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Abstract

We study innovation contests with asymmetric information and identical agents,

where contestants’ efforts and innate abilities generate inventions of varying qual-

ities. The designer offers a reward to the contestant achieving the highest quality

and receives the revenue generated by the innovation. We characterize the equilib-

rium behavior, outcomes and payoffs for both nondiscriminatory and discriminatory

(where the reward is agent-dependent) contests. We derive conditions under which

discrimination is optimal and describe settings where they are satisfied.
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1 Introduction

Innovative activity has traditionally been rewarded mainly through the patent system.

An alternate approach to generating and rewarding innovations is to design contests that

solicit proposals to solve targeted objectives (see, for instance, Suzanne Scotchmer, 2004).

A sponsor interested in technological improvement can launch a contest where agents

compete by submitting prototypes, the best of which will be adopted by the sponsor. Such

contests have been held to obtain innovations in various fields including mathematics, food

preservation and maritime navigation.1

Today, contests are frequently used by organizations, such as the Institute for Ad-

vanced Architecture of Catalonia and HP to promote discussion and research . . . that

can help us to envisage how the city and the habitat of the 21st century will turn out.

Similarly, the U.S.-based Knight Foundation has set innovation contests to elicit digital

news experiments that inform and engage communities. Contests have also been suggested

as a future means to address a variety of issues. For example, Richard G. Newell and

Nathan E. Wilson (2005) and Richard G. Newell (2008) proposed that the U.S. Depart-

ment of Energy should hold contests to resolve specific technical and scientific challenges

related to greenhouse gases mitigation.

In this paper, we introduce and analyze a new model of contests with asymmetric

information. We describe it as an innovation contest, although it is applicable to many

settings. For example, it can be used to study procurement decisions, government con-

tracts, research budgets and promotions.

Our framework is the following. A designer wishes to obtain an innovation that can

be produced by two agents. The quality of the innovation achieved by an agent depends

on his ability and the effort devoted to the task. The agents’ abilities are independently

drawn from the same distribution function and once an agent observes his ability he

decides on his effort. Both ability and effort are an agent’s private information. The

designer sets up a contest whereby the highest-quality innovation receives a prize. The

contest is called nondiscriminatory if the prize does not depend on the winner’s identity,

otherwise it is called discriminatory .

1Curtis R. Taylor (1995) analyzed the optimal contest in an environment with symmetric information

where the quality of the innovation obtained by a firm is a random variable. More recently, the design of

optimal contests in an R&D environment has been studied by Yeon-Koo Che and Ian Gale (2003).
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We characterize the equilibrium behavior of the two agents in a nondiscriminatory

contest for arbitrary distributions of abilities and determine the regions where the equi-

librium involves positive effort levels for both agents and those where the contestants

exert zero effort. The boundaries of the regions depend on the distribution function of

the ability parameter and the prize.

We then consider discriminatory contests where the reward depends on the identity

of the winner. We provide several properties of the equilibrium behavior for arbitrary

distribution functions. The agents’ equilibrium behavior in discriminatory contests again

involves regions with zero and positive effort levels. The main new feature is the disconti-

nuity in the behavior of the agent with the larger reward, who moves discretely from zero

to a positive effort level. We also provide a full characterization of the equilibrium when

the distribution function is either convex or concave.

We conclude by determining conditions under which discrimination is optimal. Dis-

crimination can be optimal in our set up because it leads to an increase in the aggregate

effort of the agents, thereby resulting in larger expected revenues, which more than com-

pensate for the increase in cost. In particular, we show that discrimination is optimal

if the distribution of the agents’ abilities is a convex function, with very low density at

zero, and the designer has a high enough valuation of the quality of the innovation. We

also find concave distribution functions of an agent’s ability for which discrimination is

optimal if the designer’s valuation is low enough.

Contests in symmetric information environments have been extensively analyzed. Michael

R. Baye et al. (1996) studied the contestants’ equilibrium behavior in standard all-pay

auctions with symmetric information where agents bid for an object, all bids are paid

and the highest bidder receives the object. Todd R. Kaplan et al. (2003) investigated

all-pay auctions where the size of the reward depends on the effort. In particular, they

applied this framework to an analysis of R&D races. Che and Gale (2003) derived the

equilibrium behavior and characterized the optimal research contest in an environment

where each contestant submits a quality-price pair. The cost of producing the quality

is sunk. The contestant offering the largest surplus, defined as the difference between

quality and price, is paid the price. Ron Siegel (2009 and 2010) introduced a general

framework encompassing a very large class of all-pay auctions and provided a general

method of solving and calculating equilibrium payoffs. Kai Konrad (2009) provided an
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excellent survey of equilibrium and optimal design in contests.

In scenarios where agents’ valuations are private information, Erwin Amann and Wolf-

gang Leininger (1996) characterized the equilibrium bids for all-pay auctions where val-

uations are independently drawn from a common distribution function. Vijay Krishna

and John Morgan (1997) analyzed the case in which the bidders’ information is affiliated.

Benny Moldovanu and Aner Sela (2001) considered an environment where an agent’s type

determines his cost of bidding and agents are privately informed about their type. In their

model, the designer’s goal is to maximize the sum of efforts by the agents. They show

that in the case of a linear or concave cost function, the designer finds it optimal to offer

just one prize. However, offering two or more prizes may be optimal for a convex cost

function.

Our model differs with respect to the previous literature in several ways. For one thing,

the designer chooses the size of the reward and may discriminate among the contestants.

Moreover, the asymmetric information is introduced in a novel way in which ability and

effort are substitutes. In this sense, the model is suitable for the analysis of common day

scenarios of competition where both innate ability and effort generate the final outcome.

Last, our finding on the possible optimality of discrimination runs contrary to several

studies that show that it is, in general, beneficial to handicap a stronger contestant so as

to level the field when starting from an asymmetric contest (Michael R. Baye et al., 1993,

Derek J. Clark and Christian Riis, 2000, Che and Gale, 2003, Rene Kirkegaard, 2010).

Discriminating among identical agents has also been shown to be optimal in models very

different from ours. In particular, Eyal Winter (2004) found that discriminating is optimal

in environments where a principal wants to provide several identical agents with incentives

to carry out a task .

The rest of the paper proceeds as follows. In Section 2, we introduce the model.

Section 3 analyzes agents’ equilibrium behavior in nondiscriminatory contests and agents’

behavior in discriminatory contests is analyzed in Section 4. Section 5 calculates the

designer’s payoff as a function of the rewards and shows conditions under which it is

optimal to discriminate. Section 6 concludes and proposes directions for further research.

4



2 The model

We consider the problem facing an organization that wishes to procure an innovation.

The benefits derived from this innovation depend on its quality q and are given by I(q),

with I ′(q) > 0, I ′′(q) < 0.

There are two identical risk-neutral agents A and B who can realize the desired in-

novation. The quality of the innovation produced by an agent depends on his type and

his choice of nonnegative effort. The agents’ types represent their proficiency to develop

the particular innovation. Both the types and choices of effort are private information.

Denoting the type of agent N by θN and his effort by eN , the quality of the innovation

realized by agent N is given by qN (θN , eN) = θN + eN .

Agents’ types are independently distributed according to the same differentiable and

atomless distribution function F (.) on [0, 1], with F ′(.) > 0 for all θ ∈ [0, 1]. Types are

revealed to the agents prior to their choice of effort. The quality of the innovation while

observed by the designer cannot be verified. However, an independent authority can verify

which innovation is best.

To procure the innovation, the organization holds a contest among the two agents.

Henceforth, we refer to the organization as the designer of the contest. The winner of the

contest is the agent who offers the innovation of the highest quality, with ties broken by

having each agent win with probability 1/2. The designer may discriminate among the

agents and offer different prizes, depending on the identity of the winner. She specifies a

prize RA to agent A if he wins and a prize RB to agent B were he to win, with RA ≥ RB.

A nondiscriminatory contest involves RA = RB.

Given a contest (RA, RB), the payoff of agent N when he chooses effort e is RN − e

in case he wins the contest and −e otherwise. The payoff to the designer is I(q) − RM ,

where q is the quality of the innovation generated by the contest and M is the identity of

the agent winning the contest.

The agents’ strategies are denoted by two functions qA(θ), qB(θ) for A and B respec-

tively, with qN(θ) ≥ θ, where qN(θ) indicates the choice of quality by agent N when his

type is θ. Given the agents’ strategies, the efforts exerted by agent A of type θA and agent

B of type θB will be eA(θA) = qA(θA)− θA and eB(θB) = qB(θB)− θB.
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3 Agents’ equilibrium strategies in nondiscriminatory

contests

In this section, we provide the agents’ equilibrium strategies when they compete in a

nondiscriminatory contest, that is, RA = RB = R.

To formulate agent A’s maximization problem, we let agent B’s strategy be qB(θ), and

assume it is an increasing and differentiable function.2 Then, agent A’s expected profits

when he is of type θ and offers quality q ≥ θ are given by his probability of winning times

the prize minus the effort; that is,3

Pr
θ̃

(
q ≥ qB(θ̃)

)
R− (q − θ).

When q ∈ [qB(0), qB(1)],
4 and q ≥ θ, agent A’s expected profits can be written as

F
(
q−1B (q)

)
R − (q − θ).

