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This paper develops a high-dimensional dynamic discrete-continuous
demand model for storable fast moving consumer goods. Assumptions of
existing models are relaxed while retaining computational tractability. As a
result, the model captures rich inter- and intra-temporal substitution
patterns, allows for a detailed understanding of dynamic consumer
behaviour, and provides a framework with wide applicability. To estimate
and solve the dynamic demand model, I use techniques from approximate
dynamic programming, large-scale dynamic programming in economics,
machine learning, and statistical computing. In this paper I apply the
model to the UK laundry detergent sector using household level purchase
data.
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1 Introduction

Storable fast moving consumer goods (FMCGs) account for a large portion of household
grocery expenditures. In the UK, the storable FMCG market is worth in excess of £1
trillion. These include alcohol, tinned produce, frozen produce, table sauces, condiments,
personal hygiene products, household cleaning products, and pet food.

There are two key features of storable goods. First, they are typically sold at a constant
price for sustained periods of time interspersed with frequent, stochastic, temporary
sales.1 While the timing of promotions is uncertain, prices exhibit persistence. Through
repeated shopping trips, households form expectations over future prices and factor them
into their purchase decisions.

Second, the durability of storable FMCGs enables them to be held in inventory to
be consumed at a later date. As a result, households make infrequent purchases to
meet both current and future consumption needs. The process of building up stocks
with purchases and depleting them through consumption creates inter-temporal links in
demand behaviour.

In light of these considerations, inventories are a key determinant of demand dynamics.
When inventories are high, households can service current consumption with existing
inventory that occupies limited storage space. The combination of these factors results
in low demand for new purchases. At the other extreme, when a household’s stocks are
depleted, demand for new stock is high because they need to make purchases to consume.
At intermediate levels of inventory, households can choose to make purchases for both
consumption and storage. In particular, they may accelerate purchases in response to
price promotions.

Problematically for demand estimation, inventories are unobserved by researchers.2
Because current prices and inventories are a function of past prices, the omission of
inventories leads to price endogeneity. In turn, elasticities and welfare analysis based
on a static demand estimation are biased. This problem could be resolved if
instruments that are correlated with current prices but uncorrelated with past prices
were available.3 However, since observed prices are serially correlated, finding such
instruments is challenging - if not impossible.

An alternative is to integrate out over inventories during estimation - a
computationally intensive procedure requiring simulation of sequences of purchases,
consumption and inventories. This approach is further complicated by the fact that
households have the option to purchase, store and consume many different variants of
the good. For example, in the UK laundry detergent industry, households’ choice set
contains approximately 100 purchase options with over 35 different types of detergent

1Erdem et al. (2003); Hendel and Nevo (2006a,b); Nevo and Hendel (2012); Osborne (2013); Wang
(2012, 2013) all report that prices typically exhibit these features.

2Even though detailed household level purchase diary data records price, quantity purchased, product
characteristics and date of all purchases for each household in the survey, inventories cannot be
constructed without data on initial inventories and consumption.

3With these instruments, marginal utility of income could be consistently estimated using a micro-BLP
procedure.
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in any given week.
Even without the unobserved inventories, the curse of dimensionality is severe when

solving and estimating a high-dimensional dynamic choice model. The need to integrate
out over the high dimensional inventory state space further exacerbates this sizeable
computational challenge.

Faced with these issues, existing dynamic demand models for storable FMCGs have
sought to limit the model’s flexibility to reduce computational resources needed to
estimate it. In general, there have been two approaches.

One approach imposes restrictions on the model so that the consumer’s decision can
be split into a static brand choice and a dynamic quantity choice (Hendel and Nevo
(2006a); Wang (2015); Osborne (2017)). Building on an approach pioneered by Melnikov
(2000, 2013), the brand-size split is further leveraged by assuming that consumers’ price
expectations are captured by the evolution of the ex-ante expected utility of purchasing
particular sizes.

The other approach allows for both the brand and quantity choice to be dynamic. The
price process varies over brands or sizes and is consistent with observed price movements
(Erdem et al. (2003); Sun (2005)).

Both approaches adopt restrictions on the functional form of utility from
consumption. Further, if the number of choices entering the choice set is large, neither
of these approaches yield computationally tractable demand models. While successful,
the range of applications is highly limited. Indeed, in many industries, products are
available in many different varieties and sizes and the choice sets are high-dimensional.

UK laundry detergent is one such industry and is the subject of this paper. It is chosen
because it highlights many of the challenges that arise when estimating dynamic demand
models for storable goods. First, as noted above, the choice set is high-dimensional -
there are around 100 products in the choice set in each week.4 Second, differentiation of
detergents affects their quality, ease of use, and costs of storage. Third, it exhibits the
promotional price patterns that are often observed in many storable good industries.

This paper presents two key innovations to alleviate the curse of dimensionality.
First, faced with the cognitively infeasible task of forecasting a high dimensional time
series of prices, boundedly rational households are assumed to use a low-rank
statistical approximation to model price dynamics. Through repeated shopping visits,
households are assumed to develop a hedonic model to reflect the cross-sectional
distribution of prices and a low dimensional factor model to capture price dynamics.5
Second, when deciding which, if any, detergent to purchase households are assumed

to use an approximate solution to their high-dimensional dynamic choice problem. This
too can be viewed as a boundedly-rational approach to making cognitively challenging
decisions.

Specifically, households are assumed to make use of the fact that they stock no more
than a few products at a time. In line with this observation, when making purchase

4There are eight major brands, available in five different formats sold in many different pack sizes (i.e.
over 13 pack sizes are needed to cover 95 percent of sales).

5 Bai and Ng (2008) provide an overview of factor models.
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decisions households are assumed to only consider the value of the stock they can
consume. Therefore a good decision rule needs only to keep track of a handful of
detergent inventories at any one time and can use a low-dimensional representation of
the large inventory state space with minimal loss of information.

Beneficially, these dimension reduction strategies impose fewer restrictions than
existing models. As such, this modelling framework can build on the seminal work of
Erdem et al. (2003) and Hendel and Nevo (2006a).

First, the price forecasting model developed in this paper builds on aspects of the
different approaches taken by Hendel and Nevo (2006a) and Erdem et al. (2003).

As noted above, Hendel and Nevo (2006a) use the evolution of ex-ante expected utility
of consuming each size to model price dynamics. Using this approach all brands of the
same size are assumed to have identical price processes. In this case, inter-temporal
substitution patterns produced by their model reflect consumer responses to expected
changes to quality-adjusted price indices for each size.

Beneficially, consumers can take into account differences in price dynamics related to
the size of products. Indeed, in the UK laundry detergent industry smaller products
tend to be promoted more frequently, than larger products. However, one drawback of
this approach is that unless the quality-adjusted price indices are dominated by specific
brands, brand related price dynamics do not influence consumer purchases or
consumption.

In reality, it is likely that through repeated shopping visits, consumers understand
promotional pricing patterns vary over brands. While some brands are never
promoted, others are promoted relatively frequently. They also observe that
promotions of competing products tend to be sequenced as a result of what they
perceive to be manufacturers’ responses to rivals’ promotions.

To build on our understanding of how such price dynamics affect consumer demand,
it is therefore desirable to enable consumers to respond to brand-specific price dynamics
observed in the data. Indeed, this appears to be one of the motivating factors behind
the design of the price process used in Erdem et al. (2003).

In their model of the US ketchup market, they estimate brand specific price
processes. However, to limit the dimension of each price process, they assume that the
price movements of the brand’s most popular pack size are mirrored by the other sizes.
However, while this restriction may be suitable in the US ketchup industry - it may not
be appropriate in other FMCG industries.

In my forecasting model, consumer expectations can differ over both the size and brand
of the product. This is possible because my statistical price forecasting model uses a
low rank approximation to product-specific asynchronous promotional price patterns
observed in the data.

Second, I extend existing models by allowing for high-dimensional choice sets. As
noted above, existing models require that the number of alternatives in the dynamic
discrete choice problem is low-dimensional. This is because the number of state space
variables needed to forecast prices is directly linked to the size of the choice set.

For Hendel and Nevo (2006a) this issue arises because the state space includes a
quality-adjusted price index for each pack size. Therefore computational benefits of
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imposing utility restrictions are quickly eroded by the curse of dimensionality when there
are more than a few different sizes (i.e. more than 4 or 5). In Erdem et al. (2003) the
dimension of the state space increases with the number of brands. These constraints have
limited the applicability of these existing models to many storable FMCG industries.

However, my forecasting model does not directly depend on the number of brands or
pack sizes in the choice set to reduce the dimension of the price forecasting problem.
Instead, it does so by exploiting underlying correlations in observed price series. As a
result, the link between the cardinality of the choice set and the dimension of the state
space is broken. Without these constraints, I can incorporate high-dimensional choice
sets with many brands and sizes. Moreover, I do so without adding more restrictions to
the utility function.6

Finally, extending the approaches of Erdem et al. (2003) and Hendel and Nevo
(2006a), I allow consumption to be endogenous and multi-dimensional.7 When
combined with additional flexibility of my price forecasting model, this approach to
modelling consumption enables households to respond to expected price changes by
altering consumption and/or purchases.

Taken together, these advances provide a dynamic demand modelling framework that
can be used to develop increasingly realistic models of consumer behaviour. In turn,
delivering new insights into the nature of competitive interactions between firms in
these industries and aiding antitrust policy analysis.

To estimate and approximate the solution to the dynamic demand model, I use
techniques from approximate dynamic programming (ADP). ADP combines tools from
statistics and machine learning to approximate the solution to computationally
intractable dynamic programming problems. It encompasses a wide variety of
techniques from a collection of disparate fields that have developed specific approaches
to approximate solutions to complex dynamic programs they encounter.8
There exists a nascent literature where ADP methods have been used to estimate

dynamic models in economics. Hendel and Nevo (2006a), Sweeting (2013) and Fowlie
et al. (2016) use parametric policy function iteration described by Benitez-Silva et al.

6In contemporary work, Osborne (2017) builds on Hendel and Nevo (2006a) to allow for multiple
product sizes. To achieve this he adds more restrictions to the utility function. By ruling out
quantity discounts and assuming that flow payoffs can be rescaled by the quantity purchased of a
given brand, Osborne (2017) reduces the state vector to a single expected utility state. As a result
all brands and sizes are assumed to follow the same price process. The benefit of this approach is
that he makes the expected utility of consuming a given brand continuous in the amount purchased.
Therefore, these additional restrictions can be used to circumvent computational costs associated
with Hendel and Nevo (2006a) inclusive value approach when there are many sizes.

7In Erdem et al. (2003), consumption is multi-dimensional and assumed to be exogenous. To
circumvent the problems of tracking a high dimensional inventory, Erdem et al. (2003) assume that
consumption is proportionately drawn from all stocks. Combined with a linear utility specification,
this reduces the inventory state space to just two dimensions. In Hendel and Nevo (2006a)
consumption is endogenous and utility from consumption is assumed to be the same for all products.
Therefore only aggregate inventories are needed in the state space.

8Indeed, some of the techniques used are closely linked to generalised stochastic search algorithms that
have been used to solve large-scale dynamic programs in economics (see Maliar and Maliar (2014);
Judd et al. (2011)).
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(2000) - an early ADP algorithm. Arcidiacono et al. (2012) show how to use sieve value
function iteration to estimate and approximate the solution to dynamic single agent
models with large-state spaces - an approach closely related to the ADP methods used
in this paper. Other ADP techniques have also been used to approximate solutions to
large scale dynamic games (see Farias et al. (2012)).

One of the key concepts of ADP is that dynamic models should reflect the reality
of the decision environment as closely as possible. Then, within this detailed dynamic
model, agents are assumed to make near-optimal decisions using an approximate solution
to their choice problem. This mirrors the boundedly rational approach households are
assumed to use to solve their high-dimensional dynamic choice problem.

While the dimension of the price and inventory state space is reduced, the state space
is still moderately sized. To help mitigate the curse of dimensionality associated with
moderately sized dynamic programs the value function is approximated using a Smolyak
polynomial (see Judd et al. (2014)). Beneficially, the basis functions of this family of
polynomials grow polynomially - not exponentially - in the size of the state space.

The approximation to the solution of the household’s choice problem is characterised
by the coefficients of this polynomial. However, if the optimal solution does not lie in
the space spanned by the approximating polynomial, then the fixed point of the Bellman
equation evaluated using the approximate solution may not exist.

An alternative approach is to solve a modified version of the Bellman equation in
which the optimal solution is projected onto the space spanned by the basis functions
of the Smolyak polynomial. In this case, the approximate solution to the household’s
dynamic choice problem is the set of coefficients that define the fixed point of a projected
version of the Bellman equation.

As highlighted by Bertsekas (2011b), the application of standard dynamic
programming techniques will not necessarily deliver the fixed point of a projected
Bellman equation.9 Therefore, to find this fixed point, I use an ADP algorithm called
λ-policy iteration (Bertsekas (2015)) designed to solve projected Bellman equations.
Like exact policy iteration, this algorithm repeatedly applies two steps: (i) policy
evaluation, and (ii) policy improvement.

