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Abstract
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but rarely in economics and finance. We extend these techniques to evaluate strategies from a
profit or gain-loss perspective and to provide methods for the three-way long/cash/short allocation
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One of the enduring problems in empirical finance is the quest to evaluate the perfor-

mance of trading strategies. In many cases, such as the canonical test of the efficient mar-

kets hypothesis, this means judging performance relative to a random-walk or a coin-toss

null hypothesis to decide whether a strategy has truly generated risk-adjusted predictable

excess returns. At other times, when two or more potential trading strategies are being

considered, the researcher may wish to evaluate whether one is better than the other in a

statistically significant way.

Although they are amongst the most basic trading strategies available, simple direc-

tional or long-short strategies represent an important and widely-used class of investment

rules. In these strategies the goal is not to craft a carefully weighted portfolio, but merely

to make a binary choice as to whether to go long or short in one or more securities in each

trading period. Pick the right direction and upside is guaranteed; pick the wrong direction

and losses ensue.

These observations prompt the question whether useful directional forecasts are truly

possible. That is, if some such models were proposed, how would one evaluate their claims

to superiority against the coin-toss null, or even against each other? This paper provides

new tools to answer these questions based on the receiver operating characteristic (ROC)

curve: a collection of nonparametric statistical methods designed to evaluate classification

ability in binary-outcome decision problems. ROC tools originated in the field of signal

detection theory (Peterson and Birdsall 1953). They are currently broadly applied to eval-

uate diagnostic tests from different biomarkers in medicine as well as ranking radiological

readings (see Pepe 2003 for an extensive monograph). They are also widely used in a variety

of other fields of science, such as psychometrics (see Swets and Pickett 1982 for a classical

treatment), machine learning (see Spackman 1989 for an early reference), and atmospheric

sciences, where they have become part of the World Meteorological Organization’s (WMO)

Standard Verification System for assessing the quality of weather forecasts (see Stanski,

Wilson, and Burrows 1989; and WMO 2000). With this paper we hope to popularize these

procedures in economics and finance as well and, to that end, we introduce the correct clas-

sification frontier (CC), which summarizes the information in the ROC curve in a manner

that is more natural to economists and for the type of problem we consider in this paper.

Despite their simplicity, directional trading strategies offer a well trodden playing field

for statistical analysis. For a start, at a theoretical level, even if we cannot forecast returns

well as judged by fit, an ability to make at least a systematic directional forecast might yield

significant excess returns and would be sufficient to reject the classic, risk-neutral efficient
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markets hypothesis. To take an example from forex trading strategies, which comprise

one of the applications used this paper, we shall step outside the well known Meese and

Rogoff (1983) puzzle concerning the unimpressive root-mean-square error (RMSE) of most

exchange rate forecasts compared to the random-walk null, since this puzzle by itself does

not rule out the possibility of good directional forecasts that generate statistically and

quantitatively significant profit opportunities.1 Directional tests in this tradition include

Pesaran and Timmermann (1992) and Anatolyev and Gerko (2005), which we discuss in

more detail below.

If we are to move beyond evaluation based on fit, as with the RMSE loss function, then

what criteria can we use instead? When the predictive model is a correct representation

of the data generating process, one obtains unbiased estimates of the parameters of the

true model under any proper loss function. However, when the statistical model is only an

approximation, different loss functions result in different models and parameter estimates,

and therefore possibly different conclusions about the usefulness of a particular model (see

Hand and Vinciotti 2003). The methods that we propose here recognize that the decisions

on whether to go long or short on an investment vary with an investor’s preferences and

attitudes toward risk and for this reason, we aim to design methods where comparisons

can be made, as much as possible, robustly with respect to the unknown loss function.

The tools that we introduce here are simple, often nonparametric (which is important

because financial data tend to be distributed with heavy tails), and have well-understood

large-sample properties that facilitate construction of classical inferential procedures. In

fact, some of these procedures are closely related to the theory of rank tests (see, e.g.

Hájek, Šidák, and Sen 1999) in that they effectively measure the distance between two

distributions, in our case, the distance between the distributions of the forecast signal

when returns are positive versus negative. In this paper we discuss some of these tools and

provide appropriate results to evaluate binary prediction outcomes in the more realistic case

of directional strategies with variable payoffs. We also investigate more complex multi-

categorical investment strategies, such as long/short/cash investment positions, with an

extension of the CC frontier to multiple dimensions.

Our CC frontier analysis is advantageous in that it is robust to the loss function (or

preferences) of individual investors. Traditional statistics for the evaluation of binary deci-

1 Cheung et al. (2005) have revisited the Meese-Rogoff puzzle and surveyed the entire gamut of exchange
rate models; although RMSE performance was still lackluster, they did find that directional forecasts did
rather better at outperforming the random walk.
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sion problems (such as log and quadratic probability scores, Brier scores, misclassification

probabilities and other commonly reported statistics) are only appropriate as long as the

implied loss function coincides with the investor’s loss function. On the other hand, while

summary statistics associated with the CC frontier provide general statements on stochas-

tic dominance, the CC frontier summarizes the space of all possible trade-offs implied by

a particular set of preferences over an investment strategy. Thus, a strategy that is more

successful in predicting correctly long-short positions may nevertheless be particularly vul-

nerable to extreme events, whereas a less successful strategy may still produce positive

returns but with better protection against catastrophic losses. Analysis using CC frontiers

allows one to visualize the regions in which these trade-offs take place.

We conclude the paper with two empirical applications of the methods that we propose.

The first application is based on Welch and Goyal’s (2008) state-of-the-art investigation of

signals that helps forecast U.S. equity returns. Our aim is to examine the value of these

signals in constructing profitable investment strategies where one borrows/lends at the

risk-free rate to purchase/sell U.S. equities. We find out-of-sample evidence that several

of these signals generate consistently profitable trades in contrast to Welch and Goyal’s

(2008) results, which are based on tests of fit using conventional RMSE metrics.

A second application focuses on currency carry trades in which a speculator borrows

in one currency to invest in another, thus arbitraging the interest rate differential while

bearing the risk of a possibly adverse exchange rate movement. Berge, Jordà and Taylor

(2010) discuss four basic carry trade strategies where an investor’s only choices are which

currency to go short and which to go long. In practice though, transactions costs and other

considerations may make some of the trades unprofitable when predicted returns before

costs are small. Thus, we examine long/cash/short strategies using the same four carry

trade investments described in Berge, Jordà and Taylor (2010) and find that these more

sophisticated methods rank the preferred strategies somewhat differently compared to the

case where only binary long/short strategies were considered.

1 Motivation: Accuracy Versus Arbitrage

The problem of evaluating the risk-adjusted excess returns of an investment can be cast

as a zero net-investment strategy with respect to the risk-free rate. Fundamental models

of consumption-based asset pricing in frictionless environments with rational agents would

then suggest that, if mt+1 denotes the stochastic discount factor and xt+1 denotes ex-post

3



excess returns (see e.g. Cochrane 2001), then

Et(mt+1xt+1) = 0. (1)

An example of xt+1 is a currency carry trade position in which case xt+1 = ∆et+1+(i∗t − it)
where et+1 denotes the log of the (home) exchange rate and i∗t − it the one period interest

rate differential between two countries (foreign minus home). Another example of xt+1 is

an investment where the trader goes short/long on a risky asset by lending/borrowing at

the risk free rate. In both cases, the trader will be interested in determining whether, given

information at time t, he should go long or short. For the moment, we abstract from many

well-known frictions, such as short-selling constraints, transactions fees, and so on.

Under such conditions, one may presume that it would be difficult to predict xt+1 given

information available up to time t and this seems to be generally the case (for surveys of the

relevant literature on beating the random walk see, e.g, on currencies, Kilian and Taylor

2003; on equities, Welch and Goyal 2008). However, notice that the problem facing the

trader in practice is somewhat simpler: he does not need to predict excess returns per

se, but only whether to go long or short. That is, the actual performance of the trading

strategy using one-period ahead forecasts x̂t+1 is given by the realized returns

µ̂t+1 = sign(x̂t+1)xt+1. (2)

Thus, the key insight here is that while x̂t+1 may or may not be a very good forecast for

xt+1 as judged by fit, it may be good enough to correctly pick the direction of trade often.

Let us denote the ex post correct direction of trade as dt+1 = sign(xt+1) ∈ {−1,+1}, with

−1 denoting a loss (trader should go short), and +1 a gain (trader should go long).

In fact, because a trader’s problem is now a classification problem for dt+1, it is possible

that a return forecast x̂t+1 does not even provide the best way to generate a prediction

for dt+1, say d̂t+1. For this reason, and to maintain full generality, we shall consider any

δ̂t+1 which can serve as a generic scoring classifier for dt+1, where the directional forecast

takes the form d̂t+1 = sign(δ̂t+1 − c) and c ∈ (−∞,∞) is a threshold parameter. For the

moment, we set aside the discussion on the best method to obtain δ̂t+1. Here all that we

require is that δ̂t+1 be a scalar that takes on any values in (−∞,∞).

One of the most important distinctions to be noted at this stage is that the classification

problem of determining a “good” d̂t+1 is usually far simpler than the forecasting problem
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of determining a “good” x̂t+1. This fact is of fundamental importance for the application of

the methods we develop in this paper: if directional classification is an easier problem than

forecast fit, then directional tests should impose a much higher hurdle for the “coin-toss”

null in tests of market efficiency.