If the level of quality q that maximizes agent A’s expected profits is interior, that is, q > θ,

the following first-order condition (FOC) must hold:

q′B
(
q−1B (q)

)
= F ′

(
q−1B (q)

)
R. (1)

Similarly, the FOC for agent B in the interior case is

q′A
(
q−1A (q)

)
= F ′

(
q−1A (q)

)
R. (2)

These FOCs yield the following system of differential equations that the functions

qA(θ) and qB(θ) must satisfy if both qualities are interior solutions:

q′B
(
q−1B (qA(θ))

)
= F ′

(
q−1B (qA(θ))

)
R, (3)

2Due to the structure of our model, a continuous and monotone equilibrium can be replicated by

one where agents’ strategies are not monotonic. However, these two equilibria will be payoff equivalent;

hence we consider only the continuous and monotone equilibria. Note that the reasoning that Amann

and Leininger (1996) use to show that the equilibrium is continuous and monotone cannot be applied

here due to the fact that the strategy includes a choice of effort.
3Since qB(θ) is strictly increasing, we ignore the possibility of ties as they occur with probability zero.
4Note that offering qualities above qB(1) cannot be optimal for agent A since q = qB(1) already

ensures that he wins the contest with probability one. On the other hand, offering qualities below qB(0)

might be optimal if qB(0) > 0.
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q′A
(
q−1A (qB(θ))

)
= F ′

(
q−1A (qB(θ))

)
R. (4)

The solution of these two equations is given by:

qA(θ) = F (θ)R + ηA, (5)

qB(θ) = F (θ)R+ ηB, (6)

for some ηA, ηB ∈ R.

Equations (5) and (6) describe the equilibrium strategies over the range of θ’s that lead

to an interior solution, where efforts chosen by agents are strictly positive. However, there

may be regions of parameters where agents choose corner solutions, where they provide

zero effort, q(θ) = θ. Theorem 1 provides the explicit agents’ equilibrium strategies for any

differentiable and atomless distribution function F (.). Prior to presenting the theorem, we

outline below an intuitive explanation regarding the nature of the equilibrium strategies.

Since the equilibrium strategies are continuous, there are two types of regions for the

parameter θ. We let Region I be the region where agents choose positive levels of effort,

thus the equilibrium is characterized by equations (5) and (6), with ηA = ηB = η because,

as we will show, any equilibrium is symmetric.5 We let Region C be the one where agents

choose zero effort, qA(θ) = qB(θ) = θ.

To derive the conditions that an equilibrium must satisfy, we consider the case where

agents’ strategies lie in Region I for θ ∈ [θ1, θ2) and in Region C for θ ∈ [θ2, θ3]. First,

the continuity of the equilibrium strategies implies that F (θ2)R + η = θ2; hence, η =

θ2 − F (θ2)R. Second, for any θ ∈ [θ2, θ3], in order for q(θ) = θ to be the optimal choice

an agent’s profits for this choice cannot be lower than his profits for any q ∈ (θ, θ3], i.e.,

F (θ)R ≥ F (q)R− (q − θ), or

F (q)R − q ≤ F (θ)R− θ for any θ ∈ [θ2, θ3] , q ∈ (θ, θ3] . (7)

Finally, since effort is non-negative it must be the case that F (θ)R + η ≥ θ for any θ in

[θ1, θ2], or

F (θ2)R− θ2 ≤ F (θ)R− θ for any θ ∈ [θ1, θ2] . (8)

Equation (7) must be satisfied for any interval of parameters where the equilibrium

lies in Region C, thereby implying that the function F (θ)R − θ is nonincreasing in such

5Region I can be the union of several intervals. If this is the case, the parameter η changes from one

interval to another.
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an interval. Equation (8) must be satisfied for any interval of parameters where the

equilibrium lies in Region I. This equation requires that the value of the function F (θ)R−

θ at the upper bound of the interval cannot be higher than the value at any other θ in the

interval. These conditions are shown to describe an equilibrium in Theorem 1, where the

boundaries of the regions are characterized as well.6 The theorem is stated for the case

F ′(0)R− 1 < 0. After the theorem we indicate the necessary small changes that allow us

to formulate the results for all cases.

Theorem 1 Consider a nondiscriminatory contest with a reward R. Assume that F ′(0)R−

1 < 0. We define recursively two finite sequences of parameter values:

(i) (αn)n : α1 is the first parameter such that the function F (θ)R − θ is increasing to

its right; αn, for n ≥ 2, is the first parameter such that F (θ)R − θ is increasing to its

right for which F (αn)R − αn < F (αn−1)R − αn−1. This sequence ends when the global

minimum of F (θ)R− θ is reached.

(ii) (βn)n : β0 = 0; βn, for n ≥ 1, is the first parameter θ larger than αn that is not a

local minimum for which F (βn)R− βn = F (αn)R− αn. This sequence ends when such a

β fails to exist.

We denote by ñ the length of the longest of the two sequences (αn)n and (βn)n. If βñ

exists, we let αñ+1 = 1; otherwise, βñ = 1.

Then, the unique symmetric equilibrium where agents’ strategies are monotonic is

q∗(θ) = F (θ)R+ αn − F (αn)R for θ ∈ [αn, βn] , n ≥ 1 (Region I)

q∗(θ) = θ for θ ∈
[
βn−1, αn

]
, n ≥ 1 (Region C).

The proposed strategies constitute the unique equilibrium in monotonic strategies if the set

{θ ∈ [0, 1] /F ′(θ) = 1/R} has zero measure.

Figure 1 represents the equilibrium effort levels as a function of the parameter θ.

When F ′(0)R − 1 > 0, Theorem 1 still holds, and the recursive definition of the

sequences (αn)n and (βn)n is similar, except that we start with α1 = 0 and β0 does not

exist. Similarly, if F ′(0)R− 1 = 0, the sequences will be the same as in Theorem 1 unless

F (θ)R − θ > 0 for some interval (0, θ̂), with θ̂ > 0 in which case, the definition of the

sequences starts with α1 = 0.

6All proofs are relegated to the appendix.
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 θ 

Figure 1: Equilibrium effort in a non-discriminatory contest.

4 Agents’ equilibrium strategies in discriminatory con-

tests

We now consider discriminatory contests, where RA > RB. Formulating the agents’ max-

imization problems in the same manner as in the nondiscriminatory case, we obtain the

following FOC for agent A when he exerts a positive effort:

q′B
(
q−1B (q)

)
= F ′

(
q−1B (q)

)
RA. (9)

Similarly, the FOC for agent B is

q′A
(
q−1A (q)

)
= F ′

(
q−1A (q)

)
RB. (10)

When both agents exert a positive effort, we obtain a system of differential equations

whose solution is given by

qA(θ) = F (θ)RB + ηA, (11)

qB(θ) = F (θ)RA + ηB, (12)

for some ηA, ηB ∈ R.

As we found in our analysis of the agents’ equilibrium strategies in nondiscriminatory

contests exerting a positive effort is not always a best response. Thus, in equilibrium there
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are regions where one or both agents put in zero effort. Furthermore, in discriminatory

contests, discontinuities in an agent’s strategy cannot be ruled out. Therefore, there may

exist a quality interval that is never reached by an agent even though he offers qualities

below and above that interval.

We proceed by establishing several properties of the equilibrium strategies. We note

first that in equilibrium the qualities offered must satisfy qA(1) = qB(1). Moreover,

Lemma 1 rules out many possible strategy configurations in equilibrium.

Lemma 1 Assume the sets {θ ∈ [0, 1] |F ′(θ) = 1/RA} and {θ ∈ [0, 1] |F
′(θ) = 1/RB} have

zero measure. Equilibrium strategies in a contest (RA, RB) cannot give rise to a nonempty

interval of qualities (q1, q2) ⊆ [min {qA(0), qB(0)} , qA(1)] such that one of the following

holds:

(a) q−1A (q) < q and q−1B (q) does not exist, for all q ∈ (q1, q2),

(b) q−1A (q) does not exist and q
−1
B (q) < q, for all q ∈ (q1, q2),

(c) both q−1A (q) and q
−1
B (q) do not exist, for all q ∈ (q1, q2),

(d) q−1A (q) < q and q−1B (q) = q, for all q ∈ (q1, q2),

(e) q−1A (q) = q and q−1B (q) < q, for all q ∈ (q1, q2),

(f) q−1A (q) = q and q−1B (q) does not exist, for all q ∈ (q1, q2).

According to parts (a) and (d), if there is an interval (q1, q2) such that q−1A (q) < q for

all q ∈ (q1, q2), it is necessarily the case that also q−1B (q) < q for all q ∈ (q1, q2). That is,

if agent A is offering qualities in the interval (q1, q2) by exerting a positive effort, agent B

is also exerting a positive effort over that interval. A symmetric conclusion follows from

parts (b) and (e). Therefore, an open interval of qualities is offered by agent A through

positive effort levels if and only if it is also offered by agent B through positive effort

levels. Part (c) states that the support of the qualities offered is connected. Finally, part

(f) (together with parts (a) and (c)) implies that the range of qualities offered by agent

B is also connected.

As in the nondiscriminatory contests, we call Region I the set of quality levels q that

are reached when both agents play according to the interior solution; that is, q ∈ I if

q−1A (q) < q and q−1B (q) < q. Also, we call Region C the set of qualities reached when both

agents put in zero effort; that is, q ∈ C if q−1A (q) = q−1B (q) = q. The remaining region

corresponds to the quality levels reached by B through zero effort, but never offered by
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agent A. More precisely, Region J is given by the set of qualities q such that q−1A (q) does

not exist and q−1B (q) = q.

Following Lemma 1, we can conclude that these are the only three possible strategy

configurations that can emerge in equilibrium. This is stated as part (a) of the following

proposition whereas parts (b) and (c) describe the potential order in which the regions

can appear.

Proposition 1 (a) Consider an equilibrium (qA(θ), qB(θ)) of the contest (RA, RB) and

assume the sets {θ ∈ [0, 1] |F ′(θ) = 1/RA} and {θ ∈ [0, 1] |F
′(θ) = 1/RB} have zero mea-

sure. Then the range of qualities offered in equilibrium [qA(0), qA(1)] can be split into

intervals, each of which belongs to either Region I, C, or J.

