define

now the market prices of assets A and B at time t+ `/M respectively as ZA,t+`/M = pA,t+`/M + εA,t+`/M

and ZB,t+`/M = pB,t+`/M + εB,t+`/M , where pj,t+`/M and εj,t+`/M denote the efficient price and additive

microstructure noise for asset j ∈ {A,B}. As in Podolskij and Vetter (2009), we proxy the jump component

in the quadratic variation by means of

At,M =
PV

(A)
M,t (2, 0)− µ−p|Φ|PV

(A)
M,t (2/p, . . . , 2/p)

θ
∫ 1

0 g
2(s) ds

, (11)

where µ|Φ| is the first absolute moment of a standard normal distribution, and

PV
(A)
M,t (2/p, . . . , 2/p) =

1√
M

M−pkM+1∑
j=1

p−1∏
i=0

∣∣∣∣∣
kM∑
`=1

g(t+ `/M)
(
ZA,t+(j+ikM+`)/M − ZB,t+(j+ikM+`−1)/M

)∣∣∣∣∣
2/p

,

(12)

is the pre-average multipower variation, whereas

PV
(A)
M,t (2, 0) =

1√
M

M−2kM+1∑
j=1

∣∣∣∣∣
kM∑
`=1

g(`/M)
(
ZA,t+(j+`)/M − ZA,t+(j+`−1)/M

)∣∣∣∣∣
2

, (13)

is the pre-average realized variance measure of Jacod, Li, Mykland, Podolskij and Vetter (2009). Finally,

let Bt,M be defined as in (11), but with PV
(B)
M,t (2, 0) and PV

(B)
M,t (2/p, . . . , 2/p) in lieu of PV

(A)
M,t (2, 0) and

PV
(A)
M,t (2/p, . . . , 2/p), respectively.

In the sequel, let g(`/M) = min {`/M, (1− `/M)} and Xt,M = (At−1,M , Bt,M ). Define the feasible

statistic as

ST,M = h
T∑
t=1

[
F̂A|X,M (At,M |Xt,M )− F̂A|A1,M (At,M |At−1,M )

]2
π(Xt,M )− h−1µ̂1,T,M − h b−1µ̂2,T,M (14)

where F̂A|X,M , F̂A|A1,M and f̂X,M differ from F̂A|X , F̂A|A1
and f̂X only for employing realized measures

(rather than true values) of the jump contribution to the quadratic variation. Similarly, the bias terms

of the feasible statistic are as before, but replacing the unobservable jump components with their realized

counterparts.

To establish asymptotic equivalence between the unfeasible and feasible statistics, we require some

additional assumptions.

Assumption A6: The drift terms in (1) are continuous locally bounded processes with E |µi,t|2k < ∞,

whereas the diffusive functions are càdlàg with E(σ2k
ij,t) <∞ for k ≥ 2 and the jump components κij,t are
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iid with all finite moments for i, j ∈ {A,B}.

Assumption A7: The microstructure noises εA,t and εB,t are iid with symmetric distribution around

zero and such that E(ε2kA,t) <∞ and E(ε2kB,t) <∞ for some k ≥ 2.

Assumption A8: The jump components have a smaller-than-one Blumenthal-Getoor index.2

The next result shows that the asymptotic equivalence between unfeasible and feasible test statistics

necessitates that the number of intraday observations M grows fast enough relative to the number of days

T . This results in the usual tradeoff of whether using a non-robust realized measure with aM = M at

a frequency for which microstructure noise is negligible or a microstructure-robust realized measure with

aM =
√
M at the highest available frequency. Note that we may observe negative values for At,M and Bt,M ,

however negative realizations are at most of probability order a
−1/2
M and thus are asymptotically absent.

As we do not trim away zero values from the infeasible statistics, we should not trim away negative values

from the feasible one. In fact, below we provide conditions ensuring that, whenever the infeasible statistic

is op(1) because there are no jumps in either asset, the contribution of the measurement approaches zero

at a faster rate. The statements in Theorems 3 and 4 rely on the following result.

Lemma 1: Given Assumptions A6-A8, E
[
(At,M −At)k

]
= a

−k/2
M and E

[
(Bt,M −Bt)k

]
= a

−k/2
M for all

p/4 < k ≤ 2(p − 1), where p is defined in (11). In addition, aM = M for kM = 1 in the absence of

pre-averaging and aM = M1/2 for kM = θM1/2 + o(M1/2) in the case of pre-averaging.

The above result extends the moment conditions on the measurement error in Corradi, Distaso and

Fernandes’s (2012) Lemma 1 to the case of pre-averaged jump robust estimators. Note that the rate of

decay of the measurement error moments depends not only on the moments of the drift, variance and

jump sizes in Assumptions A6 and A7, but also on the order the power variation. It turns out that, other

things being equal, k increases with p. This is somewhat intuitive. In the presence of a small number

of large jumps (i.e., finite activity jumps), the order of magnitude of E(κ2k
ij,t) does not decrease with k,

on the other hand, the higher is p the faster the contribution of jumps to the power variation estimator

approaches zero. In other words, regardless of pre-averaging, the moments of the difference between the

power-variation estimator with and without jumps approaches zero at rate getting faster as p increases.

This is shown in detail in the proof of Lemma 1 in the Appendix.

2 See, for instance, Aı̈t-Sahalia and Jacod (2009b) for a formal definition.
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Theorem 3: Let Assumptions A1 to A8 hold. If T11/T → c11 > 0, as M,T →∞, T (4+k)/k(lnT )a−1
M h→ 0,

a−1
M (h−4 + b−4)→ 0, then ST − ST,M = op(1) under H0 and Pr

(
T−1hST,M > ε

)
→ 1 under HA.

Theorem 4: Let Assumptions A1 to A8 hold as well as a−1
M (h−4 + b−4) → 0. If K ′(0) = 0, let also

T
k+4
k (lnT )a−1

M hb−1 → 0, otherwise let max
{
T

k+4
k (lnT )a−1

M hb−1, T (lnT )a−1
M h−1b−1

}
→ 0 if K ′(0) 6= 0.

(i) If At = 0 almost surely for all t, then ST,M − ST = op(h
−1b).

(ii) If Bt = 0 almost surely for all t, then ST,M − ST = op(h
−1b).

(iii) If At = Bt = 0 almost surely for all t, then ST,M − ST = op(b).

From Theorem 3 and 4 above we see that, if the number of intraday observations grows fast enough

relative to the number of days, then the feasible and infeasible statistics have the same limiting distribution

in the presence of jumps in both assets and the contribution of measurement error approaches zero at a

faster rate than the unfeasible statistic does in the absence of jumps in at least one asset. The latter point

is crucial to ensure the asymptotic validity of the moon bootstrap.

5 Moon bootstrap critical values

FromW t,M = (At,M , At−1,M , Bt,M ), we resample bT blocks of length lT , with bT lT = T and T /T → 0. The

moon bootstrap samples are then given by (W ∗
1, . . . ,W

∗
T ). For bandwidths h∗/T = h/T and b∗/T = b/T ,

the feasible bootstrap statistic reads

S∗T ,M = h∗

T∑
t=1

[
F̂ ∗A|X,M (A∗t,M |X

∗(q)
t,M )− F̂ ∗A|A1,M

(A∗t,M |X
∗(qA)
t,M )

]2
π(X

∗(q)
t,M )− h∗−1µ̂∗1,T ,M − h∗b∗−1µ̂∗2,T ,M ,

where the starred quantities are the bootstrap counterparts that employ (A∗t,M , A
∗
t−1,M , B

∗
t,M )Tt=1 instead

of (At,M , At−1,M , Bt,M )Tt=1. We compute S∗2T ,M,j for every artificial sample j = 1, . . . , B, and then denote

by c∗1−α(T, T ,M,B) the (1−α)−percentile of the empirical distribution across the bootstrap samples. The

next result establishes the validity of the moon bootstrap critical values.