Moreover, by focusing on the classification problem, we are not constrained by tradi-

tional loss functions (such as the ubiquitous root mean squared error, RMSE) associated

with x̂t+1. In fact, many of the methods that we discuss below are considerably less reliant

on any specific loss function: δ̂t+1 could be a probability forecast from a binary regression

model, a single-index model from a dimension-reduction procedure, an ordinal variable

generated from a discrete-state model, or even x̂t+1. For this reason, many of the methods

we introduce are non-parametric.

Of course, if one can correctly specify the data generating process, the choice of loss

function (under general conditions) is less relevant: one still obtains unbiased estimates of

the true parameters. Elliott and Lieli (2007) offer an alternative and attractive view on the

classification problem that consists in tailoring the estimator to the agent’s specific utility

function. However, when one thinks of the statistical model as simply an approximation,

different loss functions result in different models and parameter estimates, and therefore

different conclusions about what variables are preferable (see Hand and Vinciotti, 2003 for

a discussion on this point).

We find it useful to provide a simple example in Table 1 to illustrate these basic points.

We consider a hypothetical investment problem: a one-period currency return, say, which

has four discrete outcomes, percentage returns of +2,+1,−1,−2. Each outcome occurs

1/4 of the time. If the investor goes long he receives the payoff outcome as above; if he

goes short he receives minus one times the payoff.

There are two candidate trading signals available to the investor. Signal A is perfectly

accurate in predicting the ±1 outcomes but has an additive white-noise N(0, 10) error on

the ±2 outcomes. Signal B is perfectly accurate in predicting the ±2 outcomes but has

the additive N(0, 10) error on the ±1 outcomes. Which signal is preferred? The answer

depends on the criterion used.

According to the traditional RMSE criterion widely used in the forecast evaluation

literature in economics and finance, there is nothing to choose between the two signals.

They each have exactly the same error variance which appears on 50% of the observations.

In large samples the RMSE of both signals is
√

102/2 or about 7.07. Signals A and B are

equally good (or bad), and a decent test of predictive ability based on RMSE performance
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Table 1: Mixed Signals: RMSE versus Direction versus Profitability

Signal type Outcome y Signal x RMSE Correct sign (%) Profit

A y = ±1 x = y 7.071 78.96 0.6585

y = ±2 x = y + ε

B y = ±1 x = y + ε 7.071 76.99 1.0398

y = ±2 x = y

Note: ε ∼ N(0, 10) is an i.i.d error.

should say so.

According to a directional criterion that measures the fraction of correct directional

calls made, the answer is that Signal A is slightly better. Both signals get half the calls

exactly right. What about the calls subject to noise? Here Signal A is only wrong a

fraction Φ(−2/10) of the time; but Signal B is wrong a fraction Φ(−1/10) of the time,

which is to say, slightly more often, where Φ denotes the cumulative Gaussian distribution.

Overall, signal A makes correct calls 79% of the time, and signal B 77% of the time. A

good directional accuracy test should prefer Signal A.2

Are either of the above the “right” answer in terms of investment performance or market

efficiency? For a risk neutral investor, the answer is no. If we look at expected profits,

then clearly Signal B is the better signal. It makes mistakes when the stakes are small, but

it gets on the right side of trades when there are large potential profits or losses, whereas

Signal A does just the opposite. The expected profit from Signal B is 1.04 on average per

period, but from Signal A it is just 0.66.3

We can take away three important lessons from this discussion. First, the widely used

RMSE statistic may be a good way to evaluate forecast accuracy or fit, but it is a misleading

indicator of the presence of profitable arbitrage opportunities, which is the key metric for

judging market inefficiency. Second, we can see that if signal errors were evenly spread

over all outcomes, a good directional performance would clearly deliver excess returns.

Finally, as we have just seen, if signal accuracy varies with returns, it will prove to be of

2 The closed form expression for correct calls with Signal A is 1
2

+ 1
2
Φ(2/10), and with Signal B it is

1
2

+ 1
2
Φ(1/10).

3 The closed form expression for profit with Signal A is 1
2

+ 2
2
(Φ(2/10) − Φ(−2/10)), and with Signal B

it is 2
2

+ 1
2
(Φ(1/10) − Φ(−1/10)).
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greater import for traders’ profits (and, thus, for claims of market inefficiency) to make

good directional forecasts when potential profits are large.

2 The Trader’s Classification Problem

We find it useful to consider the following classification table associated with the binary

decision problem the trader faces for a given investment strategy:

Prediction

Negative/Short Positive/Long

Outcome Negative/Short TN(c) = P
(
δ̂t < c|dt = −1

)
FP (c) = P

(
δ̂t > c|dt = −1

)
Positive/Long FN(c) = P

(
δ̂t < c|dt = +1

)
TP (c) = P

(
δ̂t > c|dt = +1

)

Here, TN(c) and TP (c) refer to the true classification rates of negatives and positives,

respectively; and FN(c) and FP (c) refers to the false classification rates of negatives and

positives, respectively. Clearly, TN(c) + FP (c) = 1 and FN(c) + TP (c) = 1. In statistics,

TP (c) is sometimes also called sensitivity and TN(c), specificity. It may also be helpful

to think of δ̂t as the value of a test statistic and c as its critical value. Then FP (c) would

refer to the Type I error rate or size of the test, and TP (c) its power.

The space of combinations of TP (c) and TN(c) for all possible values of c ∈ (−∞,∞)

summarizes a sort of “production possibilities frontier” (to use the traditional microeco-

nomics nomenclature in a market for two goods) for the classifier δ̂t, that is, the maximum

TP (c) achievable for a given value of TN(c). We will call the curve that summarizes all

possible combinations {TN(c), TP (c)} the correct classification frontier or CC frontier.

Of course, this is not the only way to summarize the performance of the classifier. Note

that FP (c) = 1−TN(c), so another curve that is widely used in statistics and that summa-

rizes all possible combinations {FP (c), TP (c)} is called the receiver operating characteristic

(ROC) curve, as we discussed in the introduction. And combinations {FN(c), TN(c)} can

be collected in a plot that is called the ordinal dominance curve (ODC) as discussed in

Bamber (1975). Notice that the CC frontier and the ROC curve are the mirror image of

one another (if one were to place the mirror at the vertical axis).
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Figure 1: The Correct Classification Frontier (CCF)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

!" !#$" !#%" !#&" !#'" (" (#$" (#%" (#&"

)*+,-."/0"1+233,412*/5""

678071-"1+233,478"

99":8/5*78"

;<"

)5,50/8=2*>7"1+233,478"

!"#$%&'()*+$%,-.$%

!"#$%/$0-*+$%,-.$%

A stylized plot of a CC frontier is presented in Figure 1. Notice that as c → −∞
then TP (c) → 1 and TN(c) → 0, and the limits are reversed as c → ∞. For this reason,

it is easy to see that the CC frontier lives in the unit square [0, 1] × [0, 1]. A perfect

classifier is one for which TP (c) = 1 for any TN(c) and this corresponds to the north

and east sides of the unit-square. An uninformative classifier on the other hand, is one

where TP (c) = FP (c) = 1− TN(c) ∀c and this corresponds to the north-west/south-east

“coin-toss” diagonal. Using the language of the pioneering statistician Charles Sanders

Peirce (1884), the classifiers corresponding to these two extreme cases would be referred

to as the “infallible witness” and the “utterly ignorant person” (Baker and Kramer 2007,

343). Most CC frontiers in practice live in between these two extremes.

2.1 The Trader’s Decision Problem

Using this type of decision theory, the investment decisions taken by the trader will depend

on the CC frontier and on the utility the trader derives from each outcome—just as equi-
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librium in the textbook two-goods market depends on the interaction of the production

possibilities frontier and the consumer’s utility. It might be reasonable (under conditions

we shall examine in a moment) to assume that a risk-neutral investor’s preferences in a

frictionless world with symmetric returns will be tangent to the CC frontier where the

marginal rate of substitution between true positives (profitable longs) and true negatives

(profitable shorts) is −1. It turns out that the vertical distance between this point on the

CC frontier and the coin-toss diagonal is given by the Kolmogorov-Smirnov (KS) statistic.

The KS statistic is based on the distance between the maximum value of the average

correct classification rate for a given classifier, 1
2(TN(c) + TP (c)), and the average correct

classification rate for a coin-toss classifier. Since for the later TP (c) = 1− TN(c) ∀c, this

last average is easily seen to be 1/2. Specifically the formula for the KS statistic is:

KS = max
c

∣∣∣∣2(TN(c) + TP (c)

2
− 1

2

)∣∣∣∣ .
The KS statistic can be easily computed in practice. Let TN (TP ) indicate the total number

of observations in the sample t = 1, ..., T for which dt = −1(+1), respectively, using the

mnemonics N for negative and P for positive. Suppose that TP /TN → λ > 0 as T → ∞,

where T = TN + TP , and empirically

T̂N(c) =

∑TN
j=1 I

(
δ̂j < c

)
TN

; T̂P (c) =

∑TP
i=1 I

(
δ̂i > c

)
TP

(3)

where the indices j(i) run over two sets of re-numbered observations, with each one mapping

to a unique t such that dt = −1(+1), respectively and I(.) is the indicator function that

takes on the value of 1 when the argument is true and 0 otherwise. Then√
TNTP
T

K̂S → sup
t
|B(t)| (4)

where B(t) is a Brownian-bridge. That is, B(t) = W (t) − tW (1) where W (t) a Wiener

process (see e.g. Conover 1999). Notice that KS ∈ [0, 1] and is equivalent to maximum of

the Youden (1950) J index, which is defined as

J(c) = TP (c)− FP (c). (5)
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Under the assumption that the investor’s goal is to maximize the J index, we can identify

the optimal operating point as the threshold cKS where the KS statistic is maximized.