(b) Consider an equilibrium where there exists a (maximal) interval (q1, q2) in Region

J. Then, it must be followed by another interval (q2, q3) in Region I.

(c) Consider an equilibrium where there exists a (maximal) interval (q1, q2) in Region

I. Then, it must be preceded by another interval (q3, q1) in Region J.

Parts (b) and (c) of Proposition 1 imply that Region J and Region I always appear

together in equilibrium in the parameter space, with Region I following Region J . There-

fore, the range of qualities in equilibrium can be split into two types of intervals, each of

which belong to either Region C or Region Iγ, where Region Iγ is given by an interval

of (lower) qualities that is never reached by agent A and an interval of (higher) qualities

that is reached by both agents having contributed a positive effort. We note that in

discriminatory contests, Region Iγ plays a similar role to Region I in nondiscriminatory

contests.

So far we have demonstrated several properties of equilibrium strategies in discrimina-

tory contests for general distribution functions. We now proceed by analyzing particular

classes of distribution functions for which equilibrium strategies can be fully described in

a simple manner.

First, we discuss the possibility of a corner solution. It is intuitive that such a solution

would emerge if the prizes allocated in the contest are very small. Proposition 2 goes a

step forward and provides a necessary and sufficient condition for Region C to constitute

the (only) equilibrium in the contest. In such an equilibrium, both agents choose zero
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effort for every θ ∈ [0, 1], a strategy profile that we denote by
(
qCA , q

C
B

)
, defined as follows:

qCA(θ) = qCB(θ) = θ for all θ ∈ [0, 1] .

Proposition 2 The strategy profile
(
qCA , q

C
B

)
constitutes an equilibrium of the contest

(RA, RB) if and only if the function F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].

Moreover, if the set {θ ∈ [0, 1] |F ′(θ) = 1/RA} has zero measure, then no other equilibrium

exists.

Second, it is also intuitive that high rewards would give the agents (at least agent

A) incentives to always exert a positive effort. The next proposition states a result that

complements Proposition 2, namely that in equilibrium, the qualities offered lie in Region

Iγ whenever the function F (θ)RA − θ is nondecreasing for all θ ∈ [0, 1], which is the case

if RA is high enough. In addition, it provides a necessary and sufficient condition for the

equilibrium to always lie in Region Iγ where agents follow the strategy profile
(
q
Iγ
A , q

Iγ
B

)
,

defined as follows:7

q
Iγ
A (θ) = F (θ)RB + γ for all θ ∈ [0, 1]

q
Iγ
B (θ) = θ for all θ ∈ [0, γ)

= F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, 1]

where γ solves RB = [1− F (γ)]RA; hence, γ = F−1
(
1-RB
RA

)
.

Proposition 3 The strategy profile
(
q
Iγ
A , q

Iγ
B

)
constitutes an equilibrium of the contest

(RA, RB) if and only if the following two conditions hold:

F (θ)RA − θ ≤ F (γ)RA − γ for all θ ≤ γ (13)

F (θ)RA − θ ≥ F (γ)RA − γ for all θ ≥ γ. (14)

In particular,
(
q
Iγ
A , q

Iγ
B

)
constitutes an equilibrium if the function F (θ)RA − θ is non-

decreasing in θ for all θ ∈ [0, 1].

7The qualities chosen by the agents as well as the cut-off γ in the profile
(
q
Iγ

A
, q
Iγ

B

)
depend on the

particular function F (.) and the rewards RA and RB. We do not express this dependence in
(
q
Iγ

A
, q
Iγ

B

)

to keep the notation simple.
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When the function F (θ)RA − θ is increasing in some intervals of θ’s and decreasing

in others, then the equilibrium will include intervals of quality that lie in Region Iγ

and, often, others that lie in Region C. While a full characterization of the equilibrium

strategies is cumbersome for general distribution functions, there are large families of

distribution functions that allow for quite simple characterizations. Their analysis will

also provide robust intuitions on the agents’ equilibrium behavior. Next, we will consider

two such families that are given by convex and concave distribution functions.

The following theorem characterizes the structure of equilibrium strategies when the

function F (.) is convex. We note that for a convex F (.), it is always the case that

F ′(0) < 1 < F ′(1). To simplify the presentation of the theorem, we define the strategy

profile
(
q
CIγ
A , q

CIγ
B

)
as follows:

q
CIγ
A (θ) = θ for all θ ∈ [0, α)

= F (θ)RB + γ − F (α)RB for all θ ∈ [α, 1]

q
CIγ
B (θ) = θ for all θ ∈ [0, γ)

= F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, 1]

where α and γ solve

[1− F (α)]RB = [1− F (γ)]RA (15)

F (α)RA − α = F (γ)RA − γ. (16)

Under the strategy profile
(
q
CIγ
A , q

CIγ
B

)
, both agents exert zero effort up to a threshold

value of θ and choose positive effort levels for higher values. Agent A’s threshold is lower

than agent B’s, (α < γ) due to the higher reward he obtains if he wins the contest.

Finally, while agent B’s strategy is continuous in the parameter θ, agent A’s strategy

entails a discrete jump from α to γ at his threshold.

Theorem 2 Let F (.) be convex.

(a) If RA ≤
1

F ′(1)
, then an equilibrium is given by

(
qCA , q

C
B

)
.

(b) If either RA ∈
(

1
F ′(1)

, 1
)
or both RA ∈

[
1, 1

F ′(0)

)
and F (RA −RB)RA− (RA −RB) ≤

0, then an equilibrium is given by
(
q
CIγ
A , q

CIγ
B

)
.

(c) If either RA ≥
1

F ′(0)
or both RA ∈

[
1, 1

F ′(0)

)
and F (RA −RB)RA − (RA −RB) > 0,

then an equilibrium is given by
(
q
Iγ
A , q

Iγ
B

)
.
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Figure 2: Equilibrium configuration when F (.) is convex.

We point out that whenRA ∈
[
1, 1

F ′(0)

)
, the condition F (RA −RB)RA−(RA −RB) >

0 is equivalent toRA−RB > p (RA), where we denote by p (RA) the unique strictly positive

p that satisfies F (p)RA − p = 0. Thus, when RA ∈
[
1, 1

F ′(0)

)
, we are in case (c) if RB is

not “close” to RA.

Figure 2 depicts the equilibrium configuration as a function of the prizes RA and RB for

the class of convex distribution functions. WhenRA is small enough, the whole equilibrium

is in Region C, and when RA is large enough, the equilibrium is in Region Iγ where agent

A puts in a positive effort at θ = 0 and agent B starts to exert a positive effort only

for large enough θ’s. The same occurs when RA is intermediate but substantially larger

than RB. The intuition for these two cases is similar to that provided after Propositions 2

and 3, namely agents do not have incentives to exert any effort if the reward is low while

competition in efforts arises if the reward is high.

When RA is intermediate and, depending on RA, not too much higher than RB, the

equilibrium entails a corner solution for low values of θ and an interior solution for high

values (the Region CIγ). The reason for a positive effort being exerted at higher values of

θ can be traced back to the larger density at higher values of θ due to the convexity of the

distribution function F (θ). A higher density implies a larger increase in the probability

of winning the contest following a higher effort and hence a larger payoff to any increase

in effort.
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We now characterize the equilibrium strategies when the function F (.) is concave in

which case F ′(1) < 1 < F ′(0). We also, we define the strategy profile
(
q
IγC

A , q
IγC

B

)
as

follows:

q
IγC

A (θ) = F (θ)RB + γ for all θ ∈ [0, β)

= θ for all θ ∈ [β, 1]

q
IγC

B (θ) = θ for all θ ∈ [0, γ) ∪ [β, 1]

= F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, β)

where γ and β solve

γ = β − F (β)RB (17)

F (γ)RA − γ = F (β)RA − β. (18)

When agents follow the strategy profile
(
q
IγC

A , q
IγC

B

)
, both agents exert zero effort

above the same threshold value of θ. For low values of θ, they follow an interior solution

where, due to the difference in reward, agent A has an incentive to exert a strictly positive

effort even when θA = 0, whereas agent B only exerts a positive effort above a certain

threshold of θB.

Theorem 3 Let F (.) be concave.

(a) If RA ≤
1

F ′(0)
, then an equilibrium is given by

(
qCA , q

C
B

)
.

(b) If either RA ∈
(

1
F ′(0)

, 1
)
or both RA ∈

[
1, 1

F ′(1)

)
and F (1−RB)RA−(1−RB) > RA−1,

then an equilibrium is given by
(
q
IγC

A , q
IγC

B

)
.

(c) If either RA ≥
1

F ′(1)
or both RA ∈

[
1, 1

F ′(1)

)
and F (1−RB)RA − (1−RB) ≤ RA − 1,

then an equilibrium is given by
(
q
Iγ
A , q

Iγ
B

)
.

Note that when RA ∈
[
1, 1

F ′(1)

)
, the condition F (1−RB)RA − (1− RB) > RA − 1 is

equivalent to z(RA) < 1− RB, where we denote by z (RA) the unique strictly positive z

that satisfies F (z)RA− z = RA− 1. Thus, when RA ∈
[
1, 1

F ′(0)

)
, we are in case (b) if RB

is “small enough” or not too close to RA.

When rewards are quite low or quite high, the agents’ behavior is similar to that for

the convex case. For intermediate values of reward, they play according to the interior

strategy profile for low levels of θ, and they both exert zero effort for high values of θ.
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Notice that the corner strategy profile emerges now for high values of θ because of the

low density of θ due to the concavity of the distribution function.

