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Abstract

When the trading process is characterized by search frictions, traders may be rationed so
markets need not clear. We build a general equilibrium model with transferable utility where
the uncertainty arising from rationing is incorporated in the definition of a commodity, in the
spirit of the Arrow-Debreu theory. Prices of commodities then depend not only on their physical
characteristics, but also on the probability that their trade is rationed. The standard definition
of competitive equilibrium is extended by replacing market clearing with a matching condition
which describes a trading technology that is not frictionless. This condition relates the rationing
probabilities of buyers and sellers to ratio of buyers to sellers in the market via an exogenous
matching function with constant returns, as in standard search-theoretic models. When search
frictions vanish, our model is equivalent to the competitive assignment model of Gretsky, Ostroy
and Zame (1992). We adopt their approach, which uses linear programming techniques and
duality theory, to derive the welfare and existence theorems in our search environment. Our
competitive equilibrium notion is equivalent to that of directed (or competitive) search. The
strength of our formulation and the linear programming approach is that they allow us to
generalize the constrained efficiency and existence results in the directed search literature to
a much broader class of economies. Our framework also opens the door to the use of linear
programming algorithms for computing equilibria.
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1 Introduction

The Arrow-Debreu model is the cornerstone for the analysis of competitive markets. In the clas-

sical theory of Arrow (1964) and Debreu (1959), trade is represented as a costless process. Any

agent seeking to buy or sell a good at a given point in time can do so at the equilibrium market

price. Trade involves no further costs in terms of time and resources. Search theory, on the other

hand, highlights the costly nature of the trading process. In particular, this theory has become

the dominant paradigm to study labor markets since the seminal work of Diamond (1981, 1982),

Mortensen (1982a, 1982b) and Pissarides (1984, 1985). In these markets workers usually take time

and spend resources in order to find a suitable employer, and vice versa. Also, rationing arises in

the form of unemployment, which tends to coexist with unfilled job vacancies. The key assumption

of the Diamond-Mortensen-Pissarides model is that workers and firms must search for trading op-

portunities, and the outcome of their search is uncertain. Search frictions are typically modeled via

an exogenous matching function which describes a random meeting process between workers and

firms.1 This random process implies that at any point in time some agents will manage to trade

and others will not. Hence, unlike in the classical Arrow-Debreu model, agents may be rationed in

equilibrium (so markets need not clear), and in general it will take time to trade.

In this paper we study a prototypical class of exchange economies with search frictions and

transferable utility, using a notion of competitive equilibrium in the spirit of Arrow and Debreu.2

We show that a competitive equilibrium exists and the two welfare theorems hold.

Our equilibrium notion is equivalent to that of directed (or competitive) search.3 It is well-

known that a directed search equilibrium is constrained efficient, both in simple environments with

homogeneous buyers and sellers (see Moen 1997 and Shimer 1996) and in several environments

with heterogeneity (e.g. Shi 2001, Shimer 2005 and Eeckhout and Kircher 2010). The point we

want to make in this paper is that there is a well-established mathematical literature on infinite-

dimensional linear programming which has been used by Gretsky, Ostroy and Zame (1992, 1999)

to study frictionless matching markets, and can be applied to study a relatively general search
1The matching function gives the measure of meetings between a worker and a firm as a function of the measures

of workers and firms in the market, and possibly other variables such as the agents’ search efforts.
2The transferable utility assumption is standard in the search literature.
3See Montgomery (1991), Peters (1991, 1997, 2000), Moen (1997), Acemoglu and Shimer (1999a, 1999b), Burdett,

Shi, and Wright (2001), Shi (2001, 2009), Mortensen and Wright (2002), Shimer (2005), Menzio and Shi (2009, 2010)
and Eeckhout and Kircher (2010), among others, as well as the survey by Rogerson, Shimer, and Wright (2005).
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environment. The strength of our competitive formulation and the linear programming approach

is that it allows us to generalize the constrained efficiency and existence results in the directed

search literature to a broader class of economies (e.g. with a large variety of different goods, a lot of

diversity in buyer and seller tastes, with or without complementarities, possibly with heterogeneous

matching technologies,...).4 This is accomplished by bringing to light a direct mapping between a

competitive equilibrium and the solution to the social planner’s problem. Our framework also opens

the door to the use of existing linear programming algorithms for computing equilibria. Hence, it

should be particularly useful for quantitative studies of search markets, where there is typically a

lot of heterogeneity in prices and outcomes.5 To the best of our knowledge, the linear programming

approach has not been used before to study economies with search frictions.6

Our key modeling choice is to incorporate the uncertainty arising from rationing in the definition

of a commodity, as in the Arrow-Debreu theory. Prices of commodities then depend not only on their

physical characteristics, but also on the probability that their trade is rationed (i.e., their “search

characteristic”). In a competitive equilibrium agents—who are infinitesimal relative to the size of

the economy—take prices as given. They also take as given rationing probabilities, which are part of

the description of a commodity. Markets are anonymous, so prices and rationing probabilities do not

depend on the identities of the traders. The departure from the standard definition of competitive

equilibrium is that market clearing is replaced with a matching condition which describes a trading

technology that is not frictionless. As in standard search-theoretic models, the matching condition

relates the trading probabilities of buyers and sellers to the ratio of buyers to sellers in each market

via an exogenous matching function with constant returns to scale. This condition says that the

measures of buyers and sellers who trade a given commodity are equal (even though the measures

of buyers and sellers in the market for the commodity may differ). In equilibrium, the price system

adjusts so that the optimal decisions of the agents are consistent with the matching condition.
4This class, however, does not include the economies analyzed by Acemoglu and Shimer (1999a), who allow for risk

aversion, and Shi (2009) and Menzio and Shi (2009), who study nonstationary infinite horizon dynamic models (see
below). Neither does it include economies with adverse selection and moral hazard, like those studied by Guerrieri,
Shimer, and Wright (2010) and Moen and Rosen (2011).

5In particular, it could be useful for the literature that focuses on structural estimation of hedonic models. Ekeland,
Heckman, and Nesheim (2004) discuss the identification and estimation of the structure and the distribution of
preferences and technologies in hedonic models without frictions using demand, supply and pricing data. We thank
a referee for pointing this out to us.

6See Makowski and Ostroy (1996, 2003) for other general equilibrium formulations with transferable utility which
use the linear programming approach. Jerez (2003), Rahman (2005) and Song (2012) adopt this approach to study
competitive economies with adverse selection and moral hazard.
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The matching function captures the presence of external congestion effects in the trading process.

Intuitively, as the ratio of buyers to sellers (or “market tightness”) increases, the probability that each

buyer trades falls and the probability that a seller trades increases. In other words, agents seeking

to trade impose a negative congestion externality on traders on the same side of the market and a

positive externality on traders on the other side of the market. In a competitive equilibrium these

external effects are internalized, so the equilibrium allocation is constrained efficient.7 Because

rationing probabilities are specified in the definition of a commodity, they are explicitly priced.

Suppose, for instance, that the same physical good trades in two locations. Suppose also that there

are fewer buyers per seller in the first location in equilibrium. If buyers and sellers are expected

utility maximizers who are free to choose the location where they trade, the good should trade at a

higher price in the first location (because there the probability of trading is higher for buyers and

lower for sellers). The fact that the price of the good differs across locations is not surprising from

the general equilibrium perspective, since the objects traded are formally two different commodities

(described by their physical characteristics and the ratio of buyers to sellers at the trading location).

The standard definition of directed search equilibrium in this kind of environment assumes that

sellers choose prices. Buyers in turn choose the good they want to buy and a price offer. Put

differently, agents choose to trade in a particular “submarket,” described by the good’s physical

characteristics and a price. All traders form beliefs about the ratio of buyers to sellers (and thus

the probability of trading) in each submarket. The intuition is that, for a given good, lower prices

attract relatively more buyers, increasing the sellers’ trading probability and decreasing the buyers’

trading probability.8 In equilibrium beliefs are rational in all active submarkets, meaning that the

measures of buyers and sellers who trade in these submarkets generate the buyer-seller ratios that

the traders take as given. On the other hand, beliefs in inactive submarkets are assumed to be

always well-defined and common for all traders.9 Specifically, traders believe that there are many
7The definition of constrained efficiency takes into account the fact that the social planner, just like the market,

is restricted by the matching technology.
8By contrasts, in the Diamond-Mortensen-Pissarides model each transaction between a buyer and a seller consti-

tutes a bilateral monopoly. There search equilibria are typically constrained inefficient, unless the surplus is divided
according to the bargaining rule that internalizes the search externalities (see Diamond 1982 and Hosios 1990).

9This formulation is closely related to Gale’s (1996) general equilibrium model. See, for instance, Peters (1997).
In Gale (1996) rationing arises from the presence of adverse selection (there are no search frictions). The objects of
trade are contracts which provide a complete specification of the terms of trade, including prices. The price system
then no longer plays the role of ensuring that individual decisions are consistent at the aggregate level. Instead it
is the probabilities of trading the different contracts that play that role. Agents form common beliefs about these
probabilities and the unobservable type of the traders they meet randomly in each market. In equilibrium trading
probabilities are such that the long side of the market is rationed when there is an imbalance of buyers and sellers.
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buyers and sellers in all submarkets, even if they are inactive in equilibrium. Also, a particular

restriction, known as the “market utility property”, is imposed on beliefs. For environments where

traders on one side of the market are homogeneous, the restriction implies that these traders are

indifferent between active and inactive submarkets; i.e., they get their “market utility level” in

all submarkets (see Peters (2000)). If, for instance, all buyers are homogeneous, one can then

characterize the equilibrium by assuming that sellers choose a price and a ratio of buyers to sellers

to maximize their expected utility subject to the constraint that buyers get their market utility

level. Hence, the equilibrium is constrained efficient. Eeckhout and Kircher (2010) show that, with

two-sided heterogeneity, the restriction is slightly more involved. It says that the buyer types who

are most eager to trade in a given inactive submarket are indifferent between this submarket and

the submarket where they trade in equilibrium. Alternatively, if all buyer types strictly prefer not

to trade in the inactive submarket, agents believe that the tightness in this submarket is zero.

Peters (1991, 1997, 2000) provides game theoretic foundations of directed search equilibrium for

environments with one-sided heterogeneity (see also Burdett, Shi, and Wright (2001)). He considers

a two-stage game, where some sellers first compete by simultaneously posting and committing to a

price. Buyers then observe all the posted offers and direct their search to the most attractive ones.

As the number of traders gets large, the equilibrium of the game coincides with a directed search

equilibrium of a large search economy with an urn-ball matching function. In particular, in the

limit game the conjectures of the sellers (who correctly anticipate the effects on buyers’ behavior of

making an off-the-equilibrium-path offer) have the market utility property.