Theorem 5: Let Assumptions A1 to A8 hold and, as T, T ,M → ∞, let T (4+k)/k(lnT )a−1
M b1/2 → 0 and

(lnT )a
−1/2
M h−2 → 0, lT →∞, lT /

√
T → 0 and T /T → 0. It then follows that

(i) In the event that T11/T
p→ c11 > 0, then limT,T ,M,B→∞ Pr

(
S2
T,M > c∗1−α(T, T ,M,B)

)
= α under the

null H0, whereas limT,T ,M,B→∞ Pr
(
S2
T,M > c∗1−α(T, T ,M,B)

)
= 1 under the alternative HA.

(ii) If T11/T
p→ 0, then Pr

(
S2
T,M > c∗1−α(T, T ,M,B)

)
shrinks to zero as T, T ,M,B →∞.

12



From Theorem 5, we see that the rule of rejecting the null whenever S2
T,M is larger than c∗1−α(T, T ,M,B)

provides a consistent test of asymptotic size not larger than α. In particular, if both assets exhibit price

jumps (i.e., T11/T
p→ c11 > 0), then we have a test of asymptotic size α. On the other hand, if at least

one asset has no jumps, then the probability of rejecting the null is zero. This happens because, under the

null, the actual and bootstrap statistics have the same limiting distribution if T11/T
p→ c11 > 0, but the

latter shrinks to zero at a slower rate if T11/T
p→ 0. In addition, under the alternative, the actual statistic

diverges at a faster rate, thus ensuring unit asymptotic power. Note that Theorems 3 and 4 together

ensure that the contribution of the measurement error is asymptotically negligible regardless of whether

c11 is greater than or equal to zero. Finally, the reason why the bootstrap test rests on the square of the

feasible statistic S2
T,M is that we cannot rule out the possibility that ST,M is negative and c∗1−α(T, T ,M,B)

is positive in the absence of jumps in at least one asset, even if ST,M approaches zero at a faster rate than

its moon bootstrap counterpart.

6 Monte Carlo study

TBW

7 Empirical illustration

TBW
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Appendix

Let hereafter

µ̂1,T =
1

6
C1(K)

1

T

T∑
t=1

π(Xt)

f̂X(Xt)
(I11,t + I10,t + I01,t + I00,t)

=
1

6
C1(K) (µ̂

(1)
1,T + µ̂

(2)
1,T + µ̂

(3)
1,T + µ̂

(4)
1,T )

µ̂2,T =
1

6
C1(K)

1

T

T∑
t=1

1
T

∑T
s=1 K̃b(As−1 −At−1)π(Xs)

f̂A1
(At−1) 1

T

∑T
s=1 K̃b(As−1 −At−1)

(I11,t + I10,t + I01,t + I00,t)

=
1

6
C1(K) (µ̂

(1)
2,T + µ̂

(2)
2,T + µ̂

(3)
3,T + µ̂

(4)
4,T ).

Let also

ST = h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt)I11,t − h−1µ̂(1)

1,T − h b
−1µ̂

(1)
2,T

+ h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt)I10,t − h−1µ̂(2)

1,T − h b
−1µ̂

(2)
2,T

+ h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt)I01,t − h−1µ̂(3)

1,T − h b
−1µ̂

(3)
2,T

+ h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt)I00,t − h−1µ̂(4)

1,T − h b
−1µ̂

(4)
2,T

= S1,T − h−1µ̂(1)
1,T − h b

−1µ̂
(1)
2,T + S2,T − h−1µ̂(2)

1,T − h b
−1µ̂

(2)
2,T + S3,T − h−1µ̂(3)

1,T − h b
−1µ̂

(3)
2,T

+ S4,T − h−1µ̂(4)
1,T − h b

−1µ̂
(4)
2,T

For notational simplicity and without loss of generality, we assume from now on that K(0) = C = 1 in

Assumption A1. The proof of Theorem 1 follows directly from Lemmata 1A to 5A, which we first state

and then prove in the following.

Lemma 1A: Let Assumptions A1-A5 hold and T11/T
p→ c11, with 0 < c11 ≤ 1.

(i) S1,T − h−1µ(1)
1 − h b−1µ

(1)
2 + 2µ

(1)
3

d→ N(0, σ2) under H0, where σ2 is defined as in (10) and

µ
(1)
1 =

1

6
C1(K)

∫
x>0

π(x) dx (15)

µ
(1)
2 =

1

6
c
(A)
11 C1(K)

∫
x1>0

E
[
π(x)

∣∣x1] dx1 (16)

µ
(1)
3 =

1

6
c
(A)
11 K(0)

∫
x1>0

E
[
π(x)

∣∣x1] dx1, (17)

with c
(A)
11 = plimT11/T1A and T1A =

∑T
t=1 1{At−1 > 0}.

(ii) Pr
(
T−111 h

−1 |S1,T | > ε
)
→ 1 under HA.

14



Lemma 2A: Under the conditions in Lemma 1A, h−1(µ̂
(1)
1,T − µ

(1)
1 ) = op(1) and h b−1(µ̂

(1)
2,T − µ

(1)
2 ) = op(1).

Lemma 3A: Under Assumptions A1-A5, S2,T − µ(2)
1 − hb−1µ

(2)
2 = Op(hb

−1/2 + h1/4), (h−1µ̂
(2)
1,T − µ

(2)
1 ) = op(1)

and hb−1(µ̂
(2)
2,T − c

(A)
10 µ

(2)
1 ) = op(1), where

µ
(2)
1 =

1

6
C1(K)

∫
x1>0

π(x1, 0) dx1

and c
(A)
10 = plimT→∞ T10/T1A.

Lemma 4A: Let Assumptions A1-A5 hold.

(i) Under the null H0, S3,T − µ(3)
1 = Op(h

−1b+ h1/4), where

µ
(3)
1 =

1

6
C1(K)

∫
x2>0

π(0, x2) dx2. (18)

In addition, h−1µ̂(3)
1,T = Op(h

−1b) and hb−1µ̂
(3)
2,T = Op(h).

(ii) (T01h)−1S3,T = Op(1) under HA.

Lemma 5A: Under Assumptions A1-A5, Ŝ4,T − h−1µ̂(4)
1,T − h b−1µ̂

(4)
2,T = op(1).

Proof of Lemma 1A:

(i) We start with the following decomposition:

S1,T = h

T∑
t=1

[
F̂A|X(At|Xt)− FA|X(At|Xt)

]2
π(Xt)I11,t

+ h
T∑
t=1

[
F̂A|A1

(At|At−1)− FA|A1
(At|At−1)

]2
π(Xt)I11,t

− 2h

T∑
t=1

[
F̂A|X(At|Xt)− FA|X(At|Xt)

] [
F̂A|A1

(At|At−1)− FA|A1
(At|At−1)

]
π(Xt)I11,t

= S11,T + S12,T + S13,T .

The proof then follows by showing that (a) S11,T − h−1µ(1)
1

d→ N(0, σ2), (b) S12,T = h b−1µ
(1)
2 + op(1), and

(c) S13,T = −2µ
(1)
3 + op(1).
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(a) Recalling the definition of the local linear estimatorF̂A|X(At|Xt),

S11,T = h

T∑
t=1

[
F̂A|X(At|Xt)− FA|X(At|Xt)

]2
π(Xt)I11,t

= h

T∑
t=1

[
H−1x (1, 1) +H−1x (2, 1)

]2 [ 1

T11

T∑
s=1

Kh(Xs −Xt)
(
1{As ≤ At} − FA|X(At|Xs

)]2
π(Xt)I11,t

+ h

T∑
t=1

[
H−1x (1, 1) +H−1x (2, 1)

]2{ 1

T11

T∑
s=1

Kh(Xs −Xt)
[
FA|X(At|Xs)− FA|X(At|Xt)

]}2

π(Xt)I11,t

+ h

T∑
t=1

[
H−1x (1, 1) +H−1x (2, 1)

]2{ 1

T11

T∑
s=1

Kh(Xs −Xt)
[
1{As ≤ At} − FA|X(At|Xs)

]
× 1

T11

T∑
s=1

Kh(Xs −Xt)
[
FA|X(At|Xs)− FA|X(At|Xs)

]}
π(Xt)I11,t

= S
(1)
11,T + S

(2)
11,T + S

(3)
11,T ,

where H−1x (i, j) is the (i, j)-element of the inverse of the 2× 2 matrix Hx, with elements

Hx(1, 1) =
1

T11 h2

T∑
t=1

K

(
Xt − x

h

)
,

Hx(1, 2) =
1

T11 h2

T∑
t=1

(
Bt − x2

h

)
K

(
Xt − x

h

)

Hx(2, 1) =
1

T11h2

T∑
t=1

(
At−1 − x1

h

)
K

(
Xt − x

h

)

Hx(2, 2) =
1

T11h2

T∑
t=1

(
At−1 − x1

h

)(
Bt − x2

h

)
K

(
Xt − x

h

)
.