We remark that the propositions and theorems derived in the current section also apply

to nondiscriminatory contests. However in such contests , since RA = RB, the systems

(15)-(16) and (17)-(18).do not have a unique solution. The equilibrium behavior in a

nondiscriminatory contest when the distribution function is convex is given by the solution

of (15)-(16) that satisfies γ = α and F ′(α)R = 1 in the strategy profile
(
q
CIγ
A , q

CIγ
B

)
; and

when the distribution function is concave, it is given by the solution of (17)-(18) that

satisfies γ = 0 and β given by the unique positive value for which F (β)R − β = 0 in the

strategy profile
(
q
IγC

A , q
IγC

B

)
. Naturally, these two equilibria coincide with the contestants’

equilibrium behavior in the nondiscriminatory contest identified in Theorem 1.

5 Designer’s payoff and optimality of discrimination

In this section, we address the optimality of discrimination. First in Proposition 4 we

determine the designer’s payoff as a function of the rewards and the agents’ strategies. We

distinguish among the four possible equilibrium strategy profiles we identified in Section

4. We will then use Proposition 4 to derive conditions under which discrimination is

optimal.

Proposition 4 The designer’s payoff U (RA, RB), for RA ≥ RB, as a function of the

agents’ strategies, is the following:

(a) If agents follow the strategy profile
(
qCA , q

C
B

)
, then

U (RA, RB) = 2

∫ 1

0

I(q)F (q)F ′(q)dq −
1

2
(RA +RB) .

(b) If agents follow the strategy profile
(
q
Iγ
A , q

Iγ
B

)
, then

U (RA, RB) =
1

RARB

∫ RB+γ

γ

I(q) [2 (q − γ) +RA −RB] dq −RA +
1

2
RB

(
1−

RB
RA

)
.
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(c) If agents follow the strategy profile
(
q
CIγ
A , q

CIγ
B

)
, then

U (RA, RB) = 2

∫ α

0

I(q)F (q)F ′(q)dq +

∫ γ

α

I(q)F (α)F ′(q)dq+

1

RARB

∫ [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq−

1

2

[
RA +RB + (1− F (α))2 (RA −RB)

(
1−

RB
RA

)]
.

(d) If agents follow the strategy profile
(
q
IγC

A , q
IγC

B

)
, then

U (RA, RB) =
1

RARB

∫ β

γ

I(q) [2 (q − γ) + F (γ)RA] dq+

2

∫ 1

β

I(q)F (q)F ′(q)dq −
1

2
[RA +RB + F (γ)F (β) (RA −RB)] .

We now discuss the change in the designer’s payoff due to discrimination separately

for each strategy profile analyzed in Proposition 4. In any contest for which the agents’

equilibrium strategy profile is
(
qCA , q

C
B

)
, the designer’s revenue is the same, whereas the

cost increases with the rewards. Therefore, such contests are dominated by the nondis-

criminatory contest with R = 0. Proposition 5 addresses the other three cases.

Proposition 5 Consider a nondiscriminatory contest RA = RB = R for which an equi-

librium is given by the strategy profile (qA, qB) .

(a) If (qA, qB) =
(
qIA, q

I
B

)
and marginal changes in (RA, RB) lead to

(
q
Iγ
A , q

Iγ
B

)
, then the

contest is dominated by a discriminatory contest when R < 2
F ′(0)

.

(b) If (qA, qB) =
(
qCIA , qCIB

)
and marginal changes in (RA, RB) lead to

(
q
CIγ
A , q

CIγ
B

)
, then

the contest is dominated by a discriminatory contest.

(c) If (qA, qB) =
(
qICA , qICB

)
and marginal changes in (RA, RB) lead to

(
q
IγC

A , q
IγC

B

)
, then

the contest is dominated by a discriminatory contest.

Discrimination in all the cases addressed in Proposition 5 is optimal because it elicits

higher efforts on the part of the agents, which, in turn, increases revenues, thus overcoming

the increase in costs. Now, we provide an intuitive approach to examine the change in

efforts and costs following a marginal move from a nondiscriminatory to a discriminatory

contest.
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Consider a shift from a nondiscriminatory contest R to a discriminatory contest (RA =

R+ε, RB = R−ε). The increase in cost due to this shift is a second-order effect because the

infinitesimal change in the rewards is multiplied by infinitesimal changes in the probability

of A winning (which went up) and B winning (which went down). Therefore, the marginal

shift increases profits if the change in efforts is positive.

To examine the change in efforts in case (a) of Proposition 5, note that agent A

moves from the strategy qIA(θ) = F (θ)R to q
Iγ
A (θ) = F (θ)(R − ε) + γ for all θ ∈ [0, 1],

where γ = F−1
(
1-R−ε
R+ε

)
. Therefore, the change in the quality offered by agent A of

type θ is:
dq
Iγ
A

dε
= −F (θ) + 2R

(R+ε)2
1

F ′(γ)
. Similarly, agent B moves from qIB(θ) to q

Iγ
B (θ) =

F (θ)(R+ ε) + γ − F (γ)(R + ε) for θ ∈ [γ, 1] and q
Iγ
B (θ) = θ for θ ∈ [0, γ), which leads to

dq
Iγ
B

dε
= F (θ) + 2R

(R+ε)2
1

F ′(γ)
− F (γ)− 2R

(R+ε)2
(R + ε) for all θ ∈ [γ, 1] .

Summing up both changes and evaluating it at ε = 0, and recalling that γ = 0 as well,

we obtain
dq
Iγ
A

dε
+
dq
Iγ
B

dε
= 2

[
2

F ′(0)R
− 1

]
for all θ ∈ [0, 1] .

Therefore, the increase in the quality offered by agent A of any type θ more than com-

pensates for the possible decrease in the quality offered by agent B of type θ if and only

if R < 2
F ′(0)

. If this is the case, the expected quality of the innovation achieved in the

contest increases, leading to larger profits by the designer.

We can proceed similarly for case (b), where the change (evaluated at ε = 0) in

strategies from
(
qCIA , qCIB

)
to
(
q
CIγ
A , q

CIγ
B

)
following the shift to the discriminatory contest

leads to
dq
CIγ
A

dε
= −F (θ) + 2− F (α) for all θ ∈ [α, 1]

dq
CIγ
B

dε
= F (θ)− F (α) for all θ ∈ [α, 1] .

Therefore, the sum of the changes is 2 − 2F (α), which is always positive, implying that

discrimination is optimal.

Finally, in case (c) a marginal shift from
(
qICA , qICB

)
to
(
q
IγC

A , q
IγC

B

)
leads at ε = 0 to

the following derivatives:

dq
CIγ
A

dε
= −F (θ) +

∂β

∂ε
+ F (β)− F ′(β)R

∂β

∂ε
for all θ ∈ [0, β]

dq
CIγ
B

dε
= F (θ) +

∂β

∂ε
− F (β)− F ′(β)R

∂β

∂ε
for all θ ∈ [0, β] ,
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Summing up we obtain

dq
CIγ
A

dε
+
dq
CIγ
B

dε
= 2 [1− F ′(β)R]

∂β

∂ε
for all θ ∈ [0, β] .

This last expression has has the same sign as ∂β

∂ε
because β lies in the decreasing part of the

function RF (θ)− θ. Since ∂β

∂ε
is positive (see the appendix for the proof) discrimination

is optimal.

While Proposition 5 shows, when it is beneficial to discriminate for a given strategy

profile, it fails to provide actual conditions under which a discriminatory contest is opti-

mal. That is, it could be the case that the optimal nondiscriminatory contest would never

lead to an equilibrium profile that satisfies the conditions identified in the Proposition.

To show that such an equilibrium profile exists, we present the following two propositions.

These propositions provide sufficient conditions for the optimality of discriminatory con-

tests in the case of a convex distribution function (Proposition 6) or a concave distribution

function (Proposition 7).

Proposition 6 If F (θ) is a convex function with F ′(0) = 0, and I(q) = vi(q), then

discrimination is optimal when v is large enough.

For the concave case, we describe a parametrized family of distribution and designer

payoff functions and parameter restrictions for which discrimination is optimal

Proposition 7 Let F (θ) = θλ and I(q) = vqµ with λ, µ ∈ (0, 1) and v > 0. If 3λ+µ < 1

and v < µ+2
2µ

discrimination is optimal.

These results show that larger rewards might lead to discrimination in the convex case

whereas smaller rewards are more to likely to generate discrimination in the concave case.

6 Conclusion

We provided a new setting of contests with asymmetric information where innate abili-

ties and effort combine to generate innovations of various qualities. Both the ability and

effort of an agent are his private information. The designer, whose revenue depends on

the quality of the bid, specifies a contest where the innovation of the highest quality is

rewarded. We first analyzed strategic behavior in a nondiscriminatory contest, where the
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reward does not depend on the identity of the winner. We allowed for arbitrary distribu-

tion functions and determined the structure of equilibrium strategies and outcomes. The

agents’ strategies were continuous and the equilibrium consisted of two types of quality

intervals: regions where both agents put in a positive effort and those where both agents

put in zero effort.

We then analyzed strategic behavior in discriminatory auctions where rewards depend

on the identity of the winner. Here equilibrium strategies were more complex, while

the low-reward agent’s strategy remained continuous, the strategy of the higher-reward

agent could be discontinuous. We provided a qualitative analysis of the structure of

the equilibrium strategies for general distribution functions and a full characterization of

equilibrium behavior when the distribution functions are convex or concave.

We then used the equilibrium analysis to evaluate the designer’s payoff. This generated

several sets of conditions under which an optimal contest (which maximizes the designer’s

payoff) is a discriminatory contest. These conditions state that whenever an optimal

nondiscriminatory contest entails a certain equilibrium behavior, it is possible to increase

the designer’s payoff by resorting to a discriminatory contest. To show that the results are

not vacuous we provided parameterized classes of environments with convex or concave

distribution functions where discrimination is optimal.

Our result that discrimination is optimal in a symmetric setting is quite surprising, and

is in sharp contrast to the intuition that when agents are asymmetric, some restrictions

imposed on the stronger contestant may increase the designer’s payoff. In our environ-

ment, discrimination, under some circumstances, increases the efforts generated, which

more than compensates for the increase in the expected sum of the rewards awarded.