Note that the two formulations are essentially two sides of the same coin. In directed search

models agents choose a submarket (i.e., a good and a price) taking as given the ratio of buyers to

sellers in all submarkets. In our model they choose a commodity (i.e., a good and a ratio of buyers

to sellers) taking as given the prices of all commodities. As we shall see, our matching condition

is the equivalent of the condition that beliefs are rational in all active markets. The equivalent of

the assumption that all traders have the same beliefs in our model is that all traders face the same

prices (prices are anonymous). And the equivalent of the assumption that beliefs in all markets

(including inactive ones) are well-defined is that all commodities are priced, even if they are not

traded in equilibrium. The latter feature is standard in general equilibrium models with a continuum

Also, beliefs are rational in all active markets, and in inactive markets they are pinned down using refinements
analogous to those used in games of incomplete information.
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of commodities, like ours, where the prices of commodities which are not traded in equilibrium are

indeterminate (e.g. see Mas-Colell and Zame 1991). The difference between the two formulations

has to do with the market utility property. In our model prices in inactive markets keep buyers and

sellers out of these markets in equilibrium, but need not provide any agent with her market utility.

So our definition is in principle less restrictive. Yet a common convention is to get rid of the price

indeterminacy by selecting the infimum of the set of supporting price systems (e.g. see Gretsky,

Ostroy, and Zame 1999). We show that this is equivalent to the market utility assumption.

If the first contribution of this paper is to connect directed search models and the Arrow-Debreu

model, the second and main contribution is technical. Our formulation is closer in spirit to classical

general equilibrium theory in that it fleshes out the allocating role of prices.10 “Flipping things

over" and laying out the search model in this more standard form is particularly useful for the

following reason. In the absence of search frictions, our model is isomorphic to the competitive

model of Gretsky, Ostroy, and Zame (1992). These authors analyze the linear assignment model of

Shapley (1955) and Shapley and Shubik (1972) using linear programming techniques and duality

theory.11 Our formulation purposely highlights the linear structure of the search environment,

so it allows us to adopt a similar methodology to derive our results. The argument is the same

as that of Gretsky, Ostroy, and Zame (1992), though our method of proof is different (mainly

because, unlike in their paper, the measures describing an allocation are defined over a non-compact

set).12 We first show that constrained efficient allocations solve a linear programming problem.

Then we establish an equivalence between (i) the optimal solutions to this linear program and

competitive equilibrium allocations, and (ii) the optimal solutions to the dual of the linear program

and competitive equilibrium prices and indirect utilities (or market utility levels). The existence
10In this sense it is closer to the competitive search formulation in Mortensen and Wright (2002), which is similar

to that in Moen (1997). These authors consider an economy with no complementarities and a single good (labor). In
their model, the good may trade in different submarkets with different levels of market tightness which are explicitly
priced. In equilibrium agents select the most preferred submarket taking as given the set of existing submarkets and
the prices in these submarkets. Prices adjust so that the actual level of market tightness in each submarket equals the
level that agents take as given. Finally, it is not possible to open additional submarkets that would attract positive
measures of buyers and sellers. The interpretation is that there are third-party market makers with a profit motive
who exploit existing arbitrage opportunities by setting up submarkets.

11Gretsky, Ostroy, and Zame (1999) use the same framework to clarify the concept of perfect competition.
12For this reason, our linear programming formulation (e.g. the choice of primal and dual spaces, and the corre-

sponding topologies) is also slightly different. The same issue arises in Jerez (2003). The difference is that there the
planner’s problem is a linear semi-infinite program (e.g. with finitely many constraints), which allows to restrict to
measures with finite support. Gretsky, Ostroy, and Zame (2002) derive conditions to guarantee existence of solutions
to the dual program and equality of the values of the primal and dual programs for a general infinite-dimensional
linear programming problem, but these are not applicable to our problem unfortunately.
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of a competitive equilibrium thus follows from the existence of optimal solutions to the primal and

dual linear programs, under certain regularity conditions.

Our work contributes to a growing literature that has advanced methods which extend directed

search to environments with a lot of heterogeneity. In particular, Eeckhout and Kircher (2010)

study a similar class of search economies. They derive conditions for the equilibrium allocation to

entail either positive or negative assortative matching. They also show that, under these conditions

(which regard the degree of supermodularity of the match value function), an equilibrium exists and

is constrained efficient. Our welfare and existence theorems generalize the latter results since they

hold regardless of the matching pattern displayed by the equilibrium allocation. Also, they do not

require the differentiability and concavity assumptions on utility and matching functions typically

imposed in the literature. All we require is continuous utility and matching functions, and compact

sets of physical goods and agents types.

Our framework embeds most static models in the directed search literature as particular cases,

and extends easily to dynamic models which are stationary or have a finite horizon. Yet it does not

apply to nonstationary infinite horizon dynamic models (see, however, Shi 2009 and Menzio and

Shi 2009). This is because our proofs rely on the fact that one can restrict to a compact subset of

the set of commodities without loss of generality (which is not true with an infinite horizon). We

leave the analysis of this extension for future research.

The paper is organized as follows. Sections 2 and 3 describe the environment and the general

equilibrium model, respectively. In Section 4 we define a competitive equilibrium and derive the

welfare and existence theorems. In Section 5 we first illustrate the equivalence between a competitive

equilibrium and a directed search equilibrium using examples. Then we present the equivalence

result formally. The linear programming model and the main proofs are presented in the Appendix.

2 The Economy

There is a continuum of buyers and sellers of different types. Goods are indivisible and indexed by

h ∈ H; so H denotes the set of goods. Think of h as a list of observable characteristics describing

a good. In the labor market example, h could be a list of features describing a job (e.g. sector,

hours worked, tasks performed, location,...). In a housing market example, it could be a list of
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features describing a housing unit (e.g. size, number of bedrooms/bathrooms, neighborhood, nearby

transportation, year of construction...). Goods are indivisible because agents cannot “perform half

of job h" or “buy half of housing unit h". They either perform the job (buy the unit) or not. Yet it

is possible that the description of jobs h′ and h is identical, except that h′ requires half of the hours

worked. In our formulation, h and h′ are two different jobs (e.g. “full time" and “part time").

The set of seller types is H, meaning that the type of a seller is simply the type of good he

supplies.13 The set of buyer types is denoted by B. We assume that H and B are compact metric

spaces, and that there is a continuum of agents of each type.14 A particular case is that where B and

H are finite sets. The population is described by a pair of Borel measures (ξB, ξS) ∈M+(B)×M+(H)

which characterize the subpopulations of buyers and sellers.

Each buyer wants to consume, and each seller can supply, at most one unit of a good. Agents

have von Neumann-Morgernstern preferences and utility is transferable, so there is also a divisible

numeraire good (available in positive and negative amounts) which yields equal constant marginal

utility to all agents.15 Buyer valuations are described by the function u : B×H → <+, where u(b, h)

is the value a type-b buyer assigns to a unit of good h. Similarly, seller valuations are described

by the function v : H → <+, where v(h) is the cost or reservation value of a type-h seller. In the

labor market example, if a type-b firm hires a type-h worker then u(b, h) is firm’s output and v(h)

is the worker’s disutility. In the housing market example, if a type-b buyer purchases a type-h unit,

u(b, h) is the buyer’s valuation and v(h) is the seller’s reservation value for that unit. We assume

that u and v are continuous. This assumption means not only that goods with similar features

are perceived as similar by buyers and have similar costs, but also that similar buyer types have

similar valuations for a given good. As in the Arrow-Debreu model, trader valuations are private

information and all the relevant information is transmitted through the price system. We focus on

the case where the gains from trading all goods are positive: v(h) < supb∈B u(b, h) for all h ∈ H.

So far our environment is identical to the continuous assignment model of Gretsky, Ostroy and

Zame (1992). The key difference is that here the trading technology is not frictionless. In the
13That is, type-h sellers are endowed with type-h goods. In Jerez (2010) we consider a variant of the model where

sellers choose the goods they sell. That paper assumes a finite number of goods and agent types. Yet a similar
argument to the one used in this paper allows to derive the welfare and existence theorems in that setting with a
continuum of goods and types. Ekeland (2010) studies the frictionless version of that model using convex analysis.

14As in Gretsky, Ostroy and Zame (1992), this is to avoid fractional assignments.
15These assumptions are standard in the search literature.
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labor market example, not all workers searching for jobs will find one, and the same is true for

firms searching for workers. Also, some jobs may be harder to find/fill than others (just like certain

housing units, say larger ones, may be harder to sell than others). In general, the probability that

buyers and sellers are rationed will depend on the goods they seek to trade. Rationing probabilities,

however, do not depend on the identity of the traders since markets are assumed anonymous.

Buyers and sellers who seek to trade a given good meet bilaterally and at random, as in stan-

dard search-theoretic models. The random meeting process is described by an exogenous matching

function. To ease notation, we assume that the matching function is the same for all goods. Yet

the results extend directly to the case where the matching function differs across goods.16 Suppose

a measure β of buyers and a measure σ of sellers seek to trade a given good. The matching function

M(β, σ) determines the total measure of bilateral matches. We assume that M : R2
+ → R+ is

continuous, increasing, and homogeneous of degree one. Also, since the total number of matches

cannot exceed the number of traders in the short side of the market, M(β, σ) ≤ min{β, σ}. In

particular, M(0, σ) = M(β, 0) = 0. We assume that the Law of Large Numbers holds, so the

probability that a seller meets a buyer is

π(k) =
M(β, σ)

σ
=M(k, 1), (2.1)

where k = β
σ ∈ <+ is the expected number of buyers per seller (or market tightness). Likewise, the

probability that a buyer meets a seller is

α(k) =
M(β, σ)

β
=M(1, k−1) = π(k)k−1, (2.2)

with the convention that α(0) = limk→0 α(k). The function π(k) is then continuous and increasing,

and α(k) is continuous and decreasing. It is customary to assume that π(0) = 0, limk→∞ π(k) = 1,

α(0) = 1 and limk→∞ α(k) = 0. Intuitively, the higher the ratio of buyers to sellers, the easier it is

for sellers to meet buyers and the harder it is for buyers to meet sellers. As k goes to infinity (zero)

the probability that a seller meets a buyer goes to one (zero), and the probability that a buyer

meets a seller goes to zero (one). Note that α(k) and π(k) also represent the fractions of buyers and

sellers who meet a trading partner. Conversely, 1 − α(k) and 1 − π(k) are the fractions of buyers
16Simply make the matching function specified below contingent on each h ∈ H, and denote it by Mh. All we

require is thatMh is continuous with respect to h, so the random meeting process is similar for similar goods.
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and sellers who are rationed.

3 The General Equilibrium Model

In this section, we define the commodity space and describe the set of feasible allocations.