Note that the reason why we rescale by T11, rather than by T , is that the number of observations in a

neighborhood interval x ± h, with (x1 > 0, x2 > 0) is almost surely of order T11h2. Under Assumptions A1

and A2, given that 1
T11

∑T
s=1Kh (Xs −Xt) = Op(1) and that H−1x (1, 1) + H−1x (2, 1) = Op(1), it follows that

S
(2)
11,T = Op(T11h

5) = op(1) as Th5 → 0 by Assumption A5(i). By the same argument as in the proof of

Theorem 2 in Aı̈t-Sahalia, Fan and Peng (2009b), S(3)
11,T = Op(T11h

5) = op(1) as well. By a similar argument

as in the proof of Lemma 1 in Corradi et al. (2012), this yields

S11,T = h

T∑
t=1

π(Xt) I11,t
T 2
11fX(Xt)

{
T∑
s=1

Kh(Xs −Xt)
[
1{As ≤ At} − FA|X(At|Xs)

]}2

+Op

(
T
−1/2
11

√
lnT11h

−1
)

+ op(1)

=
∑
t<s<k

[
φ(t, s, k) + φ(t, k, s) + φ(s, k, t) + φ(s, t, k) + φ(k, s, t) + φ(k, t, s)

]
+
∑
t<s

[
φ(t, t, s) + φ(t, s, t) + φ(s, t, t) + φ(s, s, t) + φ(s, t, s) + φ(t, s, s)

]
+
∑
t

φ(t, t, t) + op(1), (19)

where

φ(t, s, k) = h
π(Xt) I11,t
T 2
11fX(Xt)

Kh(Xs −Xt)
[
1{As ≤ At}−FA|X(At|Xs)

]
Kh(Xk −Xt)

[
1{Ak ≤ At}−FA|X(At|Xk)

]
.
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It is immediate to see that
∑
t φ(t, t, t) = op(1). By a similar argument as in Aı̈t-Sahalia et al.’s (2009b)

proof of Theorem 1, as Assumption A5(iii) implies that T11h3 → ∞, the first term on the last equality in

(19) reads (T − 2)
∑
t<s φ† (t, s) + op(1), where φ†(t, s) =

∫
φ†(t, s, k) dFA,X(ak,xk) and

φ†(t, s, k) = φ(t, s, k) + φ(t, k, s) + φ(s, k, t) + φ(s, t, k) + φ(k, s, t) + φ(k, t, s).

In addition, the second term on the right-hand side of the last equality in (19) equals T11(T11−1)
2 φ(0) + op(1),

where φ(0) = E[φ(t)] and φ(t) =
∫
φ(t, s) dFA,X(as,xs). Note that, for as > 0 and xs > 0, letting cr+pA=0

(xs)

denote the [r + Pr(A = 0|xs)]−th percentile of the distribution of A|X = xs yields

Pr
(
FA|X(as|xs) ≤ r

∣∣xs) = Pr

(∫ as

0

fA|X(u|xs) ≤ r
∣∣xs) = Pr

[
0 < A < cr+pA=0

(xs)
∣∣xs]

= r + Pr(A = 0|xs)−Pr(A = 0|xs) = r.

This means that FA|X(as|xs) is a uniform random variable over the unit interval. The expressions for µ1

and σ2 follow by the same argument as in the proof of Theorem 2 in Aı̈t-Sahalia et al. (2009b).

(b) By Assumptions A5(ii) and A5(iv), Th b4 → 0 and Th−2b5/2 →∞, and hence

S12,T = h

T∑
t=1

[
F̂A|A1

(At|At−1)− FA|A1
(At|At−1)

]2
π(Xt)I11,t

= (T11 − 2)
∑
t<s

φ̃†(t, s) +
T11(T1A − 1)

2
φ̃(0) + op(1),

where T11 ≤ T1A =
∑T
t=1 1{At−1 > 0} ≤ T , and φ̃†(t, s) and φ̃(0) are analogous to φ†(t, s) and φ(0), but using

φ̃(t, s, k) = h
π(Xt) I11,t

T 2
1AfA1(At−1)

Kb(As−1 −At−1)
[
1{As ≤ At} − FA|A1

(At|As−1)
]

× Kb(Ak−1 −At−1)
[
1{Ak ≤ At} − FA|X(At|Ak−1)

]
instead of φ(k, t, s). As before, (T11 − 2)

∑
t<s φ̃†(t, s) = Op

(
h1/2

)
. Also,

T 2
11

c
(A)
11

φ̃(0) = 2h

∫
ai>0

xi>0

∫
aj ,x1j

π(xi)

f2A1
(x1i)

{
Kb(x1j − x1i)

[
1{aj ≤ ai} − FA|A1

(ai|x1j)
]}2

dFA,A1
(aj , x1j) dFA,X(ai,xi)

= 2h

∫
ai>0

xi>0

∫
aj ,x1j

π(xi)

f2A1
(x1i)

K2
b (x1j − x1i) 1{aj ≤ ai} dFA,A1

(aj , x1j) dFA,X(ai,xi)

+ 2h

∫
ai>0

xi>0

∫
aj ,x1j

π(xi)

f2A1
(x1i)

K2
b (x1j − x1i)F 2

A|A1
(ai|x1j) dFA,A1

(aj , x1j) dFA,X(ai,xi)

− 4h

∫
ai>0

xi>0

∫
aj ,x1j

π(xi)

f2A1
(x1i)

K2
b (x1j − x1i) 1{aj ≤ ai}FA|A1

(ai|x1j) dFA,A1
(aj , x1j) dFA,X(ai,xi). (20)
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In view that FA|A1
(ai|x1i) is uniform over the unit interval, the first term on the right-hand side of the

second equality in (20) is equal to

h

b
C1(K)

∫
xi>0

π(xi) fB|A1
(x2i|x1i) dxi =

h

b
C1(K)

∫
x1i>0

E
[
π(xi

∣∣x1i, x2i > 0)
]

dx1i.

Treating analogously the second and third terms of the second equality on the right-hand side of (20) and

then following the same reasoning as in Aı̈t-Sahalia et al.’s (2009b) proof of Theorem 2 yield the result.