However, in practice returns may not be symmetric, and even a risk-neutral investor

may face transaction costs when short-selling that he does not face when going long. There-

fore, it is useful to explicitly cast the trader’s utility of classification to account for all

possible outcomes as

U(c) = UpPTP (c)π + UnP (1− TP (c))π + (6)

UpN (1− TN(c))(1− π) + UnNTN(c)(1− π).

where π = P (d = +1), that is, the unconditional probability of a positive; and UaA for

a ∈ {n, p} and A ∈ {N,P} is the utility associated with each of the possible four states

defined by the (classifier,outcome) pair.

It may seem that applying the above methods to investment performance takes us down

an unfamiliar track. But if we explore some simple utility weights we can show how J and

U actually encompass some familiar and widely used investment performance criteria. If

we weigh correct calls with a utility of 1, and incorrect calls with a utility of 0, then the

utility measure U reduces to an accuracy rate

Accuracy rate =
TpP
T

+
TnN
T

= TPπ + TN(1− π). (7)

If we exchange these weights, then we obtain an error rate

Error rate =
TnP
T

+
TpN
T

= (1− TP )π + (1− TN)(1− π). (8)

But the accuracy and error rates sum to one, so these are inversely related, and attain

their respective maximum and minimum at the same choice of c.

We can now begin to see that the KS statistic is applicable only in a very special case.

If positive and negative outcomes are equiprobable, that is π = 1/2, and if the utility from

correct predictions (whether positive or negative) is normalized to be the same and equal

to 1, and conversely, that the disutility from incorrect predictions (whether positive or

negative) is the same and equal to −1, then expression (6) simplifies in such a way that
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U = J :

U =
1

2
TP (c)− 1

2
(1− TP (c))− 1

2
FP (c) +

1

2
(1− FP (c)) (9)

= TP (c)− FP (c) = J(c).

This is the same J index as in expression (5). In this case it is easy to show that the accuracy

and error rates are 1+J
2 and 1−J

2 . Thus, for this case only, all performance measures are

monotonic in J , and on all performance criteria the same optimal c will be chosen.

In the seminal work of Peirce (1884), the expression for J(c) was referred to as “the

science of the method” and the general expression for U(c) as “the utility of the method”

(Baker and Kramer 2007). In Peirce’s example, the applied problem was forecasting tor-

nadoes, and his hypothetical utility weights corresponded to the net benefits of lives saved

under true positives versus the costs of wasted resources or panic under false positives.

But in general, as Peirce understood, the choice of c that maximizes U need not be the

one that maximizes J (or the accuracy rate, discussed below). In what follows we explore

methods that allow π and Uij to be generic. In finance problems, for realism, we want to

allow the Uij to be unrestricted since payoffs vary continuously, and we also want to allow

for π 6= 1
2 to admit the possibility of skewed payoff distributions.

Whether realized returns are systematically positive and significantly different from

zero is determined primarily by a classifier’s properties. In general settings, the utility

derived from a given classifier will depend on the investor’s attitude toward risk since

each investment strategy is characterized by different combinations of returns, volatility

and extreme events. Thus, the maximum of the Youden J index obtained from the KS

statistic in expression (4) insufficiently characterizes an investor’s choices—in other words,

the simplifying assumptions used to derive expression (4) may not hold in practice.

To sidestep this problem, we can use the CC frontier to allow comparisons among clas-

sifiers without a need for specific statements about underlying preferences of the investor

by considering all operating points simultaneously. Given the CC frontier’s usefulness, it

is helpful to develop further some intuition about the shape of the CC frontier and the

properties of the the optimal operating point.

The CC frontier can be defined in terms of two distributions. Let u denote values of δ̂

for which d = 1 and denote G its distribution and g its density so that TP (c) = 1−G(c).

Similarly, let v denote values of δ̂ for which d = −1 and denote F its distribution function

and f its density so that TN(c) = F (c).
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We can now use the distributions F and G to define the CC frontier. Let us denote by

CC(r) the true positive rate corresponding to a true negative rate of r (since c uniquely

determines both rates, this mapping is one-to-one). Hence CC(r) = 1 − G(F−1(r)) with

r ∈ [0, 1]. Notice then that the maximum utility from expression (6) is achieved when

dCC(r)

dr
≡ g(F−1(r))

f(F−1(r))
= −1− π

π

(UnN − UpN )

(UpP − UnP )
(10)

so that it is easy to see that the slope of the CC frontier is the likelihood ratio between

the densities f and g. If this likelihood ratio is monotone, then the CC frontier is concave.

In practice, one can make parametric assumptions about f and g and hence construct

parametric models of the CC frontier. However, in the remainder of the paper we restrict

our attention to non-parametric estimators because returns distributions are often poorly

characterized by conventional Gaussian assumptions. The reader is referred to Pepe (2003)

for an overview of parametric ROC models, which can be applied to CC frontier estimation.

The main point of the last equation is to show that, in general, the optimal operating

point is at a slope that is skewed away from −1 in a way that depends on the relative

probability of each outcome, and the utility weights. For example, in the last expression,

suppose P is the event “cancer of type X” and upon that signal surgery will occur. All

else equal, i.e., holding utility weights constant, if X gets very rare (π smaller, and the first

fraction is larger), then a more conservative classifier should be used, with CC frontier

steeper at the optimal point, typically nearer to (1,0) in Figure 1. One the other hand,

holding the probability π constant, if, say, X is a more dangerous type of cancer then the

costs of a false negative (UnP ) go up all else equal, then the second fraction gets smaller,

and a more aggressive classifier should be used, with CC frontier flatter at the optimal

point, typically nearer to (0,1) in Figure 1. These results are very intuitive indeed, although

again we caution that the utility space is limited to four discreet outcomes, a restriction we

shall seek to relax in a moment as we adapt these techniques for applications with variable

payoffs in economics and finance.
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3 A Standard Measure of Classification Ability: The Area

under the CC Frontier

As a complement to the KS statistic we discussed, a more general measure of classification

ability with conventional statistical properties is the area under the CC frontier or AUC.

From Figure 1, it is clear that a perfect classifier will have AUC = 1 corresponding to the

unit square. A coin-toss classifier has a CC frontier given by the diagonal that bisects this

unit square and hence has AUC = 0.5. Formally

AUC =

∫ 1

0
CC(r)dr.

We should note that the AUC defined here has the same properties as the area under the

ROC curve and the area under the ordinal dominance curve (see Hsieh and Turnbull 1996).

Of course, a perverse classifier can generate an AUC < 0.5, but, by reversing the clas-

sifier’s predictions, one can obtain a classifier with AUC > 0.5, which we shall henceforth

take to be the typical case. We remark that for two classifiers based on models A and

B, CCA(r) > CCB(r) ∀r means that classifier A stochastically dominates classifier B re-

gardless of investor preferences. However, although in this case it is necessarily implied

that AUCA > AUCB, it does not follow that AUCA > AUCB is a sufficient condition

for CCA(r) > CCB(r) ∀r. This is because the two CC frontier might cross, and, in fact,

it could be the case that CCA(r) < CCB(r) precisely for a value (or range of values) of

r that is optimal for the trader. We will return to procedures that directly test the null

H0 : CCA(r) = CCB(r) for any r momentarily, but before discussing the more difficult

statistical procedure to test this hypothesis, it is more convenient to first present the results

for tests that can be used for inference on AUC.

Green and Swets (1966) provide a nice interpretation of AUC = P [v < u]. Thus, like

the Kolmogorov-Smirnov statistic, the AUC is a comparison of the distance between the

distributions for v and u, except that it is F minus G averaged over all values of r rather

than evaluated at the maximum:

∫ 1

0
[F (c)−G(c)]dr =

∫ 1

0
[F (F−1(r))− 1 + CC(r)]dr =

∫ 1

0
CC(r)dr = AUC.

Not surprisingly, then, AUC is related to the Wilcoxon-Mann-Whitney U -statistic (see
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Bamber 1975; Hanley and McNeil 1982), which is a rank-sum statistic. A simple empirical

estimate of P [v < u] and hence the AUC, can be obtained as

ÂUC =
1

TNTP

TN∑
j=1

TP∑
i=1

{
I (vj < ui) +

1

2
I (ui = vj)

}
(11)

where the last term is used to break ties.

The empirical AUC turns out to have convenient statistical properties. If TP /TN →
λ > 0 as T → ∞; F and G have continuous densities f and g respectively; and the slope

of the CC frontier is bounded on any subinterval (a, b) of (−1, 0), with −1 < a < b < 0;

then Hsieh and Turnbull (1996) show that

√
T
(
ÂUC − P [v < u]

)
→ N

(
0, σ2

)
. (12)

In the special case that F = G

σ2 =
1

12

(
1

TN
+

1

TP

)
.