Commodities

We describe commodities both by their physical characteristics and the uncertainty involved in

their trade. Formally, a commodity is a pair (h, k) ∈ H ×<+, where h describes the physical good

and k is the ratio of buyers to sellers in a market for good h. As is standard, the numeraire good

is not made explicit in the definition of a commodity.

Allocations

An allocation is an assignment of agents to commodities or to autarky (e.g. unemployment).

To model the autarky choice it is convenient to introduce a real number k0 < 0, and extend the

probability functions in (2.1) and (2.2) to the set K ≡ <+ ∪ {k0} by setting π(k0) = α(k0) = 0.

For a given a metric space X, let Mc(X) be the space of signed regular Borel measures on X

with compact support, endowed with the weak-star topology. If X is compact, this is just the space

M(X) of signed regular Borel measures on X. Following the measure-theoretic description in Hart,

Hildenbrand, and Kohlberg (1974), an allocation is described by a pair of measures (µB, µS) ∈

Mc+(B ×H ×K) ×Mc+(H ×K). These measures are interpreted as follows. The assignment of

buyers to commodities is described by the restriction of µB to B ×H ×<+, while their assignment

to autarky is described by the restriction of µB to the complement of this set. That is, for given

Borel sets E ⊆ B and F ⊆ H ×<+, a measure µB(E ×F ) of buyers with types b in E are assigned

to a commodity (h, k) in F , while a measure µB(E × H × {k0}) of these types are assigned to

autarky. Sellers can only be assigned to commodity (h, k) if they supply the corresponding good

(i.e., if they are of type-h). The assignment of sellers to commodities and to autarky is described

by the respective restrictions of µS to H × <+ and to the complement of this set. So, for given

Borel sets D ⊆ H and G ⊆ <+, a measure µS(D ×G) of sellers with types h in D are assigned to

a commodity (h, k) in D×G , and a measure µS(D×{k0}) of these types are assigned to autarky.

Note that µS(F ) is the total measure of sellers assigned to a commodity (h, k) in F ⊆ H × <+, or
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the aggregate supply of these commodities under the allocation.

It useful to define the marginals of µB on B and H × K, which we denote by µBB ∈ M+(B)

and µBH×K ∈ Mc+(H × K). In particular, µBH×K(F ) is the total measure of buyers assigned to a

commodity in F ⊆ H × <+, or the aggregate demand of these commodities under the allocation.

Similarly, we define the marginal of µS on H, µSH ∈ M+(H). Finally, we denote the restrictions of

µBH×K and µS to the set of commodities H ×<+ by µ̃BH×<+
and µ̃S .

Feasible allocations must be consistent with respect to the population. This means that the

total measure of buyers and sellers of a given type who are assigned to the different commodities or

to autarky must be equal to the measure of such types who are present in the population (see also

Gretsky, Ostroy, and Zame 1999, and Peters 1997):

µBB = ξB, (3.1)

µSH = ξS . (3.2)

Equivalently, µBB(E) = ξB(E) and µSH(D) = ξS(D) for all Borel sets E ⊆ B and D ⊆ H.

Feasible allocations must also be consistent with respect to the matching technology. This

requires that the measure of buyers who find a seller be equal to the measure of sellers who find a

buyer for almost all commodities exchanged under these allocations:

∫
(h,k)∈F

α(k)dµ̃BH×<+
(h, k) =

∫
(h,k)∈F

π(k)dµ̃S(h, k) for all Borel F ⊆ H ×<+. (3.3)

The measure of potential buyers of the different commodities is described by µ̃BH×<+
. For each

commodity (h, k), the fraction of buyers who find a seller is α(k). Hence, the left-hand side of

equation (3.3) is the measure of buyers of commodities in F who find a seller. Similarly, the right-

hand side of (3.3) is the measure of sellers of these commodities who find a buyer. Condition (3.3)

says that these two measures are equal for any Borel set F of H ×<+.
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4 Competitive equilibrium

In this section, we define a competitive equilibrium for the search economy and derive the welfare

and existence theorems. We begin by describing the price space.

Prices

A price system is a non-negative continuous linear function on the set of commodities:17

p ∈ C+(H ×<+), (4.1)

where C+(H ×<+) is endowed with the topology of uniform convergence on compact sets (see the

Appendix). That is, p(h, k) ∈ <+ is the price of commodity (h, k); i.e., the price of good h when the

ratio of buyers to sellers is equal to k. Prices then depend both on the goods’ physical characteristics

and their associated rationing probabilities. This is intuitive. If the same physical good is trades in

two markets where the ratio of buyers to sellers is different, the price of the good may differ in the

two markets. Formally, (h, k) and (h, k′) are two different commodities when k 6= k′, so p(h, k) need

not be equal to p(h, k′). On the other hand, since p is continuous, similar commodities have similar

prices. In particular, if the same physical good trades in two markets where the ratio of buyers to

sellers is similar, the price of the good will be similar in both markets. It is convenient to extend

prices so p(h, k0) = 0 for all h in H; that is, the price associated to the autarky choice is zero.

Competitive equilibrium

We are now ready to define a competitive equilibrium. The key assumption is that agents have

rational expectations about k, and hence about the probability with which they will be rationed

when they choose to trade commodity (h, k). The expected utility from commodity (h, k) for a

type-b buyer is α(k)[u(b, h) − p(h, k)]. In words, the buyer trades with probability α(k), in which

case she gets her valuation u(b, h) net of the market price p(h, k). The buyer’s expected utility then

increases with the trading probability (decreases with k) and decreases with the price. Similarly,

the expected utility of a type-h seller is π(k)[p(h, k) − v(h)], so it increases with both k and the

price. Autarky yields zero expected utility to all agents; i.e., α(k0)[u(b, h) − p(h, k0)] = 0 and
17We follow Mas-Colell’s (1975) description of the price space for economies with a continuum of differentiated

commodities. The difference is that, whereas in his model agents can trade any integer number of units of a given
good, here agents trade at most one unit.
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π(k0)[p(h, k0)− v(h)] = 0.

Definition 1. A competitive equilibrium for the search economy is an allocation (µB∗, µS∗) ∈Mc+(B×

H ×K)×Mc+(H ×K) and a price system p∗ ∈ C+(H ×K) such that:

(i) For each type b ∈ B, buyers choose to trade a commodity that maximizes their expected utility

taking p∗ as given:

υ∗b (p
∗) ≡ sup

(h,k)∈H×K
α(k) [u(b, h)− p∗(h, k)] = α(k∗) [u(b, h∗)− p∗(h∗, k∗)] , (4.2)

for almost all (b, h∗, k∗) ∈ suppµB∗.

(ii) For each type h ∈ H, sellers choose to trade a commodity that maximizes their expected utility

taking p∗ as given:

υ∗h(p∗) ≡ sup
k∈K

π(k) [p∗(h, k)− v(h)] = π(k∗) [p∗(h, k∗)− v(h)] , (4.3)

for almost all (h, k∗) ∈ suppµS∗.

(iii) (µB∗, µS∗) is consistent with the population:

µBB = ξB, and µSH = ξS . (4.4)

(iv) (µB∗, µS∗) is consistent with the matching technology:

∫
(h,k)∈F

α(k)dµ̃BH×<+
(h, k) =

∫
(h,k)∈F

π(k)dµ̃S(h, k) for all Borel F ⊆ H ×<+. (4.5)

Conditions (i) and (ii) require that almost all buyers and sellers choose to trade a commodity

that maximizes their expected utility at the equilibrium prices p∗. Note that sellers can only

choose commodity (h, k) if they are of type h. The expected indirect utility attained by type-i

agents in equilibrium is denoted by υ∗i (p
∗) for each i ∈ B ∪ H. Condition (iii) ensures that the

allocation is consistent with the population. The difference with respect to the standard definition

of a competitive equilibrium is that, in condition (iv), market clearing has been replaced with the

matching condition (3.3).
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In the absence of search frictions, market clearing would require that the measures of buyers

and sellers be equal in almost all markets:

µ̃BH×<+
= µ̃S . (4.6)

Equivalently, µ̃BH×<+
(F ) = µ̃S(F ) for all Borel sets F ⊆ H ×<+. In this case, there is no rationing

for almost all goods which are traded in equilibrium. Indeed, when the matching condition in (iv)

is replaced by (4.6), our model is isomorphic to Gretsky, Ostroy and Zame’s (1992).

The matching condition in (iv) can also be expressed as

∫
(h,k)∈F

dµ̃BH×<+
(h, k) =

∫
(h,k)∈F

kdµ̃S(h, k) for all Borel F ⊆ H ×<+, (4.7)

using (2.2), since α(k) > 0 for all k ∈ <+. Equation (4.7) says that µ̃BH×<+
must be absolutely

continuous with respect to µ̃S with Radon-Nikodym derivative f(h, k) = k. In words, the measures

of buyers and sellers who choose to trade in almost every active market in equilibrium generate

the buyer-seller ratios that these traders take as given when they choose to participate in those

markets.18 So, as in directed search models, beliefs are rational in all active markets.

Welfare Theorems and Existence

In this economy, the planner is restricted by the exogenous matching technology that brings

buyers and sellers together in the market. That is, the planner can choose an assignment of agents to

commodities or to autarky, but cannot choose an assignment of buyers to sellers of these commodities

as in Gretsky, Ostroy and Zame (1992). The appropriate efficiency notion is then that of constrained

efficiency.

The total gains from trade from an allocation are

∫
B×H×K

α(k)u(b, h)dµB(b, h, k)−
∫
H×K

π(k)v(h)dµS(h, k). (4.8)

The first term is the sum of the buyers’ valuations for the physical goods assigned to them under

the allocation. Remember that µB describes the measure of buyers of each type b who are assigned
18This is precisely Peters’ (1997) generalized market clearing condition, which is the equivalent of Gale’s (1996)

condition of fulfilled expectations in active markets. See also Eeckhout and Kircher (2010).
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to each commodity (h, k). A fraction α(k) of these buyers manage to trade, so they receive their

valuation u(b, h) (while the rest are rationed). Similarly, the second term is the sum of the sellers’

reservation values for the goods sold under the allocation. That is, µS describes the measure of

sellers assigned to each commodity (h, k), and only a fraction π(k) of these sellers trade, at cost

v(h). The difference between the first and second term in (4.8) then gives the total gains from trade.

The planner’s problem is to choose an allocation that maximizes (4.8) subject to the feasibility

constraints (3.1)-(3.3). Note that the objective function and the constraints are linear in (µB, µS)

(they are integrals with respect to the allocation). So, as in Gretsky, Ostroy and Zame (1992),

the planner’s problem is an infinite dimensional linear programming problem. In the Appendix we

show that the dual variables (or Lagrange multipliers) associated with constraints (3.1) and (3.2)

are given by two continuous functions, qB ∈ C(B) and qS ∈ C(H). The optimal values of qB(b)

and qS(s) give the expected utility of type-b buyers and type-s sellers at a constrained efficient

allocation. As we shall see, feasible dual solutions must satisfy qB, qS ≥ 0, so individual rationality

holds (see Lemma A.2).19 The dual variable associated with (3.3) is also given by a continuous

function, λ ∈ C(H ×K), and the optimal value of λ(h, k) measures the shadow price of a unit of

commodity (h, k) at a constrained efficient allocation. We show that λ ≥ 0 without loss of generality.