(c) Define φ†(t, s) and φ(0) analogously to φ†(t, s) and φ(0), but using

φ(t, s, k) = h
π(Xt)I11,t

T11T1Af(At−1)
Kb(As−1 −At−1)

[
1{As ≤ At} − FA|A1

(At|As−1)
]

×Kh(Xk −Xt)
[
1{Ak ≤ At} − FA|X(At|Xk)

]
instead of φ(k, t, s). It then holds that

S13,T = (T11 − 2)
∑
t<s

φ†(t, s) +
T11(T1A − 1)

2
φ(0) + op(h),

with (T11 − 2)
∑
t<s φ†(t, s) = op(h

1/2). Given the bandwidth rate conditions, by a similar argument as in

the proof (a) and (b),

T 2
11

c
(A)
11

φ(0) = 2

∫
ai>0

xi>0

∫
aj ,x1j

hπ(xi)

fA1(x1i) f(xi)
Kb(x1j − x1i)Kh(xj − xi)1{aj ≤ ai}dFA,A1(aj , x1j) dFA,X(ai,xi)

+ 2

∫
ai>0

xi>0

∫
aj ,x1j

hπ(xi)

f2A1
(x1i) fX(xi)

Kb(x1j − x1i)Kh(xj − xi)F 2
A|A1

(ai|x1j) dFA,A1(aj , x1j) dFA,X(ai,xi)

− 4

∫
ai>0

xi>0

∫
aj ,x1j

hπ(xi)

fA1(x1i) fX(xi)
Kb(x1j − x1i)Kh(xj − xi) 1{aj ≤ ai}FA|A1

(ai|x1j)

× dFA,A1
(aj , x1j) dFA,X(ai,xi). (21)

As before, we note that it is possible to rewrite the first term on the right-hand side of (21) as

K(0)

∫
xi>0

π(xi)fB|Ai
(x2i|x1i) dxi = K(0)

∫
x1i>0

E
[
π(xi)

∣∣x1i, x2i > 0
]

dx1i.

The same treatment applies to the second and third terms on the right-hand side of (21), yielding the

desired result by the same argument as in Aı̈t-Sahalia et al.’s (2009b) proof of Theorem 2. �

Proof of Lemma 2A: Note that

µ̂
(1)
1,T =

1

6
C1(K)

1

T

T∑
t=1

π(Xt)

f̂X(Xt)
I11,t

=
1

6
C1(K)

T11
T

1

T11

T∑
t=1

π(Xt)
T11

T
1
T11

∑T
s=1Kb(As−1 −At−1)Kb(Bs −Bt)

I11,t.
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and

µ̂2,T =
1

6
C1(K)

T11
T

1

T11

T∑
t=1

∑T
s=1Kb(As−1 −At−1)π(Xs)

T1A

T
1
T1A

∑T
s=1Kb(As−1 −At−1)

∑T
s=1Kb(As−1 −At−1)

I11,t.

It is easy to see that h−1(µ̂
(1)
1,T − µ

(1)
1 ) = op(1), and hb−1(µ̂

(1)
2,T − µ

(1)
2 ) = op(1) by the same argument used in

Corradi et al.’s (2012) proof of Theorem 1. �

Proof of Lemma 3A: Note that h
∑T
t=1

[
FA|A1

(At|At−1)− FA|X(At|At−1, Bt = 0)
]

= 0. Consider now their

sample counterparts F̂A|A1
(At|At−1) and F̂A|X(At|At−1, Bt = 0) based on kernel estimators for the sake of

simplicity (we show later that the same result applies for local linear estimator). As only the positive

realizations of As−1 have a contribution,

F̂A|A1
(At|At−1) =

1
T1A

∑T
s=1 1{As ≤ At}Kb(At−1 −As−1)

1
T1A

∑T
s=1Kb(At−1 −As−1)

,

with At−1 > 0. By the same argument as in the proof of Lemma 1A,

h

T∑
t=1

π(Xt)
[
F̂A|A1

(At|At−1)− FA|A1
(At|At−1)

]2
I10,t = hb−1 c

(A)
10 µ

(2)
2 +Op(hb

−1/2).

Similarly,

F̂A|X(At|At−1, Bt = 0) =
1
T10

∑T
s=1 1{As ≤ At}Kh(At−1 −As−1)Kh(Bs)

1
T10

∑T
s=1Kh(At−1 −As−1)Kh(Bs)

with At−1 > 0. By the same argument as in the proof of Lemma 1A,

h

T∑
t=1

π(Xt)
[
F̂A|X(At|At−1, Bt = 0)− FA|X(At|At−1, Bt = 0)

]2
I10,t = Op(h

1/2) + µ
(2)
1 .

Finally, by a similar argument as in the proof of step (c) in Lemma A1, it follows that

h

T∑
t=1

π(Xt)
[
F̂A|A1

(At|At−1)− FA|A1
(At|At−1)

][
F̂A|X(At|At−1, Bt = 0)− FA|X(At|At−1, Bt = 0)

]
I10,t = Op(h

1/4).

As for the local linear estimator β̂0,T (At−1, Bt = 0), note that it is the argument that minimizes

1

T10

T∑
s=0

[
1{As ≤ At} − β0 − β11(As−1 −At−1)− β12Bs

]2
Kh(As−1 −At−1)Kh(Bs).

Finally,

h−1µ̂
(2)
1,T =

1

6
C1(K)

1

Th

T∑
t=1

π(Xt)

f̂X(Xt)
I10,t

=
1

6
C1(K)

T10
T

1

T10

T∑
t=1

π(At−1, 0) 1{At−1 > 0, Bt = 0}
T10

T
1

T10b

∑T
s=1K

(
As−1−At−1

b

)
K
(
Bs

h

) , (22)
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and so h−1µ̂
(2)
1,T − µ

(2)
1 = op(hb

−1/2). As for µ̂(2)
2,T , note that

f̂A1
(At−1) =

T1A
T

1

T1A

T∑
s=1

Kb(As−1 −At−1),

and hence

µ̂
(2)
2,T =

1

6
C1(K)

T∑
t=1

T10

T

∑T
s=1Kb(As−1 −At−1)π(Xs)

T1A

T f̂A1
(At−1)

∑T
s=1Kb(As−1 −At−1)

.

To complete the proof, it now suffices to follow the same argument as in the proof of Theorem 1 in Corradi

et al. (2012). �

Proof of Lemma 4A: The proof of (ii) is trivial and hence we present only the proof of (i) in what

follows. Under H0, further conditioning on Bt does not make any difference for At once we control for its

past realization and hence FA|A1
(At|At−1 = 0) = FA|X(At|At−1 = 0, Bt). The kernel estimator for the former

is given by

F̂A|A1
(At|At−1 = 0) =

1
T0A

∑T
s=1 1{As ≤ At}Kb(As−1)

1
T0A

∑T
s=1Kb(As−1)

, (23)

where T0A =
∑T
t=1 1{At−1 = 0}, and hence

h

T∑
t=1

π(Xt)
[
F̂A|A1

(At|At−1 = 0)− FA|A1
(At|At−1 = 0)

]2
I01,t = Op(h) + h2b−1µ̂

(3)
2,T .

As for the latter estimator,

F̂A|X(At|At−1 = 0, Bt) =
1
T01

∑T
s=1 1{As ≤ At}Kh(As−1)Kh(Bs −Bt)
1
T01

∑T
s=1Kh(As−1)Kh(Bs −Bt)

,

and so

h

T∑
t=1

π(Xt)
[
F̂A|X(At|At−1 = 0, Bt)− FA|X(At|At−1 = 0, Bt)

]2
I01,t = µ

(3)
1 +Op(h

1/2), (24)

whereas the cross-term

h

T∑
t=1

π(Xt)
[
F̂A|A1

(At|At−1 = 0)− FA|A1
(At|At−1 = 0)

][
F̂A|X(At|At−1 = 0, Bt)− FA|A1

(At|At−1 = 0, Bt)
]
I01,t

is equal to Op(h
1/4) + h1/4µ

(3)
3 . Now, It readily follows from (23) that µ̂(3)

2,T = Op(b) and that

h−1µ̂
(2)
1,T =

1

6
C1(K)

1

Th

T∑
t=1

π(Xt)

f̂X(Xt)
I10,t = Op(h

−1b),

which is of order op(1) given Assumption A5(v). �
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Proof of Lemma 5A: It follows immediately by combining Lemmata 3A and 4A. �

Proof of Theorem 2: The proofs are very similar to that in Lemma 3A and hence we provide only a sketch

in the sequel.

(i) If At = 0 for all t, then 1{As ≤ At} = 1 almost surely and FA|A1
(0|At−1 = 0) = FA|X(0|At−1 = 0, Bt) = 1

as well. It then follows that h
∑T
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt) = 0. As for µ̂1,T and µ̂2,T , note

that

1

Th

T∑
t=1

π(Xt)

f̂X(Xt)
=

b

Th

T∑
t=1

π(0, Bt)
1
T

∑T
s=1Kh(Bs −Bt)

= h−1b{1 +Op(1)},

whereas

h b−1 C−11 (K) µ̂2,T = h
1

T

T∑
s=1

π(Xs) = h {1 +Op(1)}.