The value of using the policy being evaluated in step (i) is calculated using simulation.
To find the coefficients that represent the value of following the policy, the sum of
squares of the Bellman equation residuals visited along the simulation trajectory are
minimised using stochastic projected gradient methods (Bertsekas (1999); Parikh et al.
(2014)).10 The policy improvement step uses the envelope condition method (Maliar and
Maliar (2013)). The solution to the projected Bellman equation results from iterative
application of these two steps until convergence or until a pre-specified large number of
iterations are completed.

The dynamic demand model is estimated using the simulated method of moments.
To fit the structural parameters I use an adaptive Markov chain Monte Carlo (MCMC)

9This is because the iterative application of the Bellman equation is not necessarily a contraction
mapping on an arbitrarily chosen Euclidean norm.

10These methods are well suited to sparse high dimensional least squares problem.
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method from statistical computing (Chernozhukov and Hong (2003); Łącki and
Miasojedow (2015); Baragatti et al. (2013)).

As noted by Imai et al. (2009) and Norets (2009), solving the dynamic demand model
at every parameter guess is costly for MCMC methods. In line with the approach
suggested by Imai et al. (2009), I estimate the model by alternating between fitting the
structural parameters using a single iteration of the estimation algorithm and solving
the dynamic demand model using a single iteration of the ADP algorithm.11

The model is then applied to the UK laundry detergent industry using household level
purchase data from Kantar Worldpanel. The data spans the period from 1st January
2009 until 31st December 2011. For the application, I focus on households who make
the vast majority of their purchases at one store - a leading grocery retailer in the UK.

I show that the model closely matches the distribution of brand and format shares.
Specifically, by introducing unobserved persistent taste heterogeneity the model closely
matches the high level of brand and format loyalty observed in the purchase data.

Further, the model captures key price and inventory dynamics which I show using
two policy experiments. These price experiments highlight the role of purchase
acceleration from promotional prices, suggest that inventory costs confer market power
on manufacturers, and show the importance of unobserved heterogeneity in preferences
in understanding consumer dynamics.

The remainder of the paper is structured as follows. In Section 2 I provide an overview
of the UK laundry detergent industry and highlight the key economic issues. Section
3 describes the dynamic demand model for the UK laundry detergent industry and
details the dimension reduction strategies used. Section 4 discusses the identification
and estimation of the model, respectively. The results of the empirical application to the
UK laundry detergent industry are presented in Section 5 along with policy simulations.
Section 6 concludes.

2 UK Laundry Detergent Market

The nature of products sold in the UK laundry detergent industry make the application
of existing storable good demand models to it challenging. In addition to the price and
inventory dynamics that are a feature of storable good industries, products are highly
differentiated. In the UK, the retailer sells eight brands, five different formats in over
ten sizes.

Detergents vary in their efficacy; high quality brands are perceived to provide superior
cleaning performance to budget detergents. Further, some types detergents are more
effective at removing stains (i.e. powder, tablets), while others are better suited to
washing delicate clothes and protecting bright colours (i.e. liquid, capsules). In addition,
the format of the detergent leads to consumers tend to use and store them differently.
Finally, there are many pack sizes - preventing straightforward application of existing
methods.

11A similar technique is used by Osborne (2017).
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The remainder of this section discusses these issues in more depth. The brands,
formats and different pack sizes available are documented. Further, reduced form
evidence of price and inventory demand dynamics is presented. I begin with brief
description of the data used.

2.1 Data

The analysis of the UK laundry detergent industry is based on individual household
purchase data sourced from Kantar Worldpanel. Households that take part in the survey
scan the barcode of the items they purchase. Using the scanned barcode, the survey
records the price and number of packs bought together with the characteristics of the
detergent purchased. In addition, the purchase date and store in which the product
was bought is also recorded. The purchase data is supplemented by annually updated
household demographics and includes details of household composition.

The data used spans the period from 1st January 2009 until 31st December 2011. It
focusses on households who make at least 75 percent of their purchases at one store - a
leading UK supermarket.12 Purchases at other retailers are included in the analysis for
these households.

The 10th and 90th percentile of grocery spending per equivalent adult are £30 and
£70, respectively.13 Households in the sample contain 1.7 equivalent adults on average
and are observed for an average of 135 weeks. A household spends £48 per equivalent
adult on average on weekly groceries, of which £2.31 is spent on laundry detergent.

2.2 UK Laundry Detergent

In the UK, laundry detergent is sold in packages called Stock Keeping Units (SKUs).
Each SKU contains a single type of detergent and provides a discrete bundle of washes.
Physical and quality differences in laundry detergents affect household utility from
consumption, storage costs and the price. The number of washes in a SKU determines
the consumption quantity that can be serviced without making new purchases.

In this section I describe the physical attributes of laundry detergent sold in the UK.
I discuss how they affect the design of the dynamic demand model and the ramifications
they have for the applicability of existing approaches.

2.2.1 Brands and formats

The brand and format of a detergent are its defining characteristics of laundry detergent
sold in the UK. Other aspects of differentiation include effective temperature range,
whether the enzymes are non-biological, scent, and additional stain removal capacity.
However, many of these additional aspects of detergent differentiation are closely tied to

12Spending in UK supermarkets accounts for approximately 2 in every 5 pounds of the UK’s retail
expenditure sector.

13The modified equivalent adults scale is used. The first the adult counts 1, then for anyone else over
the age of fourteen add 0.5. For those under the age of 14 add 0.3.
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the detergent’s format and/or only included in high-end brands. Therefore, by focusing
on brand and format of a detergent, these other characteristics are effectively captured.

Brands There are six major brands sold by two large manufacturers.14 In addition,
the retailer sells its own private label (PL) detergent, as well as several other smaller
niche brands.

The distribution of the price per wash for each brand is summarised by box plots in
Figure 1. The average price per wash is £0.20 - the same as Brand E. Brand A, Brand
B and Brand D are the premium brands and are priced 24%, 14%, and 10% higher than
average price per wash. The cheapest is the retailer’s PL and is around 30% cheaper
that Brand E on average. Budget brands Brand F and Brand C are priced close to
the retailer’s PL; their average price per wash is 15% and 22% cheaper than Brand E
respectively.

In terms of market shares, the bottom panel of Figure 1 shows that the most purchased
brand is the retailer’s private label with 34% of all washes purchased - suggesting many
consumers are price sensitive and elect to purchase the cheapest product. The budget
brands are less popular; Brand C and Brand F have 7% and 9% respectively. Brand E,
the mid-range brand, is the second most popular with 21% market share. Suggesting
that while some consumers focus on price they also like to consume branded products.
This is further supported by the fact that the higher quality brands - Brand A, Brand
B and Brand D - together account for around 30% of the market.

This highlights that the demand model must also be able to capture consumer
heterogeneity over the quality of detergent purchased and allow it to impact on the
amount consumed.

Formats Detergent is available in one of five formats: liquid capsules, gel, liquid,
powder and tablets. Each format differs in how it is used, its efficacy, the amount of
physical storage it occupies, and its ease of storage.

At the point of consumption, households can choose how much liquid, powder or gel
to use in a wash. In contrast, capsules and tablets are sold in pre-measured, discrete
dosages. Further, the format may also impact on the type of laundry it is being used for.
In particular, the presence of bleach in powder makes it especially suitable for removing
deep stains, whereas liquid and gel might be better for delicate garments. Formats
also differ in the physical amount of material needed for one wash. In particular, the
physical amount of liquid based detergents for a single wash is less than solid detergent.
Consequently, powder and tablets are likely to take up more physical storage space than
other formats per wash. As a result the format being consumed materially affects both
consumer utility and storage costs.

In addition, price per wash varies significantly across detergent formats. Figure 1
uses box plots to summarise the observed distribution of price per wash for each format
in the data. The convenience and storage flexibility of capsules and tablets appears
to command a 10% price premium relative to powder - the second cheapest format on

14For confidentiality, brands and manufacturers are anonymised.
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average. While performance of gel is broadly similar to liquid, its novelty, combined
with its low storage costs and ease of use commands a 25% price per wash premium
relative to liquid.

In terms of volume of washes sold, the bottom panel of Figure 1 shows that powder
detergents are the most popular (38%), followed by liquid (21%). Tablets account for
17% and capsules and gel account for around 11% of washes sold.

Given these differences, one might expect utility of consumption and storage costs to
vary by format. Therefore, it is desirable to allow household utility from consumption
and cost of storage to differ by detergent format.

2.2.2 Pack sizes

The distribution of SKU sizes available in the UK laundry detergent industry is shown in
Figure 2. It shows that laundry detergent in the UK can be purchased in a wide variety
of sizes. The five most popular SKU sizes only account for 55 percent of purchases
purchased. To cover 95% of all purchases, in excess of 13 different SKU sizes are needed.
As such, the model must be able to incorporate a choice set with a large number of
different size choices.

In existing approaches to estimating dynamic demand models of storable goods a
dominant SKU size (Erdem et al. (2003)) or a low-dimensional number of SKU sizes
(e.g. Hendel and Nevo (2006a)) is used to reduce the dimension of the price state space
to help address the curse of dimensionality. For example, Hendel and Nevo (2006a)
impose restrictions on the dynamic demand model to split the household’s purchase
decision into a static brand choice that is conditional on the size of the SKU purchased
and a dynamic discrete choice over which size to purchase. Even with these restrictions,
the price state space is high dimensional and gives rise to the curse of dimensionality.

Using the approach pioneered by Melnikov (2000, 2013) and with additional
restrictions, the high-dimensional price state space can be replaced by an ’inclusive
value’ state space with dimension equal to the number of SKU sizes.15 For example,
Hendel and Nevo (2006a) analyse the US liquid detergent market segment between
June 1991 to June 1993. In their demand analysis of this market segment there are
around ten brands and four sizes. Therefore, these additional restrictions replace a 40
dimensional price state space with an inclusive value state space with four dimensions -
one for each size.

In addition to the restrictive assumptions, one drawback of this approach is that
it relies on there only being a handful of different SKU sizes. When there are many
different SKU sizes, the inclusive value state state is also high dimensional. In this case,
this approach does not yield a computationally tractable model. Indeed, there are many
markets where the products are sold in many different SKU sizes. The UK laundry
detergent is one such industry.

In the spirit of static nested logit models, one might construct groups of ranges of SKU
sizes. Then estimate the demand model using a static-brand dynamic-size group split.
15’Inclusive value’ refers to the ex-ante expected utility for a household using a random utility model

to choose the utility maximising option from a set of alternatives.
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Figure 1: Price per wash and market share: by format and brand

Market Shares by number of purchases (%)

Formats
Brands Caps Gel Liquid Powder Tablets Total

Brand A 2.87 5.25 0.18 2.03 1.24 11.59
Brand B 2.13 3.31 0.21 3.64 1.22 10.52
Brand C 0.13 0.70 5.51 0.25 6.58
Brand D 0.78 1.14 0.74 3.44 1.13 7.24
Brand E 1.91 8.36 7.22 3.04 20.54
Brand F 0.32 3.64 5.20 0.17 9.33
PL 2.88 1.89 8.82 10.84 9.29 33.72
Other Brands 0.01 0.22 0.08 0.17 0.49

Total 11.03 11.59 22.89 37.96 16.53 100.00
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Problematically, conditioning on the size group purchased, only the upper and lower
bound of the quantity purchased is known and the inventory available for consumption
can take on a range of values. Therefore, consumption, utility, inventory costs, and the
next inventory in the next period are set valued. In this case, the dynamic program
conditional on purchasing from a group of different size SKUs is not well defined and
cannot be solved using standard dynamic programming methods. Hendel and Nevo’s
(2006) estimation cannot be applied.16
It may be tempting to rectify this by using the expected SKU size purchase or

another summary statistic of the size group as a size proxy in the state transition
function. However, this will necessarily result in a mis-measured inventory and
incorrect specification of the transition function of the model.17

These approaches runs counter to best practice in the approximate dynamic
programming literature developed across a wide range of applications. Powell (2011)
states

“It has been our repeated experience in many industrial applications that it
is far more important to capture a high degree of realism in the transition
function than it is to produce truly optimal decisions”.

This statement reflects the approach taken in this paper. Rather than artificially restrict
the households’ dynamic choice problem by adding assumptions of convenience, this
paper aims to accurately model the high-dimensional price and inventory dynamics.
The computational tractability of the model is achieved by combining statistical models
of price dynamics and approximates the solution to the model.

2.3 Demand Dynamics

In a dynamic demand model there are two avenues through which demand behaviour is
inter-temporally linked. One is through household beliefs about future price movements
or promotions. The other is thorough the household’s ability to store inventories.

Using observed price and household purchase data, this section assesses whether
there is any evidence that both households’ beliefs over price expectations and existing
inventories create inter-temporal links in demand behaviour.

Laundry detergent is often sold on promotion. Figure 3 shows examples of time series
of the price per wash for four SKUs that differ in number of washes, brand and format.
These price series highlight that the length, depth, and frequency of promotions vary
with SKU size, brand and format. Other SKUs exhibit similar price patterns.