In the Appendix we exploit this linear structure to prove all the results that follow. The first

result is the existence of optimal solutions to the planner’s problem and its dual, and the absence

of a “duality gap”.

Theorem 1. The planner’s linear programming problem has optimal solutions, and so does the dual

of this problem. Moreover, the value of the two problems is the same (there is no “duality gap”).

We also establish an equivalence between (i) the optimal solutions to the planner’s problem

and competitive equilibrium allocations, and (ii) the optimal solutions to the dual of the planner’s

problem and competitive equilibrium prices and indirect utilities (see Theorem A.5). Hence, the

First and Second Welfare Theorems hold.

In fact, the First Welfare Theorem can be proved using a variation of the standard argument.

Theorem 2. A competitive equilibrium allocation (µB∗, µS∗) is constrained efficient.
19This is a general property of the linear programming formulation of Gretsky, Ostroy and Zame (1992,1999)

and Makowski and Ostroy (1996, 2003), where individual rationality constraints appear in the dual of the planner’s
problem (rather than in the primal problem).
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Proof. By conditions (iii) and (iv), a competitive equilibrium allocation a feasible solution to the

planner’s problem. Condition (i) implies that, for almost all (b, h∗, k∗) in the support of µB∗,

α(k∗)[u(b, h∗)− p∗(h∗, k∗)] ≥ α(k)[u(b, h)− p∗(h, k)] for all (h, k) ∈ H ×K.

Similarly, condition (ii) implies that, for almost all (h, k∗) in the support of µS∗,

π(k∗)[p∗(h, k∗)− v(h)] ≥ π(k)[p∗(h, k)− v(h)] for all k ∈ K.

But then, for any other feasible allocation (µB, µS),

∫
B×H×K

α(k)[u(b, h)− p∗(h, k)]dµB∗(b, h, k) +

∫
H×K

π(k)[p∗(h, k)− v(h)]dµS∗(h, k)

≥
∫
B×H×K

α(k)[u(b, h)− p∗(h, k)]dµB(b, h, k) +

∫
H×K

π(k)[p∗(h, k)− v(h)]dµS(h, k).

That is, total expected utility is at least as high under allocation (µB∗, µS∗) than under allocation

(µB, µS). Rearranging this expression yields

∫
B×H×K

α(k)u(b, h)dµB∗(b, h, k)−
∫
H×K

π(k)v(h)dµS∗(h, k)

−
∫
H×<+

α(k)p∗(h, k)dµ̃B∗H×<+
(h, k) +

∫
H×<+

π(k)p∗(h, k)dµ̃S∗(h, k)

≥
∫
B×H×K

α(k)u(b, h)dµB(b, h, k)−
∫
H×K

π(k)v(h)dµS(h, k)

−
∫
H×<+

α(k)p∗(h, k)dµ̃BH×<+
(h, k) +

∫
H×<+

π(k)p∗(h, k)dµ̃S(h, k),

since π(k0) = α(k0) = 0. Substituting condition (iv) expressed as in (4.7), and using (2.2) yields

∫
B×H×K

α(k)u(b, h)dµB∗(b, h, k)−
∫
H×K

π(k)vs(h)dµS∗(h, k)

≥
∫
B×H×K

α(k)u(b, h)dµB(b, h, k)−
∫
H×K

π(k)vs(h)dµS(h, k),

since prices are just transfers which cancel out. Hence, (µB∗, µS∗) solves the planner’s problem.

The Second Welfare Theorem says that any optimal solution to the planner’s problem can be

attained as a competitive equilibrium.
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Theorem 3. Let (µB, µS) be an optimal solution to the planner’s problem. Then there is a price

system p ∈ C+(H ×K) such that (µB, µS , p) is a competitive equilibrium.

Finally, the existence of a competitive equilibrium follows from Theorem 1.

Theorem 4. A competitive equilibrium exists.

As shown in the Appendix, the proofs of Theorems 1, 3 and 4 rely on the assumptions that

the valuation functions u and v and the matching function M are continuous, and B and H are

compact sets. This, combined with the fact that trading probabilities are bounded, is all we need

to prove these results.

5 Relation with the Directed Search Literature

In this section we discuss the connection between the competitive equilibrium notion in this paper

and that of directed search. We first illustrate this connection using examples (which should be

particularly useful for general equilibrium theorists who are not familiar with the directed search

literature). Then we present the equivalence result formally.

Example 1. Homogeneous buyers and sellers. Take the simplest environment with a single good

and homogeneous buyers (e.g. Moen 1997). There is a measure β̂ of buyers and a measure σ̂ of

sellers, so the economy-wide market tightness is β̂/σ̂.20 Buyer valuations are denoted by u > 0, and

seller valuations are normalized to zero. In addition to the properties described in Section 2, the

matching functionM is strictly increasing, strictly concave and twice continuously differentiable.

In a directed search equilibrium, each trader chooses a price p specifying the division of the

surplus in a bilateral transaction between a buyer and a seller. Since buyers and sellers have the

option of not trading, p ∈ [0, u]. The expected payoff to a seller who chooses price p is π(k)p, where

k is the ratio of buyers to sellers associated to p, whereas the expected payoff to a buyer who seeks

to trade at price p is α(k)(u−p). All traders make optimal decisions based on their common beliefs

about the relationship between p and k. Also, these beliefs, denoted by k(p), are rational.

20In Moen (1997) there is free entry of buyers (firms), so β̂ is endogenous and its value is pinned down by a zero
profit constraint on the buyers’ equilibrium expected payoff characterized below.
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A directed search equilibrium is characterized as follows. Let Π∗ denote the set of prices at which

buyers and sellers trade in equilibrium. Since buyers are homogeneous, they must get a common

expected payoff U∗ in equilibrium—their “market utility” level. That is,

α(k∗)(u− p∗) = U∗ ≥ 0, for all p∗ ∈ Π∗, (5.1)

where k∗ = k(p∗). The traders’ equilibrium beliefs k∗(p) then satisfy (5.1) for p ∈ Π∗. The market

utility assumption pins down beliefs for p /∈ Π∗. Under this assumption, k∗(p) satisfies (5.1) for

all p ∈ [0, u]. That is, k∗(p) coincides with the buyers’ indifference curve associated to U∗ on

the space (p, k). The idea is that sellers take the buyers’ market utility level as given, since they

are infinitesimal relative to the size of the market. So, if a negligible mass of sellers deviates and

chooses p′ /∈ Π∗, they will assume that the deviation has no impact on the buyers’ expected payoff.

In particular, their beliefs about k(p′) would be based on the assumption that buyers always modify

their decisions in a way that ensures that they are indifferent between the equilibrium price and p′.

The above implies that each price p∗ ∈ Π∗ and the associated buyer-seller ratio k∗ must maximize

the sellers’ expected payoff subject to the constraint that buyers get their market utility level U∗.

So a directed search equilibrium is constrained efficient. The properties of the matching function

imply that this convex problem has a unique solution. Hence, in equilibrium all agents choose

the same price p∗ and, since beliefs are rational, k∗ = β̂/σ̂. Substituting p∗ and k∗ into (5.1) we

obtain the equilibrium value of U∗. As shown in Figure 1, an interior solution is characterized by

the tangency between the indifference curves of the buyer and the seller on the (k, p) space. This

tangency condition is the well-known Hosios (1990) condition.21

It is direct to see that the above outcome is attained in a competitive equilibrium. In this

economy with a single physical good, a commodity is described by a level of market tightness

k ∈ <+. A price system is a continuous function p(k), extended so p(k0) = 0. In Figure 1 we

can see that any continuous function lying between the indifference curves of the buyer and the

seller which is tangent to both curves at (β̂/σ̂, p∗) supports the constrained efficient allocation. In
21Substituting α(k) = π(k)/k into the tangency condition, and rearranging yields the Hosios condition:

u− p
p

=
η(k)

1− η(k)
where η(k) =

π′(k)k

π(k)
. (5.2)

This condition says that the buyers’ share of the surplus is equal to the elasticity of the sellers’ trading probability.
Hence, p∗ solves (5.2) when k = β̂/σ̂. Note that, if p∗ /∈ [0, u], the problem has a corner solution which is easily
characterized (either the buyers or the sellers get a zero expected payoff).
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particular, p(k) is indeterminate for k 6= β̂/σ̂.22 As noted in the introduction, a common convention

is to select the infimum of the set of supporting price systems. Figure 1 shows that the selected

price system p∗(k) coincides with the buyer’s indifference curve, so it is the inverse of the function

k∗(p) specifying the equilibrium beliefs in a directed search equilibrium.23

The argument is essentially the same with heterogeneous sellers (and is symmetric with hetero-

geneous buyers). In a directed search equilibrium, one can think of each seller type as choosing p

and k to maximize her expected payoff subject to the constraint that buyers get their market utility

level (see Peters 2000). So the function describing the equilibrium beliefs again coincides with the

buyers’ indifference curve. It is also easy to see that the inverse of this function is the infimum of

the set of supporting price systems in our model.

Example 2. Two-sided heterogeneity. Consider now an economy with two goods, h1 and h2, and

two buyer types, b1 and b2. There is a measure β̂i of type-i buyers for i = 1, 2, and an equal

measure σ̂ of sellers of each good. All sellers have identical reservation values, normalized to zero.

Also, buyer valuations satisfy u(b1, h1) = u(b2, h2) = uH and u(b1, h2) = u(b2, h1) = uL, where

uH > uL > 0. Say h1 are "red" houses (e.g. apartments facing south) and h2 are "blue" houses

(e.g. apartments facing north). Type-1 buyers prefer the former (which are warmer in the winter)

and type-2 buyers prefer the latter (which are cooler in the summer).24

Environments with two-sided heterogeneity are more involved because one needs to characterize

the matching pattern that emerges in equilibrium; i.e., which buyer types trade with each seller type.

Potentially a given buyer type may trade with more than one seller type, and vice versa.25 Once we

know the matching pattern, the appropriate tangency (e.g. Hosios) condition for each buyer-seller

match together with the rationality of equilibrium beliefs will determine the equilibrium outcome

essentially as in the previous example. As noted by Shi (2001) and Eeckhout and Kircher (2010),

the Hosios condition is only necessary but not sufficient to characterize a directed search equilibrium

with two-sided heterogeneity.