Hanley and McNeil (1982) and Obuchowski (1994) provide a convenient approximation

for the variance of AUC under general conditions given by

σ2 = AUC(1−AUC) + (TP − 1)(Q1 −AUC2) + (TN − 1)(Q2 −AUC2), (13)

where

Q1 =
AUC

2−AUC
, Q2 =

2AUC2

1 +AUC
.

Bootstrap procedures are also available (Obuchowski and Lieber 1998), although large

sample approximations have been found to do well in relatively small samples (Pepe 2003).

4 Formal Inference for Directional Trading Strategies

Sections 2 and 3 have introduced tools to evaluate the classification performance of compet-

ing trading strategies. In this section we discuss four basic inferential procedures associated

to this problem: (1) a formal test to determine whether an investment strategy is statis-

tically superior to a coin-toss null hypothesis; (2) an overall performance test between
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competing investment strategies; (3) a test that assesses whether two investment strategies

are statistically equivalent at all operating points; and (4) confidence intervals for the CC

frontier at an investor’s optimal operating point.

The asymptotic results in the previous section provide the obvious test for the first

of these four hypotheses. Since the AUC of a coin-tosser is 0.5, then the asymptotic

normal result of the AUC in expression (12) provided by Hsieh and Turnbull (1996); and

the approximate formula of the variance of the AUC in expression (13) from Hanley and

McNeil (1982) are all that is required to construct a typical z-ratio with an approximate

standard normal distribution in large samples. Obuchowski and Lieber (1998) investigate

bootstrap percentiles, bootstrap-z and the bootstrap bias-corrected accelerated method

and conclude, from a Monte Carlo study, that the asymptotic approximation can become

unstable when the true AUC → 1 and with samples of 200 observations or less. However,

in financial data, sample sizes tend to be considerably larger and the AUC close to 0.5

(since AUCs close to 1 would indicate wildly profitable strategies!).

The relative performance of two investment strategies (say A and B) is of obvious

interest. Here one could take advantage of the asymptotic Gaussian result in expression

(12) to construct the z-ratio of the null hypothesis H0 : AUCA = AUCB, that is

z =
AUCA −AUCB(

σ2A + σ2B − 2ρσAσB
)1/2 → N(0, 1), (14)

where σ2j for j ∈ {A,B} refers to the variance of the AUC given in expression (13) for each

investment strategy, and ρ refers to the correlation between AUCA and AUCB. Hanley

and McNeil (1983) propose estimating ρ as the average of the correlation ρ(vA, vB) for the

short positions and the correlation ρ(uA, uB) for the long positions.

However, rejecting H0 : AUCA = AUCB (e.g., because AUCA > AUCB) could be

because CCA(r) > CCB(r) for r ∈ R1 and CCA(r) < CCB(r) for r ∈ R2, where R1

and R2 denote two non-overlapping regions that span the real line. In such a case, some

investors will prefer strategy B because it is superior precisely at the operating points

where their utility is maximized. In such cases, the outer-envelope of CCA and CCB will

be stochastically larger than any individual strategy. Of course, if an investor’s utility

function is known, then there is no difficulty in determining which classifier would be

preferred.

Venkatraman and Begg (1996) provide a testing procedure that allows one to directly
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test the null that the CC frontier for strategies A and B are statistically equivalent at

all operating points. This test has the further attraction that it is distribution-free and

can be implemented as a permutation test from which p-values are easily constructed by

simulation.

Specifically, let {SA
i }Ti=1 and {SB

i }Ti=1 denote the ranks of {δ̂
A

i }Ti=1 and {δ̂
B

i }Ti=1 respec-

tively (the signals from each investment strategy). Let the index k = 1, ..., T − 1. Then

define the empirical error matrix by

eik =


1 if (SA

i ≤ k, SB
i > k, di = −1) or (SA

i > k, SB
i ≤ k, di = 1),

−1 if (SA
i > k, SB

i ≤ k, di = −1) or (SA
i ≤ k, SB

i > k, di = 1),

0 otherwise,

and the associated statistic

E =

T−1∑
k=1

∣∣∣∣∣
T∑
i=1

eik

∣∣∣∣∣ . (15)

It is easy to see that this statistic focuses on the differences in predictions at each kth oper-

ating point. To obtain the critical value for this statistic, one can obtain the percentile from

a large number of draws of the statistic (15) from randomly exchanging the ranks between

the two investment strategies and reranking them. To do this in practice, let (q1, ..., qN )

denote randomly drawn sequences of 0’s and 1’s and generate resamples {ŜA
i , Ŝ

B
i } using

ŜA
i = qiS

A
i + (1− qi)SB

i and ŜB
i = qiS

B
i + (1− qi)SA

i

with a random coin-toss rule to break ties introduced by the permutation process.

The final inferential problem of interest concerns the error bands for the CC frontier

for a given operating point. Such error bands can be constructed using asymptotic ap-

proximations based on results in Hsieh and Turnbull (1996). Specifically, an interval at the

operating point r with approximate 1− α probability coverage is

S =
{
ĈC(r)± Φ−1

(
1− α

2

)
σ̂(r)

}
,

so that

P (CC(r) ∈ S) = 1− α,
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and we can use Hsieh and Turnbull’s (1996) formula for the variance:4

σ2(r) =
G
{
F−1(r)

} (
1−G

{
F−1(r)

})
TP

+

[
g
{
F−1(r)

}
f {F−1(r)}

]2
r(1− r)
TN

,

substituting for all theoretical quantities with the empirical counterparts.

5 Beyond Basics: Returns-Weighted Classification Ability

This section improves on the framework presented thus far in a number of practical di-

rections of interest to finance practitioners. Classification alone is insufficient to assess an

investment strategy’s success. A strategy that correctly picks 99-in-100 one penny trades

and misses the direction on the 1-in-100 dollar trade has almost perfect classification skill

but is a money-loser. Hence the first improvement we consider is to construct return-

weighted variants of the KS and CC frontier and related statistics. This is done in the

next section. Anatolyev and Gerko (2005) make this same point in regard to Pesaran and

Timmermann’s (1992) directional accuracy test.

In more realistic scenarios, transactions costs may make staying in cash positions ap-

pealing when expected returns are insufficient to cover costs. The second improvement

we investigate extends the binary classification problem to include a third category and

therefore account for long/cash/short positions. This gives rise to a modification of the

AUC statistic to three dimensions called the volume under the surface or V US. And just

as we worry about weighing classification by returns in binary classification, we show how

to construct return-weighted V US statistics and explore their properties.

4 Pepe (2003) suggests that such intervals may be imprecise when r is close to 0 or 1 and proposes
instead a back-transformation of the interval generated by

logit
(
ĈC(r)

)
± Φ−1

(
1 − α

2

) σ̂(r)

ĈC(r)
(

1 − ĈC(r)
) .

When there is reason to fear that the asymptotic approximation is inadequate, one can construct the usual
t-percentile bootstraps although Hall, Hyndman and Fan (2004) caution that the theoretical properties
of the bootstrap in this type of problem are quite complex because of the different smoothing choices to
be made in calculating Ĝ, F̂ , ĝ, and f̂ . The reader is referred to their paper to notice the oversmoothing
bandwidths required to manage the coverage error rate to be o(T−2/3).
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5.1 The Return-Weighted CC Frontier: CCF

The maximally attainable profits of a “perfect” trader who always takes the right side of

every trade can be broken down into two parts according to whether the return outcome

is positive or negative, P or N (so the perfect trader would take the position that is long

or, respectively, short). These maximal profits are given by

B =
∑
d=+1

xt, C =
∑
d=−1

|xt| .

We can then construct some weights for each P and N outcome:

wi = xt
B if δ̂i > c and di = +1 for i = 1, ..., TP ,

wj = xt
C if δ̂j < c and dj = −1 for j = 1, ..., TN ,

where, as before, it is understood that the indices i and j each map P and N outcomes

(respectively) to a unique observation t.

Using these weights we can modify the expressions in (3) to calculate return-weighted

statistics TN?(c) and TP ?(c) as

T̂N?(c) =

TN∑
j=1

wjI(δ̂j < c), T̂P ?(c) =

TP∑
i=1

wiI(δ̂i > c). (16)

To develop some intuition, note that the former expressions represent actual profits as

a fraction of the potential profits achieved by a “perfect” trader in the case where the

outcome is N or P.

We can see that these fractions must lie between zero and one. Thus, by analogy with

the CC frontier, we may define the CC? frontier as the set of points {TN?(c), TP ?(c)} for

c ∈ (−∞,∞). By construction, CC? still inhabits the unit square [0, 1] × [0, 1], and in a

sense that we shall shortly make precise, return-weighted classification ability can be said

to improve the further is the CC? frontier from this diagonal. However, notice now that the

slope of the CC? frontier will be the likelihood ratio of the long/short densities weighed

by the return/loss ratio. This can be easily seen from expression (10) by noticing that

wj = UnN − UpN and wi = UpP − UnP , i.e., when utility is just defined for a risk-neutral

investor and normalized appropriately.

In the same way that the CC frontier leads to the AUC summary statistic, so the
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CC? leads to an analogous AUC? statistic. Empirically, AUC? can be estimated from

expression (11) as

ÂUC? =

TN∑
j=1

wj

TP∑
i=1

wi

{
I(ui > vj) +

1

2
I(ui = vj)

}
.