The upper left panel of Figure 3 shows that Brand B powder with 42 washes is
sold on relatively infrequent deep discounts of around 50% that can last for several
weeks. In comparison, the 33 wash Brand D capsules SKU (top-right) discounts are less
pronounced and less frequent but typically last longer. Brand E liquid with 28 washes

16Osborne (2017) estimates a nested logit model dynamic demand for storable goods by adding
assumptions on the ratios of pack sizes within size groups.

17These errors might be especially large for size groups with a wide range of sizes.
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Figure 2: Sales are not concentrated in a handful of SKU sizes

(bottom-left) is often sold on promotion with around 1/3 off the price - though the
discounts vary between 10% to 50%. In contrast, the retailer’s private label 24 wash
tablets SKU is never promoted. This reflects and everyday low price strategy typical of
the retailer’s private label products.

Through repeated shopping trips households are likely to be able to anticipate price
movements, and factor them into their purchase decisions. For example, household’s
may respond to a belief that a promotional price may be short lived by accelerating
purchases. Such purchases build up inventories and delay the need to purchase again
in the near future. To test for such behaviour, I evaluate the impact of current and
past prices per wash on the inter-purchase duration (i.e the number of weeks between
purchases_ - a measure of purchase acceleration.

As discussed by Boizot et al. (2001), if price dynamics affect current demand, past
and current purchase price per wash should have opposing impacts on inter-purchase
duration.

To see why, suppose the previous SKU was an accelerated purchase in response to a
sale that the household expected to be short-lived. Following the purchase the household
inventories are high. With more detergent in stock, the household can wait longer before
they need or want to buy more detergent. Therefore, one should expect inter-purchase
duration to be negatively linked to past prices if there is purchase acceleration. Similarly,
if a detergent is currently on sale and household’s accelerate purchases, the time between
purchases shorter. Therefore, one should expect current price price to be positively
correlated in weeks since the previous purchase.

Figure 4 shows the result of a regression of the logarithm of weeks since purchase on
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Figure 3: Selected price per wash time series

the current and previous logarithm of the price per wash, brand and format together
with fixed effects for households. The current price per wash is positively correlated
with inter-purchase duration; this suggests that price expectations impact on the timing
of purchases are an important aspect of households’ purchasing behaviour.

To explore whether the inventories affect the demand for new purchases, figure 5 shows
the distribution of inter-purchase duration conditional on the washes per equivalent
adult of the previous purchase. It partitions the sample into four groups: households
that purchased 0 to 8 W/eq. ad. (top left), 8-12 W/eq.ad. (top right), 12-16 W/eq. ad.
(bottom left) and those who bought more than W/eq. ad. (bottom-right).

Figure 5 shows that the distribution of time between purchases shifts rightwards when
more washes per equivalent adult are purchased. This is consistent with household’s
preferring to run down inventories before purchasing again. That is, higher inventories
reduce current demand for new purchases.

While the majority of the impact of inventory is expected to be on the decision to
purchase, I explore whether current demand conditional on purchase also depends on
inventory. To that end, I regress the logarithm of the number of washes purchased on
a proxy for inventory, the logarithm price per wash, brand and format dummies, and
household fixed effects.18 The logarithm of price per wash is interacted with an indicator
for whether that product was purchased on a sale.

18See Annex E for a description of the construction of the inventory proxy.
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Figure 4: Conditional correlation of current and previous price per wash with inter-
purchase duration

Variable Estimate Std. Err.

Current purchase: ln(Price Per Wash) 0.085 0.027
Last purchase: ln(Price Per Wash) -0.380 0.027
Num. Obs. 11,592

Note: Includes HH fixed effects and controls for current and previous brand
and format purchased

Figure 5: Inter-purchase duration given washes purchase per equivalent adult

Figure 6: Quantity purchased, inventory, prices and sales

Variable Estimate Std. Err.

Inventory/100 -0.105 0.019
Price Per Wash: Regular Price -0.798 0.023
Price Per Wash: On Sale -0.813 0.021
Num. Obs. 4,421

Note: Includes fixed effects for detergents and household
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The results, shown in Figure 6, are also consistent with stockpiling behaviour.
Namely, higher inventory tends to reduce current demand, promotional activity
marginally likelihood of purchasing more washes (i.e. purchase acceleration), and
households’ demand is inversely linked to price per wash.

Overall, the reduced form analysis of household purchasing behaviour presented in
this section supports the view that a static demand model would be mis-specified for
the UK laundry detergent industry: both inventories and lagged prices affect demand.

2.4 Persistent taste heterogeneity

Incorporating unobserved taste heterogeneity in static demand models allows for rich
substitution patterns. In a dynamic demand model this is especially important because
taste heterogeneity leads to persistence in choices and interacts with the timing of
households’ purchases.

For example, households loyal to a particular brand might accelerate their purchase
to take advantage of a promotion of their favoured detergent that they perceive to
be short-lived. Alternatively, they may choose to purchase “stop-gap” detergents that
share desirable aspects of their preferred choice. In turn, enabling them to continue
to smooth their consumption without unduly increasing the cost of purchasing their
favoured detergent on sale in the near future.

Figure 7 shows the share of purchases in the current period conditional on the most
recent purchase. Without brand and/or format loyalty, one would expect to see similar
distributions of purchase shares irrespective of the last format or brand purchased.
However, the top panel in Figure 7 shows that households buy the same format on
approximately 80% to 90% of purchase occasions. This suggests that there is
persistence in preferences of the format purchased.

Similarly, households also exhibit brand loyalty. The bottom panel of Figure 7 shows
that brand loyalty is highest at opposite ends of the price distributions. In particular,
86% of households whose last purchase was the retailer’s private label buy it on the next
purchase occasion. Among the branded detergents the of the higher quality products,
Brand A and Brand D, have the highest customer retention; 73% and 79% respectively.
Whereas Brand C and Brand F, the ’budget’ brands, are re-purchased on 55% and 63%
of purchase occasions, respectively. The mid-range brands, Brand E and Brand B, are
consecutively purchased 68% of purchase occasions.

Further, if they do switch, they may switch to products that are used and stored in a
similar way. For example, those who tend to buy capsules switch most often to tablets
and vice versa. Similarly, gel purchasers switch most often to liquid and liquid to gel.
As noted earlier, these pairs of formats are the most similar to one another to use.

For brands, Brand E is a popular second choice - especially for consumers switching
away from higher quality brands like Brand A, Brand B and Brand E. Similarly, the
retailer’s private label is also popular - especially when switching away from lower end
brands such as Brand E and Brand F.

This analysis shows that households tend to purchase the same brand and format.
In turn, suggesting that persistent taste heterogeneity is an important component of
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Figure 7: Conditional purchase shares: format and brand purchased

Current Format
Last Format Caps Gel Liquid Powder Tablets

Caps 82.0 3.1 5.1 3.2 6.6
Gel 3.1 78.8 13.5 3.5 1.0
Liquid 3.0 8.1 81.4 5.5 2.0
Powder 1.3 1.3 3.5 91.8 2.0
Tablets 6.1 1.6 3.2 4.3 84.7

Current Brand
Last Brand Brand A Brand B Brand C Brand D Brand E Brand F PL

Brand A 72.8 6.2 2.1 1.9 8.7 2.9 5.3
Brand B 7.0 67.5 3.2 1.1 7.0 8.2 6.1
Brand C 4.2 6.5 62.3 0.6 6.7 12 7.5
Brand D 3.5 1.7 0.7 79.2 8.5 1.0 4.7
Brand E 5.3 4.8 2.1 4.2 67.5 5.3 9.9
Brand F 4.2 9.2 8.7 0.9 11.4 54.8 10.3
PL 1.6 2.4 1.6 0.8 4.6 2.3 86.0

household’s purchase decisions.

3 Dynamic Demand Model
Given inventories, prices, and income, households choose purchases and consumption
to maximise the sum of current and expected future utility net of inventory costs and
shopping costs.

In the dynamic demand model each household visits the supermarket in each week.
On each visit, a household decides whether or not to purchase laundry detergent. If they
purchase, a household chooses the format, brand and pack size from a set of around 100
alternatives.

When making purchases households take into account their preferences, their
inventories, current prices and their beliefs of the evolution of future prices.

From a household’s viewpoint, the timing, length and depth of the discounts of price
promotions are uncertain. In the face of this price uncertainty, I assume households use
a statistical model to forecast prices. Because they frequently shop at the same
supermarket, they observe a long history of prices they can use to build such a
forecasting model. Recognising that tracking and forecasting 100 or so prices is
cognitively challenging, I assume that households use a low rank approximation of the
underlying price movements. Specifically, households use a hedonic model to capture
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cross sectional variation in SKU prices and a dynamic factor model to predict price
changes over time. This model is parsimonious and captures the salient features of the
dynamic pricing environment.

Purchases are added to stocks held at home. Then after purchasing, households choose
how much to consume of each of the laundry detergents available at home. For example,
a household may choose to use high quality liquid detergent for delicate clothing and
lower quality powder detergent for washing other clothes.

Any detergent left over from after consumption is retained to inventories and storage
costs are incurred. Households use valuable space in their homes to store laundry
detergent.19 Because detergent competes with other products for limited storage space,
the marginal cost of storing another wash is (weakly) increasing. Moreover, the ease of
storing different formats of detergent is reflected in marginal inventory costs.

With convex storage costs the increment in inventory costs for purchases is minimised
when stocks are low. As a result, household may elect to purchase infrequently to restock
laundry detergent - a feature of observed purchase sequences in the data.

In the remainder of this section, I first detail current period utility and the budget
constraint, then inventory and shopping costs and the transition law for inventories, and
finally beliefs about future prices.

3.1 Household utility

Households are infinitely lived and discount the future at a rate δ ∈ (0, 1). In each
period, households get utility from consuming detergents and a composite of all other
products. Let the utility function in each period t for household i be

Uit = U(Cit) + ψi0Ci0t (1)

where Cit = [Ci1t, . . . , CiJt]
> and Cijt is the amount of detergent j consumed by

household i in period t. The quantity of the composite good consumed is Ci0t and ψi0
is the marginal utility from consuming it. To focus on the demand dynamics in the
laundry detergent market, the composite good is assumed to be non-storable.
The per period utility is assumed to be additively separable in the utility from

consuming laundry detergent and the utility from consuming the composite product.
This rules out any complementaries between other products and laundry detergents.
The utility from consumption of laundry detergent is assumed to be quadratic.

U(Cit) = ψ>i Cit −
1

2
C>itΨiCit (2)

It has two sets of parameters for household i: ψi, Ψi. The first set, ψi, is a J-
vector whose j-th element, ψij, is the marginal utility of the first unit consumed of
detergent j for household i. The second set, Ψi, control the rate at which detergent is
consumed. The j-th diagonal element of Ψi governs the rate at which marginal utility

19In 2016 the UK average purchase of housing per square foot is around £200. Using the average
rent-to-house price ratio, this translates into around £1.20 per square foot per month.
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of consumption of detergent j declines as more of the detergent is consumed.20 The off-
diagonal elements of Ψi allow marginal utility of consumption to depend on the amount
of other detergents consumed. These terms affect the degree to which detergents are
substitutes (or complements). To ensure the utility from consuming detergent is concave
in consumption, I assume Ψi is a J×J symmetric positive definite matrix. If all elements
of Ψi are zero, then the utility function collapses to the linear specification in Erdem
et al. (2003).21

Both ψi and Ψi allow for persistent taste heterogeneity over consumption of different
detergents. As noted in Section 2, detergents vary in terms of their quality and ease of
use. Moreover, Section 2.4 shows that households repeatedly purchase the same brand
and/or format of detergent. This indicates that both brand and format loyalty are
important determinants of demand and highlight the importance of including persistent
taste heterogeneity in the model.

3.2 Purchases and inventory

Prior to choosing how much to consume, a household decides which, if any, detergent
SKU to buy. Detergents are sold in M distinct SKUs indexed by m = 1, . . . ,M . As
noted in the description of the UK laundry detergent industry in Section 2, the number
of SKUs on sale in the retailer in each week is around 100 and there are 37 types of
detergent available for purchase over the sample period (i.e. M > J).
Let dimt = 1 if household i purchases SKU m in period t and is zero otherwise.

Adopting the convention that m = 0 indexes a household’s decision not to purchase,
di0t = 1 when the household i does not buy detergent in period t. Households are
restricted to a single purchase in each period,

∑M
m=0 dimt = 1.

To capture utility from other SKU related factors observed by the household, but not
by the econometrician, identically and independently distributed SKU specific utility
shocks εimt

iid∼ Type I Extreme Value with scale parameter σε are added to the per-
period utility function (eq (1)).

In each period, household’s per period income is Yit. The amount spent on SKU
purchases by household i in period t is Pit =

∑M
m=0 dimtPmt where Pmt is the price

of SKU m in period t. In addition, households also incur shopping costs, PCit, and
inventory costs, ICit. The remainder of the income is spent on the quantity consumed
of the composite good whose price is normalised to 1.22 The the budget constraint is

Yit = Ci0t + Pit + PCit + ICit (3)

20To see this consider a static model with this utility function and a single good. In this case, the
interior optimal consumption is given by Cij = ψij/Ψi,(j,j).