As discussed in Eeckhout and Kircher (2010), the market utility assumption is slightly more
22A related issue arises in Peters (1997), where equilibrium beliefs are indeterminate.
23Since the matching function is continuous and strictly monotone, so is k∗(p). This function is then invertible and

its inverse is the continuous function p∗(k), and conversely.
24Here differences in buyer valuations are purely idiosyncratic. Shi (2001) and Eeckhout and Kircher (2008) present

related examples with complementarities where valuations have a common value component.
25See Shi (2001) for an environment which rules this out.
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involved with two-sided heterogeneity. It says that the ratio of buyers to sellers in each inactive

submarket is determined by the indifference condition of the buyer type who is most eager to trade

there. Alternatively, if all buyer types strictly prefer not to trade in an inactive submarket, the

ratio of buyers to sellers is zero. The authors show that one can then think of sellers as choosing

a price, a buyer-seller ratio, and the buyer type they trade with to maximize their expected payoff

subject to the constraint that buyers of that type get their market utility level.

Consider first a symmetric environment where β̂i = β̂ for i = 1, 2. In this case, both buyer

types get the same utility level U∗ in equilibrium, and all sellers get utility V ∗. Figure 2 represents

the indifference curves of the sellers of good 1 on the space (k, p), as well as the indifference curves

of the two buyer types when they trade good 1. (The situation is symmetric for good 2.) The

indifference curve of type-1 buyers is a parallel shift upwards of that of type-2 buyers, the vertical

distance between the two curves being uH −uL. So it is clear from Figure 2 that, under the market

utility assumption, type-i sellers trade only with type-i buyers. Also, all sellers choose the same

price p∗ and, since beliefs are rational, this price generates market tightness β̂/σ̂ for both goods.

Consider now a more interesting environment where the proportion of type-1 buyers is reduced,

and the economy-wide market tightness level is still β̂/σ̂ (e.g. an economy with a warmer climate).

If β̂1 is close to β̂, this economy is a small perturbation of the previous one, and the equilibrium

outcome still entails perfect sorting. The price of good 1 is now lower and the expected payoff of

type-1 buyers (sellers) is higher (lower) reflecting the decrease in net demand, while the situation

is reversed in the case of good 2. However, if β1 is sufficiently low, the perfect sorting outcome is

not an equilibrium. Consider such an outcome. It is easy to check that the indifference curves of

type-1 buyers associated to both goods are steeper as they shift downwards (and still parallel to

each other). Conversely, the indifference curves of type-2 buyers are flatter as they shift upwards.

For each good then the indifference curves of type-1 and type-2 buyers satisfy the single crossing

property. In Figure 3, p1S denotes the price of good 1, V1S denotes the utility obtained by sellers

of good 1, and UiS denotes the utility obtained by type-i buyers under perfect sorting.26 (The

thin curves represent the indifference curves of the traders in the equilibrium of the symmetric

environment). Clearly, the perfect sorting outcome is not an equilibrium since type-2 buyers would

rather trade at price p1S with probability α(β̂1/σ̂) obtaining a utility level higher than U2S .
26The corresponding graph for good 2 is the same as before, except for the shift in the agents’ indifference curves.
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The equilibrium is depicted in Figures 4 and 5. All indifference curves shift in the same direction

as in the perfect sorting outcome, but they shift by less (i.e., the changes in agents’ payoffs are

smaller). Figure 4 shows that a subset of type-1 sellers choose to trade with the type-1 buyers

at price p∗11, while the rest choose to trade with a subset of type-2 buyers at price p∗12. Figure 5

shows that type-2 sellers choose to trade with the remainder of the type-2 buyers at price p∗2. Note

that type-1 buyers pay a higher price for good 1 than type-2 buyers, but they are less likely to be

rationed. Also, type-2 buyers who buy good 1 pay a lower price and are less likely to be rationed

than those who buy good 2. Since all these buyers (who prefer good 2) must get the same utility

level, the conditions in the market of good 1 must be relatively more attractive. It remains to

characterize the equilibrium beliefs in inactive submarkets (e.g. for good h2 and prices p2 6= p∗2, and

for good h1 and p1 /∈ {p∗12, p
∗
11}). Since it is the indifference curve of the buyer type who is most

eager to trade in each inactive submarket that matters in determining these beliefs, k∗2(p2) coincides

with indifference curve of type-2 buyers in Figure 5. In turn, k∗1(p1) is given by the upper envelop

of the indifference curves of type-1 and type-2 buyers in Figure 4.

Again this outcome can be decentralized as a competitive equilibrium. In Figure 5 take any

continuous function p2(k2) lying between the indifference curves of the seller and type-2 buyers. In

Figure 4 take any continuous function p1(k1) lying between the indifference curves of the seller and

the two buyer types which is tangent to the indifference curves of the seller and type-1 buyers at

E11, and to the indifference curves of the seller and type-2 buyers at E12. If we apply the price

selection rule in Example 1, p∗1(k1) and p∗2(k2) are the inverses of the functions k∗1(p1) and k∗2(p2)

which describe the equilibrium beliefs in a directed search equilibrium.

5.1 The equivalence result

Consider the general environment in Eeckhout and Kircher (2010). This environment is a special

class of the economies studied in this paper. To facilitate comparison with our model, we use

a slightly different but equivalent notation to the one used by these authors. In their model,

H = [h, h̄] ⊂ <+ and B = [b, b̄] ⊂ <+. The population is described by the measures ξB ∈ M+(B)

and ξS ∈M+(H). It is assumed that the c.d.f. associated to each of these measures is C2 and the

corresponding p.d.f. is strictly positive. Buyer valuations are given by a strictly positive function

u : H ×B → <++. Sellers have identical valuations, normalized to zero. It is assumed that u is C2
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with strictly positive derivatives. So, in particular, higher buyer types have higher valuations for all

goods, and the higher the value of h the more all buyers value a good (i.e., the higher the good’s

quality). The matching functionM is strictly increasing, strictly concave and C2, and the sellers’

matching probability π(k) has a strictly decreasing elasticity.

In a directed search equilibrium, sellers choose a price p in the set of feasible prices P ≡

[0, u(b̄, h̄)]. Buyers choose a quality-price combination (h, p) ∈ H × P , or they resort to autarky.

The sellers’ decisions are characterized by a measure µ̂S ∈ M+(H × P ). The buyers’ decisions are

characterized by a measure µ̂B ∈ M+(B × ({H × P} ∪ φ)) where φ = (φh, φp) ∈ <2
−− denotes

the autarky choice. All traders have rational expectations about the ratio of buyers to sellers at

each quality-price combination. These expectations are described by the “queue length function”

k̂ : H × P → [0,∞], which is assumed continuous. It is useful to define the restriction of µ̂BH×P to

H × P , denoted by ˜̂µBH×P

Definition 2. A directed search equilibrium is a pair of measures (µ̂S∗, µ̂B∗) ∈M+(H×P )×M+(B×

({H × P} ∪ φ)), and a queue length function k̂∗ : H × P → [0,∞] such that

(i) For each type h ∈ H, sellers choose a price that maximizes their expected utility taking k̂∗ as

given:

υ∗h ≡ max
p∈P

π(k̂∗(h, p))p = π(k̂∗(h, p∗))p∗, for almost all (h, p∗) ∈ suppµ̂S∗ (5.3)

(ii) For each type b ∈ B, buyers choose a quality-price combination that maximizes their expected

utility taking k̂∗ as given:

υ̂∗b ≡ max
(h,p)∈{H×P}∪φ

α(k̂∗(h, p)) [u(b, h)− p] = α(k̂∗(h∗, p∗)) [u(b, h∗)− p∗] , (5.4)

for almost all (b, h∗, p∗) ∈ suppµ̂B∗.

(iii) (µ̂B∗, µ̂S∗) is consistent with the population:

µ̂B∗B = ξB, and µ̂S∗H = ξS . (5.5)

(iv) Beliefs are rational on the path of play, so ˜̂µB∗H×P is absolutely continuous with respect to µ̂S∗
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and, on the support µ̂S∗, the corresponding Radon-Nikodym derivative is given by k̂∗ :

∫
(h,p)∈F̂

d ˜̂µBH×P (h, p) =

∫
(h,p)∈F̂

k̂∗(h, p)dµ̂S(h, p) for all Borel F̂ ⊆ H × P. (5.6)

(v) Beliefs in inactive markets satisfy the market utility property:

k̂∗(h, p) = sup{k ∈ <+|∃b ∈ B s.t. α(k) [u(b, h)− p] = υ̂∗b} (5.7)

if the above set is non-empty, and k̂∗(h, p) = 0 otherwise.

Conditions (i) and (ii) require that the traders’ decisions are optimal given their beliefs.27 Con-

ditions (iii) and (iv) are the equivalent of the consistency conditions in Definition 1. In particular,

(iv) says that beliefs are rational in all active markets. In addition to the optimality and consistency

conditions, here there is an additional condition which is a restriction on beliefs in inactive submar-

kets. Condition (v) says that either the ratio of buyers to sellers in each inactive submarket gives

the buyer types who are most eager to trade there their market level of utility υ̂∗b , or the submarket

attracts no buyers at all and the ratio of buyers to sellers is zero. Below we show that this condition

is the equivalent to the price selection rule we have previously described.

We begin with a preliminary result. With the aforementioned price selection rule and since the

matching function is strictly increasing, a competitive equilibrium price system is strictly decreasing

in k for positive prices. In words, the higher the ratio of buyers to sellers the lower the price of

a good. This is intuitive since buyers trade with lower probability and sellers trade with higher

probability when k is higher.

Proposition 1. Let (µB∗, µS∗, p∗) be a competitive equilibrium with p∗ = inf P ∗, where P ∗ is the set

of prices supporting allocation (µB∗, µS∗). The fact that the matching function is strictly increasing

implies that, for given h ∈ H, p∗(h, k) is strictly decreasing in k when p∗(h, k) > 0.

We now state the equivalence result. For the sake of clarity, let us focus on equilibria where no

agent type resorts to autarky.28

27Since the objective functions of buyers and sellers are continuous, and their choice sets are compact, a supremum
is attained both in (i) and (ii).