In terms of statistical properties, the Hsieh and Turnbull (1996) asymptotic normality

results for the AUC in expression (12) provide, with minimal modification, the basis for

large sample approximations for the AUC?. Notice that the weighting simply reranks the

observations in each of the distributions associated with the long/short positions (but there

are no observations that switch distributions as a result of the weighting). The asymptotic

results only require regularity conditions on the resulting densities, call them f? and g?. For

this reason, it is necessary to introduce additional assumptions regarding the distribution

of returns in long/short positions. Specifically, it is natural to require that in addition to

the original assumptions in Section 3, B/C → α > 0 as T → ∞ and that the densities

of returns in long/short positions be continuous so that the resulting convolution with the

original densities f and g, results in continuous densities f? and g?.

An estimate of the variance of the AUC? can be obtained by modifying expression (13)

appropriately

σ2? = AUC?(1−AUC?) +B(Q?
1 −AUC?2) + C(Q?

2 −AUC?2),

where Q?
1 and Q?

2 are defined as Q1 and Q2 in expression (13) by replacing AUC with

AUC?. If instead, bootstrap procedures are preferred, it is natural to construct

u?i = wiui, v?j = wjvj ,

and resample from
{
u?i , v

?
j

}
. Other inferential procedures described previously can be

similarly adapted as well.

5.2 Relationship to Other Performance Criteria

In our discussion of the CC frontier and its related J and AUC statistics, we were careful

to spell out the intuitive meaning of the new concepts, and relate them to some existing

directional-based investment performance measures. Similarly, we now take a moment to
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bring out the links between our new return-weighted concepts of CC?, J?, and AUC? and

some existing profit-based investment performance measures.

We can obviously define a correspondingly adjusted Youden J? statistic as

J?(c) = TP ?(c)− FP ?(c)

where FP ?(c) can be constructed in analogous manner to TP ?(c). This statistic measures

the height of the CC? curve above the diagonal, and it has a corresponding Kolmogorov-

Smirnov statistic KS? at its maximum, which may be used for inference.

As for utility-based measures, we can make a start by computing the total upside gains

G and downside losses L achieved by the classifier as

G = B.TP ? + C.TN?,

L = B.FN? + C.FP ?.

The former sums up over all winning bets, and the later over all losing bets.

Following our previous discussion, we might be inclined to define utility here as net

profit, that is gains minus losses,

Net profit = G− L = B.TP ? + C.TN? −B.FN? − C.FP ?.

However, this suffers from the problem that B and C are potentially unbounded as the

sample size grows large. Therefore, we elect to define utility as net profit attained divided

by the total potential profit attained by the “perfect” trader, where the latter is equal to

B +C, which in turn also happens to be equal to G+L. With that scaling we may define

utility as

U? =
G− L
G+ L

=
B.TP ? + C.TN? −B.FN? − C.FP ?

B + C

=
B(2TP ? − 1) + C(2TN? − 1)

B + C
,

where we use TP ?+FN? = 1 and TN?+FP ? = 1. A similar, but in that case superfluous,

rescaling could have been applied to our definition of utility U above, without changing

any results.
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It is now easy to see that

U? =
(G/L)− 1

(G/L) + 1
.

Hence, maximizing the utility of the trading strategy is the same as maximizing the gain-

loss ratio G/L of the strategy, where the definition of this ratio matches precisely the

well-known Bernardo and Ledoit (2000) gain-loss ratio for the risk-neutral case, a measure

widely used by finance practitioners.

Taking differentials, maximizing utility is achieved when

B∆TP ? + C∆TN? = 0

or when
∆TP ?

∆TN?
= −C

B

Thus, the optimal threshold is the point on the CC? curve with slope −C/B. The

importance of utility asymmetries comes to the fore again. Here, if the investment has

asymmetric returns then the trading strategy will be optimally tilted in this direction.

When B > C, the total returns from correct long bets are larger than those from correct

short bets. Even if a classifier isn’t perfectly informative, it is therefore optimal to move to

a flatter point on the CC frontier, with slope less than 1, and be aggressive in taking more

long bets since that’s where more of the money is. Conversely, when C < B it is better to

tilt toward fewer long bets, make the slope bigger than 1 (in absolute value), and move to

a steeper point and tilt toward going short. These arguments generalize to the case where

there are N > 2 positions the investor can take as we shall see momentarily.

Finally, there is a very natural special case to consider. We could call this the Long-Run

Risk-Neutral Efficient Markets Hypothesis (LRRNEMH). Equivalently we can invoke “long

run fair pricing” in the terminology of Bernardo and Ledoit (2000). What this means is

that näıve repeated long bets on r > 0 (or repeated short bets on r < 0) should return

zero on average over many draws. That is, gains and losses should cancel out for such

bets, with B = C in large samples. Note that the condition B = C is not saying that up

and down moves are equally likely, but that upside and downside cumulative returns are

equal. This may be a very natural assumption to make in some financial markets, even if

there are substantial deviations from fair price or efficient markets in the short run. For

example, there is ample evidence that long-run holding returns on different currencies are
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identical, even if short-run carry trade strategies seem to make profits.5

In the special case B = C, the above expressions simplify, such that

U? = J?,

G

L
=

1 + J?

1− J?
.

Now the optimal operating point which maximizes net profit extraction given by utility

U?, also maximizes the adjusted J? statistic and maximizes the trading strategy’s gain-loss

ratio G/L. This point corresponds to the point on the CC? frontier with slope = −1.

5.3 Volume Under the Surface: VUS and VUSF

In practical situations, expected returns may sometimes be insufficient to cover transac-

tions costs and it will be of interest to consider investment strategies with long/cash/short

directional positions. Specifically, suppose that the desired direction is given by

dt+1 = −1 if xt+1 < γ1,

dt+1 = 0 if γ1 ≤ xt+1 ≤ γ2,
dt+1 = +1 if xt+1 > γ2,

(17)

where γ = (γ1, γ2) are thresholds pre-determined by the economic problem and therefore

known with certainty, and where d = 0 corresponds to a cash position (no bet). Here we

could interpret the xt to refer to the returns in excess of the risk-free rate or simply assign

the no bet position some risk-free return. In addition a further simplification would consist

in choosing γ = −γ1 = γ2 to represent transactions costs so that the investor will choose

to trade only if |xt+1| > γ. Alternatively, γ1 and γ2 could reflect the returns of a risk-free

position which would differ if long/short positions incur in different transactions costs. The

set-up is general enough to accommodate all of these possibilities. In fact, the methods

that we discuss here extend readily to even more categories but will not be explored here

explicitly (see Waegeman, De Baets and Boullart 2008 for such an extension).

Like before, we assume there is a model that generates a continuous signal δ̂t+1 but

instead of varying a single operating point c as in section 4, we consider predictions of the

5 On the evidence for the long run, see Alexius (2001), Fujii and Chinn (2000), and Sinclair (2005).
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ordered categorical positions given by

d̂t+1 = −1 if δ̂t+1 ≤ c1,
d̂t+1 = 0 if c1 < δ̂t+1 ≤ c2,
d̂t+1 = +1 if c2 < δ̂t+1,

for c1 < c2; c1, c2 ∈ (−∞,∞). We collect these thresholds into the vector c = (c1, c2) for

later use. The relation between the γ and the c is very indirect as it depends on what

the δ̂t+1 refer to although of course, maximizing the TP for each category depends on

the γ that define each category. In three dimensional space, the axes of the CC surface

are slightly different than in the traditional case since each describes the true positive rate

for each category (rather than the plot of the true positive rate against the true negative

rate). The category-specific true positive rate can be easily estimated as

T̂P h(c) =
1

Th

∑
dh=d̂h

I(δ̂t+1 ≤ c1) + I(c1 < δ̂t+1 ≤ c2) + I(c2 < δ̂t+1)

where Th refers to the number of observations in the sample that belong to category h.

We collect these true positive rates into the vector TP = (TP−1, TP0, TP+1) and plot the

resulting CC surface as the set of points TP ∀c which lies inside the three-dimensional

unit cube [0, 1]× [0, 1]× [0, 1].

Associated with the CC surface described above is the volume under the surface (V US).

In the traditional 2-dimensional CC frontier, the AUC provides a measure of classification

ability, with a coin-tosser establishing a lower bound AUC = 0.5 against which the classi-

fication ability of a model can be tested. As an alternative thought experiment, consider a

signal which calls outcomes 1/2 randomly with fixed probabilities p1/p2 where p1 +p2 = 1;

the CC surface for this uninformative classifier is just the 1-simplex, under which lies an

area equal to 1/2.

Now in a 3-dimensional V US, notice that the same coin-tosser achieves a lower bound

of 1/6 because although the probability of randomly classifying correctly any two categories

is still 1/2, there are now three possible classification pairs (hence 1/6 = 1/3 × 1/2). As

an alternative thought experiment, consider a signal which calls outcomes 1/2/3 randomly

with fixed probabilities p1/p2/p3 where p1+p2+p3 = 1; the CC surface for this uninforma-

tive classifier is just the 2-simplex, under which lies a volume equal to 1/6. The approach

easily generalizes to classification problems with N > 3 categories: the CC hypersurface
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then has N − 1 > 2 dimensions, and the (hyper)volume under the CC (hyper)surface of

1/N ! for an uninformative classifier.