21This specification also captures the key qualitative features of the utility function in Hendel and Nevo
(2006a). In their paper all detergents are perfect substitutes at the point of consumption and the
utility function is strictly concave. This occurs when all detergents have the same linear utility
parameter, the same non-zero value of the diagonal component of Ψi, and the off-diagonal terms of
Ψi are constant and identical.

22In this case, ψi0 is also the marginal utility of income.
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Substituting the budget constraint into the per-period utility function, yields the flow
payoff for households after having made purchases and consumed detergent,

Uit = U(Cit) + ψi0 (Yit − Pit − PCit − ICit) +
1

σε

M∑
m=0

dimtεimt (4)

Next, shopping costs and inventory are discussed in more detail.

3.2.1 Shopping Costs

Shopping costs include the time, search and carrying costs of purchasing a SKU.
Shopping costs are given by

PCit =

{
ρ0 if di0t = 0
0 otherwise (5)

When shopping costs are high, households prefer to make as few purchases as possible.
However, they have no bearing on the timing of purchases - in the model inventory costs
is the key determinant of inter-purchase duration. I return to this in more detail when
inventory costs are discussed in Section 3.2.2.

3.2.2 Inventories

Purchases are added to existing inventories, Iit = [Ii1t, . . . , IiJt]
>. The post-purchase

inventory is,

Īit = Iit +Qit (6)

where Qit is a J-vector whose j-th element is qj,m - the number of washes of detergent j
available for consumption when SKU m is purchased. All other elements of Qit are zero.
Further let J̄it denote the number of distinct detergents held in inventory by household
i at time t.
After purchasing, households choose how much of the inventory held in stock, if any,

to consume. There are four possibilities. First, they can choose to consume some, but
not all of the detergent. Second, the remaining stock of the detergent can be consumed
(i.e. only a small amount is left). Third, they can elect not to consume any, even if it is
held in stock. The final case is that there is no detergent consumed or held in stock.
Unused inventory, Iit+1 = Īit − Cit comprising of J̄it+1 =

∑J
j=1 1

[
Īijt > 0

]
distinct

detergents are held in inventory at the end of the period. They are stored for future
consumption at an inventory cost to household i in period t of

ICit = γ>i Iit+1 +
1

2
I>it+1ΓiIit+1 + κ1

(
J̄it+1 − 1

)
+ κ2

(
J̄it+1 − 1

)2 (7)

where γi and Γi are a J-vector and a J×J symmetric matrix of inventory cost parameters,
respectively. The maximum number of detergent stocked at any time is assumed to be
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three.23
Inventory costs depend on (i) the amount of washes, and (ii) on the number of different

types of detergent in inventories at the end of the period.
The total amount of washes are an important determinant of inter-purchase duration.

With convex inventory costs, the incremental storage costs of new purchases are lowest
when existing stocks are low. As a result, households prefer to run down detergent stocks
before repurchasing. Provided that purchased quantities are large relative to weekly
consumption, a household would choose to infrequently restock laundry detergent - a
feature of the observed purchase sequences in the data.

The inventory costs associated with stocking different types of detergents can capture
the fact that SKUs are bulky and tend not be discarded until they are used up.24
Assuming that the costs of stocking distinct SKUs are increasing for one or more SKUs,
holding nine washes of one detergent is less costly that holding three washes of three
different detergents.

An alternative interpretation is that costs associated with stocking different detergents
is that households incur switching costs. Combined with the fact that households prefer
to purchase before stocks run out, the costs associated with storing different types of
detergents act as brand-format switching costs. Therefore, they help explain the high
repurchase rates observed in the brand and format purchase transition matrices in Figure
7.

3.3 Household price forecasts

The timing of purchases is also affected by expected price movements. As highlighted
in Section 2, laundry detergent is often available for purchase on promotion. From the
perspective of the household, the depth of the price discount, the timing, and the length
of the promotion are uncertain.

The possibility of a change in the price in the near future will affect the current
purchase decision. For example, suppose that a SKU is available on a deep discount

23The cost of stocking four or more different detergents is assumed to be infinite. A simulation of
inventories using observed sequences of 620 households in the Kantar Worldpanel data suggests that
household stock less than three different detergents in over 99.5% of all simulated periods. In this
simulation household are assumed to consume detergent on a first-in-first-out basis. The target
quantity consumed is equal to the total number of washes the household purchases divided by the
number of weeks they are observed in the data. In each period, households consume the smaller of
the total number of washes held in inventory and the target consumption for that household. The
simulation assumes that households initially have zero inventories.

24With an additional assumption on the order in which SKUs containing the same detergent are used
up (i.e. first-in-first out), the number of SKUs held at any one time can be tracked. The simulation
described in footnote 23 with the first-in-first out assumption suggests that households stock three
of fewer SKUs in around 95% of simulated periods. The maximum number of SKUs stocked in the
simulation is 12, but in 99% of the periods in the simulation household stock five or fewer SKUs. The
number of SKUs in stock is quite similar to the number of distinct detergents held. This suggests
that household prefer to run down detergent in individual SKUs before restocking. Therefore, the
detergent specific stocking inventory cost in equation (7) may be a good approximation to the more
complicated inventory transitions in which the number of SKUs are recorded.
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that the household believes to be short lived. Even though they may have enough
inventory to service consumption needs for the near future, they may accelerate the
SKU purchase to take advantage of the relatively low purchase price.

To forecast prices, households build a forecasting model using a long history of prices
observed on repeatedly making shopping trips to the same supermarket. Households are
assumed to use a statistical model to forecast prices based on prices they have observed.
In particular, households use a low-order Markov process to forecast M SKU prices in
the next period, Pt+1 = [P1,t+1, . . . , PM,t+1]>,

Pt+1 ∼ GPt+1|Pt,τ (8)

where Pt,τ = [Pt, Pt−1, . . . , Pt+1−τ ] is the matrix of past τ -periods prices.
Recognising that tracking and forecasting 100 or so prices is cognitively challenging,

households use a low rank approximation of the underlying price movements.
The household’s price forecasting model has a hedonic component that captures

variation prices across brands and formats and allows for quantity discounting. The
variation in price due to promotions is modelled using a dynamic factor model. The
forecasting model is estimated using observed prices and its dimensions and parameters
are chosen using statistical criteria. Further details are deferred until Section 3.5.1.

Next, I show that the household’s dynamic problem can be written as a two-stage
discrete continuous choice problem.

3.4 Household choice problem

Bringing together the elements of the model described above, the household’s choice
problem can be written as a two stage discrete-continuous Markov decision problem
expressed in recursive form.

In each period, each household faces a discrete-continuous decision: (i) they choose
whether or not to purchase laundry detergent, and (ii) how much laundry detergent to
consume in the current period.

To describe how households choose which detergent tp purchase and how much to
consume, it is instructive to work backwards and start with the consumption decision.

As in Dubin and McFadden (1984), households first solve for optimal consumption
conditional on choosing optionm from the choice set. That is, the consumption quantity
of each detergent held in stock after purchasing is given by the solution to the Bellman
equation

W (sit) = max
0≤Cit≤Īit

U(Cit) + ψi0
(
Ȳit − PCit − ICit

)
+δ

ˆ
ln

M∑
m=0

exp {W (sit+1)} dGPt+1|Pt:τ (9)

where sit = [Īit, J̄it, Pit, Ȳit] is the state space after purchases have been made in period
t containing the post-purchase inventories, Īit, the number of distinct detergents in
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inventory, J̄it , prices, Pt, and income net of the SKU price paid, Ȳit = Yit − Pit.
Then, households choose which, if any, SKU to purchase from the choice set by

maximising the sum of utility shocks and the conditional indirect utility function,

V (sit, εit) = max
{dimt}m=0,...,M

W (sit) +
1

σε
εimt (10)

s.t.
M∑
m=0

dimt = 1

εimt
iid∼ Type I EV

Written as a two-stage problem, the solution of the model requires a search for a
conditional indirect utility function and policy for consumption to solve equation (9).25
As specified, the model has a very large state space. The vector sit includes 37

inventory variables - one for each detergent - and in excess of 100 price variables. The
curse of dimensionality bites hard and renders the problem computationally intractable.
The next section discusses this issue in more detail and outlines the approach taken in
this paper that makes the model computationally estimable.

3.5 The curse of dimensionality

As highlighted in Section 2, there are many different laundry detergents a household
can purchase and store. Consequently, the inventory and price components of the state
space are high-dimensional continuous variables. This acutely exacerbates the curse of
dimensionality.
This paper proposes an approach to alleviate the curse of dimensionality. Unlike

existing approaches it can easily be adapted for application to other storable good
industries. Central to the dimension reduction strategies is to address the different
ways in which the curse of dimensionality arises from the information needed to
forecast future prices and the number of different detergents that a household can
store.
The proposed approaches to alleviate the curse of dimensionality that arise from price

and inventories are discussed in turn. Subsequently, the household’s choice problem is
revisited.

3.5.1 Forecasting SKU Prices

Through repeated visits to the store to purchase laundry detergent, households observe
a long sequence of prices they can use to forecast prices.
Households are assumed to forecast the price per wash for each SKU, pm,t. Then SKU

prices are forecasted by multiplying the predicted price per wash for SKU m by the
number of washes contained in each SKU. That is, the expected SKU price in period
t+ 1 is,
25Annex B derives the two-stage representation of the problem.

23



Et [Pm,t+1] = Et [pm,t+1] qj,m (11)

where qj,m is the number of washes of detergent j contained in SKU m.
As highlighted in Section 2.3, the average price per wash varies across brands and

formats. Further, there are quantity discounts. In addition to differences in the average
price per wash across SKUs, SKU prices vary over time because they are often sold on
promotion. Figure 1 shows that the length, depth, and frequency of promotions vary
with SKU size, brand and format.

When forecasting prices, households predict both the cross-sectional and time series
components of the price per wash across different SKUs. To forecast the average price
per wash across SKUs, households are assumed to use a hedonic approach. Specifically,
they model average price per wash as a function of the brand, format and controls for
the number of washes in the SKU.

Tracking the promotional price activities of over 100 products is likely to be cognitively
prohibitive. Instead, I assume that households use the history of prices observed from
repeated shopping visits to formulate a boundedly rational price forecasting model.

While households are unlikely to be able to track all SKU prices, I assume that they are
able to keep track of a low dimensional set of price trends that underpin price dynamics.
Further, I assume that they understand how the promotions of individual SKUs interact
with these underlying price trends. For example, they know that the retailer’s private
label SKUs are almost never promoted. Whereas, large SKUs containing high quality
branded detergents are known to be heavily but infrequently discounted. They also
expect that major brands tend to be promoted asynchronously, rather than at the same
time.

In line with this bounded-rationality approach to forecasting prices, I assume
households use a factor model as a low-rank approximation of the time series
component of the price forecasting problem. Bringing this together with the hedonic
model of cross sectional price variation, households’ forecasting model for SKU prices
is an interactive fixed effects model (Bai (2009))

z (pmt) = λ>mFt +X>mα + εimt (12)

for t = 1, . . . , T periods observed in the data. Ft is an R-vector of the price factors in
period t, λm is an R-vector of factor loadings for SKU m, and Xm are the SKU
characteristics used in the hedonic model to capture cross-sectional price variation.26
The dependent variable forecast price per wash is z(pmt) := 1

2
(1 + e−pmt)

−1. This
transformation prevents the prediction of negative prices and provides a sensible upper
bound motivated by observed data.27

The SKU price movements are governed by the dynamics of price factors, Ft. I assume
factors follow a stationary, τ -order exogenous Markov process,
26Scale and rotation normalisation restrictions are imposed on price factors and factor loadings. See

Stock and Watson (2002); Bai and Ng (2002); Bai (2009) for further details.
27All observed price per wash lie in the interval £0.00 and £0.50
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Ft = A0 +
τ∑
s=1

AsFt−s + ut (13)

where E [εimt|Ft, Xm] = 0, ut ⊥ εimt|Ft,τ , Xm , Ft,τ =[Ft, Ft−1, . . . Ft−τ+1]> and ut
i.i.d.∼

N(0,Σu). The number of lags included τ is informed by statistical criteria and relies on
data.

The resulting dimension of the price factors in the state vector is τR. When prices
are correlated over time, the price factor state space, Ft, will likely contain only a few
dimensions. In many applications the resulting reduction in the size of the state space
is substantial. As discussed in detail in Section 5.1, τ = 1 and R = 2 in this paper.
Beneficially, this approach does not rely on the number of brands or pack sizes sold

and can be applied to any industry. Moreover, rather than add restrictive ad hoc
assumptions, the curse of dimensionality is substantially mitigated using a statistical
criterion that relies on observed price data.

3.5.2 Inventories

Where the inventory dimension contains more than a handful of products, the existing
literature has sought to reduce the dimension of inventory by imposing restrictions on the
household’s problem. However, rather than add assumptions, an approximate dynamic
programming (ADP) approach is used.

The defining feature of an ADP method is that it retains the high dimensional
representation of the household’s choice problem but seeks a high quality but
computational feasible approximate solution. Indeed, the approximate solution to this
complex choice problem can be viewed as the result of a boundedly rational household.