28It is easy to extend the equivalence result to environments where this is not the case (but the notation is messier).
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Proposition 2. Suppose the matching function is strictly increasing. Let (µB∗, µS∗, p∗) be a com-

petitive equilibrium where no agent type resorts to autarky, and p∗ = inf P ∗ where P ∗ is the set

of prices supporting allocation (µB∗, µS∗). Construct measures µ̂S∗ ∈ M+(H × P ) and µ̂B∗ ∈

M+(B × ({H × P} ∪ φ)) so their respective supports satisfy

(h, p) ∈ suppµ̂S∗ iff ∃k ∈ <+ s.t. (h, k) ∈ suppµS∗ and p = p(h, k), (5.8)

(b, h, p) ∈ suppµ̂B∗ iff ∃k ∈ <+ s.t. (b, h, k) ∈ suppµB∗ and p = p(h, k). (5.9)

Also, for all Borel D ⊆ H, E ⊆ B, and Gp ⊆ P ,

µ̂S∗(D ×Gp) =

∫
(h,k)∈F (D,Gp)

dµS∗(h, k) (5.10)

µ̂B∗(E ×D ×Gp) =

∫
(b,h,k)∈E×F (D,Gp)

dµB∗(b, h, k) (5.11)

where (h, k) ∈ F (D,Gp) iff h ∈ D and there is p ∈ Gp with p(h, k) = p. Finally, define the queue

length function k̂∗ as follows

k̂∗(h, p) =


k s.t. p∗(h, k) = p for p > 0 in the range of p∗,

inf{k ∈ <+| p(h, k) = 0} for p = 0,

0 for p outside the range of p∗.

(5.12)

Then (µ̂S∗, µ̂B∗, k̂∗) is a directed search equilibrium.

The argument in the proof shows that, given a competitive equilibrium where all agent types

trade, it is direct to construct an equivalent directed search equilibrium provided the matching

function is strictly increasing. In particular, for given h, k̂∗(h, p) is the inverse of p∗(h, k) for prices

p > 0 in the range of the competitive equilibrium price system. The rest of the combinations (h, p)

essentially correspond to submarkets which attract no buyers so k̂∗(h, p) = 0.

Eeckhout and Kircher (2010) also that, in the presence of complementarities, an interesting

trade-off arises between the gains from higher match values and the losses due to rationing (see

also Shi 2001). They then derive conditions—which regard the degree of supermodularity of the

Think first of the economy as if the types who do not trade in a competitive equilibrium where not there. Given
a competitive equilibrium, Proposition 2 constructs an equivalent directed search equilibrium by characterizing the
queue length function and the measures that describe the traders’ decisions. It is then trivial to incorporate the types
who resort to autarky by suitably expanding those measures to include the autarky choice.
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match value function—for the equilibrium allocation to entail either positive or negative assortative

matching.29 They also show that under these conditions, an equilibrium exists and is constrained

efficient. Note that Theorems 2 and 4 and Proposition 2 imply the following result.

Proposition 3. The fact that matching function is strictly increasing implies that a directed search

equilibrium exists and is constrained efficient in Eeckhout and Kircher (2010).

Proposition 3 thus generalizes the existence and efficiency results in Eeckhout and Kircher (2010)

(which hold regardless of the matching pattern displayed by the equilibrium allocation). The only

assumption we need, in addition to those in Section 2, is thatM is strictly increasing.

In principle, many possible matching patterns could arise in equilibrium. In simple examples

with two-sided heterogeneity (like the one above) the equilibrium matching pattern could be iden-

tified through trial and error. For a given matching pattern, there is a candidate feasible outcome

satisfying the Hosios and the rational beliefs conditions. We just need to check whether there exist

prices supporting this outcome. In more complex environments, the formulation in this paper will

allow us to identify the equilibrium matching pattern and calculate the equilibrium by means of lin-

ear programming algorithms. In the Appendix we show that the equilibrium price associated to any

commodity traded in equilibrium is given by the shadow price of the matching condition associated

to that commodity in the planner’s problem. Looking for equilibrium prices amounts to looking

for shadow prices that satisfy the Complementary Slackness Theorem of linear programming. The

complementary slackness conditions are then the conditions that an efficient matching pattern must

satisfy in addition to feasibility.
29Specifically, the equilibrium allocation displays positive assortative matching when the match value function is

n̄-root-supermodular where n̄ is determined by the upper bound of the elasticity of the matching function M. It
displays negative assortative matching when the match value function is nowhere n-root-supermodular where n is
determined by the lower bound of the elasticity ofM.
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Appendix A

A.1 The linear programming model

In this section, we use linear programming techniques and duality theory to prove Theorems 1, 3
and 4. An alternative proof of Theorem 2 is also provided as a byproduct. We begin with some
necessary notation.

Let X be a locally compact separable metric space. We write C(X) for the space of continuous
real-valued functions on X, endowed with the topology of uniform convergence on compact sets.
The topological dual of C(X) is the space of signed regular Borel measures on X with compact
support (see Hewitt 1959). This space is denoted by Mc(X), and is endowed with the weak-star
topology. Then C(X) is also the dual of Mc(X). We write C+(X) and Mc+(X) for the respective
positive cones of these spaces.

Let C(X) be paired in duality with Mc(X) with the standard bilinear form:

〈f, γ〉 =

∫
x∈X

f(x)dγ(x), f ∈ C(X), γ ∈Mc(X).

In the special case where X is compact, the topological dual of C(X) is the space of signed regular
Borel measures on X, denoted by M(X).30 If X is finite, both C(X) and M(X) are isomorphic to
the Euclidean space, so the integral above is replaced by a finite sum.

For any integer n, the product spaces
∏
j=1,...,nC(Xj) and

∏
j=1,...,nMc(Xj), endowed with the

corresponding product topologies, are also paired in duality with bilinear form:

n∑
j=1

〈fj , γj〉, (f1, f2, . . . , fn) ∈
∏

j=1,...,n

C(Xj), (γ1, γ2, . . . , γn) ∈
∏

j=1,...,n

Mc(Xj).

We denote the support of an arbitrary measure γ ∈Mc(X) by suppγ.

In the planner’s problem in Section 4, it is convenient to extend the matching condition (3.3)
to include the autarky choice, and write∫

(h,k)∈F
α(k)dµBH×K(h, k) =

∫
(h,k)∈F

π(k)dµS(h, k) for all Borel F ⊆ H ×K, (A.1)

since π(k0) = α(k0) = 0. We shall use the following more compact notation though. Define the
functions α̂ : H ×K → [0, 1] and π̂ : H ×K → [0, 1) where

α̂(h, k) = α(k), (A.2)
π̂(h, k) = π(k). (A.3)

Define now the measure η(α̂, µBH×K) ∈ Mc(H ×K) which is absolutely continuous with respect to

30As noted by Hewitt (1959), the topology of uniform convergence on compact sets coincides with the uniform
norm topology in this case.
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µBH×K with Radon-Nikodym derivative α̂:

dη(α̂, µBH×K) = α̂dµBH×K . (A.4)

Similarly, define η(π̂, µS) ∈Mc(H ×K) where

dη(π̂, µS) = π̂dµS . (A.5)

Condition (A.1) says that these two measures are equal.

With this equivalent description of the matching condition, the problem of the planner is to find
(µB, µS) ∈Mc(B ×H ×K)×Mc(H ×K) to solve

(P ) sup
∫
B×H×K α(k)u(b, h)dµB(b, h, k)−

∫
H×K π(k)v(h)dµS(h, k)

s.t.

µBB = ξB, (A.6)
µSH = ξS , (A.7)

η(α̂, µBH×K) = η(π̂, µS), (A.8)
µB, µS ≥ 0. (A.9)

Since the functions u and v describing the valuations of buyers and sellers are continuous and
so is the matching function, the functions we are integrating over in the objective function are
continuous. Similarly, in the constraint system (A.8), α̂ and π̂ are continuous. This continuity
property is key to the arguments that follow.

The objective function and the constraint systems in problem (P ) are linear on (µB, µS). For-
mally, problem (P ) is an equality-constrained linear program (see Anderson and Nash 1987). Stan-
dard results in linear programming theory show that the dual problem for (P ) is also a linear
program. Whereas (P ) is a maximization problem, the dual is a minimization problem. The primal
and dual problems are related because, under certain regularity conditions, the dual variables are
also the shadow prices of the primal constraints and vice versa.

Denote the respective dual variables (or Lagrange multipliers) associated with constraints (A.6)
and (A.7) by qB ∈ C(B) and qS ∈ C(H), and that associated with constraint (A.8) by λ ∈ C(H×K).
The Lagrangian associated with problem (P ) is

L =

∫
B×H×K

α(k)u(b, h)dµB(b, h, k)−
∫
H×K

π(k)v(h)dµS(h, k) +

∫
B
qB(b)

[
dξB(b)− dµBB(b)

]
+

∫
H
qS(h)

[
dξS(h)− dµSH(h)

]
+

∫
H×K

λ(h, k)
[
dη(π̂, µS)− dη(α̂, µBH×K)

]
.
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Using (A.2)-(A.5) and rearranging yields

L =

∫
B
qB(b)dξB(b) +

∫
H
qS(h)dξS(h)−

∫
B×H×K

(
qB(b)− α̂(h, k)[u(b, h)− λ(h, k)]

)
dµB(b, h, k)

−
∫
H×K

(
qS(h)− π̂(h, k)[λ(h, k)− v(h)]

)
dµS(h, k),

where without loss of generality λ(h, k0) = 0 for all h ∈ H, since α̂(h, k0) = π̂(h, k0) = 0.

The dual problem (D) is then to find (qB, qS , λ) ∈ C(B)× C(H)× C(H ×K) to solve31

(D) inf
∫
B q
B(b)dξB(b) +

∫
H q
S(h)dξS(h)

s.t.

qB(b) ≥ α̂(h, k) [u(b, h)− λ(h, k)] for all (b, h, k) ∈ B ×H ×K, (A.10)
qS(h) ≥ π̂(h, k) [λ(h, k)− v(h)] for all (h, k) ∈ H ×K. (A.11)

A.2 Existence of optimal solutions and absence of a duality gap

Denote the optimal values for problems (P ) and (D) by ν(P ) and ν(D), respectively. We first show
that both problems are consistent (i.e. their feasible sets are not empty) and bounded (i.e. ν(P )
and ν(D) are finite).

Lemma A. 1. Problems (P ) and (D) are consistent and bounded.

Proof. Since the autarky allocation where no one trades is a feasible solution for problem (P ),
problem (P ) is consistent. Also, since the gains from trade under autarky are zero, ν(P ) ≥ 0.

In problem (D), set λ = λ0 ∈ C(H × K) where λ0(h, k) = 0 for all (h, k) ∈ H × K. In the
constraint systems (A.10) and (A.11), α̂(h, k) and ˆπ(h, k) are bounded above by one and below by
zero (since they are probabilities). One then can find a feasible solution where λ = λ0 by choosing

31Using a more compact notation, the primal problem is to find x = (µB, µS) ∈Mc(B ×H ×K)×Mc(H ×K) to
solve

(P ) sup 〈x, c〉
s.t. Ax = b,

x ≥ 0.