Our model can handle many familiar scenarios in addition to innovation. It can

be used, for example, to analyze, lobbying activity, procurement settings, promotion

competitions and even the design of sporting events. It can also be used to study contest

design in the presence of asymmetric contestants and shed further light on the imposition

of handicaps or favoritism.

The model can be extended in several dimensions. A dynamic version would consider

two-stage contests where the winners of the first round are paired against each other in

the second round. A more general structure of preferences and technology would allow

for risk-averse contestants and general functions, that transform effort and ability into
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outcomes. The designer’s objective function may also be expanded to include explicit

dependence on the agent’s innate ability or on the sum of efforts exerted by both agents.

Moreover, since the analysis was carried out only from the point of view of a single

designer, a challenging task for further research would be to consider environments with

several competing designers.

7 Appendix

Proof of Theorem 1. We first show through a series of claims that q∗(θ) is indeed an

equilibrium.

Claim 1. The equilibrium quality is well defined, that is, q∗(θ) ≥ θ for any θ ∈ [αn, βn]

for any n.

By construction, αn is a local minimum of the function F (θ)R − θ. βn is the first

instance for which F (θ)R− θ also reaches this minimum for θ > αn and, if this minimum

is never reached again, βn = 1. Hence, q∗(θ) = F (θ)R − (F (αn)R − αn) ≥ θ for any

θ ∈ [αn, βn].

Claim 2. The equilibrium quality q∗(θ) is strictly increasing in θ.

By definition, q∗(θ) = θ over all intervals in C, and q∗(θ) = F (θ)R+η over all intervals

in I (where η is different for different intervals). Given that F (θ) is strictly increasing,

q∗(θ) is also strictly increasing over any interval. Moreover, by construction q∗(θ) is

continuous: consider an interval [αn, βn] in I, q∗(αn) = F (αn)R+αn−F (αn)R = αn and

q∗(βn) = F (βn)R+ αn − F (αn)R = βn. Hence, q∗(θ) is strictly increasing.

Claim 3. The profits of any agent of type θ as a function of his choice of q are constant

in any interval in Region I; that is, for any q ∈ [αn, βn] with q ≥ θ.

For any q ∈ [αn, βn] with q ≥ θ, the agent’s profits are F
(
F−1( 1

R
(q − αn + F (αn)R))

)
R−

(q − θ) = F (αn)R− (αn − θ) . These profits are independent of q.

Claim 4. The profits of any agent of type θ, as a function of his choice of q are decreasing

in any interval in Region C, that is; for any q ∈
[
βn−1, αn

]
with q ≥ θ.

For q ∈
[
βn−1, αn

]
with q ≥ θ, the agent’s profits are F (q)R − (q − θ). They are

decreasing in q since F (q)R − q is decreasing in q by construction of βn−1 and αn.

Claim 5. The profits of any agent of type θ are non-increasing in his choice of q.

This follows from claims 3 and 4.
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Claim 6. q∗(θ) is a best response for an agent of type θ.

If q∗(θ) = θ, then the only possible change in the strategy is to increase q which results,

according to Claim 5, in a lower payoff,. If q∗(θ) > θ, increasing q is also non-profitable.

Moreover, any decrease in q for which the effort is still non-negative implies that the agent

stays within the same region (recall that effort is zero in the left boundary of the region).

Hence, according to Claim 3, profits remain the same, .

Claims 1 to 6 show that q∗(θ) is an equilibrium of the nondiscriminatory contest.

We now prove that q∗(θ) is the unique symmetric equilibrium in the class of continuous

and monotonic strategies. We again proceed through a series of claims. Note first that by

continuity of any equilibrium strategy q(θ), the interval [0, 1] can be divided into a finite

sequence of intervals over which q(θ) alternates between interior and corner solutions.

Consider any symmetric equilibrium q(θ).

Claim 7. If q (θo) = θo and q (θoo) = θoo for θoo ≥ θo then F (θo)R− θo ≥ F (θoo)R− θoo.

The expected payoff of an agent of type θo when he chooses q (θo) = θo is equal

to F (θo)R, which must not be less than F (θoo)R − (θoo − θo) which corresponds to his

expected payoff if he offers quality θoo. Therefore, we obtain F (θo)R−θ0 ≥ F (θoo)R−θoo.

Claim 8. Consider a maximal interval [θo, θoo] where q(θ) is an interior solution. Then,

q(θ) = F (θ)R+ η for all θ ∈ [θo, θoo] with η = θo − F (θo)R. Moreover, either θoo = 1 or

θoo is the first parameter which is not a local minimum of the function F (θ)R − θ that

satisfies θo − F (θo)R = θoo − F (θoo)R.

The property that q(θ) = F (θ)R+ η follows from the FOCs characterizing an interior

equilibrium. To show that η = θo − F (θo)R we distinguish between two cases.

(1) If θo > 0, then there exists an interval in Region C just to the left of θo. By

continuity of q(θ), it must be the case that q(θ0) = θ0 which implies that η = θo−F (θo)R.

(2) If θo = 0, the probability of winning is zero because the quality offered is strictly

increasing in θ. Hence, it cannot be that in equilibrium both agents choose q(0) > 0,

since it would lead to a negative payoff. Therefore, F (0)R + η = 0, i.e., η = 0 and

η = θo − F (θo)R holds in this case as well.

Also, by continuity, if θoo < 1, it must be the case that F (θoo)R + η = θoo; that is,

θo − F (θo)R = θoo − F (θoo)R. Finally, suppose by way of contradiction, that θoo > θ̂,

where θ̂ is the first parameter which is not a local minimum of the function F (θ)R − θ

that satisfies θo−F (θo)R = θ̂−F
(
θ̂
)
R. Then, q(θ) is an interior solution in an interval
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[
θ̂,
̂̂
θ

]
where F (θ)R− θ is a decreasing function. However, this is not possible because for

θ ∈

(
θ̂,
̂̂
θ

]
, q(θ) = F (θ)R+ η = F (θ)R+ θo−F (θo)R = F (θ)R+ θ̂−F

(
θ̂
)
R < θ, since

F (θ)R− θ is decreasing in this interval.

Claim 9. In a maximal interval [θo, θoo] where q(θ) = θ, either θoo = 1 or θoo is the first

parameter such that the function F (θ)R− θ is increasing to its right of.

Suppose, by way of contradiction, that θoo is such that the function F (θ)R− θ is not

increasing to its right. Hence, F (θ)R− θ is not increasing in an interval
(
θoo, θ̂

]
for some

θ̂ > θoo. Recall that by maximality of the interval [θo, θoo] it must be the case that q(θ) > θ

for θ ∈
(
θoo, θ̃

]
with θ̃ < θ̂. Hence, q(θ) = F (θ)R + η = F (θ)R + θoo − F (θoo)R > θ

for θ ∈
(
θoo, θ̃

]
. But this cannot happen if F (θ)R− θ is not increasing. Furthermore, by

claim 7, θoo must be the first parameter where this happens after θo.

Therefore, q∗(θ) is the unique symmetric equilibrium, given that it is the only candidate

compatible with claims 7 to 9.

Finally, we prove the property that any equilibrium is necessarily symmetric if the set

{θ ∈ [0, 1] /F ′(θ) = 1/R} has zero measure. Claim 10 shows the main argument needed

for this proof, that in equilibrium, it is not possible that an interval of qualities is reached

by one agent who is offering zero effort while the other agent offers positive effort.

Claim 10. Consider the equilibrium strategies (qA(θ), qB(θ)). Then, there can not exist a

non-empty interval (qo, qoo) such that q−1A (q) = q and q−1B (q) < q, for all q ∈ (qo, qoo).

Suppose, by contradiction, that there exists an interval (qo, qoo) such that q−1A (q) = q

and q−1B (q) < q, for all q ∈ (qo, qoo). For any type θ ∈
(
q−1B (qo) , q−1B (qoo)

)
, q(θ) maximizes

firm B’s profits F (q)R − (q − θ). Therefore, the following FOC is necessarily satisfied:

F ′(q−1B (θ))R − 1 = 0. However, this is not possible for an interval
(
q−1B (qo) , q−1B (qoo)

)

provided the set {θ ∈ [0, 1] /F ′(θ) = 1/R} has zero measure.

Consider now an equilibrium (qA(θ), qB(θ)). Given Claim 10, the continuity of the

any equilibrium strategy qi(θ) and the fact that qi(θ) must be strictly increasing, it is

possible to divide the interval [0, 1] into a series of intervals. In some of the intervals,

both agents choose the corner solution qi(θ) = θ for both i = A,B; hence, the equilibrium

is symmetric in those intervals. In the other intervals, both agents choose an interior

solution. Therefore, their behavior is necessarily described by equations (5) and (6). The

equilibrium is indeed symmetric if we prove that, over any of these intervals, the constants
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ηA and ηB coincide. Denote by θo the lower bound of one such interval. By continuity,

F (θo)R+ ηA = θo; therefore, ηA = θo−F (θo)R. Similarly, ηB = θo−F (θo)R. This shows

that ηA = ηB and concludes the proof that any equilibrium in monotonic strategies is

necessarily symmetric.

Proof of Lemma 1. We prove the six properties by way of contradiction.

(a) If such an interval (q1, q2) exists, then agent A of type θ ∈ (q−1A (q1), q
−1
A (q2))

can increase his payoff by lowering the quality offered to another q′ < q(θ) such q′ ≥

max {q1, θ}. This change reduces the cost and does not affect his probability of winning

the contest.

(b) The proof is similar to the proof of (a).