In this paper, there are two components to the approximation to W (s): the
approximation architecture and the selection of a set of ’features’ of the
high-dimensional problem that characterise the dimension reduction. In economics the
approximation architecture usually describes the function space in which the
approximate solution is sought. Feature selection is analogous to model selection; it is
the method or criterion function that is used to select elements from this function
space. Below I describe these ideas using in the language of approximate dynamic
programming.

Approximation architecture Adopting Powell’s (2011) terminology, there are three
broad categories of value function approximation architectures: a lookup table
approximation (i.e. solving the dynamic program on a fixed grid), a
linear-in-parameter approximation (i.e. polynomials, B-splines, etc), and a non-linear
approximation (i.e. neural nets). In this paper, I focus on linear-in-parameter
approximations

W (sit) ≈ φ (sit)
> r (14)

where φ (sit) is an L-vector of basis functions and r is an L-vector of parameters.
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The reasons for choosing a linear-in-parameters approximation are two-fold. First,
lookup tables tend to suffer from the curse of dimensionality for even moderately sized
problems. In this case, even with an aggressive dimension reduction strategy, it is likely
that the model could only be solved on a very coarse discretisation of the state space.28

Second, linear-in-parameters approximations can exploit the linear structure to
ensure updating is relatively straightforward and are easily modified to address
numerical stability issues. Whereas, non-linear architectures are more complex to
update and less numerically stable. As a result, there are no convergence guarantees
and sui generis modifications are needed to improve performance.29

To approximateW (sit) a class of flexible polynomials suitable for large-scale dynamic
programming problems called Smolyak polynomials is used.30 Beneficially, the number of
basis functions used by this class of models grows polynomially, rather than exponentially
as the state space expands. Moreover, if an anisotrophic Smolyak polynomial is used,
the accuracy of the approximation can be varied in each dimension of the state space.31

Taken together, the linearity, smoothness and sparseness of the approximation
architecture allow for a richer set of low-dimensional features to be included in the
approximation without incurring too high a computational penalty.

Feature selection In ADP, a high quality, low dimensional approximation to the
solution is created by identifying and extracting the salient features of the problem.
Typically this involves some transformation or aggregation of the high dimensional
state space and exploits the structure in the dynamic program.

In retail storable good industries, like laundry detergent, households are unlikely to
stock more than a handful of products at once. As a result, the inventory vector is
likely to be sparse. This sparsity is the feature of the household’s choice problem used
to reduce the dimensionality of the inventory vector in this class of models.

The inventory state space entering the approximation is restricted to include only
those detergents that are held in stock after purchases. The subset of coefficients of r
that multiply all basis functions that depend on the inventory of other types of detergent
are set to zero.

To illustrate how this works in practice, consider a household that has three washes
of Brand C powder in stock at the beginning of period. If they make no purchases, only
basis functions that depend on the inventory of Brand C powder and other non-inventory

28Nevertheless, other more sophisticated approximations that work with discretised high-dimensional
state spaces, such as hierarchical approximations (see Powell (2011); Bertsekas (2011a))) and
adaptive grid methods (Brumm and Scheidegger (2015)) may prove to be fruitful.

29See Powell (2011) for a discussion of updating nonlinear approximation architectures. Note that
neural nets can be easily updated in some instances. As highlighted by Bertsekas (2011a); Judd
et al. (2011), an additional benefit of using a linear architecture is that other projections can be
considered (i.e. regularisation can be added).

30See Malin et al. (2011); Judd et al. (2014); Maliar and Maliar (2014) for an overview of this class of
polynomials and a detailed discussion of how to efficiently implement them.

31The polynomial growth of basis functions involving each variable is linked to the chosen level of
accuracy.
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state variables are included in the approximation to W (sit). All other basis functions
are excluded by setting their coefficients zero.

Suppose now that the household purchases 20 washes of Brand A Gel. In this case, all
of the basis functions that depend on inventories of either Brand C powder or Brand A
gel and other non-inventory state variables are included in the approximation toW (sit).
Again, the coefficients on basis functions that depend on inventories not stocked are set
to zero.

The benefit of reducing the number of inventory state variables used to approximate
W (sit) is that the number of basis functions that need to be evaluated at each state
is greatly reduced. As a result, the the computational burden of approximating the
solution to the household’s choice problem is significantly lowered.

Formally, to implement this approximation strategy define matrix Ωit to select the
subset of basis functions select that depend directly on the detergent held in stock and
other non-inventory state variables. The lower-dimensional subset of basis functions
and corresponding parameters are calculated by pre-multiplying the high-dimensional
counterparts by Ωit,

φ̃ (sit) := Ωitφ (sit) (15)
r̃ := Ωitr (16)

The approximate conditional indirect utility function is

W (sit) ≈ φ (sit)
>Ω>itΩitr = φ̃ (sit)

> r̃ (17)

Even though the dimension of the approximation for a particular inventory
configuration is lowered, this dimension reduction strategy for inventory does not
reduce the number of parameters. That is, I need to solve for the all of the parameters
in r. While this may seem to be an obstacle, compared to the cost of forming the
approximation to W (sit) defined on even moderately sized state spaces, it is relatively
cheap to fit r.

This is because parameters are only updated once using stochastic projected
gradient descent methods in each iteration of the ADP algorithm.32 These
computationally light recursive methods are well suited to sparse, high dimensional
optimisation problems. Therefore, fitting many parameters is not a computationally
expensive part of the algorithm.

3.6 Solving the ADP

Incorporating the household’s price forecasting model into the choice problem,
households need only keep track of a coarser partition of the price state space
containing τR price factors to forecast SKU prices. The conditional indirect utility

32See Bertsekas (1999) and Parikh et al. (2014) for further details of stochastic projected gradient
descent methods.
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function is redefined on the coarser partition of the price state space,
sit =

[
Īit, J̄it, Ft, Ȳit

]
.33

Implementing the dimension reduction strategy for inventories, the approximation to
the solution of the household’s choice problem is constrained to lie in the function space,
Sφ :=

{
φ (sit)

>Ω>itΩitr|r ∈ RL
}
.

However, the conditional indirect utility function that solves the Bellman equation
(eq. (9)) may not lie in the function space Sφ. If not, there is no r ∈ RL that solves
the household’s optimal consumption problem and we must look for an approximate
solution.
One alternative is to project W (s) onto Sφ and find the value of r that minimises

the distance between W (sit) and its approximation with respect to some norm. To
implement this, r is chosen to minimise the Bellman equation approximation errors with
respect to a Euclidean norm, ‖·‖

r? = arg min
r∈RL
‖Φr − T (Φr)‖2 (18)

where T (Φr) is the Bellman optimality operator in eq. (9) and

Φ
(N×L)

=

 φ (s1)>Ω>1 Ω1
...

φ (sN)>Ω>NΩN

 (19)

is a sparse N×L matrix of basis functions evaluated at n = 1, . . . , N state space vectors.
Equivalently, r? can be expressed as the fixed point of the projected Bellman equation,

Φr? = ΠT (Φr?) (20)

where Π is the projection with respect the Euclidean norm, ‖·‖. To find r? that defines
the fixed point of equation (20), I use an ADP algorithm called λ-policy iteration
(Bertsekas (2015)) - an algorithm designed to solve for points of a projected Bellman
equation.34
Like exact policy iteration, this algorithm is iterative. At each of the k = 0, 1, . . . , K

iterations it repeatedly applies two steps: (i) policy evaluation, and (ii) policy
improvement.35 Before, describing these two steps in more detail, I first define the
consumption policy function that is evaluated and improved upon in each iteration of
the λ-policy iteration algorithm.

33To avoid an unwieldy proliferation of function notation, with a small abuse of notation W (·) is
redefined on the coarser partition of the price state space.

34λ-policy iteration was developed by Bertsekas and Ioffe (1996). The specific algorithm used is called
λ-PI(1) and was proposed by Bertsekas (2015), where further details can be found.

35As is common in ADP algorithms, a maximum number of iterations is chosen at the beginning of the
algorithm. If the algorithm does not converge according to a pre-specified criteria on r, the output
of the last iteration is the solution to the approximate dynamic program.
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There are two inputs into the consumption policy function. One is the estimate of the
solution to eq. (20) at the beginning of iteration k of the λ-policy iteration algorithm,
rk. The other is the state vector, sn, for household i in period t. Given values for these
inputs, the consumption policy produces a J-vector of consumption, Cn,k, that solves
the envelope condition of the household’s choice problem

∇φ (sn)>Ω>nΩnrk = ψi −ΨiCn,k (21)
s.t. 0 ≤ Cn,k ≤ Īn (22)

where∇φ (sn) is a L×J Jacobian matrix whose (l, j)-th element is the partial derivatives
of l-th basis functions evaluated at sn with respect to detergent j’s inventory.
The benefits of using the envelope condition to define the policy function are two-fold.

First, it is computationally light. Specifically, it does require the computational cost of
computing expectations. Moreover, because the per-period utility function in this paper
is quadratic and concave in consumption, its solution is unique and can be found using
a linear equation solver. In the context of an algorithm that heavily utilises simulation,
such as λ-policy iteration, this is an important practical consideration.36

However, there are also drawbacks of using the envelope condition. Most notably, it
is not necessarily a contraction mapping.37 However, Arellano et al. (2014) show that
there exists a damping parameter that can be used to exponentially smooth updates to
the value function and ensure that it is contraction mapping. I return to this point in
the discussion of the policy improvement step.

Next, I provide further details on how policies are evaluated and improved in the
λ-policy iteration algorithm. The steps are discussed from the beginning of iteration k
of the algorithm. At the beginning of the iteration, the current guess at the solution to
eq. (20), rk, is plugged into eq. (21) to define the consumption policy function.

In the evaluation step of the λ-policy iteration algorithm, simulation is used to
approximate the value of the consumption policy function.

The value of using this policy in a given state is calculated using simulation. The
simulation contains i = 1, . . . , H households. Household i’s observed characteristics
are uniformly drawn from the sample of households in the Kantar Worldpanel data
described at the beginning of Section 2.38 Persistent unobserved taste heterogeneity and
SKU-specific utility shocks for each period are drawn independently for each household
and are fixed at the beginning of the algorithm. Observed SKU prices are used in the
simulation as are the price factors estimated using eq. (12).
36Maliar and Maliar (2013) and Arellano et al. (2014) find that ECM achieves similar speed-ups in

computation time over value iteration and the endogenous grid method.
37See Arellano et al. (2014) for a detailed exposition. Intuitively, this occurs because ECM does not

impose the first order conditions at every step in the iteration, only in the limit. Likewise, value
iteration does not impose the envelope condition during the contraction, only in the limit. However,
imposing the first order condition is necessary to guarantee that value iteration and other backward
iteration methods, like endogenous grid method, have the contraction mapping property.

38These include their income, the number of equivalent adults in the household, and the time they first
appear in the Kantar Worldpanel data.
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The simulation is initiated by setting each household’s inventories to zero. Prior
to making purchases, each household calculates consumption using the policy under
evaluation conditional on purchasing SKU m (or making no purchase).

Then, to decide, which, if any SKU to purchase, each household calculates the
conditional indirect utility associated with each purchase option as the sum of the per
period utility and discounted continuation value evaluated at rk.39 They then pick the
option that maximises their conditional indirect utility and add it to inventory.
Households then consume a quantity of detergent from inventory determined by the
policy being evaluated. Finally, in preparation for the next period, each household’s
inventory is updated for purchases and consumption decisions. This is repeated for all
periods in the simulation.

The simulated value of the policy is calculated once the simulation is completed. To
illustrate how, suppose that household i at time period t is in state sit after having made
purchases. The simulated value of the policy at state sit is calculated as the net present
value of the sum of simulated flow payoffs from t until the end of the simulation and the
discounted continuation value in the final period.

To reduce dependence on initial conditions, 12 periods at the beginning of the
simulation are excluded from the valuation of the consumption policy. The remaining
Ti periods of the simulated sequence of purchases and consumption for household’s
i = 1, . . . H are used to evaluate the policy. The length of the simulated sequence used
to approximate the value function is determined by the parameter λ. Specifically, Ti is
drawn from a Geometric(1− λ) distribution.40
To make full use of the simulated trajectories, the policy is evaluated starting from

each of the last Ti periods for i = 1, . . . , H in the simulation. As a result, there are
N =

∑H
i=1 Ti states evaluated in the simulation.

To find the new parameters that approximate the value of the policy, the N
simulated valuations of the consumption policy at the N states visited along the
simulation trajectory are regressed on the basis functions of the polynomial at those
states. That is, the sum of squares of the Bellman equation residuals visited along the
simulation trajectory are minimised to give a new estimate of the approximate solution
to the household’s choice problem, r̂.

As noted above, to implement the policy improvement step a dampened update of r̂
is needed

rk+1 = (1− αk) rk + αkr̂ (23)

where αk ∈ (0, 1).41 This update can then be inserted in eq. (21) to define the new
consumption policy function for evaluation in the next iteration.

39To calculate continuation values, price factors are forecasted using eq. (13) and one-node Monte
Carlo is used integrate out price shocks from eq. (12).

40At one extreme, as λ→ 1 very many periods are simulated and this algorithm closely approximates
to exact policy iteration. At the other, λ = 0 the valuation of the policy is approximated by the
sum of the flow utility at the current state and the discounted continuation value. I set λ = 0.95.