Here c = (cB, cS) ∈ C(B×H×K)×C(H×K) is given by cB(b, h, k) = α̂(h, k)u(b, h) and cS(h, k) = −π̂(h, k)v(h), and
b = (ξB, ξS , 0) ∈M(B)×M(S)×Mc(H×K). Finally, A : Mc(B×H×K)×Mc(H×K)→M(B)×M(H)×Mc(H×K)
is a continuous linear map defined by A(µB, µS) =

(
µBB , µ

S
H , η(α̂, µBH×K)− η(π̂, µS)

)
.

The dual problem is to find y = (qB, qS , λ) ∈ C(B)× C(H)× C(H ×K) to solve

(D) inf 〈b, y〉
s.t. A∗y ≥ c,

where A∗ : C(B)× C(H)× C(H ×K)→ C(B ×H ×K)× C(H ×K) is the adjoint of A. That is, A∗ is defined by
the relation 〈x, (A∗y)〉 = 〈Ax, y〉, for all x ∈Mc(B ×H ×K)×Mc(H ×K) and all y ∈ C(B)× C(H)× C(H ×K).
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qB0 ∈ C(B) and qS0 ∈ C(H) constant so that

qB0 (b) = sup
(b,h)∈B×H

{u(b, h)}+ ε, b ∈ B,

qS0 (h) = ε, h ∈ H,

for an arbitrary (small) ε > 0. Since u is continuous and B ×H is compact, the above supremum,
which we denote by q̄B0 , is attained. Thus problem (D) is consistent. Moreover,

ν(D) ≤
∫
B
qB0 (b)dξB(b) +

∫
H
qS0 (h)dξS(h) = q̄B0 ξ

B(B) + εξS(H) <∞.

Finally, by the weak duality theorem (Anderson and Nash 1987, Theorem 2.1), ν(P ) ≤ ν(D),
so the primal and dual problems are bounded:

0 ≤ ν(P ) ≤ ν(D) ≤ q̄B0 ξB(B) + εξS(H) <∞.

Unlike a finite linear program, a bounded infinite linear program need not have optimal solutions.
Moreover, the primal and dual values need not coincide as a “positive duality gap" may occur
(ν(P ) < ν(D)). Below we show that the linear programs in this paper are solvable and have the
same optimal value (ν(P ) = ν(D)). This establishes Theorem 1.

We first show that problem (P ) is solvable.

Theorem A. 1. Problem (P ) has optimal solutions.

Proof. The feasible set of problem (P ) is bounded, and the constraint map and objective function
are weak-star continuous, so the result follows from Theorem 3.20 in Anderson and Nash (1987).

Next, we show that problem (D) satisfies the well-known Slater regularity condition. This
implies that there is no duality gap.

Theorem A. 2. There is no duality gap: ν(P ) = ν(D).

Proof. The positive cone of C(B ×H ×K)× C(H ×K) has a non-empty interior, denoted by Y0.
Also, (qB0 , q

S
0 , λ0) ∈ C+(B)× C+(H)× C+(H ×K) in the proof of Lemma A.1 is a Slater point in

the feasible set of problem (D). Since ν(D) is finite, Theorem 3.13 in Anderson and Nash (1987)
implies that ν(P ) = ν(D).

By Theorem A.2, the Complementary Slackness Theorem (Anderson and Nash 1987, Theorem
3.2) may be applied to characterize optimal solutions for problems (P ) and (D).

Theorem A. 3. (Complementary Slackness Theorem) Feasible solutions (µB, µS) and (qB, qS , λ) for
problems (P ) and (D) are optimal if and only if they satisfy the complementary slackness conditions:

qB(b) = α̂(h, k) [u(b, h)− λ(h, k)] for all (b, h, k) ∈ suppµB, (A.12)
qS(h) = π̂(h, k) [λ(h, k)− v(h)] for all (h, k) ∈ suppµS . (A.13)
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We still need to show that problem (D) is solvable. We start with two preliminary results.
Lemma A.2 shows that the set of feasible dual solutions can be taken to be bounded without loss
of generality. The proof uses the fact that u and v are continuous, α̂ and π̂ are bounded, and B
and H are compact sets. Lemma A.3 shows that the ratio of buyers to sellers k can be restricted
without loss of generality to lie on a compact subset of <+ (e.g. to be bounded above).

Lemma A. 2. The set of feasible dual solutions can be taken to be bounded without loss of generality.
In particular, feasible dual solutions satisfy qB, qS ≥ 0. Also, we may assume that qB and qS are
bounded above and that minh∈H v(h) ≤ λ(h, k) ≤ max(b,h)∈B×H u(b, h) for all (h, k) ∈ H ×K.

Proof. For k = k0 the dual constraint systems (A.10)-(A.11) imply qB ≥ 0, qS ≥ 0.

For a given (h, k) ∈ H × <++, if an optimal primal solution satisfies (h, k) ∈ suppµS then
(b̃, h, k) ∈ suppµB for some b̃ ∈ B. The reason is that the restrictions of µBH×K and µS to H ×<++

are mutually absolutely continuous measures and thus have the same support.32 By Theorem A.3,
in this case, optimal dual solutions satisfy

qB(b̃) = α(k)[u(b̃, h)− λ(h, k)], (A.14)
qS(h) = π(k) [λ(h, k)− v(h)] , (A.15)

using (A.2)-(A.3). Since qB(b̃), qS(h) ≥ 0 and α(k), π(k) > 0, it follows that v(h) ≤ λ(h, k) ≤
u(b̃, h). Hence,

0 ≤ v(h) ≤ λ(h, k) ≤ sup
b∈B

u(b, h), (h, k) ∈ H ×<++. (A.16)

The continuity of u and v and the compactness of B and H imply that the infimum and the
supremum in (A.16) are attained. Since λ is continuous, (A.16) also holds for (h, 0) ∈ suppµS . This
in turn implies that the terms on right-hand side of (A.12) and (A.13) are bounded above (since
matching probabilities are bounded, and, again, u and v are continuous and B and H are compact).
So there is no loss of generality in assuming that qB and qS are bounded above.

On the other hand, if (h, k) /∈ suppµS then (h, k) /∈ suppµBH×K . In this case, commodity (h, k) is
not traded, and its shadow price λ(h, k) can be chosen arbitrarily among all the values that satisfy

qB(b) ≥ α(k)[u(b, h)− λ(h, k)], ∀b ∈ B, (A.17)
qS(h) ≥ π(k) [λ(h, k)− v(h)] . (A.18)

In particular, we may restrict to values of λ(h, k) satisfying (A.16). Indeed, if (A.17) and (A.18)
hold for λ(h, k) > u(b̄, h) = maxb∈B u(b, h), they must also hold for λ(h, k) = u(b, h) since qB ≥ 0.
Likewise, if these equations hold for λ(h, k) < v(h) they must hold for λ(h, k) = v(h) since qS ≥ 0.
Finally, since (A.16) holds for all (h, k) ∈ H ×K,

min
h∈H

v(h) ≤ λ(h, k) ≤ max
(b,h)∈B×H

u(b, h), for all (h, k) ∈ H ×K. (A.19)

32The corresponding Radon-Nikodym derivatives are f and 1/f where f(h, k) = k. This follows from equations
(2.2) and (3.3) since α(k), π(k) > 0 for all k > 0.
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Lemma A. 3. There exists a sufficiently large k̄ ∈ <+ such that, if all the constraints which are
associated with elements k > k̄ are eliminated from problem (D), the set of optimal dual solutions
does not change.

Proof. Suppose the statement in Lemma A.3 were not true. Let (µB, µS) be an optimal primal
solution. Take an increasing sequence {kj} ⊂ <+ with kj → ∞. For each j there then exists
(hj , k̂j) ∈ suppµS with k̂j > kj . Equivalently, (bj , hj , k̂j) ∈ suppµB for some bj ∈ B, since the
restrictions of µS and µBH×K to H × <++ are mutually exclusive measures which have the same
support. (If not, Theorem A.3 would imply that the dual constraints associated to all k > kj can
be ignored without loss of generality, since they do not bind). But then the support of µS contains
the sequence {(hj , k̂j)} where lim k̂j → ∞, which is impossible since this support is compact by
definition.

To prove the existence of optimal dual solutions we use a similar argument to that in the proof
of Theorem 5.2 in Anderson and Nash (1987) on the continuous transportation problem. This is a
different and yet related infinite dimensional linear program (see also Gabriel, López-Martínez, and
Hernández-Lerma 2001). As in Anderson and Nash (1987), the solvability of problem (D) cannot be
settled using an argument similar to that in Theorem A.1 because the space of continuous functions
on a compact set is not the dual of any normed space. We follow their approach and repose problem
(D) in an enlarged space which does have this property, and then appeal to the continuity of the
valuation and matching functions, and the compactness of B andH to show that an optimal solution
in the enlarged space lies in the original space.

Theorem A. 4. Problem (D) has optimal solutions.

Proof. Let us repose problem (D) with (qB, qS , λ) in L∞(ξB) × L∞(ξS) × L∞(ξS × m), where m
represents Lebesgue measure on K. (This space is the dual of L1(ξB) × L1(ξS) × L1(ξS × m)).
The new dual problem is solvable by Theorem 3.20 in Anderson and Nash (1987) since Lemma A.2
implies that its feasible set can be taken to be bounded without loss of generality.

We now show that there exists an optimal solution of this new problem where the functions qB,
qS and λ are continuous. Suppose that (qB, qS , λ) is optimal. Feasibility requires that

α̂(h, k)λ(h, k) ≥ α̂(h, k)u(b, h)− qB(b), for all (b, h, k) ∈ B ×H × (K|{k0}), (A.20)

and that

qS(h)/k + α̂(h, k)v(h) ≥ α̂(h, k)λ(h, k), for all (h, k) ∈ H × (K|{0, k0}), (A.21)

given (2.2), (A.2) and (A.3). Remember that λ(h, k0) = 0 for all h ∈ H. Defining λ1 ∈ L∞(ξS ×m)
so

α̂(h, k)λ1(h, k) = max{0, sup
b∈B

{
α̂(h, k)u(b, h)− qB(b)

}
}, (h, k) ∈ H × (K|{k0}), (A.22)

and λ1(h, k0) = 0 for all h ∈ H, then yields another optimal solution (qB, qS , λ1). We now show
that the restriction of λ1(h, k) to the compact set H × [0, k̄]—and in fact to any compact set—is
continuous. Take a sequence {bi} in B such that α̂(h, k)u(bi, h)−qB(bi) converges to α̂(h, k)λ1(h, k).
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Since B ×H × [0, k̄] is compact, α̂(h, k)u(b, h) is uniformly continuous on B ×H × [0, k̄]. For any
ε > 0 there then exists δ such that

|α̂(h, k)u(bi, h)− α̂(h′, k′)u(bi, h
′)| < ε, i = 1, 2, . . . (A.23)

whenever (h′, k′) lies in a δ-neighborhood of (h, k), and (h, k), (h′, k′) ∈ H× [0, k̄]. Equations (A.20)
and (A.23) then imply that

α̂(h′, k′)λ1(h′, k′) ≥ α̂(h′, k′)u(bi, h
′)− qB(bi) > α̂(h, k)u(bi, h)− qB(bi)− ε, i = 1, 2, . . . (A.24)

Taking the limit yields

α̂(h′, k′)λ1(h′, k′) + ε ≥ α̂(h, k)λ1(h, k). (A.25)

A symmetric argument implies that

α̂(h, k)λ1(h, k) + ε ≥ α̂(h′, k′)λ1(h′, k′), (A.26)

for any such (h′, k′) and (h, k). Hence, by equation (A.22), the restriction of α̂(h, k)λ1(h, k) to
H × [0, k̄] is the maximum of a continuous function and a constant function, so it is continuous.
Since α̂ is continuous and strictly positive on H × [0, k̄], the restriction of λ1 to H × [0, k̄] (the
quotient of two continuous functions) is continuous.