The V US is a direct extension of the Wilcoxon-Mann-Whitney statistic (see Mossman

1999). Let vj denote the observations of δ̂ for which d̂ = −1; zk when d̂ = 0; and ui when

d̂ = +1 then an empirical estimate of P [v < z < u] is readily seen to be

V̂ US = P̂ [v < z < u] =
1∏3

h=1 Th

T1∑
j=1

T2∑
k=1

T3∑
i=1

{I (vj < zk < ui) , } (18)

where we omit a rule to randomly break ties in the interest of keeping the notation concise.

Dreiseitl, Ohno-Machado and Binder (2000) provide analytic expressions for the variance

of V US as well as the covariance between V US from two competing models and these are

reproduced in the appendix for convenience although the reader is referred to their paper

for a detailed explanation. These results can be used in conjunction with the asymptotic

normality results for the Wilcoxon-Mann-Whitney statistic to conduct inference along the

lines described in section 4, that is, a test of an investment strategy’s performance against

the coin-tosser, which takes the form of a test of the null H0 : V US = 1/6. They can

also be used for comparisons between two alternative strategies with a test of the null

H0 : V USA = V USB. In small samples one can rely instead on the bootstrap.

A V US? statistic that incorporates the returns of each category can be constructed in

analogous manner to the construction of AUC?. Specifically, let

B =
∑
d=+1

xt; C =
∑
d=−1

|xt| ; D =
∑
d=0

it

where it refers to the returns of the no-bet position. However, in the interest of trans-

parency, we will choose the no-bet position to be a cash position, in which case, it = 0. In

general multicategory settings, one would simply calculate the returns that the “infallible

witness” would obtain for each category. We now construct the following weights

wi = xt
B if δ̂ > c2 and d = 1 for i = 1, ..., T3

wk = 1
T2

if c1 < δ̂ ≤ c2 and d = 0 for k = 1, ..., T2

wj = |xt|
C if δ̂ ≤ c1 and d = −1 for j = 1, ..., T1

where recall from expression (18) that T2 is the total number of observations in the cash bin

and c1 and c2 are the thresholds that determine which decision is optimal for the investor.
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Notice that in our example, the returns of all transactions in the no-bet position are zero,

in other words, they are all equally good (or bad) and therefore, there is no reason to weigh

one transaction more than another. However, if the middle category were associated with

an alternative investment with unknown returns, the weights wk would be constructed

simply as wk = it/D, just like with the other categories.

Hence, the empirical counterpart of the AUC? for 3 categories is:

V US? =

TP∑
i=1

wi

Tc∑
k=1

wk

TN∑
j=1

wjI(vj < zk < ui).

Standard errors can be calculated via bootstrap, an illustration of which is provided below.

Finally, we remark on the connection between our V US? statistic and other performance

criteria, specifically Bernardo and Ledoit’s (2000) gain-loss ratio. Consider the more general

case in which there are N > 2 different investment categories indexed by h and let the

per-category total winnings in each bin be Bh (which we defined as B, C, and D above).

Given a classifier, the gains and losses from ex-ante good and bad bets are:

G =
∑
h

BhTP
?
h ; L =

∑
h

Bh(1− TP ?
h )

where

(1− TP ?
h ) =

N∑
j=1
j 6=h

FN?
h,j

since now a false negative can occur when one selects one of the other h categories. The

net profit is then:

Net Profit =

N∑
h=1

Bh [TP ?
h − (1− TP ?

h )] =

N∑
h=1

Bh [2TP ?
h − 1] .

Using the same rescaling G+ L that we used previously, then utility can be expressed as:

U? =
G− L
G+ L

=

∑N
h=1Bh [2TP ?

h − 1]∑N
h=1Bh

.
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The first-order conditions associated with this problem are now given by:

∂TP ?
j

∂TP ?
k

= −Bk

Bj

for all pairs j 6= k in N, holding fixed TP ?
h for h 6= j, k. Thus we get the same sort of

equilibrium condition that we were getting in the two category, long/short case.

6 Empirical Applications: Equity and Currency Strategies

We illustrate the methods discussed in previous sections with examples based on some

widely used equity and currency investment strategies. The equity strategies utilize a gamut

of supposedly plausible signals, including data on prices, dividends, earnings, interest rates

and spreads, and so on. For these signals we work with the well established data series

developed by Goyal and Welch (2003) and Welch and Goyal (2008) and we can compare

our forecasting metrics with theirs.6 The currency strategies include the three common

trading signals, carry, momentum and value, as well as a new strategy, all of which are

discussed in detail Berge, Jordà and Taylor (2010).

6.1 CC and CC
?

Frontiers for Equity Strategies

For our first application, we turn to one of the holy grails of financial economics, the

problem of forecasting equity returns. In this section we will scrutinize the performance

of stock trading rules drawn from a veritable kitchen sink of signals, following the most

recent and state-of-the-art treatment by Welch and Goyal (2008). As these authors have

shown, at first sight many signals may appear to be useful based on in-sample performance

(IS), only to fail when confronted with the “gold standard” of predictive tests—the ability

to provide an informative out-of-sample forecast (OOS).

The strategy to be evaluated is based on the monthly excess return on U.S. equities for

1927:1 to 2008:12 and defined as the return on the S&P 500 including dividends, minus

the “risk-free rate” defined as the 3-month treasury bill rate. The investor’s long/short

positions are then determined by the following 14 indicators:7 (1) the dividend price ratio,

6 We use the new dataset of Goyal-Welch extended through 2008, available on Goyal’s website:
www.bus.emory.edu/AGoyal/Research.html. Their published paper uses data through 2005.

7 All data are taken from Goyal and Welch (2008) and the 2009 vintage updates on Goyal’s website:
www.bus.emory.edu/AGoyal/Research.html
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dp, computed as the difference between the log of dividends and the log of prices; (2) the

dividend yield ratio, dy, computed as the difference between the log of dividends and the

log of lagged prices; (3) the earnings price ratio, ep, computed as the difference between

the log of earnings and the log of prices; (4) the dividend payout ratio, de, computed as

the difference between the log of dividends and the log of earnings; (5) the stock variance,

svar, computed as the sum of squared daily returns on the S&P 500; (6) the cross-sectional

beta premium, csp, which measures the relative valuations of high- and low-beta stocks;

(7) the book to market ratio, bm; (8) the net equity expansion, ntis, which is one of

two measures of corporate issuing activity; (9) the long term yield, lty, on government

bonds; (10) the long term return, ltr, on government bonds; (11) the term spread, tms,

computed as the difference between the yield on long-term government bonds and the

T-bill rate; (12) the default yield spread, dfy, computed as the difference between BAA-

and AAA-rated corporate bond yields; (13) the default return spread, dfr, computed as

the difference between returns on long-term corporate bonds and returns on long-term

government bonds; and (14) the inflation rate, linfl, based on the CPI and lagged one

month to allow for publication lags.

These signals are used for IS prediction over the full period, and OOS prediction using a

long window from 1970:1 to 2008:1.8 The latter window is chosen to be roughly consistent

with the OOS windows used by Welch and Goyal (2008), who find that the inclusion or

exclusion of the 1970s oil shock period can dramatically affect the performance of prediction

strategies. We now report our results and compare our findings to those of Goyal and

Welch (2008). The key difference to remember is that we will be using directional and

realized profit criteria to judge the presence of unexploited arbitrage opportunities, and

not the prevailing RMSE fit-based criterion. Again, this turns out to be significant as some

methods that have high accuracy, may have low profit (and vice versa), so we can draw

attention to whether a particular strategy can “fit where it matters”.

Briefly, at a monthly frequency Welch and Goyal (2008, section 5) found a handful of

strategies whose IS predictive power surmounted conventional significance tests. Under

their RMSE criterion eight strategies were judged successful. However, once these eight

strategies were subjected to a further OOS prediction test, only one, the eqis signal, was

found to have superior IS and OOS performance relative to the null of using the historical

mean return. The term spread tms was found to have marginal IS significance, but OOS

8 The data for csp are only available from May 1937 to December 2002, so the sample sizes for this
variable are slightly smaller in what follows.
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significance. A few more signals were found to be promising when various truncations were

applied to the data.

In addition to IS and OOS statistical inference based on the RMSE criteria, Welch

and Goyal (2008) also consider the profitability of the candidate strategies by construct-

ing a certainty-equivalent gain after postulating a utility function (Brennan and Xia 2004;

Campbell and Thompson 2008). They note that (p. 1488–89) “This allows a conditional

model to contribute to an investment strategy not just by increasing the mean trading per-

formance, but also by reducing the variance....” They found that “In order, among the IS

reasonably significant models, those providing positive CEV gains were tms (14bp/month),

eqis (14bp/month), tbl (10bp/month), csp (6bp/month), cay3 (6bp/month), and ntis

(2bp/month).” However, the authors also indicate the dearth of available tests geared

towards evaluating such improvements, since “we know of no better procedure to judge the

economic significance of forecasting models,...” One of the goals of this paper is to provide

just such a procedure, and one that can not only measure the economic significance of any

gains, but also their statistical significance.