(c) If such an interval (q1, q2) exists, let q3 = {inf q | q > q2 and q = qi(θ) for some

i = A,B and θ ∈ [0, 1]}. If it is the case that q3 is offered, that is, qA(θ) = q3 for some

θ ∈ [0, 1] (we take agent A to be the one offering q3 without loss of generality), then θ < q3

(it is certainly true if q2 > 1, and if q2 ≤ 1 it is true since the equilibrium strategies are

monotonic) and agent A of type θ can increase his payoff by lowering the quality offered to

another q′ > θ in the interval (q1, q2) because this change does not affect his probability of

winning the contest. By continuity, a similar argument goes through if q3 is not reached.

(d) and (e) The proofs are similar to the proof of Claim 10 in Theorem 1.

(f) Consider the maximal last interval (q1, q2) of this type. Since qB(θ) ≥ q2 for every

θ ∈ (q1, q2) and there cannot be a mass point, it must be the case that q2 < 1. Moreover,

we claim that agent B must be offering quality levels arbitrarily close to q2. Indeed, if

this were not the case, the maximality of (q1, q2) implies that agent A is either reaching

qualities just above q2 by putting in positive effort or he is not reaching these qualities.

The first possibility is ruled out by part (a) while the second is ruled out by part (c) of the

lemma. Note that these qualities arbitrarily close to q2 must be offered through positive

effort levels by agent B since they are offered by types θ < q2.

Given parts (b) and (e), it is necessarily the case that if B puts in positive effort to

reach a certain interval (q2, q3), A also puts in positive effort to reach this interval.

Consider now the largest such q3, we show that θA3 ≡ q−1A (q3) > q−1B (q3) ≡ θB3. Notice

first that q2 = q−1A (q2) > q−1B (q2) ≡ θB2 (we assume for convenience that both q2 and q3

are reached, otherwise we can make a limiting argument). Given that the qualities offered

in an interior equilibrium are given by qA(θ) = F (θ)RB + ηA and qB(θ) = F (θ)RA + ηB,
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q3 = F (θA3)RB + ηA = F (θB3)RA + ηB and q2 = F (q2)RB + ηA = F (θB2)RA + ηB.

Therefore, q3 − q2 = [F (θA3)− F (q2)]RB = [F (θB3)− F (θB2)]RA, which implies that

F (θA3) > F (θB3) − F (θB2) + F (q2) > F (θB3), i.e., θA3 > θB3 as we wanted to show.

Therefore, there still exists another interval (q3, q4) above (q2, q3) where agents bid. Given

that agent B is putting in positive effort to reach q3, he cannot, since there are no atoms,

switch to a region of qualities that are reached by him through zero effort. Therefore, in

the new interval it is again the case that B does not offer any quality in it while A puts in

zero effort. This is the type of region we started with, in contradiction to the assumption

that it is the last region of this kind. Hence, such a region cannot exist in equilibrium.

Proof of Proposition 1. (a) It follows from Lemma 1.

(b) Consider the maximal interval (q1, q2) in Region J . We notice that q−1A (q2) ≤ q1 <

1. Therefore, there are types of agent A (higher than q1) that offer qualities above Region

J . In this new interval just above J , agent A puts in strictly positive effort. Thus, it

must be the case (according to Lemma 1) that agent B also puts in positive effort; that

is, this new interval belongs to Region I.

(c) Consider the maximal interval (q1, q2) in Region I. We prove this part if we show

that the interval can not be preceded by an interval in Region C and that it can not be the

initial interval. Suppose by contradiction that either q1 = 0 or that (q1, q2) is preceded by a

interval in Region C. In both cases, qA(q1) = qB(q1) = q1. Given the equilibrium strategies

in an interior region, qA(θ) = F (θ)RB+q1−F (q1)RB and qB(θ) = F (θ)RA+q1−F (q1)RA

for any θ ∈ (q1, q2). Therefore, qA(θ) < qB(θ) for any θ ∈ (q1, q2) , which implies that

q−1B (q2) < q−1A (q2) (or that limq→q2 q
−1
B (q) < limq→q2 q

−1
A (q)). In particular, there must be

an interval of qualities reached above q2 and q−1B (q2) < q2. Therefore, in the interval of

qualities just above q2, agent B exerts positive effort, which must be matched by agent A

also offering positive effort, contradicting the maximality of (q1, q2) in Region I.

Proof of Proposition 2. We first prove a claim that will be used in the current

proof as well as in several proofs in Section 5.

Claim 11. Suppose that agent i, for i = A,B, chooses qi(θ) = θ for all θ ∈ (θo, θoo) and

that the function F (θ)Rj − θ, for j �= i, is non-increasing in θ for θ ∈ (θo, θoo). Then, the

payoff of agent j of type θj is non-increasing in the quality offered q, for q ∈ (θo, θoo) with

q ≥ θj.

The proof of Claim 11 follows from the fact that F (q)Rj−(q−θj) ≤ F (q′)Rj−(q
′−θj)
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when q ≥ q′ if the function F (θ)Rj − θ is non-increasing between q and q′.

We now prove Proposition 2. If F (θ)RA−θ is non-increasing in θ for all θ ∈ [0, 1], then

the function F (θ)RB − θ is also non-increasing in θ for all θ ∈ [0, 1] because RB < RA.

Therefore, if agent i chooses qi(θ) = θ for all θ ∈ [0, 1], then agent j �= i maximizes his

payoff by choosing qj(θ) = θ as well, according to Claim 11. It follows that there is an

equilibrium where the agents’ strategies lie in Region C for all θ ∈ [0, 1].

Moreover, if agents’ equilibrium strategies lie in Region C for all θ ∈ [0, 1], then it is

necessarily the case that F (θ)RA − θ ≥ F (q)RA − q for any θ ∈ [0, 1] and for any q ≥ θ.

Therefore, the function F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].

Finally, suppose by contradiction that there exists another equilibrium. It must either

start with an interval in Region Iγ or with an interval in Region C followed by an interval

in Region Iγ. Therefore, there is a jump, that is, there exist two values q1 and q2 (where

q1 is possibly 0) with q1 < q2 such that F (q1)RA− q1 ≤ F (q2)RA− q2. If the inequality is

strict, then this contradicts the fact that the function F (θ)RA − θ is non-increasing in θ.

If this an equality, then F (θ)RA − θ is constant for all θ ∈ [q1, q2] , which contradicts the

property that the set {θ ∈ [0, 1] |F ′(θ) = 1/RA} has zero measure.

Proof of Proposition 3. We show first that
(
q
Iγ
A , q

Iγ
B

)
is well defined. (i) q

Iγ
B (θ) ≥ θ

for all θ ∈ [0, 1] because q
Iγ
B (θ) = θ for all θ ∈ [0, γ) and q

Iγ
B (θ) = F (θ)RA+γ−F (γ)RA ≥ θ

for all θ ≥ γ according to (14). (ii) q
Iγ
A (θ) ≥ θ for all θ ∈ [0, 1] because q

Iγ
A (θ) ≥ q

Iγ
B (θ)

due to the properties that q
Iγ
A (1) = q

Iγ
B (1) and q

Iγ ′

A (θ) = RB < RA = q
Iγ ′

B (θ).

Second, we prove a claim that will be useful at several proofs:

Claim 12. Suppose that agent i, for i = A,B, chooses qi(θ) = F (θ)Rj + η for all

θ ∈ (θo, θoo), with j �= i. Then, the payoff of agent j of type θj is constant and equal to

θj − η when he offers any quality q ∈ (F (θo)Rj + η, F (θoo)Rj + η) with q ≥ θj.

Given qi(θ), the payoff of agent j of type θj when he offers q ∈ (F (θo)Rj + η, F (θoo)Rj + η)

with q ≥ θj is

Rj Pr
θ
(F (θ)Rj + η ≤ q)− (q − θj) = Rj

(
q − η

Rj

)
− q + θj = θj − η.

Third, from Claim 12 and given agent B’s strategy, the payoff of agent A of type θ

when he offers any quality q ∈ [γ, qB(1)] with q ≥ θ is θ − γ + F (γ)RA. Similarly, the

payoff of agent B of type θ when he offers quality q ∈ [γ, qB(1)] with q ≥ θ is θ − γ, also

independent of q. In particular, the strategies suggested are best responses one to the

other for agents of type θ ∈ [γ, 1].
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Agent B’s payoff when offering quality q(θ) = θ for θ ∈ [0, γ] is zero. His payoff would

be negative if he were to offer any q ∈ (θ, γ] since he still has a probability zero of winning

and it would be θ − γ < 0 if he were to offer any q ∈ (γ, qB(1)]. Therefore, agent B’s

strategy is a best response for all θ ∈ [0, γ) as well.

Agent A’s payoff when following the strategy suggested for θ ∈ [0, γ) is θ−γ+F (γ)RA.

As shown above, his payoff is the same for any q ≥ γ. If he offers q ∈ [θ, γ), then his

payoff is F (q)RA − (q − θ). Hence, agent A’s proposed strategy is his best response if

F (q)RA − (q − θ) ≤ θ − γ + F (γ)RA for all q ≤ γ, that is, F (q)RA − q ≤ F (γ)RA − γ,

which is implied by (13).

Finally, we prove that conditions (13) and (14) are necessary for
(
q
Iγ
A , q

Iγ
B

)
to be an

equilibrium. If F (θ)RA − θ < F (γ)RA − γ for some θ > γ, then
(
q
Iγ
A , q

Iγ
B

)
can not

be an equilibrium because q
Iγ
B (θ) would not be well defined (q

Iγ
B (θ) < θ). Moreover, if

F (θ)RA− θ > F (γ)RA− γ for some θ < γ, then
(
q
Iγ
A , q

Iγ
B

)
also can not be an equilibrium

because agent A of type θ would strictly prefer θ to q
Iγ
A (θ) (because his benefits under

q
Iγ
A (θ) are the same as under γ), contradicting the optimality of q

Iγ
A .