To see that λ1 is continuous, take an increasing sequence of compact sets {Zj} converging to K;
e.g. Zj = [0, kj ] ∪ {k0} with kj ↑ ∞. Consider the sequence of functions {fj} where fj = χZjλ1,
where χZj denotes the characteristic function on Zj ; so λ1 and fj coincide on Zj . Since fj is
continuous on Zj and λ1 = limj→∞ fj , it follows that λ1 is continuous.

Finally, defining

qB1 (b) = max
(h,k)∈H×([0,k̄]∪{k0})

α̂(h, k) [u(b, h)− λ1(h, k)] , (A.27)

qS1 (h) = max
k∈[0,k̄]∪{k0}

π̂(h, k) [λ1(h, k)− v(h)] , (A.28)

yields yet another optimal solution (qB1 , q
S
1 , λ1) since, by Lemma A.3, the constraints associated with

elements k > k̄ can be ignored without loss of generality in (A.10)-(A.11). By Berge’s Maximum
Theorem, qB1 and qS1 are continuous.

A.3 Welfare and Existence Theorems

As in Gretsky, Ostroy and Zame (1992), the welfare theorems follow from the Complementary
Slackness Theorem A.3. This theorem implies a direct equivalence between the optimal solutions
to problems (P ) and (D) on the one hand, and competitive equilibrium allocations, prices and
indirect utilities on the other hand. The existence of a competitive equilibrium then follows from
the existence of optimal solutions to problems (P ) and (D) established in Section A.2.

Theorem A. 5. (Welfare theorems)

(I) Let (µB∗, µS∗, p∗) be a competitive equilibrium. Also, define qB∗(b) = υ∗b (p
∗) for each b ∈ B
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and qS∗(h) = υ∗h(p∗) for each h ∈ H, where υ∗i (p
∗) is the equilibrium indirect utility of type-i

agents. Then (µB∗, µS∗) solves problem (P ), and (qB∗, qS∗, p∗) solves problem (D).

(II) Suppose (µB, µS) and (qB, qS , λ) are optimal solutions for problems (P ) and (D). Then
(µB, µS , λ) is a competitive equilibrium. Moreover, qB(b) gives the equilibrium indirect utility
of type-b buyers for each b ∈ B, and qS(h) gives the equilibrium indirect utility of type-h sellers
for each h ∈ H.

Proof. (I) Let (µB∗, µS∗, p∗) be a competitive equilibrium. Condition (iii) in Definition 1 is
equivalent to (A.6) and (A.7), and condition (iv) is equivalent to (A.8). Also, by assumption
(µB∗, µS∗) satisfies (A.9). Hence, (µB∗, µS∗) is feasible for problem (P ).

Define qB∗(b) = υ∗b (p
∗) for each b ∈ B, and qS∗(h) = υ∗s(p

∗) for each h ∈ H. Note that (5.4) and
(5.3) imply that

υ∗b (p
∗) = sup

(h,k)∈suppµB∗H×K

α(k) [u(b, h)− p∗(h, k)] , b ∈ B, (A.29)

υ∗h(p∗) = sup
k∈suppµS∗K

π(k) [p∗(h, k)− v(h)] , h ∈ H. (A.30)

Since µB∗ and µS∗ have compact support, so do their marginals. Hence, qB∗ ∈ C(B) and qB∗ ∈ C(H)
by Berge’s Maximum Theorem. By condition (i) in Definition 1,

qB∗(b) ≥ α(k) [u(b, h)− p∗(h, k)] for all (b, h, k) ∈ B ×H ×K, (A.31)

with equality if (b, h, k) ∈ suppµB∗. Likewise, by condition (ii),

qS∗(h) ≥ π(k) [p∗(h, k)− v(h)] for all (h, k) ∈ H ×K, (A.32)

with equality if (h, k) ∈ suppµS∗. Remember that α(k0) = π(k0) = 0, and p∗ is normalized so
p∗(h, k0) = 0 for all h ∈ H. Hence, (A.31)-(A.32), combined with the definitions in (A.2)-(A.3),
implies that (qB∗, qS∗, p∗) is feasible for problem (D) and satisfies the complementary slackness
conditions (A.12) and (A.13). By Theorem A.3, (µB∗, µS∗) and (qB∗, qS∗, p∗) are then optimal
solutions for problems (P ) and (D).

(II) Let (µB, µS) and (qB, qS , λ) be optimal solutions for problems (P ) and (D). By Theorem
A.3, these solutions are feasible and satisfy the complementary slackness conditions. As noted above,
the primal feasibility conditions (A.6) and (A.7) are equivalent to condition (iii) in Definition 1,
while (A.8) is equivalent to condition (iv). Let p ∈ C(H×K) be given by p = λ. Since λ(h, k0) = 0,
p satisfies our price normalization. The dual feasibility conditions (A.10)-(A.11) and associated
complementary slackness conditions (A.12)-(A.13) imply that conditions (i) and (ii) hold for this
choice of the price system, and qB(b) and qS(h) give the indirect utility of type-b buyers and type-h
sellers at these prices. This is just the reverse of the argument in part (I). Thus p decentralizes
(µB, µS) as a competitive equilibrium.
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A.4 Proofs of Propositions 1 and 2

Proof of Proposition 1. Part (I) of Theorem A.5 implies that p∗ is precisely the continuous function
λ1 characterized in equation (A.22) in the proof of Theorem A.4. In this equation qB(b) represents
the indirect utility of type b buyers in a competitive equilibrium. For given h ∈ H, α̂(h, k) is pos-
itive and strictly decreasing in k for k ∈ <+. Hence, when λ1(h, k) > 0, (A.22) implies that λ1 =

supb∈B

{
u(b, h)− qB(b)

α̂(h,k)

}
. Also, since no buyer type chooses to resort to autarky, qB(b) > 0 for all

b ∈ B. So λ1 is strictly decreasing in k. �

Proof of Proposition 2. According to Proposition 1, for given h, p∗(h, k) is strictly decreasing in k
when prices are positive, so its inverse is given by k̂∗(h, p) on this range (see equation (5.12)). As
noted in the proof of Proposition 1, p∗ is characterized in equation (A.22). Since p∗ is continuous,
Proposition 1 also implies the following. For a given h, there exists k0(h) such that p∗(h, k) = 0
and supb∈B{u(b, h∗)− υ∗b (p∗)/α(k)} ≤ 0 for all k ≥ k0(h) with strict equality only if k = k0(h) and
p∗(h, k) > 0 for some k ∈ <+ (see also the proof of Proposition 1). So, for a given h, p(h, k) is not
invertible for k ≥ k0(h). In (5.12) we set k̂∗(h, 0) = inf{k ∈ <+|p(h, k) = 0} = k0(h). On the other
hand, (5.8) implies that (h, 0) /∈ suppµ̂S∗ for all h ∈ H since all seller types trade in a competitive
equilibrium. (For a seller, choosing (h, 0) would be equivalent to choosing not to trade). Given all
the above, equations (5.8) and (5.9) directly imply that conditions (i) and (ii) in Definition 2 hold
because so do conditions (i) and (ii) in Definition 1. Moreover, in the former conditions, υ̂∗i = υ∗i (p

∗)
for all i ∈ B ∪H. Note also that the measures described in (5.8)-(5.11) are well-defined.

Lemma A.2 and Part (I) of Theorem A.5 imply that, in the environment in Eeckhout and Kircher
(2010), 0 ≤ p∗(h, k) ≤ u(b̄, h̄) for all (h, k) ∈ H ×K (see equation (A.19)). So the range of p∗ is
contained in the set P ∗. But then (5.10) and (5.11) directly imply that conditions (iii) and (iv) in
Definition 2 hold because so do conditions (iii) and (iv) in Definition 1. Note also that the range of
p∗ contains points arbitrarily close to p = 0 (by Proposition 1).

To see that condition (v) also holds, let us go back to equation (A.22). The supremum in
the righthand side of (A.22) is attained. For commodities (h, k) /∈ suppµS∗ with p∗(h, k) > 0,
(A.22) says that p∗(h, k) that gives the buyer type who is willing to pay a higher price for (h, k)
her equilibrium level of utility. In turn condition (v) in Definition 2 says that for submarkets
(h, p) /∈ suppµ̂S∗, k̂∗(h, p) gives the buyer type who is willing to accept a higher k in submarket
(h, p) her equilibrium level of utility. Or, if this is not possible, k̂∗(h, p) = 0. Since the buyers’
payoff is decreasing in both p and k, Proposition 1 implies that, for given h ∈ H, the inverse of
p∗(h, k) satisfies condition (v) when p > 0. In sum, for p > 0 on the range of p∗, condition (v) holds
because p∗ satisfies (A.22). For (h, k) /∈ suppµS∗ with p∗(h, k) = 0, there are two cases. Either
(a) supb∈B{u(b, h∗) − υ∗b (p∗)/α(k(h))} = 0 where k(h) is defined above, or (b) supb∈B{u(b, h∗) −
υ∗b (p

∗)/α(k)} < 0 for all k ∈ <+ and k(h) = 0. In case (a), the same argument used for commodities
with positive prices implies that k̂∗(h, 0) satisfies condition (v). In case (b), (h, 0) attracts no buyers
and so k̂∗(h, 0) = 0 also satisfies condition (v). It remains to deal with submarkets (h, p) where
p > 0 lies outside the range of p. These are prices so high that they are not observed in a competitive
equilibrium. Equation (A.22) implies that these submarkets attract no buyers, so k̂∗(h, p) = 0 also
satisfies condition (v). �
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Figure 1: Homogeneous buyers and sellers.
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Figure 2: Heterogenous buyers and sellers (symmetric case).
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Figure 3: When perfect sorting is not an equilibrium (good 1).
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Figure 4: Equilibrium with heterogenous buyers and sellers (good 1).
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Figure 5: Equilibrium with heterogenous buyers and sellers (good 2).
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