It then suffices to impose the conditions in Assumption A5(v) to render the result.

(ii) If Bt = 0 for all t, then FA|A1
(At|At−1) = FA|X(At|At−1, Bt = 0). By the same argument as in the proof

of Lemma 3A, it follows that

h

T∑
t=1

[
F̂A|X(At|At−1, Bt = 0)− F̂A|A1

(At|At−1)
]2
π(Xt) = Op(h

1/2 + µ
(2)
1 + hb−1µ̄

(2)
2 + h1/4),

where µ̄
(2)
2 is defined as µ(2)

2 in the statement of Lemma 3A, but with T in lieu of T10. It also holds that

h−1µ̂
(2)
1,T − µ

(2)
1 = op(h

−1b) and hb−1(µ̂
(2)
2,T − µ̄

(2)
2 ) = op(h

1/4), which completes the proof.

(iii) As before, it is immediate to see that

h

T∑
t=1

[
F̂A|X(At|Xt)− F̂A|A1

(At|At−1)
]2
π(Xt) = 0

and that h−1µ̂1,T = Op(b) and hb−1µ̂2,T = Op(h). Assumption A1(v) the ensure that the statement holds. �

Proof of Lemma 1: For notational simplicity, we suppress any superscript or subscript index referring to

the specific asset. Recall that we observe only the noisy version Zt = pt + εt of the efficient asset price. By

decomposing the latter into continuous and discontinuous components, viz. pt = p
(c)
t + p

(d)
t , the pre-average
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realized variance in (13) becomes

PVM,t(2, 0) =
1√
M

M−2kM+1∑
j=1


[
kM∑
`=1

g(`/M)(p
(c)
t+(j+`)/M − p

(c)
t+(j+`+1)/M + εt+(j+`)/M − εt+(j+`+1)/M )

]2

+

kM∑
`=1

g(`/M)(p
(d)
t+(j+`)/M − p

(d)
t+(j+`+1)/M )2 + cross-terms


= VM,t(p

(c)
t + εt) + VM,t(p

(d)
t ) + cross-terms.

Recall that aM =
√
M as the pre-average realized variance is robust to microstructure noise and also that∫ 1

0
g2(s) ds = 1/12 for g(x) = min{x, 1− x}. The proof follows in four steps.

(a) We begin showing that

E

∣∣∣∣∣∣ 1

12 θ
VM,t(p

(d)
t )−

∑
t−1≤s≤t

|∆ps|2
∣∣∣∣∣∣
k

= a
−k/2
M .

Given Assumption A8, it follows from Aı̈t-Sahalia and Jacod’s (2011) Lemma 1 that p(d)t is a process of

finite variation for all t and hence, with probability one,
∑
t−1≤s≤t |∆ps| <∞. This means that, on any unit

interval, we have with probability one at most Mδ jumps of size M−δ, with δ ∈ [0, 1/2). For δ = 1/4 and

ε = O(M1/4), independence between jumps within each day ensures that

E

 ∑
t−1≤s≤t

|∆ps|2 1{|∆ps| ≤ ε}

k

= O(M−δk) = O(a
−k/2
M ).

Now, let ΩM,t(ε) denote the set of ω such that, at day t, jumps of size larger than ε are far apart by at least

M−1/2 price changes. It turns out that, by steps 1 to 4 in the proof of Jacod, Podolskij and Vetter’s (2010)

Theorem 1, 1
12 θ VM,t(p

(d)
t )−

∑
t−1≤s≤t |∆ps|

2
1{|∆ps| > ε} = o(M−1/4) for every ω ∈ ΩM,t(ε). This means that

E


∣∣∣∣∣∣ 1

12 θ
VM,t(p

(d)
t )−

∑
t−1≤s≤t

|∆ps|2 1{|∆ps| > ε}

∣∣∣∣∣∣
k
 = o(M−k/4) = o(a

−k/2
M ).

Given that ε is of order O(M1/4), Pr
(

ΩM,t(ε)
)
→ 1 as M →∞, completing the first step of the proof.

(b) We next show that

E

[∣∣∣∣VM,t(p
(c)
t + εt)−

1

M

1

24 θ2
RVt − IVt

∣∣∣∣k
]

= O(a
−k/2
M ),

with RVt =
∑M−1
j=0

(
p
(c)
t+(j+`)/M − p

(c)
t+(j+`+1)/M + εt+(j+`)/M − εt+(j+`+1)/M

)2
corresponding to the standard re-

alized variance measure (i.e., without any pre-averaging). Remark 1 in Jacod et al. (2009) clarifies that
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VM,t(p
(c)
t + εt) − 1

M
1

24 θ2 RVt is equivalent, up to some border terms, to the realized kernel estimator of

Barndorff-Nielsen, Hansen, Lunde and Shephard (2008), with a kernel given by 1
12

∫ 1

s
g(u)g(u − s) du. In

addition, the border terms have mean zero and are of the same order as the difference between the realized

kernel estimator and the integrated volatility. The statement then readily ensues from Lemma 1 in Corradi,

Distaso and Swanson (2011).

(c) We now show that, as long as p ≥ (k + 2)/2,

E
[∣∣∣PVM,t(2/p, . . . , 2/p)− PV (c)

M,t(2/p, . . . , 2/p)
∣∣∣k] = a

−k/2
M ,

where

PV
(c)
M,t(2/p, . . . , 2/p) =

1√
M

M−pkM+1∑
j=1

p−1∏
i=0

∣∣∣∣∣
kM∑
`=1

g(t+ `/M)
(

∆Zt+(j+ikM+`)/M −∆p
(d)
t+(j+ikM+`)/M

)∣∣∣∣∣
2/p

.

Let V (z)
t,(j+ikM )/M =

∣∣∣∑kM
`=1 g(t+ `/M)∆Zt+(j+ikM+`)/M

∣∣∣2/p and define V (c)
t,(j+ikM )/M analogously, but using only

the continuous part of Zt, that is to say,

V
(c)
t,(j+ikM )/M =

∣∣∣∣∣
kM∑
`=1

g(`/M)
(

∆Zt+(j+ikM+`)/M −∆p
(d)
t+(j+ikM+`)/M

)∣∣∣∣∣
2/p

.

By the same argument used in Section 3 of Barndorff-Nielsen et al. (2006),∣∣∣∣∣∣ 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

(
V

(z)
t,(j+ikM )/M − V

(c)
t,(j+ikM )/M

)∣∣∣∣∣∣ ≤ 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

V
(z)
t,(j+ikM )/M

+

(
p
1

)
√
M

M−pkM+1∑
j=1

p−2∏
i=0

V
(z)
t,(j+ikM )/MV

(c)
t,(j+(p−1)kM )/M

+

(
p
2

)
√
M

M−pkM+1∑
j=1

p−3∏
i=0

V
(z)
t,(j+ikM )/M

p−1∏
i=p−2

V
(c)
t,(j+ikM )/M + . . .