Proof of Theorem 2. (a) Given the convexity of F (.), F ′(1)RA ≤ 1 is a neces-

sary and sufficient condition for F (θ)RA − θ to be non-increasing in θ for all θ ∈ [0, 1].

Therefore, the proof of this part follows from Proposition 2.

(b) First, we show that α and γ are well defined in this region and that γ > α.

Equation (15) defines a function γ1 (α) which is increasing and such that γ1 (1) = 1 and

γ1 (α) > α for α ∈ [0, 1) (because RA > RB). Equation (16), together with the condition

that γ ≥ α defines another function γ2 (α) . γ2 (α) is defined only for values of α where

the function F (θ)RA− θ is non-increasing, but not necessarily for all of them. Note that

γ2 (α) is defined for all such values when RA ≥ 1; furthermore, it is certainly defined

for values of α close enough to the minimum of the function F (θ)RA − θ, which we

denote θmin. Also note that γ2 (α) always lies in the increasing part of F (θ)RA − θ. The

function γ2 (α) is strictly decreasing and converges to θmin when α converges to θmin. We

distinguish between two cases.

When RA ∈
(

1
F ′(1)

, 1
)
, then F (1)RA − 1 < 0 Therefore, there is some αo for which

γ2 (αo) = 1, from which on the function is strictly decreasing until it reaches θmin, where

γ2 (θmin) = θmin. Given that γ1 (α) is strictly increasing, γ1 (1) = 1 and γ1 (α) > α for

α ∈ [0, 1), then a solution to the system of equations always exists.
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When RA ∈
[
1, 1

F ′(0)

)
, then the function γ2 (α) is defined for α ∈ [0, θmin) and it takes

values always lower than 1. In this case, given that γ2 (α) is decreasing and γ1 (α) is

increasing, a solution exists if and only if γ2 (0) ≥ γ1 (0), that is γ2 (0) ≥ F−1
(
RA−RB
RA

)
,

which we write as, F (γ2 (0))RA ≥ RA−RB, or, γ2 (0) ≥ RA−RB. Given that γ2 (0) is the

increasing part of F (θ)RA−θ, the previous inequality is equivalent to F (RA −RB)RA−

(RA −RB) ≤ 0, which we assume in Region (b).

Second, we show that agents’ strategies are well defined, that is, the functions φA(θ) ≡

q
CIγ
A (θ)− θ and φB(θ) ≡ q

CIγ
B (θ)− θ are non-negative for all θ ∈ [0, 1]. This trivially holds

for all regions where players choose zero effort.

For θ ∈ [γ, 1] we have q
CIγ
B (θ) = F (θ)RA + γ − F (γ)RA. Given that γ lies in the

increasing part of F (θ)RA − θ, we have φB(θ) = F (θ)RA + γ − F (γ)RA − θ ≥ 0 for

θ ∈ [γ, 1]. For θ ∈ [α, γ), the convexity of φA(θ) = F (θ)RB+γ−F (α)RB− θ implies that

φA(θ) ≥ φA(α)+φ
′

A(α)(θ−α) = γ−α+(F ′(α)RB−1)(θ−α) ≥ γ−α− (θ−α) ≥ 0. For

θ ∈ [γ, 1], we note that both φA(θ) and φB(θ) are convex functions. Furthermore, φA(γ) >

φB(γ) = 0, φA(1) = φB(1) (since RA − F (γ)RA = RB − F (α)RB) and φ′A(θ) < φ′B(θ)

which implies that φA(θ) ≥ φB(θ) for all θ ∈ [γ, 1] and thus φA(θ) ≥ 0 for all θ ∈ [γ, 1] as

well.

Third, we prove that each agent’s strategy is best response to each other.

Given agent B’s strategy, the payoff of agent A of type θ when he offers quality

q ∈ [γ, qB(1)] with q ≥ θ is (see Claim 12) θ − γ + F (γ)RA, which is independent of q.

Similarly, the payoff of agent B of type θ when offering quality q ∈ [γ, qB(1)] with q ≥ θ

is θ − γ + F (α)RB, also independent of q. This implies, in particular, that the strategies

suggested are best responses one to the other for agents of type θ ∈ [γ, 1].

The payoff of agent B of type θ ∈ (α, γ) is decreasing in q for q ∈ (θ, γ), because no

type of agent A chooses qualities in (α, γ) and the payoff is constant for q ∈ [γ, qB(1)].

Therefore, q
CIγ
B (θ) = θ is a best response for all θ ∈ (α, γ). The payoff of agent B of type

θ ∈ [0, α) is decreasing in q for q ∈ [θ, α) because the interval [θ, α) is in the decreasing

part of the function F (θ)RA− θ (see Claim 11). Therefore, q
CIγ
B (θ) = θ is a best response

because we also know that it is first decreasing and then constant for q ∈ [α, qB(1)].

Agent A of type θ that chooses q ∈ [0, γ) , with q ≥ θ, obtains a payoff of F (q)RA−q+θ.

The function F (q)RA − q is decreasing until α, then it further decreases, then increases

until it recovers the same value F (α)RA−α at γ (see (16)). As we saw above, A’s payoff
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is constant for q ∈ [γ, qB(1)]. Therefore, q
CIγ
A (θ) = θ is a best response for all θ ∈ [0, α)

and q
CIγ
A (θ) = F (θ)RB + γ − F (α)RB is a best response for all θ ∈ [α, γ).

(c) Given the convexity of F (θ), the function F (θ)RA − θ is always increasing when

RA ≥
1

F ′(0)
. Moreover, given the definition of γ, when RA ∈

[
1, 1

F ′(0)

)
the condition

F (RA −RB)RA − (RA −RB) > 0 is equivalent to F (RA −RB)RA − F (γ)RA > 0,

or RA − RB > γ, which is equivalent to F (γ)RA − γ > 0. Given that, in this region,

F (θ)RA−θ is first decreasing and then decreasing, F (γ)RA−γ > 0 is a sufficient condition

for equations (13) and (14) to hold. Therefore, part (c) holds due to Proposition 3.

Proof of Theorem 3. (a) The proof follows from Proposition 2 because F ′(0)RA ≤ 1

and the concavity of F imply that F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].

(b) We first show that γ and β are well defined in this region and that β > γ. Similar

to its behavior in Theorem 2, equation (18) defines a function β2 (γ) for those values of γ

where F (θ)RA− θ is non-decreasing, but not necessarily for all of them. β2 (γ) is defined

for all such values when RA ≤ 1; furthermore it is certainly defined for values of γ close

enough to the maximum of the function F (θ)RA − θ, which we denote θmax. Also note

that, β2 (γ) always lies in the decreasing part of F (θ)RA − θ. The function β2 (γ) is

strictly decreasing (in the interval of γ where it is defined) and converges to θmax when γ

converges to θmax.

Equation (17) defines a function γ1 (β). The function is increasing at least for β ≥ θmax

because F (θ)RA−θ is decreasing for θ ≥ θmax and RA > RB. Moreover, γ1 (1) = 1−RB.

We distinguish between two cases. When β2 (0) is well defined, that is, when RA − 1 ≤ 0

then, since RB < RA, γ
1 (1) = 1 − RB is positive. Therefore, the functions γ1 (β) and

β2 (γ) intersect and a solution to equations (17) and (18) exists. When RA ∈
[
1, 1

F ′(1)

]
,

then F (1)RA − 1 ≤ 0, therefore there is some γ for which β2 (γ) = 1. We denote this

value by z(RA). The necessary and sufficient condition for (17) and (18) to intersect is

that z(RA) < 1−RB or, equivalently, F (1−RB)RA − (1−RB) > RA − 1.

Second, we show that the functions δA(θ) ≡ q
IγC

A (θ) − θ and δB(θ) ≡ q
IγC

B (θ)− θ are

non-negative for all θ ∈ [0, 1]. This trivially holds if players choose zero effort.

For θ ∈ [γ, β), we have F (θ)RA − θ ≥ F (γ)RA − γ because γ lies in the increasing

part of F (θ)RA − θ and the function takes the same value for γ and β. Hence, δB(θ) =

F (θ)RA+ γ − F (γ)RA− θ ≥ 0 for θ ∈ [γ, β). For θ ∈ [0, β), δA(θ) = F (θ)RB + γ − θ > 0

because it is a concave function of θ, δ(0) = γ > 0 and δ (β) = 0 by equation (17).
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Third, we prove that each agent’s strategy is best response to each other.

Given agent B’s strategy, the payoff of agent A of type θ ∈ [β, 1] is decreasing in q for

q > θ because the function F (q)RA − q is decreasing (see Claim 11); thus q
IγC

A (θ) = θ is

agent A’s best response. For θ ∈ [0, β), the payoff of agent A is equal to θ + F (γ)RA − γ

for any q ∈ [γ, β] with q ≥ θ (by Claim 12) and it is decreasing for q ∈ [β, 1] (by Claim

11). If agent A offers quality q ∈ [0, γ] with q ≥ θ his payoff is F (q)RA − (q − θ) which

is smaller than θ + F (γ)RA − γ because the function RAF (θ) − θ is increasing in that

interval. Therefore, q
IγC

A (θ) is an agent A’s best response.

Given agent A’s strategy, the payoff of agent B of type θ ∈ [β, 1] when offering

q
IγC

B (θ) = θ is F (θ)RB, which is higher than his payoff for any q > θ because we are in

the decreasing part of F (θ)RA− θ. The payoff of agent B of type θ ∈ [γ, β] when offering

q
IγC

B (θ) is θ − γ, which is higher than his payoff if he offers quality q ∈ [β, 1] because

F (θ)RB − θ is decreasing in θ for θ ≥ β. Finally, the payoff of agent B of type θ ∈ [0, γ]

when offering quality θ is zero. It would be negative for any q ∈ [0, γ] with q > θ and,

as shown above, the payoff would be first constant and then decreasing as q is higher.