41The step size used can depend on the iteration k of the ADP algorithm. See Powell (2011) chapter
11 for a discussion of step size rules.

30



In implementation, partial updates using stochastic projected gradient descent
methods are used to address numerical stability issues that arise from the
high-dimensional, sparse nature of the household’s choice problem.42

4 Econometrics

4.1 Estimation

The structural parameters, θ, are fitted using simulated methods of moments. Let ĥ
define the vector of moments observed in the data and h (θ, r) define the simulated
moments at the current estimate of θ and r. Define the distance between the observed
data moments and the simulated counterparts as g(θ, r) := ĥ− h (θ, r).43
To fit the structural parameters I solve the following optimisation problem

θ?, r? = arg min
θ,r

g (θ, r)>Σ−1g (θ, r)

s.t. Φr = ΠT (Φr)

where Σ is a positive definite symmetric weighting matrix and Π is the projection with
respect to the Euclidean norm, ‖·‖ .
To implement the estimation I use an adaptive Markov chain Monte Carlo derivative

free optimisation (Chernozhukov and Hong (2003); Łącki and Miasojedow (2015)).
Briefly, this method uses multiple chains, each with different temperatures, proposal
covariance scaling factors, and estimates for the dynamic demand model. The coldest
chain is used to calculate the posterior density of the structural model’s parameters.
As noted by Imai et al. (2009) and Norets (2009) solving large scale dynamic models

at every parameter guess can be very costly. Their suggested remedy is to alternate
between iterations of fitting the structural parameters and updates of the solution to
dynamic program.44 In line with this approach, I alternate between fitting the structural
parameters, θ, and solving the dynamic demand model by doing a single iteration of λ-
policy iteration algorithm described in Section 3.6. The details of this estimation are
provided in Annex C.

42See Bertsekas (1999) and Parikh et al. (2014) for further details of stochastic projected gradient
descent methods.

43The simulation of moments is as described in the Section 3.6 with the exception that length of the
simulation used to calculate moments is fixed at 52 weeks. That is, starting from an initial inventory
of zero, the first 12 weeks are excluded to reduce depends on initial inventories and the next 52 weeks
of simulated purchases and consumption decisions are used to compute moments.

44Intuitively this avoids the costly step of fitting the solution to a dynamic program whose parameters
may be far away from the true parameters. Moreover, they show that the alternating procedure
converges to the same posterior distribution.
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4.2 Identification

Like other dynamic demand models of storable goods, formal identification of the model
is complex. As such, and in line with this existing literature, I provide an informal
discussion of identification of model parameters.

In Section 2, data on inter-purchase durations, current and past prices, quantities
purchased, and the sequences of SKUs chosen was used to demonstrate that price
expectations, inventory holdings, and taste heterogeneity are important features of
demand for laundry detergent in the UK. This data also identifies the parameters of
the model.

The marginal utility of income is identified by standard arguments using variation in
prices over markets. Shopping costs are identified by differences in the size of SKUs
purchased across different types of household.

Inventory costs are identified by comparing inter-purchase durations of households.
To illustrate, consider two households that always purchase detergent in one particular
format. Over the same time period, they purchase the same number of washes. However,
because one household has higher inventory costs than the other, they purchase smaller
SKUs more frequently. As such, comparing inter-purchase duration for households with
the same consumption rate identifies storage costs. To identify inventory costs differences
between formats, this analysis can be conditioned on format purchased.

For a particular detergent j, the ratio ψj/Ψjj is an important determinant of the rate
of consumption. Holding fixed ψj, Ψjj can be identified by comparing inter-purchase
durations of households conditional on purchasing the same quantity of detergent j.
To illustrate these ideas, consider two households who face the same prices and always
buy the same number of washes. However, one household consistently purchases less
frequently than the other. Therefore, over the same period the household that purchases
more frequently will consume more washes. That is, it consumes detergent washes at a
higher rate. Therefore, Ψjj can be identified by comparing inter-purchase durations of
households conditional on purchasing the same quantity of detergent j. Conditioning
this analysis on consecutive purchases for each detergent identifies all diagonal elements
of Ψ.

In the above discussion, ψj is held fixed. This is because, in addition to impacting
the rate of consumption, ψj directly impacts on the level of utility from consumption of
detergent j. In turn, the linear utility weights are important parameters for matching
market shares. As such, observed market shares will aid identification of ψ over and
above consumption rates.

Interaction between quantities purchased, duration between purchases and identities
of consecutive purchases of detergent help identify off diagonal terms in Ψ. This is
because households that tend to use different detergents for different types of washing
are likely to maintain more than one type of inventory. Since detergent is costly to store,
all else equal, households with two sets of inventory will tend to purchase smaller SKUs
of different inventories at close intervals. Therefore, by using the joint distribution
of quantities purchased and inter-purchase duration of households whose consecutive
purchases are of different detergents to those who purchase the same detergent helps
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identify off-diagonal terms in Ψ.
The scaling parameters on the random coefficients are identified by re-purchase

probabilities.

5 Empirical Results

The model is estimated in two steps. First, I estimate the household’s price forecasting
model described in Section 5.1. Next, I estimate the dynamic demand model. The
results of the dynamic demand model are presented in Section 5.2. In Section 5.3 I
conduct some policy experiments using the model and use them to show how temporary
price cuts can lead to purchase acceleration.

5.1 Price Model

Purchases between 2009 and 2011 which are recorded by Kantar Worldpanel are used to
estimate the price forecasting model. The underlying assumption is that all households
in the sample observe the same set of prices. This is an appropriate assumption for the
UK, where large supermarkets must charge the same price for a given SKU throughout
the country following a ruling by the UK Competition Commission in 2000.45

Because the data is only recorded when households make purchases, the price series
for each SKU is only partially observed. While, the interactive fixed effects model can
be used to impute missing prices, the panel is too unbalanced for this to work well in
practice. Instead SKUs of a similar size are grouped together, because they are likely
to exhibit similar promotional activity.46 For each of the 37 types of detergent I assign
SKUs to one of four groups: less that 18 washes, between 18 and 24 washes, 25 to 40
washes and more than 40 washes. This results in 112 groups of SKUs.

The interactive fixed effects model is estimated for up to three factors using non-linear
least squares. In each case I estimate a vector autoregression with up to four lags.

To choose the optimal number of factors I use the information criteria proposed by
Bai and Ng (2002). These are shown in the top panel of 1. Two of of the information
criteria are minimised by a price model with two factors, the other with three factors.

The bottom panel reports the results of the Schwarz-Bayes information criterion
(SBIC) when up to four lags are included in the vector-autoregression for the factors
from each of the interactive fixed effect models. When there is one factor, the SBIC is
minimised by including two lags. Otherwise, the SBIC is minimised by choosing one
lag.

Taken together, these criteria suggest that either a two or three factor model with one
lag would could be used. Since there is an additional premium to increasing the state

45Some price variation is permitted for ’small’ supermarkets that are similar in size to convenience
stores (less than 280 sq m).

46For example, very large SKUs are offered at quantity discounts and are therefore not promoted very
regularly.
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Table 1: Price Model: interactive fixed effects model

Number of Factors R=1 R=2 R=3 R?

ln(Obj. Func.)+R×Pen. Fn.
Penalty 1: N+T

NT log( NT
N+T ) -2.064 -2.109 -2.102 2

Penalty 2: N+T
NT log (C) -2.052 -2.084 -2.065 2

Penalty 3: log (C) /C -2.094 -2.170 -2.193 3

Number of Lags, SBIC
τ=1 -8.241 -16.620 -25.481
τ=2 -8.242 -16.574 -25.321
τ=3 -8.227 -16.492 -25.089
τ=4 -8.190 -16.364 -24.848

τ? 2 1 1
Note: C = min {N,T}

space I opt for the 2 factor model with 1 lag.47 The results of this interactive fixed effect
model and the V AR(1) applied to the factors are shown in Tables 2 and 3, respectively.
When translated back into a price per wash, 90 percent of the fitted average price

per wash for the 112 groups are within 2% of the average price per wash in the data.
Therefore, the model fits average prices well over brands, formats and sizes.

5.2 Dynamic Demand Model

The model is estimated using household purchase diary data described in Section 2. For
an individual household, the parameter space is θi = [ψi,Ψi, ψi,0, ρ0, γi,Γi, κi,1, κi,2] with
J2 + J + 3 parameters. With 37 detergents, there are approximately 1,400 parameters.
To ensure that the resulting model is estimable, a more parsimonious parameterisation
of the model is needed.

5.2.1 Parameterisation

Households’ flow utility is slightly modified for estimation. There are two main
alterations to eq (4). First the marginal utility of income is included in the parameters
of the purchase and inventory costs. Second, since income is constant across purchase
alternatives it is omitted from the model. The resulting flow utility function is

U (Cit)− ψi0Pmt − PCit − ICit +
1

σε
εimt (24)

47 The results of coefficients of all three interactive fixed effect models are shown in Annex B.
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Table 2: Factor Model: Interactive fixed effect model with 2 factors

Estimate Std. Error

Formats (excl. Caps):
Powder -0.449 (0.119)
Liquid -0.709 (0.148)
Tablets -0.574 (0.147)

Gel -0.589 (0.119)
Brands (excl. Brand A)

Brand B 0.068 (0.110)
Brand C -0.539 (0.106)
Brand D 0.277 (0.106)
Brand E -0.688 (0.170)
Brand F -1.032 (0.175)

PL -1.069 (0.112)
Others 0.377 (0.243)

Other Chars (excl. Single SKU)
Multi-Pack 0.007 (0.118)

Washes -0.383 (1.708)
Washes2 -1.106 (2.439)
Washes3 0.808 (1.267)

Constant 0.689 (0.196)

R2: Overall 0.710
R2: Within 0.132
Num. Obs. 14,927

Table 3: Factor Model: VAR(1) with 2 factors

F1,t F2,t

Estimate Std. Err Estimate Std Error

F1,t−1 0.795 (0.067) 0.192 (0.163)
F2,t−1 0.054 (0.025) 0.884 (0.061)
Constant 0.017 (0.006) -0.018 (0.014)
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Turning to the parameters themselves, for household i the linear utility weight for
each detergent j is

ψij = hψ
(
ψ̄j + ωij

)
(25)

where hψ (·) is scaled logistic transformation applied to ensure that the weights are
strictly positive, ψ̄j is a detergent specific component common to all households, and ωij
is a household specific component.48
The household specific component is a draw from the unobserved distribution of

persistent taste heterogeneity. Ideally, the taste draws for each detergent would be
included in the state vector to capture the effect that these preferences have on the
expected value of holding different detergent. However, with 37 different types of
detergent, doing so would reintroduce to the curse of dimensionality.

To resolve this issue I use a factor structure to provide a low-dimensional
approximation to the high-dimensional distribution of persistent taste heterogeneity.
Specifically, I assume a household’s preference for each detergent is a function of two
standard normal shocks, ηk,i ∼ N(0, 1), k = 1, 2. To map the two shocks into J
detergent specific taste parameters for each household, the shocks are multiplied by
brand and format specific weights σk,b, σk,f ≥ 0 for k = 1, 2. The household specific
component is,

ωij =
2∑

k=1

∑
b∈JB

∑
f∈JF

(σk,b + σk,f ) ηk,i (26)

where JB and JF are the sets of brands and formats, respectively.
The (j, k)-th entry for quadratic utility weights for all j, k = 1, . . . , J are

ln Ψijk =
1

2
lnψij +

1

2
lnψik + ln υjk − ln (α1 + α2Zi) (27)

where Zi is the number of equivalent adults in household i. Further, υjj = 1 and
υjk = υ ∈ (0, 1) for all j 6= k. The final term allows the consumption rate to vary with
household size.

The price coefficient is allowed to vary across households and is a function of income
per equivalent adult

lnψi0 = µ0 − σ0
Ỹi
Zi

(28)

where Ỹi
Zi

is a standardised income per equivalent adult in household i, σ0 > 0. In
the estimation I impose the location normalisation that the household with the average
income per adult is 1. That is, I fix µ0 = 0.

Noting the similar role of both inventory cost parameters, I estimate Γ and fix γ = 0.

48Specifically, hψ (x) = 10
(
1 + exp

(
−x3
))−1.
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5.2.2 Results

In this section I present the results of the model.49 The results of the estimation are
shown in Table 4 and are split into three panels. The top panel reports the value of the
linear utility weight evaluated at η1 = η2 = 0, the middle panel shows the brand and
format weights on both taste shocks, and the lower panel shows all other parameters.

The top two panels contain the parameter estimates for the linear utility weights,
which show that the common detergent parameters and scaling factor on taste vary
across brands and formats. However, in a non-linear model the parameters are difficult
to directly interpret. So while utility parameters are observed to vary across brands and
formats, the effect they have in the model is difficult to establish.

Instead, to evaluate the fit, it is instructive to compare the moments predicted by
the model to those observed in the data. To calculate moments implied by the model
I conduct a simulation at the estimated parameter values as described in Section 3.6.
There are four main elements of the model: the brand shares, format shares, re-purchase
probabilities and the distribution of inter-purchase durations. Each is discussed in turn.