With these preliminaries, we now turn to our results. Our IS predictions are shown in

Table 2, panel (a) using the CC-based evaluation tools. The contrast between the AUC

and AUC? results is striking, and shows that ranking the profitability of strategies can lead

to a very different impression of their merits as compared to tests based on fit. According

to the directional AUC test, only three signals surmount the conventional 5% significance

level: csp, tms and linfl. Of these only csp was found to be significant IS in the Welch-Goyal

findings. However, when we turn to the AUC? test based on profits, the picture is quite

different. Five signals do well by this yardstick, but they are, on the whole, very different

signals: dp, dy, ep, csp, bm, ntis. Only csp performs well as judged by both direction and

profit.

However, as we have noted, in-sample performance alone will not convince an appro-

priately skeptical reader. We now repeat our exercise but this time we compute the OOS

performance of the signals, and we report these results in Table 2, panel (b). Using the

directional AUC test four signals are significant at the 5% level, namely: de, csp, bm, tbl.

Note that only one of these was statistically significant in the IS tests using AUC, namely

csp.

Turning to the profit based AUC? test, three signals are significant at the 5% level, de,

svar, csp, ltr. Yet again, these signals were for the most part not statistically significant in

the IS tests when using the same AUC? test. The clear exception is csp which is the only

28



signal to achieve statistical significance in all four of our tests; a close call would be svar

which was significant at the 10% level IS, and 5% OOS, using the AUC? test.

To sum up, our CC-based tests provide a different way of judging the performance of

equity trading signals, as compared to the more usual reliance on RMSE based criteria.

Comparing the results of our tests to the state-of-the-art methods in Welch and Goyal

(2008), we find important differences in the relative merits of different signals, but at the

end of the day we arrive at what is essentially common ground.

Among equity trading signals, even when we switch to a criterion like AUC? specifically

designed to make precise inferences on the relative profitability of different strategies, we

tend to find no evidence of a robust and stable relationship across IS and OOS predic-

tions for most of the mainstream proposed trading signals. The single exception to this

generalization applies to our findings for the csp signal (the cross-section premium), which

we found to be highly statistically significant in all of our CC-based tests, thus lending

support to the findings of Polk et al. (2006). Figure 2 displays the CC and CC? curves

for the csp signals examined in Table 3.

However, this support is still subject to two caveats. The first is conceptual, for as

Welch and Goyal (2008, p. 1494) note, “[w]hat we call OOS performance is not truly OOS,

because it still relies on the same data that was used to establish the models. (This is

especially applicable to eqis and csp, which were only recently proposed.)” The second

is qualitative, and based on the potential profitability of a csp-based strategy. Suppose

a hypothetical investor went long when the OOS forecast was positive, short otherwise,

their excess return, assuming no transaction costs or margin costs, would have been 27

bps/month (s.d. = 460 bps); or, on annualized basis 3.3 percent per year with a Sharpe

Ratio of 0.20. So whilst there may have been predictable returns that could be judged

statistically significant, not everyone would judge them economically significant.

7 Currency Carry Trades with Long/Cash/Short Positions

Berge, Jordà and Taylor (2010) examine the returns from bilateral currency carry trade

strategies in which a trader borrows in one currency and lends in another while bearing the

risk of appreciation. Four benchmark trading signals are examined in that paper. The first

three are based on simple strategies commonly found in a variety of exchange traded funds

(ETFs) and investible indices, such as the Deutsche Bank currency ETFs and Goldman

Sachs’ FX Currents. The fourth signal is based on a vector error correction model (VECM).
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Table 2: AUC and AUC? for Equity Strategies

We compute the CC frontier and related AUC statistics for the monthly return to the S&P 500,

obtaining the return and a range of candidate trading signals from the dataset in Goyal and Welch

(2008). All signals are start of period, except inflation which is lagged one month to allow for lags

in the CPI announcement. The sample data run from 1927:1 to 2008:12.

(a) In-sample prediction (1927:1–2008:12)
Signal Description N AUC AUC?

dp Dividend price ratio 983 0.5127 0.5385 **
(0.0187) (0.0185)

dy Dividend yield ratio 982 0.5132 0.5413 **
0.0187 (0.0185)

ep Earnings price ratio 983 0.5201 0.5767 ***
(0.0186) (0.0183)

de Dividend payout ratio 983 0.4973 0.5257
(0.0187) (0.0186)

svar Stock variance 983 0.5064 0.5352 *
(0.0187) (0.0186)

csp Cross-sectional premium 788 0.5499 ** 0.5730 ***
(0.0206) (0.0204)

bm Book to market ratio 983 0.4918 0.5416 **
0.0187 (0.0185)

ntis Net equity expansion 983 0.5243 0.5414 **
(0.0186) (0.0185)

tbl 3 month T-bill rate 983 0.5348 * 0.5162
(0.0186) (0.0186)

lty Long term yield 983 0.5363 * 0.5291
(0.0186) (0.0186)

ltr Long term return 983 0.5063 0.5272
0.0187 (0.0186)

tms Term spread 983 0.537 ** 0.531 *
(0.0186) (0.0186)

dfy Default yield spread 983 0.4737 0.4742
0.0187 (0.0187)

dfr Default return spread 983 0.5201 0.5319 *
(0.0186) (0.0186)

linfl Inflation, lagged one month 982 0.5526 *** 0.5154
(0.0185) (0.0187)

Notes: The AUC and AUC? are asymptotically distributed N(0.5, σ). Standard errors in paren-

theses. * (**) (***) denote statistical significance at the 10% (5%) (1%) level for a test where the

null is that the area under the curve is equal to 0.5.
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Table 2 (continued): AUC and AUC? for Equity Strategies

(b) Out-of-sample prediction (1970:1–2008:12)
Signal Description N AUC AUC?

dp Dividend price ratio 468 0.4601 0.5073
(0.0269) (0.0269)

dy Dividend yield ratio 468 0.463 0.5105
0.0269 (0.0269)

ep Earnings price ratio 468 0.4766 0.5335
(0.0269) (0.0268)

de Dividend payout ratio 468 0.4277 *** 0.4305 ***
(0.0267) (0.0267)

svar Stock variance 468 0.503 0.4457 **
(0.0269) (0.0268)

csp Cross-sectional premium 397 0.5800 *** 0.5753 ***
(0.0285) (0.0286)

bm Book to market ratio 468 0.4358 ** 0.4877
0.0268 (0.0269)

ntis Net equity expansion 468 0.5014 0.5036
(0.0269) (0.0269)

tbl 3 month T-bill rate 468 0.5541 ** 0.5065
(0.0266) (0.0269)

lty Long term yield 468 0.5499 * 0.4996
(0.0266) (0.0269)

ltr Long term return 468 0.4933 0.5535 **
0.0269 (0.0266)

tms Term spread 468 0.548 * 0.4973
(0.0266) (0.0269)

dfy Default yield spread 468 0.4587 0.4952
0.0269 (0.0269)

dfr Default return spread 468 0.5065 0.5243
(0.0269) (0.0268)

linfl Inflation, lagged one month 468 0.5459 * 0.5176
(0.0267) (0.0268)

Notes: The AUC and AUC? are asymptotically distributed N(0.5, σ). Standard errors in paren-

theses. * (**) (***) denote statistical significance at the 10% (5%) (1%) level for a test where the

null is that the area under the curve is equal to 0.5.
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Figure 2: Out-of-Sample CC and CC? Frontiers for the csp Signal
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Notes: CC and CC? curves correspond to out-of-sample results in Table 3, panel (b), for csp.

Standard errors for the AUC and AUC? statistics are shown in parentheses.

We provide a brief description below but encourage the interested reader to refer to the

original source for more details.

The Carry Signal c is computed as the interest differential between the local currency

(LC) and the U.S. dollar (US). Under this strategy, the presumption is that high yield

currencies will deliver profits despite the risk of depreciation. In this case uncovered interest

parity either fails, or holds ex-ante but suffers ex-post from systematic and exploitable

expectational errors. Thus ct = iLCt − iUS
t , and the trader using this signal uses the model

x̂t+1 = ct for each currency.

The Momentum Signal m is computed as rate of appreciation of the local currency

exchange rate against the U.S. dollar ELC/US in the previous month. Under this strategy,

the presumption is that appreciating currencies will have a tendency to keep appreciating

on average. Thus mt = ∆logE
US/LC
t , and the trader using this signal uses the model

x̂t+1 = mt for each currency.

The Value Signal v is computed as the undervaluation of the country’s log CPI-

32



index-based real exchange rate level against the U.S. (IFS data) in the prior period q =

ln[ELC/USPUS/PLC ], using deviation from average lagged levels q̄ computed using a trailing

window (to avert look-ahead bias). Under this strategy, the presumption is that currencies

will have a tendency to return to their historic PPP value in the long run. Thus v = q− q̄,
and the trader using this signal uses the model x̂t+1 = vt for each currency.

Finally, the vecm signal is based on a panel VECM forecasting model for the holding

return for each currency, where the dynamic interactions between nominal exchange rates,

inflation and nominal interest rate deviations are its constituent elements.

The data include the nine currencies EUR, GBP, JPY, CHF, AUS, CAD, NZD, NOK,

and SEK, with the USD as the base home currency (i.e., the “G-10” currencies), in a

sample from 1986 to 2008 observed at monthly frequency. Table 3 presents the out-of-

sample (OOS) AUC/AUC ? statistics associated to each of these four strategies for the 540

pooled currency-month observations in our chosen OOS sample window from 2004:1 to

2008:12

The results reported in Table 3 highlight once more the difference between good classi-

fication ability and profitability. For example, the value strategy does not classify direction

significantly better than a coin-toss, but when trades are adjusted for return, clearly the

value strategy outperforms a coin-tosser. Measured by this metric, the VECM strategy

has the highest AUC? at 0.6018, well above the 0.5 null and highly statistically significant.