+

(
p
p−1
)

√
M

M−pkM+1∑
j=1

V
(z)
t,j/M

p−1∏
i=1

V
(c)
t,(j+ikM )/M . (25)

Let now V̄
(z)
t,(j+ikM )/M = V

(z)
t,(j+ikM )/M−µV (z) and V̄ (c)

t,(j+ikM )/M = V
(c)
t,(j+ikM )/M−µV (c) , with µV (z) = E

[
V

(z)
t,(j+ikM )/M

]
and µV (c) = E

[
V

(c)
t,(j+ikM )/M

]
. We first deal with the case of finite activity jumps for which there is at most

a finite number of jumps over a day:

E

 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

V̄
(z)
t,(j+ikM )/M −

√
Mµp

V (z)

k ≤ E

 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

k +
(√

M µp
V (z)

)k
. (26)

Given that the probability of having a jump in each interval of length M−1 is of order M−1 and that jumps

size are bounded,
√
Mµp

V (z) = O(M (1−p)/2) = O(a1−pM ), and thus Mk/2µpk
V (z) = O(a

−k/2
M ) for all k and p ≥ 3/2.
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We now turn our attention to the first term on the right-hand side of (26), but setting k = 4 for the sake

of simplicity. It follows from E
[∏p−1

i=0 V̄
(z)
t,(j1+ikM )/M

∏p−1
i=0 V̄

(z)
t,(j2+ikM )/M

]
= 0 for |j1 − j2| > M that

E

 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

4

=
1

M2

∑∑∑∑
1≤j,j1,j2,j3≤M−pkM+1

E

[
p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

p−1∏
i=0

V̄
(z)
t,(j+j1+ikM )/M

p−1∏
i=0

V̄
(z)
t,(j+j2+ikM )/M

p−1∏
i=0

V̄
(z)
t,(j+j3+ikM )/M

]

≤
√
M

E

(p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

)2(p−1∏
i=0

V̄
(z)
t,(j+j1+ikM )/M

)2


1
2
E

(p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

)2(p−1∏
i=0

V̄
(z)
t,(j+j1+ikM )/M

)2


1
2

≤
√
M

E(p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

)4
 1

4
E(p−1∏

i=0

V̄
(z)
t,(j+j1+ikM )/M

)4
 1

4
E(p−1∏

i=0

V̄
(z)
t,(j+j2+ikM )/M

)4
 1

4
E(p−1∏

i=0

V̄
(z)
t,(j+j3+ikM )/M

)4
1/4

= O(M (1−p)/2) = O(a1−pM ),

which is of order O(a
−k/2
M ) provided that p ≥ (k+ 2)/2. It is easy to see that this holds for a generic k. Note

that, for all k, the order of magnitude depends on p, the number of terms in the product, rather than on

k. As for the last term on the right-hand side of (25),

E

 1√
M

M−pkM+1∑
j=1

V
(z)
t,j/M

p−1∏
i=1

V
(c)
t,(j+ikM )/M

k ≤ E

 1√
M

M−pkM+1∑
j=1

V̄
(z)
t,j/M

p−1∏
i=1

V̄
(c)
t,(j+ikM )/M

k +Mk/2 µkV (z) µ
k(p−1)
V (c)

+ E

 1√
M

M−pkM+1∑
j=1

µV (z)

p−1∏
i=1

V̄
(c)
t,(j+ikM )/M

k

+ E

 1√
M

M−pkM+1∑
j=1

V̄
(z)
t,j/Mµ

p−1
V (c)

k .
using the fact that µV (c) = O(M−1/4) by Lemma 1 in Podolskij and Vetter (2009) gives way then to

Mk/2 µkV (z) µ
k(p−1)
V (c) = O(M−k(1−p)/4) = O(a

k(1−p)/2
M ),

which is of order O(a
−k/2
M ) for p ≥ 2. Given Assumption A7,

E

 1√
M

M−pkM+1∑
j=1

V̄
(z)
t,j/M

p−1∏
i=1

V̄
(c)
t,(j+ikM )/M

k = O
(
M1/2M−1/2M−pk/4

)
= O(a

−pk/2
M ),

which is of order O(a
−k/2
M ) for p ≥ 2. We now move to the case of infinitely many small jumps. Assumption

A8 ensures that, over a day, there are at most M δ jumps of size M−δ, with 0 < δ < 1/2. The case of δ = 0

corresponds to the aforementioned case of a finite number of large jumps. As the probability of having p

consecutive jumps is M−(1−δ)p/2,

√
Mµp

V (z) = O
(
M1/2M−(1−δ)p/2M−2δ

)
= o(a1−pM ),
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and hence Mk/2µkp
V (z) = O(a

−k/2
M ) for every k as long as p ≥ 3/2−4δ

1−δ . In addition,

E

 1√
M

M−pkM+1∑
j=1

p−1∏
i=0

V̄
(z)
t,(j+ikM )/M

k = O
(
M1/2M−(1−δ)p/2M−2δk

)
= O(a

−k/2
M )

for p ≥ (1/2−4δ)k+1
1−δ , whereas Podolskij and Vetter’s (2009) Lemma 1 ensures that

√
MµV (z)µ

p−1
V (c) = O

(
M1/2M (δ−1)/2M−2δ/pM (1−p)/4

)
.

Altogether, this results in Mk/2µk
V (z)µ

(p−1)k
V (c) of order O(a

−k/2
M ) for all k provided that p ≥ 2(1 + δ). Finally,

E

 1√
M

M−pkM+1∑
j=1

V̄
(z)
t,j/M

p−1∏
i=1

V̄
(c)
t,(j+ikM )/M

k

= O
(
M1/2M (δ−1)/2M−2δk/pM (1−p)k/4

)
= O(a

(1−p)k/2
M ),

which is once more of order O(a
−k/2
M ) for any p ≥ 2.

(d) We show that

E
∣∣∣∣µ−p2/pPV

(c)
M,t(2/p, . . . , 2/p)−

1

M

1

24 θ2
RVt − IVt

∣∣∣∣k = O(a
−k/2
M ).

TO BE DONE. �

Proof of Theorem 3: We must show that Si,T,M − Si,T = op(1) for i = 1, . . . , 4 as well as that h−1(µ̂
(i)
1,T,M −

µ̂
(i)
1,T ) = op(1) and hb−1(µ̂

(i)
2,T,M−µ̂

(i)
2,T ) = op(1), where the additional subscript M denotes feasible counterparts

based on the realized measures At,M and Bt,M . Let NA,t,M = AM,t − At and NB,t,M = Bt,M − Bt, and then

define β̂T,M (a,x) analogously to β̂T (a,x), but using (At,M ,Xt,M ) instead of (At,Xt). We start with the

asymptotic properties of S1,T,M − S1,T by noting that

S1,T,M = h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T,M (At,M , At−1,M )

]2
π(Xt,M )

= h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T,M (At,M , At−1,M )

]2
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T,M (At,M , At−1,M )

]2 [
π(Xt,M )− π(Xt)

]
,
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which leads to

S1,T,M − S1,T = h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T (At,M ,Xt,M )

]2
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T (At,M ,Xt,M )− β̂T (At,Xt)

]2
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T (At,M ,Xt,M )

] [
β̂T (At,M ,Xt,M )− β̂T (At,Xt)

]
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T,M (At,M , At−1,M )− β̂T (At,M , At−1,M )

]2
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T (At,M , At−1,M )− β̂T (At, At−1)

]2
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T,M (At,M , At−1,M )− β̂T (At,M , At−1,M )

] [
β̂T (At,M , At−1,M )− β̂T (At, At−1)

]
π(Xt)

+ h

T∑
t=1

I11,t

[
β̂T,M (At,M ,Xt,M )− β̂T,M (At,M , At−1,M )

]2 [
π(Xt,M )− π(Xt)

]
= ∆1,T,M + ∆2,T,M + ∆3,T,M + ∆4,T,M + ∆5,T,M + ∆6,T,M + ∆7,T,M .

We next show that ∆
(j)
T,M = op(1) for every j = 1, . . . , 7. For simplicity, we first derive the result using the

standard kernel estimator of the conditional distribution function and then show that the same applies to

local linear estimators. Letting

f̃A(At−1,M ) =
1

T

T∑
s=1

Kb(As−1 −At−1,M )

then yields

∆4,T,M = h

T∑
t=1

[
1

T

T∑
s=1

(
1{As,M ≤ At,M}Kb(As−1,M −At−1,M )

f̃A(At−1,M )
− 1{As ≤ At,M}Kb(As−1 −At−1,M )

f̃A(At−1,M )

)]2
× I11,tπ(Xt){1 + op(1)}.