Figure 8 plots the brand purchase shares in the simulation of the model against those
in the data. The shares are split into the four quartiles of the distribution of income per
equivalent adult. The top (bottom) row of plots shows the brand shares of the upper
(lower) half of the income per equivalent adult distribution. The marker indicates the
identity of the brand purchased and the red line is the 45 degree line.

Figure 8 shows that the simulated brand shares captures some important features of
the observed data. First, as in the observed data, branded SKUs are especially popular
with the highest income households. Second, the retailer’s private label is strongly
preferred by the least well off households. However, the simulated share of PL detergent
is a overstated for the poorest households, and slightly understated for all other income
quartiles. Finally, with the exception of Brand A, the other brand shares fit the observed
data well, especially for Brand E - the leading brand.

Figure 9 plots the actual versus the simulated share by the detergent format purchased.
Again, the top (bottom) row shows the simulated versus the observed shares of different
formats for the richest (poorest) households. The marker indicates which format is
purchased and the 45 degree line is shown in red.

The figures shows that the simulated purchase shares for formats closely align with
the data. Specifically, as in the observed data, powder is the most preferred format in
all income quartiles. The model also captures the fact that the cheapest format, liquid,
has a higher share for poorer households. Further, the simulated shares also reflect the
fact that the most expensive format, capsules, is most popular with richer households.
The simulated shares of gel coincide with those in the data, while the simulated shares
of tablets is slightly understated by the model.

Next, I explore a prominent feature of the observed data discussed in Section 2.4 -
the re-purchase probabilities. Figure 10 plots the re-purchase probabilities in the data
against those from the simulation and it contains two panels.

49I use the last 100 iterations of the estimation algorithm to calculate parameter estimates and
confidence intervals.
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Table 4: Model parameters

Linear Utility: ψij : η1 = η2 = 0
Formats

Brands Capsules Gel Liquid Powder Tablets

Brand A 0.514 2.058 0.343 8.136 3.345
[0.150,0.787] [1.549,3.052] [0.096,0.549] [7.141,9.591] [0.078,6.545]

Brand B 1.567 1.756 4.383 0.747 0.572
[0.641,2.330] [1.066,4.384] [3.346,6.078] [0.044,1.434] [0.310,0.987]

Brand C 1.168 0.469 0.334 0.756
[0.257,4.664] [0.285,0.712] [0.153,0.557] [0.534,0.998]

Brand D 1.037 0.397 2.555 1.569 0.509
[0.017,2.616] [0.167,1.317] [0.608,4.031] [1.096,3.062] [0.083,2.662]

Brand E 2.465 7.418 1.809 0.364
[0.977,3.473] [4.898,9.567] [0.554,3.437] [0.016,2.519]

Brand F 1.355 1.402 1.529 1.077
[0.708,2.811] [1.041,1.673] [1.231,2.069] [0.155,1.684]

PL 0.871 2.391 0.656 2.103 3.867
[0.306,2.287] [1.28,2.985] [0.05,1.495] [0.018,4.365] [1.5,8.495]

Other 3.675 1.255 2.956 2.292 2.236
[0.090,6.805] [0.092,2.338] [0.189,9.88] [0.498,3.639] [1.015,3.613]

σ1 σ2 σ1 σ2

Brands: Formats:
Brand A 0.809 1.177 Capsules 1.157 0.985

[0.224,3.435] [0.779,1.661] [0.632,3.009] [0.107,1.953]
Brand B 0.396 1.708 Gel 1.184 1.159

[0.150,1.201] [0.638,3.786] [0.754,1.688] [0.764,1.475]
Brand C 1.656 2.676 Liquid 1.157 2.363

[1.375,1.89] [0.956,3.312] [0.791,1.873] [0.924,3.074]
Brand D 0.096 0.047 Powder 0.693 3.576

[0.042,0.388] [0.017,0.081] [0.556,0.977] [1.944,3.928]
Brand E 1.297 2.000 Tablets 0.405 0.976

[0.036,2.181] [0.920,3.840] [0.002,2.527] [0.503,1.270]
Brand F 0.580 1.494

[0.122,1.105] [0.879,3.261]
PL 0.456 2.067

[0.351,0.664] [1.206,3.385]
Other 0.234 0.969

[0.084,0.341] [0.132,3.868]

Other Parameters

Quad. Utility: Ψi ψi0 & Shopping Costs Inventory Costs

υ 0.997 µ0 0 γ 0
[0.992,1] - -

α1 1.702 σ0 3.031 Γ 0.025
[0.808,1.930] [0.300,3.875] [0.003,0.041]

α2 0.073 ρ0 7.06 κ1 0.790
[0.030,0.120] [5.577,8.162] [0.132,3.45]

Utility Shocks κ2 10.42
σε 0.073 [6.404,17.491]

[0.043,0.154]
Note: 90% confidence intervals in square brackets

38



Figure 8: Brand shares by quartiles of income per equivalent adult: simulated vs. data

Figure 9: Format shares by quartiles of income per equivalent adult: simulated vs. data

39



Figure 10: Brand re-purchase probabilities: simulated vs. data

The top panel plots the percentage of households that buy the same brand as their
previous purchase. I refer to these brand loyal customers as ’stayers’. In general, the
model successfully predicts the high re-purchase rates observed in the data - only Brand
D’s repurchase rates are too low.

The bottom panel presents the re-purchase rates for switchers. In general, the fit
is once again good. With only a handful of exceptions, the simulated the re-purchase
probabilities are clustered around the 45 degree line. Qualitatively similar results hold
for formats.50

This analysis suggests that although low-dimensional, the approximate factor
structure used to capture persistent unobserved taste heterogeneity across brands and
formats is effective at reproducing observed purchase dynamics.

Figure 11 shows the purchase probabilities and hazard rates for inter-purchase
durations in the model and in the data. The blue dashed lines correspond to the data
and the red solid lines are the simulated output from the model.
50See Annex F.
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Figure 11: Fit of purchase probability and hazard rate of inter-purchase duration

The simulated inter-purchase duration broadly captures the key features of the inter-
purchase duration distribution observed in the data. Namely, most purchases occur in
the first few weeks after the last purchase and the remainder are spread over the next
15 to 20 weeks.

However, there are some notable differences between the simulated and observed
distributions. Namely, the simulated number of purchases in the first two weeks
following the previous purchase is considerably higher than that implied by the data -
illustrating that the simulated hazard rate is too high in the first few weeks following a
purchase. As a result, the percentage of purchases is overstated in weeks 1 and 2, and
understated in the medium to long-run.

Inspection of simulation output indicates this occurs because households tend to buy
several small SKUs of the same detergent in sequential weeks, rather than one large
SKU. That is, households make too many purchases, too close together.

One possible remedy is, as suggested in Section 3.2.2, to accrue inventory costs for
the number of SKUs, rather than number of detergents. As noted earlier, with the
addition of an inventory consumption rule (ie. first-in-first-out) this can be relatively
easily incorporated into the model.

5.3 Policy Experiments

In this section I present two types of policy experiments. First, I examine the impact of
transitory price changes. This illustrates how promotional pricing can lead to purchase
acceleration. Second, I calculate medium to long-run price elasticities for the most
popular SKUs by simulating the demand response to a permanent price increase.

5.3.1 Demand response to transitory price changes

I report the results of two experiments in which there is an unexpected, short-lived
price cut for some of most popular branded SKUs. Using these experiments I show how

41



short-run price changes can impact on the timing and identity of detergent purchased.
To conduct each experiment, I first generate 12,400 households that are representative

of the observed sample of households.51 Each household appears in the experiment for
52 weeks. Observed SKU prices are used in the simulation, as are the price factors
estimated using eq. (12).

In the 27th week after the simulated household first arrives in the sample, I reduce
the observed prices of the selection of SKUs by 10 percent. Because the week in which
the price is cut is relative to the point at which each household enters the sample, the
effect of the price cut is integrated out over the range of observed prices.

The simulation procedure mirrors the one used to calculate the objective function.
The impact of the price cut is evaluated by tracing out the impulse response function of
the SKUs purchased during and after week 27.

In the price forecasting model similar sized SKUs are grouped together and are
governed by the same price dynamics. I conduct this experiment for Brand A powder
SKUs and Brand E liquid SKUs containing 25 to 40 washes.

Figure 12 shows the demand response of a 1 week price cut of 10 percent for large
Brand A powder SKUs. It contains three panels. The top panel shows the change in
the number of washes purchased for the promoted SKUs. The same plot is repeated for
other Brand A powder SKUs and all other detergents in the middle and bottom panels,
respectively.

The top panel in the figure shows that households in the simulation bought around 130
more washes of Brand A powder in large SKUs in response to the price cut. This initial
demand increase occurs without immediately reducing purchases of other detergents.
However, in the periods following the price cut, the future purchases of other detergents
are reduced. This suggests that purchases were accelerated and switched to Brand A
powder in response to the unexpected price cut.

There is also a smaller increase in the demand for Brand A powder SKUs in weeks 5
to 10 of the price experiment. This demonstrates that once households switch to Brand
A powder they are more likely to buy other SKUs containing the same detergent.

Figure 13 shows the change in the washes purchased for each detergent when there
is a temporary one week price cut of 10 percent for all large SKUs of Brand E liquid.
It contains three panels that plot the impulse response functions of number of washes
purchased in large Brand E liquid SKUs (top), other Brand E liquid SKUs (middle),
and other detergent SKUs (bottom).

The top panel in the figure shows that households in the simulation bought 56 more
washes of Brand E liquid in large SKUs in the week of the price cut. Again, the
immediate demand response to the price cut occurs without reducing contemporaneous
purchases of other detergents. However, in the periods following the price cut, the
purchases of other detergents are reduced. This inter-temporal substitution suggests
that purchases were accelerated and switched to Brand E liquid in response to the
unexpected price cut.

51Specifically, I make 20 versions of each household each with different draws for persistent taste
heterogeneity and SKU-specific utility shocks.
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Figure 12: Unexpected 10% price cut for 1 week: Brand A Powder SKUs (25-40W)

There is also a increase in demand for Brand E liquid SKUs in weeks 6 and 8 of the
price experiment. As in the first price experiment, this demonstrates households are
more likely to buy other SKUs containing the same detergent if they already have them
in stock. Through this mechanism, promotional pricing has the potential for long run
increases in volumes sold for the promoted good.

5.3.2 Demand response to permanent price changes

Next, I simulate the impact of a permanent one percent price rise for 12 SKUs. These
12 SKUs represent a selection of popular SKUs with different formats, brands and sizes.
I conduct the price experiment separately for each SKU.

Like the short-run price experiment, I begin by simulating 12,400 households. Again,
the households are representative of the households in the sample of Kantar Worldpanel
data used in estimation.

Observed prices are used in the simulation. However, price expectations are adjusted
in line with the permanent price rise - which implies a revision to households’ forecasting
model. To adjust the price model for the permanent price change I multiply the cross-
sectional component of the price forecasting model for SKU m by km that solves

1.01p̄m =
T∑
t=1

ˆ
z−1

(
λ>mFt + kmX

>
mα + εimt

)
dGε (29)
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Figure 13: 10% price drop over 1 week: Brand E Liquid SKUs (25-40W)

and p̄m is the observed average price per wash for SKU m in the data. In each period,
the observed prices for SKU m are shifted up by 1 percent of its average price over the
sample. This leaves the time series variation of prices unchanged.

Before simulation, the model is solved assuming households use the adjusted
forecasting model and corresponding prices. With the new price forecasting model,
counterfactual prices and model solution, the simulation is conducted as it was in the
short-run policy experiment.

The own-price elasticities are reported in Table 5. The first column shows the own-
price elasticities for all households. It shows that the own-price elasticities are greater
than -1, and detergent would appear to be inelastically demanded.

To understand why this is the case, I split the sample by income per equivalent adult.
The last two columns in Table 6 report the own-price elasticities for the poorest and
richest households separately.

For the households with below median income per equivalent adult, the own price
elasticity is greater than 1 in absolute value for 10 out of 12 SKUs. The larger branded
SKUs tend to be more elastically demanded by the poorest households: Brand A gel
28W, Brand B capsules 20W, Brand A powder 42W, and Brand E liquid 28W all have
elasticities less than -3. Perhaps reflecting the ability of households with lower inventory
costs to better time their purchases with sales of their preferred detergent before running
out of stock.
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Table 5: Own-price elasticities

Own-price elasticities
SKUs All Households Poorest Richest

Brand A Gel 28W -0.336 -3.211 0.308
Brand B Caps 20W -0.394 -3.030 0.207
Brand E Liquid 16W -0.410 -1.951 0.139
Brand E Liquid 18W 0.066 -0.937 0.414
Brand E Liquid 28W -0.828 -4.933 0.231
Brand F Liquid 18W -0.712 -1.280 -0.377
Brand A Powder 10W 0.140 -0.264 0.330
Brand A Powder 25W -0.073 -1.477 0.360
Brand A Powder 42W -1.634 -3.097 -1.322
PL Powder 10W -0.451 -1.056 0.000
PL Powder 30W -0.528 -1.241 0.200
PL Tablets 12W -0.924 -2.345 -0.121

Smaller branded SKUs tend to be more inelastically demanded - perhaps reflecting
the increased market power manufacturers have over households with relatively high
inventory costs. Finally, the retailer’s private label SKUs are also quite inelastically
demanded - this is consistent with the highly loyal customer base.