For a further perspective, the CC and CC? frontiers for the four strategies are shown in

Figure 3.

Indeed, the trading profits delivered by the VECM strategy are not trivial. If a trader

faced no transaction costs and could go long or short each currency at will, then a portfolio

based on the signs of the signals from the OOS VECM model would have generated average

returns of 24 bps per month on each position, with each trade having a standard deviation

of 315 bps. Thanks to diversification, the returns on the portfolio of 9 currencies had a

standard deviation of 161 bps. Annualized, the strategy would have delivered 2.9 percent

per year compounded with a Annualized Sharpe Ratio of 0.46.

Often times the signal generated by a strategy may be weak and the investor may prefer

staying in a cash position, especially if there are transactions costs associated with each

trade. In order to showcase how VUS/VUS ? statistics can be used in such situations, we

redo the previous analysis but now allowing for long/cash/short positions. When the deci-

sion space is binary, there is no ambiguity in determining the ex-post profitable long/short

direction. However, by now adding a cash position, we need some criterion to determine
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Table 3: Out-of-Sample AUC and AUC? for Currency Strategies

We compute the AUC statistics based on the returns from currency trading using one of three

signals, or a combination thereof. The nine currencies are EUR, GBP, JPY, CHF, AUS, CAD,

NZD, NOK, and SEK, with the USD as the base home currency. The trading periods are months

from 2004:1 to 2008:12. The data are from Jordà and Taylor (2009). The carry, momentum, and

value signals are as described in the text. These signals are not based on any econometric model,

only on lagged observables at the start of each trading period. In the case of the VECM, a country-

fixed effect panel vector error-correction model is used to build an out-of-sample forecast, using an

expanding lagged window which starts in 1986:1. The variables in the VECM model are the lagged

change in the exchange rate, lagged interest differential, lagged inflation differential, and lagged

real exchange rate deviation. The VECM signal is the one-step ahead forecast. In each period a

long-short ±$1 bet is placed on each currency, based on the signal.
Signal Description N AUC AUC?

c Carry 540 0.5021 0.4355 ***
(0.0247) (0.0243)

m Momentum 540 0.5170 0.5506 **
(0.0248) (0.0245)

v Value 540 0.5347 0.5879 ***
(0.0249) (0.0246)

r̂V ECM Panel VECM forecast 540 0.5662 *** 0.6018 ***
(0.0249) (0.0248)

Notes: The AUC and AUC? are asymptotically distributed N(0.5, σ). Standard errors in paren-

theses. * (**) (***) denote statistical significance at the 10% (5%) (1%) level for a test where the

null is that the area under the curve is equal to 0.5.

the ex-post choice of long/cash/short positions.

Absent good data on transactions costs, we decided to calculate a minimum symmetric

return threshold γ beyond which a long/short perfect-foresight trade would be triggered,

but otherwise the trader would remain in the cash position. In order to find such a

threshold, we used a grid-search of values of γ that would maximize the ex-post Sharpe ratio

for a $1 investment. This is reported in Figure 4 and shows that the ex-post Sharpe ratio is

maximized for γ = 1.91%. This results in a mean monthly return of 3.7% and an annualized

Sharpe ratio of 1.45. These numbers may appear wildly optimistic but we remind the reader

that they refer to the perfect foresight returns. With this choice of threshold, the investor

would stay in the cash position about 50% of the time, and the other 50% of the time he

would go long/short in equal proportion. Given this ex-post classification of the data, we

can now ask how would the four benchmark carry trade strategies reported in Table 3 fare
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Figure 3: CC and CC? for Four Currency Strategies
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Figure 4: Sharpe Ratio as a Function of Threshold1.1
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if one allowed for a cash position and for this we calculated each strategy’s VUS/VUS ?

statistics, the results of which are reported in Table 4.

Recall that the null of no classification ability (the equivalent of the coin-toss null in

CC-space) is now V US = 1/6 ' 0.167. By this metric, the momentum, value and vecm

signals handily beat this simple null (standard errors are calculated with the bootstrap).

The carry signal does not however, and in fact attains VUS/VUS ? values below 1/6,

suggesting that the trader would be well advised to reverse the interpretation of the signal.

However, it is interesting to see that when weighing by returns in VUS ?, the momentum

signal now appears to do better than the VECM signal (our previous favorite) and by a

statistically significant amount (using bootstrapped confidence 95% confidence intervals).

One explanation for this result is that, while VECM may be more consistent at picking

the correct direction of a carry trade, it may be missing some of the high-profit trades

that momentum is picking up. And in our VUS setup, the high profit trades take on even

greater importance: remember that given our imposed thresholds, ex-post we remain in

the cash position about 50% of the time and only trade when we can beat a 2% monthly

return, which is rather conservative.
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Table 4: Out-of-Sample V US and V US? for Currency Strategies

We compute the CC frontier and related V US statistics for the monthly return to the four trading

strategies. The sample data run from 2004:1 to 2008:12.

Signal Description N V US V US?

C Carry 540 0.1648 0.1269
(0.017) (0.014)

M Momentum 540 0.2067 *** 0.2554 ***
(0.020) (0.020)

V Value 540 0.1861 *** 0.2025 ***
(0.024) (0.020)

vecm VECM forecast 540 0.2061 *** 0.2113 ***
(0.020) (0.020)

Notes: Bootstrap standard errors in parentheses. * (**) (***) denote statistical significance at the

10% (5%) (1%) level for a test where the null is that the area under the curve is equal to 1/6.

8 Conclusions

The presence of excess returns in a zero net-investment strategy does not per se violate

the efficient markets hypothesis. But Bernardo and Ledoit (2000) construct bounds to

these arbitrage opportunities, using the gain-loss ratio, that have implications for asset

pricing in incomplete markets that are robust yet with sufficient texture to be economically

compelling. Our paper is a compendium of statistical methods designed to investigate this

sort of problem from a variety of angles interesting to academic researchers and investors

alike.

We design techniques that allow one to compare alternative predictive models on the

basis of profitability in a manner that is robust to variation in investor preferences. But

our methods go beyond providing simple summary statistics, they also provide a complete

description of an investor’s choices. Formal inferential procedures are designed to test the

null of absence of arbitrage; to test the relative overall profitability of competing investment

strategies; to test whether a strategy is stochastically dominated by another; and to provide

confidence bounds on optimal operating points.

In practice, specially (but not exclusively) when there are transaction costs, it is im-

portant to allow the investor to adopt a neutral position during those times when the

expected return from the risky position is low. Allowing for such an extension can greatly

enhance the overall profitability of a zero net-investment strategy and change the perceived
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opportunities to arbitrage. Hence we develop extensions for such a case and along the way

generalize our framework for more complex strategies involving multiple categories. We

also show how these more sophisticated strategies can be related to Bernardo and Ledoit’s

(2000) gain-loss ratio.

We illustrate our methods with applications to the stock market and the carry trade.

On the former, we show how Welch and Goyal’s (2008) results based on RMSE metrics fare

under our framework and show that, while there is perhaps one strategy with statistically

significant returns, its risk-return characteristics are probably not in violation of conven-

tional parameters of investor preferences. Our application to the carry trade is based on

Berge, Jordà and Taylor (2010) and identifies a strategy that generates a statistically sig-

nificant departure from no arbitrage (but not necessarily a violation of efficient markets),

that is later shown to be dominated by another strategy if one allows the investor to adopt

a neutral position.

The framework that we propose is non-parametric but simple to implements and makes

explicit the connection between the statistical properties of the returns of investment po-

sitions, and the investor’s preferences over such positions. Moreover, we show how this

framework connects with a well established benchmark of asset pricing in incomplete mar-

kets, the gain-loss ratio. For these reasons we think our methods represent a viable standard

approach to analyze an important class of problems in finance.

9 Appendix: The Variance of VUS

The variance for V̂ US in expression (18) available in Dreiseitl, Ohno-Machado and Binder

(2000) can be calculated as follows. Let θ̂ = V̂ US, then:

var(θ̂) =
1

T1T2T3

[
θ(1− θ) + (T3 − 1)(q12 − θ2) + (T2 − 1)(q13 − θ2) + (T1 − 1)(q23 − θ2)+

(T2 − 1)(T3 − 1)(q1 − θ2) + (T1 − 1)(T3 − 1)(q2 − θ2) + (T1 − 1)(T2 − 1)(q3 − θ2)

]
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where:

q1 = P [I (vj < zk < ui) = I (vj < zK < uI)] for K 6= k, I 6= i

q2 = P [I (vj < zk < ui) = I (vJ < zk < uI)] for J 6= j, I 6= i

q3 = P [I (vj < zk < ui) = I (vJ < zK < ui)] for J 6= j,K 6= k

q13 = P [I (vj < zk < ui) = I (vj < zK < ui)] for K 6= k

q23 = P [I (vj < zk < ui) = I (vJ < zk < ui)] for J 6= j

and all population quantities can be substituted by their sample estimate equivalents.
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