Given that f̃A(At−1,M ) > 0, we ignore the denominator in ∆4,T,M . The leading term in ∆4,T,M is given by

h

T∑
t=1

[
1

T

T∑
s=1

(1{As ≤ At,M} [Kb(As−1,M −At−1,M )−Kb(As−1 −At−1,M )])

]2
I11,tπ(Xt)

+ h

T∑
t=1

[
1

T

T∑
s=1

(1{As,M ≤ At,M} − 1{As ≤ At,M})Kb(As−1 −At−1,M )

]2
I11,tπ(Xt) + cross term

= ∆
(1)
4,T,M + ∆

(2)
4,T,M + cross term. (27)

Note that (At,M ,Xt,M ) stay in a compact set because of the weights, and hence it follows from the same
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argument as in the proof of Theorem 1 in Corradi et al. (2011) that

∆
(1)
4,T,M = h

T∑
t=1

I11,t

[
1

T

T∑
s=1

1{As ≤ At,M}K ′b(As−1 −At−1,M )NA,s−1,M

]2
π(Xt)

{
1 + b−2a−1M

}
= O

(
Tha−1M + lnThb−3a−1M

) {
1 + b−2a−1M

}
,

where a−1M b−2 captures the contribution of the second term in the Taylor expansion. In turn,

∆
(2)
4,T,M ≤ h

T∑
t=1

[
I11,t
T

T∑
s=1

1

{
At − sup

t
|NA,t,M | ≤ As ≤ At + sup

t
|NA,t,M |

}
Kb(As−1 −At−1,M )

]2
π(Xt).

Let ΩT,M =
{
ω : T 2/ka

−1/2
M supt |NA,t,M | > c

}
. Given Lemma 1,

ThPr(ΩT,M ) = ThPr

(
T 2/ka

−1/2
M sup

t
|NA,t,M | > c

)
≤ T 2hT−

2
k kc−ka

k/2
M E |Nt,M |k = o(1),

so that we may proceed conditioning on ΩcT,M . By the same argument as in the proof of Theorem 1 in

Corradi et al. (2011), letting dT,M = cT 2/ka
−1/2
M yields

∆
(2)
4,T,M ≤ h

T∑
t=1

[
1

T

T∑
s=1

1{At − dT,M ≤ As ≤ At + dT,M}Kb(As−1 −At−1,M )

]2
π(Xt)

= Op
(
Thd2T,M + lnThb−1dT,M

)
= Op

(
T (4+k)/kha−1M + T 2/k lnThb−1a

−1/2
M

)
for all ω ∈ ΩcT,M . Note that T (4+k)/k lnTha−1M is of larger order than both Ta−1M h and T 2/k lnThb−1a

−1/2
M ,

whereas hb−3a−1M is of larger order than b−2a−1M by Assumption A5(v). This means that

∆4,T,M = Op(T
(4+k)/kha−1M + lnThb−3a−1M ) = Op(T

(4+k)/kha−1M ),

where the last equality follows from Assumption A5(iii). It is also immediate to see that ∆1,T,M =

Op(T
(4+k)/kha−1M + lnTh−2a−1M ) and that h−2a−1M is of smaller order than hb−3a−1M given Assumption A5(v).

As for ∆2,T,M and ∆5,T,M , they are of smaller probability order than ∆1,T,M and ∆4,T,M , respectively.

The same applies to the cross terms in ∆3,T,M and ∆6,T,M . It also follows from Assumption A3 that

∆7,T,M = Op(h
−1a

−1/2
M ) under H0.

The local linear estimator based on realized measures rather than integrated variances is given by

β̂T,M (a, x1) = β̂T (a, x1) +
(
H′x1
Wx1
Hx1

)−1 (H′x1,M
Wx1,M

AaM −H′x1
Wx1
AA
)

+

[(
1

T
H′x1,M

WxM
HxM

)−1
−
(

1

T
H′xWxHx

)−1]
1

T
H′xWxAA

+

[(
1

T
H′xM

WxM
HxM

)−1
−
(

1

T
H′xWxHx

)−1]
1

T
(HxM

WxM
AaM −H′xWxAA) ,
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where the index M denotes reliance on realized measures, and 1
T

(
H′x1,M

Wx1,M
AaM −H′x1

Wx1
AA
)

is a column

vector given by
1
T

∑T
s=1

[
Kb(As−1,M − x1) 1{As,M ≤ a} −Kb(As−1 − x1) 1{As ≤ a}

]
1
T

∑T
s=1

[
Kb(As−1,M − x1) 1{As,M ≤ a} (As−1,M − x1)−Kb(As−1 − x1) 1{As ≤ a} (As−1 − x1)

]
...

 (28)

It is easy to see that we may treat the first row of (28) in the same manner as the Nadaraya-Watson

kernel. It also turns out that the same applies to the second row in (28). As for the bias term, by the same

argument used above, it is possible to show that

h−1
(
µ̂
(1)
1,T,M − µ̂

(1)
1,T

)
= Op

(
T−1/2h−1/2b−1/2 (h−1 + b−1) lnTh−1a

−1/2
M + h−1a

−1/2
M

)
= Op(h

−2a
−1/2
M ),

where the last equality follows from Assumptions A5(iii) and A5(vi). Analogously,

hb−1
(
µ̂
(1)
2,T,M − µ̂

(1)
2,T

)
= Op(hb

−2a
−1/2
M ). (29)

Assumption A5(vi) ensures that b−1a−1/2M → 0, implying that hb−3a−1M = o(hb−1).

Finally, under HA, ∆j,T,M (j=1,. . . ,6) are all of the same probability order as under H0. On the other

hand, ∆7,T,M = Op(Tha
−1/2
M ) and S1,T = Op(Th). This ensures the appropriate rate of divergence for S1,T,M .

The statement then follows by noting that for j ∈ {2, 3, 4}:

(a) Sj,T,M − Sj,T cannot be of larger probability order than S1,T,M − S1,T ,

(b) h−1
(
µ̂
(j)
1,T,M − µ̂

(j)
1,T

)
is at most of the same order of h−1

(
µ̂
(1)
1,T,M − µ̂

(1)
1,T

)
,

(c) hb−1
(
µ̂
(j)
2,T,M − µ̂

(j)
2,T

)
is at most of the same probability order of hb−1

(
µ̂
(1)
2,T,M − µ̂

(1)
2,T

)
. �

Proof of Theorem 4: We begin with case (iii) in which there are almost surely no jumps in both asset

prices, and then turn our attention to the cases in which there is at leat one asset with jumps.

(iii) We essentially have to show that b−1(ST,M − ST ) = op(1). Note that

1

T

T∑
t=1

Kh(AM,s−1 −AM,t−1)Kh(BM,s −BM,t)−
1

T

T∑
t=1

Kh(AM,t−1)K(BM,t) = f̃M,T (Xt,M )− f̃T (Xt,M ) = op(1),
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with the op(1) term independent of t. Now,

hb−1
T∑
t=1

[
1

T

T∑
s=1

1{AM,s ≤ At,M}K
(
AM,s−1 −AM,t−1

h

)
K

(
BM,s −BM,t

h

)

− 1

T

T∑
s=1

1{0 ≤ At,M}K
(
AM,t−1

h

)
K

(
BM,t

h

)]2
π(XM,t)

= hb−1
T∑
t=1

[
1

T

T∑
s=1

1{AM,s ≤ At,M}K
(
AM,s−1 −AM,t−1

h

)
K

(
BM,s −BM,t

h

)

− K
(
AM,t−1

h

)
K

(
BM,t

h

)]2
π(XM,t)

+ hb−1
T∑
t=1

[
1

T

T∑
s=1

(
1{0 ≤ At,M} − 1{AM,s ≤ At,M}

)
K

(
AM,t−1

h

)
K

(
BM,t

h

)]2
π(XM,t) + cross-term. (30)

As for first term on the right-hand side of (30), taking a Taylor expansion around XM,s = Xs = 0 yields

h−1b−1
∑T
t=1K

2
(
AM,t−1

h

) [
K ′
(
BM,t

h

)]2 (
1
T

∑T
s=1 1{AM,s ≤ At,M}NB,M,s

)2
π(XM,t)

+ h−1b−1
∑T
t=1

[
K ′
(
AM,t−1

h

)]2
K2
(
BM,t

h

)(
1
T

∑T
s=1 1{AM,s ≤ At,M}NA,M,s

)2
π(XM,t)

of order Op(Th−1b−1a
−1
M ) if K ′(0) 6= 0 and of order Op(Th−3b−1a

−2
M ) if K ′(0) = 0. By the same argument as

in the proof of Theorem 3, the second term on the right-hand side of (30) is Op(T (4+k)/khb−1a−1M ). This

means that, in the absence of jumps in both assets,

1

T

T∑
t=1

(
β̂T,M (XM,t)− β̂T (Xt)

)2
π(XM,t) =

max
{
Op
(
T (4+k)/khb−1a−1M

)
, Op

(
Th−1b−1a−1M

)}
for K ′(0) 6= 0

Op
(
T (4+k)/khb−1a−1M

)
for K ′(0) = 0.