Counterintuitively, for the wealthiest households, there is often a small positive
demand response to the price rise. This marginal increase in purchases for a small
number of households reflects the fact that the cost of running out of stock during a
non-promotional period has now increased from an already high base price. Absent the
price increase, some households decide not to purchase in some of the promotional
periods. They prefer to consume from existing stock and wait for the next promotion -
even though they may incur a cost for running out of stock during a non-promotional
period (i.e. either through a higher purchase price, or through reduced consumption).
Following the price increase, for a small number of households it is now preferable to
purchase SKUs more frequently when they are on sale and keep stocks at a higher
level. This enables them to avoid with certainty the additional cost they would
otherwise incur if they run out of stock before the next promotion occurs.

Table 6 shows the cross-price elasticities implied by the model. The first of these shows
the substitution to different size SKUs containing the same detergent. The remaining
two columns show substitution to other detergents and the option not to purchase.

Taken together these cross-price elasticities show that different size SKUs containing
the same detergent are particularly close substitutes. This reinforces the importance
of household preferences for specific detergents in understanding consumer dynamic
purchasing behaviour.
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Table 6: Cross-price elasticities

Cross-price elasticities
SKUs Same det., diff size Other detergent No Purchase

Brand A Gel 28W 0.394 -0.016 0.002
Brand B Caps 20W 0.000 0.003 0.001
Brand E Liquid 16W 0.016 -0.008 0.003
Brand E Liquid 18W 0.135 -0.006 0.001
Brand E Liquid 28W 0.052 -0.011 0.003
Brand F Liquid 18W 0.193 0.006 0.000
Brand A Powder 10W 0.000 0.026 -0.006
Brand A Powder 25W 0.050 -0.002 -0.001
Brand A Powder 42W -0.008 0.048 -0.003
PL Powder 10W -0.072 0.015 0.003
PL Powder 30W 0.052 -0.008 0.003
PL Tablets 12W -0.602 0.012 0.000

5.3.3 Summary

These price experiments highlight the role of purchase acceleration from promotional
prices, suggest that inventory costs confer market power on manufacturers, and highlight
the importance of unobserved heterogeneity in preferences in understanding consumer
dynamics.

They also highlight that the model does not produce enough price sensitivity for
wealthy households. This is most likely related to the lack of flexibility in the
specification of the marginal utility of income. This aspect of the model is being
investigated further in ongoing research.

6 Conclusion

This paper develops a dynamic discrete-continuous demand model for storable goods
- a class of fast moving consumer goods that account for a large fraction of grocery
expenditures. It is applied to the UK laundry detergent industry using household level
purchase data.

To estimate and solve the dynamic demand model, I use techniques from:
approximate dynamic programming, large scale dynamic programming in economics,
machine learning, and statistical computing. The benefits of this approach are
three-fold.

First, the dynamic demand model is compatible with high-dimensional choice sets.
In turn, making dynamic demand estimation possible for storable good industries with
many sizes - the UK laundry detergent industry is an example.

Second, the model can combine the most desirable features of existing models. In
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particular, it allows for persistent taste heterogeneity to interact with product varieties
in flow utility and continuation values. Furthermore, utility from product differentiation
accrues at the point of consumption, not purchase. Together these features enable the
model to capture rich inter- and intra-temporal substitution patterns.

Finally, these dimension reduction techniques do not hinge on idiosyncratic features
of the industry being studied, nor do they impose restrictive assumptions on purchase
decisions and/or consumption. As a result, this dynamic demand can be applied to any
storable good industry with only minor modifications.

This model is likely to be of both policy and commercial interest. In a policy setting,
understanding how consumers react to price dynamics may be important for effective
design of taxation policy. In addition, consistent estimation of short and medium to
long run elasticities is a key input into antitrust analysis of mergers, assessment of cartel
damages, etc. Finally, these storable demand models can be used to construct new
cost-of-living indices to reflect differences in the prices recorded in baskets of goods and
purchase prices (Osborne (2017)).

From a commercial perspective, this structural dynamic demand model can be applied
to consumer level purchase data using ever increasing computational resources. The
resulting demand model enables firms to better understand demand dynamics - a key
input into the optimisation of promotional price strategies and demand forecasting.
Moreover, it provides a new way to explore counterfactual market outcomes when new
products are introduced or old products are withdrawn.
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Annex A: Data
Additional filters are added to the sample of households to make them suitable for use
in estimation of a dynamic demand model. To ensure households purchase records are
likely to be informative for an analysis demand dynamics, they are required to make
at least 10 purchases with at most one purchase per week. To guard against including
households who temporarily drop out of the sample, the maximum gap between any two
purchases is 24 weeks.

In addition, to only include households whose purchases are for personal consumption,
any households that purchases more than 100 washes or buy more than 2 packs of
detergent in a single shopping trip are omitted. In total, the filtered sample contains
620 households.

Annex B: Equivalence of the two stage problem

Let the pre-purchase state space be denoted by xit =
[
Iit, J̃it, Pt, Yit

]
where

J̃it =
J∑
j=1

1 [Iijt > 0] and the state space after purchases of SKU m be

sit =
[
Īit, J̄it, Pt, Ȳit

]
. In recursive form, the household’s choice problem is

V (xit, εit) = max
dit

max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+
M∑
m=0

dimtεimt + δ

ˆ
V (xit+1, εit+1) dGεdGPt+1|Pt,τ (30)

where Pt+1 ∼ GPt+1|Pt,τ , dit = [di0t, . . . , diMt]
>, εit = [εi0t, . . . , εiMt]

> and σε = 1 for
simplicity.
Integrating the value function over SKU specific shocks, εimt,

V̄ (xit) :=

ˆ
V (xit, εit) dGε (31)

= ln
M∑
m=0

exp{max
dit

max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+δ

ˆ
V (xit+1, εit+1) dGεdGPt+1|Pt,τ} (32)

Define W (sit) as the indirect utility function conditional on purchasing SKU m

W (sit) := max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+δ

ˆ
V̄ (xit+1) dGPt+1|Pt,τ (33)
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Then substituting eq (33) into eq (33)

V̄ (xit) = ln
M∑
m=0

exp {W (sit)} (34)

Rolling forward eq (34) next period’s integrated value function

V̄ (xit+1) = ln
M∑
m=0

exp {W (sit)} (35)

Substituting eq (35) into eq (33) yields a Bellman Equation,

W (sit) := max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+δ

ˆ
ln

M∑
m=0

exp {W (sit+1)} dGPt+1|Pt,τ (36)

Finally, I show that the household’s discrete choice problem is to choose the largest
indirect utility function once SKU specifics are realised

V (xit, εit) = max
dit

max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+
M∑
m=0

dimtεimt + δ

ˆ
V (xit+1, εit+1) dGεdGPt+1|Pt,τ (37)

= max
dit

max
0≤Cit≤Iit+Qit

U (Cit) + ψi,0 (Yit − Pit − PCit − ICit)

+
M∑
m=0

dimtεimt + δ

ˆ
V̄ (xit+1) dGPt+1|Pt,τ (38)

= max
dit

W (sit) +
M∑
m=0

dimtεimt (39)

where the first line is eq (30). Eq (35) is substituted into the second line. Finally, I
substitute in eq (36) and represent ε element-wise. This gives the desired expression.

Annex C: Estimation algorithm

At the start of iteration k of estimation algorithm, the value of structural parameters
is θk and the current state of the solution to the dynamic program is given by the
parameters rk.
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Denote the objective function at the beginning of the iteration from simulation of the
model to calculate the moments at θk and rk as

Q (θk, rk) := g (θk, rk)
>Σ−1g (θk, rk)

From the proposal density for the structural parameters I draw θ̃k and simulate the
model to compute a new objective function, Q(θ̃k, rk). Then, to decide whether accept
or reject the draw of the structural parameters Q(θ̃k, rk) is compared to Q(θk, rk). If the
draw is accepted, set θk+1 = θ̃k. If not, I leave the structural parameters unchanged.

Next I do a single iteration of the λ-policy iteration algorithm at θk+1. Applying
the policy evaluation and policy improvement steps described in Section 3.6 yields rk+1.
To prepare the algorithm for the next iteration, the objective function needs to be
recalculated as Q (θk+1, rk+1). This is used in the accept-reject decision for the new
structural parameter draws at rk+1.
Conducting three separate simulations at each iteration is likely to be

computationally burdensome. Clearly the simulation used to evaluate the draw is
unavoidable and updating the ADP at each iteration is highly advisable. However, as
highlighted by Imai et al. (2009), even if the objective function is not re-evaluated after
the λ-PI step, the existing approximation to the objective function may have a good
enough for the purpose of deciding whether to accept or reject the next structural
parameters draw in the next iteration.

Following the suggested approach in Imai et al. (2009) a third simulation is
conducted if the existing objective function is likely to be a poor approximation to
Q (θk+1, rk+1). If θ̃k is accepted then there is no need to re-simulate. The value of the
objective function used in the structural parameter update can be used as an
approximation; Q (θk+1, rk+1) ≈ Q (θk+1, rk).
If the draw is rejected the quality of the approximation to Q (θk+1, rk+1) may depend

on how many iterations have passed since it was last updated. If a draw has been
accepted in last i ≤ n̄ iterations, the objective function is left unchanged. That is,
Q (θk+1, rk+1) ≈ Q (θk, rk) for 1 ≤ i < n̄. After i > n̄ successive rejections, after the λ-
policy iteration step in iteration k, the objective function is re-evaluated at (θk+1, rk+1).
In the algorithm, if there is no update in the last five iterations, the objective function
is re-evaluated.52

Next, is the adaptive element of the estimation algorithm. First, using the last 100
accepted parameter draws, the mean and covariance of the target density are calculated.
The estimated moments of the target density pools parameter estimates across chains.

Then, the chain specific proposal covariance scaling factor is exponentially smoothed
using the probability that most recent draw of the structural parameters is accepted. If
the probability of acceptance, is greater (lower) than the target acceptance rate of 0.234,
the scaling factor increases (decreases).

Next, using the ratio of the temperature scaled objective functions, chains swap
probabilities are calculated. If the swap probability exceeds a draw from a uniform
distribution, structural and value function parameters are swapped across chains.
52Given that the adaptive Markov Chain MC targets an accepted draw every 234 per 1000 draws, a

’natural’ update occurs approximately once every 5 draws.
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Finally, using the ratios of the temperature scaled objective functions in adjacent
chains, the temperatures are updated ready for use in the next iteration of the estimation
algorithm (see Łącki and Miasojedow (2015) for details). Łącki and Miasojedow (2015)
also allow for a chain pruning phase. Because I only use a maximum of three chains,
this phase is not included in the estimation algorithm used in this paper.
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Annex D: Empirical Results

D.1 Interactive fixed effects model

Table 7: Price Model: interactive fixed effects model

R=1 R=2 R=3

Formats: Powder -0.219 -0.449 -1.812
(0.057) (0.119) (2.027)

Liquid -0.234 -0.709 -0.027
(0.107) (0.148) (0.832)

Tablets -0.137 -0.574 -1.265
(0.097) (0.147) (1.433)

Gel -0.396 -0.589 -1.822
(0.062) (0.119) (1.905)

Brands: Brand B -0.143 0.068 0.673
(0.073) (0.110) (1.190)

Brand C -0.463 -0.539 0.388
(0.081) (0.106) (1.268)

Brand D 0.120 0.277 0.795
(0.057) (0.106) (0.916)

Brand E -0.312 -0.688 -1.693
(0.093) (0.170) (1.855)

Brand F -0.712 -1.032 -1.436
(0.089) (0.175) (1.229)

PL -1.020 -1.069 -1.466
(0.090) (0.112) (0.964)

Others -0.828 0.377 -8.487
(0.264) (0.243) (8.971)

Other Chars.: Multipack 0.18 0.007 0.024
(0.049) (0.118) (0.156)

Washes -2.922 -0.383 -0.465
(0.975) (1.708) (2.316)

Washes2 2.096 -1.106 -1.050
(1.758) (2.439) (3.261)

Washes3 -0.684 0.808 0.815
(1.016) (1.267) (1.666)

Constant 0.789 0.689 1.551
(0.138) (0.196) (1.363)

R2: Overall 0.674 0.710 0.728
R2: Within 0.364 0.132 0.061
Num. Obs. 14,927 14,927 14,927
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Annex E: Inventory Proxy

Construct proxy for inventory for household h whose first period in the data is T0 and
last is T .

1. Calculate average consumption, C̄ , over the sample

C̄ =

∑T
t=T0

Qt

T − T0 + 1

where Qt is the number of washes purchased in period t

2. Set inventory of 0 immediately prior to first purchase,

IT−1 = 0

3. Then for t = T0, . . . , T calculate inventory before purchase are made

It = max
{

0, It−1 +Qt−1 − C̄
}

4. The first 12 periods are omitted to reduce dependence on initial inventory.
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Annex F: Additional Results

Figure 14: Re-purchase probabilities: formats
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