As for the bias terms, we first show that h−1b−1 (µ̂1,M,T − µ̂1,T ) = op(1). Recall that

h−1b−1(µ̂1,M,T − µ̂1,T ) =
1

T

T∑
t=1

(
π(XM,t)

hbf̂M,T (XM,t)
− π(Xt)

hbf̂T (Xt)

)

=
1

T

T∑
t=1

π(XM,t)− π(Xt)

hbf̂T (Xt)

− 1

T

T∑
t=1

hb
[
f̂M,T (XM,t)− f̂T (XM,t)

]
h2b2f̂M,T (XM,t) f̂T (Xt)

π(XM,t)

− 1

T

T∑
t=1

hb
(
f̂T (XM,t)− f̂T (Xt)

)
h2b2f̂M,T (XM,t) f̂T (Xt)

π(XM,t). (31)

The first term on the right-hand side of the last equality in (31) is Op(a
−1/2
M ) = op(1). Note that the common
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denominator in the second and third terms is strictly positive, uniformly in t. Also, given Assumption A1,

1

T

T∑
t=1

hb
(
f̂T (XM,t)− f̂T (Xt)

)
π(XM,t) =

1

T

T∑
t=1

[
K

(
AM,t−1

b

)
K

(
BM,t

h

)
−K2(0)

]
π(XM,t)

= K(0)K ′(0)

[
1

Th

T∑
t=1

NB,M,tπ(XM,t) +
1

Tb

T∑
t=1

NA,M,tπ(XM,t)

]

=

0 if K ′(0) = 0

Op(lnTb
−1a

−1/2
M ) = op(1) if K ′(0) 6= 0.

As for the second term on the right-hand side of the last equality in (31),

1

T

T∑
t=1

1

T

T∑
s=1

[
K

(
AM,s−1 −AM,t−1

b

)
K

(
BM,s −BM,t

h

)
−K

(
AM,t−1

b

)
K

(
BM,t

h

)]
π(XM,t)

= h−1
1

T

T∑
t=1

K

(
AM,t−1

b

)
K ′
(
BM,t

h

)
π(XM,t)

1

T

T∑
s=1

NB,M,s

+ b−1
1

T

T∑
t=1

K ′
(
AM,t−1

b

)
K

(
BM,t

h

)
π(XM,t)

1

T

T∑
s=1

NA,M,s

=

Op(lnTb−2a−1M ) if K ′(0) = 0

Op(lnTb
−1a

−1/2
M ) = op(1) if K ′(0) 6= 0.

By a similar argument, we can show that hb−2(µ̂2,M,T − µ̂2,T ) = op(1).

(ii) In this case, jumps are absent in asset B, so that their contribution to the quadratic variation is null in

every instant of time (Bt = 0 almost surely for all t). As before, we have to show that hb−1(ST,M−ST ) = op(1).

If max{h1/4, hb−1} = h1/4, then hb−1(ST,M −ST )
p→ 0 implies h−1/4(ST,M −ST )

p→ 0 as well. Recall that ∆4,T,M

decomposes into ∆
(1)
4,T,M and ∆

(2)
4,T,M , plus cross-terms of smaller order, as in (27). As At > 0, it is immediate

to see from the proof of Theorem 3 that hb−1∆4,T,M = Op(T
(4+k)/kh2b−1a−1M ). Define now ∆1,T,M as in (27). It

follows by the same argument as in the proof of (iii) that ∆1,T,M = max
{
Op(T

(4+k)/kh2b−1a−1M ), Op(Tb
−1a−1M )

}
if K ′(0) 6= 0, whereas ∆1,T,M = Op(T

(4+k)/kh2b−1a−1M ) if K ′(0) = 0. Handling the bias terms exactly as in

(iii) leads to b−1(µ̂1,M,T − µ̂1,T ) = Op(b
−1a

−1/2
M ) and h2b−2(µ̂2,M,T − µ̂2,T ) = Op(h

2b−2a
−1/2
M ), completing the

proof.

(i) The result follows by the same argument as in (ii). �

Proof of Theorem 5: We hereafter denote by E∗ and V∗ the mean and variance operators under the

bootstrap probability law P∗, respectively. We also let op∗ and Op∗ denote terms respectively converging

to zero and bounded under P∗ conditionally on the sample.
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As T /T → 0, h/T = h∗/T and b/T = b∗/T , it turns out that T (4+k)/k lnTha−1M → 0 and max{T (k+4)/k lnThb−1a−1M , T lnTh−1b−1a−1M } →

0 imply T (4+k)/k ln T h∗a−1M → 0 and max{T (k+4)/k ln T h∗b−1∗ a−1M , T ln T h−1∗ b−1∗ a−1M } → 0, respectively. Also, as

b∗/b → ∞ and h∗/h → ∞, a−1M (h−4 + b−4) → 0 implies a−1M (h−4∗ + b−4∗ ) → 0 as well. This means that, in the

presence of jumps in both assets, Ŝ∗T − Ŝ∗M,T = op∗(1), where Ŝ∗T is analogous to Ŝ∗M,T , but using blocks

resampled from W t = (At, At−1, Bt) rather than from W t,M = (At,M , At−1,M , Bt,M ). Note also that At = 0 al-

most surely for every t implies A∗t = 0 almost surely under P∗, and hence it follows from the same argument

as in the proof of Theorem 2 that:

(a) If At = 0 almost surely for all t, then Ŝ∗,T − Ŝ∗,M,T = op∗(h−1∗ b∗);

(b) If Bt = 0 almost surely for all t, Ŝ∗,T − Ŝ∗,M,T = op∗(h−1∗ b∗);

(c) If At = Bt = 0 almost surely for all t, then Ŝ∗,T − Ŝ∗,M,T = op∗(b∗).

It suffices thus to show that, if T11/T
p→ c11 > 0 as T, T , B →∞, then

lim
T,T ,B→∞

Pr
(
S2
T > c∗1−α(T, T , B)

)
= α

under H0, whereas

lim
T,T ,B→∞

Pr
(
S2
T > c∗1−α(T, T , B)

)
= 1

under HA, where c∗1−α(T, T , B) is the (1 − α)−percentile of the empirical distribution of S2
∗,T . To this end,

let T11 =
∑T
t=1 1{A∗t−1 > 0}1{B∗t > 0}. We have to show that Tij/T − Tij/T = op∗(1) for any i, j ∈ {0, 1},

so that the statement in (i) follows by the same argument as in the proof of Theorem 5 in Corradi et al.

(2012). Now,

E∗(T11/T ) =
1

T

T∑
t=1

1{At−1 > 0}1{Bt > 0}+Op(lT /T )

and

Pr∗ (|T11/T − E∗(T11/T )| > ε) ≤ 1

ε2
V∗(T11/T ) = op(1),

with similar results also following for T00, T01 and T10. Finally, the statement in (ii) ensues by the same

argument used in the proofs of Theorems 2 to 4. �
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