Therefore, q
IγC

B (θ) constitutes a best response to agent A’s strategy.

(c) We prove (c) using Proposition 3, which we can apply directly if RA ≥ 1
F ′(1)

because, due to the concavity of F (θ)RA−θ, the function F (θ)RA−θ is always increasing.

If RA ∈
[
1, 1

F ′(1)

)
, then conditions (13) and (14) hold (given the concavity of F (θ)RA−θ)

if and only if F (γ)RA − γ ≤ RA − 1 which, given that F (γ)RA = RA −RB by definition

of γ, is equivalent to γ ≥ 1−RB. We rewrite the inequality as F
(
1− RB

RA

)
≥ 1−RB, or,

RA −RB ≤ F (1−RB)RA, which is the condition we require in (c).

Proof of Proposition 4. (a) If agents follow
(
qCA , q

C
B

)
, the quality q that wins the

contest is the max {θA, θB}. Therefore, the distribution of q is F ∗(q) = F (q)2 and

dF ∗(q) = 2F (q)F ′(q)dq.

The expression for U (RA, RB) provided in the proposition follows immediately from the

fact that either agent wins the contest with probability 1
2
.

(b) If agents follow
(
q
Iγ
A , q

Iγ
B

)
, the interval of qualities q that may be offered is

[γ,RB + γ], following the distribution function

F ∗(q) =
1

RB
(q − γ)

1

RA
[(q − γ) +RA −RB] ,

dF ∗(q) =
1

RARB
[2 (q − γ) +RA −RB] dq.
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Therefore, the designer’s expected income is the first part of the expression U (RA, RB).

The expected cost depends on the probability that either agent wins the contest. An

agent A of type θ wins the contest with probability

Pr
θB
(F (θB)RA + γ − (RA −RB) ≤ F (θ)RB + γ) =

1

RA
[F (θ)RB +RA −RB] .

It follows that the probability that agent A wins the contest is
∫ 1

0

1

RA
[F (θ)RB +RA −RB]F

′(θ)dθ =
RB
RA

1

2

[
F (θ)2

]1
0
+
(RA −RB)

RA
[F (θ)]10 = 1−

1

2

RB
RA

while the probability that B wins the contest is 1
2
RB
RA

. Therefore, the designer’s expected

cost is RA

(
1− 1

2
RB
RA

)
+RB

1
2
RB
RA

, from which the second part of the expression U (RA, RB)

is obtained.

(c) If agents follow
(
q
CIγ
A , q

CIγ
B

)
, the set of qualities that is reached is [0, (1− F (γ))RA + γ] .

For q ∈ [0, α), dF ∗(q) = 2F (q)F ′(q)dq. For q ∈ [α, γ), F ∗(q) = F (α)F (q) and

dF ∗(q) = F (α)F ′(q)dq.

Finally, for q ∈ [γ, (1− F (γ))RA + γ] ,

F ∗(q) =
1

RB
(q − γ + F (α)RB)

1

RA
[q − γ + F (γ)RA] ,

dF ∗(q) =
1

RARB
[2 (q − γ) + F (α)RB + F (γ)RA] dq =

1

RARB
[2 (q − γ + F (γ)RA)− (RA −RB)] dq

and the expression for the designer’s income follows. Concerning the probability that

either agent wins the contest, agent A of type θ ∈ [0, α) wins with probability F (θ)

whereas, if his type is θ ∈ [α, 1] , he wins with probability

Pr
θB
(F (θB)RA + γ − F (γ)RA ≤ F (θ)RB + γ − F (α)RB) =

1

RA
[F (θ)RB − F (α)RB + F (γ)RA] =

1

RA
[F (θ)RB +RA −RB] .

Therefore, the probability that A wins the contest is
∫ α

0

F (θ)F ′(θ)dθ +

∫ 1

α

1

RA
[F (θ)RB +RA −RB]F

′(θ)dθ =

1

2

[
F (θ)2

]α
0
+
RB
RA

1

2

[
F (θ)2

]1
α
+
(RA −RB)

RA
[F (θ)]1α =

1−
1

2

RB
RA

+
1

2

(
1−

RB
RA

)
F (α)2 −

(
1−

RB
RA

)
F (α) =

1

2
+
1

2
[1− F (α)]2

(
1−

RB
RA

)
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and the designer’s expected cost is

RA

[
1

2
+
1

2

(
1−

RB
RA

)
(1− F (α))2

]
+RB

[
1

2
−
1

2

(
1−

RB
RA

)
(1− F (α))2

]
=

1

2

[
RA +RB + (1− F (α))2 (RA −RB)

(
1−

RB
RA

)]
,

which corresponds to the last term of U (RA, RB) in part (c) of the proposition.

(d) If agents follow the strategy profile
(
q
IγC

A , q
IγC

B

)
, the space of qualities that is

reached is [γ, 1] . For q ∈ [γ, β),

F ∗(q) =
1

RB
(q − γ)

1

RA
[q − γ + F (γ)RA] ,

dF ∗(q) =
1

RARB
[2 (q − γ) + F (γ)RA] dq.

For q ∈ [β, 1], dF ∗(q) = 2F (q)F ′(q)dq. Therefore, the expression for the designer’s income

follows. We compute now the probability that agent A wins the contest. If his type is

θ ∈ [0, β), he wins with probability

Pr
θB
(F (θB)RA + γ − F (γ)RA ≤ F (θ)RB + γ) =

1

RA
[F (θ)RB + F (γ)RA] .

Moreover, agent A with type θ ∈ [β, 1] wins with probability F (θ). Therefore, the proba-

bility that A wins the contest is

∫ β

0

1

RA
[F (θ)RB + F (γ)RA]F

′(θ)dθ +

∫ 1

β

F (θ)F ′(θ)dθ =

RB
RA

1

2

[
F (θ)2

]β
0
+F (γ) [F (θ)]β0 +

1

2

[
F (θ)2

]1
β
=
RB
RA

1

2
F (β)2+F (γ)F (β) +

1

2
−
1

2
F (β)2 =

1

2
+

1

2RA
[F (β)RB + 2F (γ)RA − F (β)RA]F (β) =

1

2
+
1

2
F (γ)F (β)

(where the last equality is derived from the two equations that define γ and β) and the

designer’s expected costs are

1

2
[RA +RB + F (γ)F (β) (RA −RB)] ,

which corresponds to the expression for the cost in part (d) of the proposition.

Proof of Proposition 5. (a) Consider a marginal change from a nondiscriminatory

contest where agents play
(
qIA, q

I
B

)
in equilibrium to a discriminatory contest where the

new equilibrium is
(
q
Iγ
A , q

Iγ
B

)
. To evaluate the optimality of such a change, we take the
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partial derivatives of the designer’s payoff function U (RA, RB) when agents play
(
q
Iγ
A , q

Iγ
B

)

with respect to RA and RB.

∂U

∂RA
(RA, RB) = −

1

R2ARB

∫ RB+γ

γ

I(q) [2 (q − γ) + RA −RB] dq+

1

RARB

∫ RB+γ

γ

I(q)

[
−2

∂γ

∂RA
+ 1

]
dq +

1

RARB
I(RB + γ) [RA +RB]

∂γ

∂RA
−

1

RARB
I(γ) [RA −RB]

∂γ

∂RA
− 1 +

1

2

R2B
R2A

.

In particular, when RA = RB = R, then γ = 0 and

∂U

∂RA
(RA = R,RB = R) = −

2

R3

∫ R

0

I(q)qdq+
1

R2

[
1− 2

∂γ

∂RA

]∫ R

0

I(q)dq+
2

R2
I(R)R

∂γ

∂RA
−
1

2
.

Similarly,

∂U

∂RB
(RA, RB) = −

1

RAR2B

∫ RB+γ

γ

I(q) [2 (q − γ) +RA −RB] dq+

1

RARB

∫ RB+γ

γ

I(q)

[
−2

∂γ

∂RB
− 1

]
dq +

1

RARB
I(RB + γ) [RA +RB]

[
1 +

∂γ

∂RB

]
−

1

RARB
I(γ) [RA −RB]

∂γ

∂RB
+
1

2
−
RB
RA

.

Therefore,

∂U

∂RB
(RA = R,RB = R) = −

2

R3

∫ R

0

I(q)qdq +
1

R2

[
−2

∂γ

∂RB
− 1

]∫ R

0

I(q)dq+

2

R2
I(R)R

[
1 +

∂γ

∂RB

]
−
1

2
.

Consider now a nondiscriminatory contest R. If we marginally increase RA and simulta-

neously marginally decrease RB, then the total effect is

[
∂U

∂RA
−

∂U

∂RB

]
(RA = R,RB = R) =

2

R2

[
1−

∂γ

∂RA
+

∂γ

∂RB

]∫ R

0

I(q)dq−

2

R2
I(R)R

[
1−

∂γ

∂RA
+

∂γ

∂RB

]
=
2

R2

[
1−

∂γ

∂RA
+

∂γ

∂RB

] [∫ R

0

I(q)dq − I(R)R

]
.

The integral
∫ R
0
I(q)dq − I(R)R < 0 because I(q) is an increasing function. Therefore,[

∂U
∂RA

− ∂U
∂RB

]
(RA = R,RB = R) > 0, that is, discriminating marginally increases the de-

signer’s payoff, if and only if 1 − ∂γ

∂RA
+ ∂γ

∂RB
< 0. We know that γ = F−1

(
1− RB

RA

)
;

then,
∂γ

∂RA
(RA, RB) =

RB
R2A

1

F ′(γ)
and

∂γ

∂RB
(RA, RB) = −

1

RA

1

F ′(γ)
.
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When we evaluate these derivatives at RA = RB = R, we obtain

1−
∂γ

∂RA
+

∂γ

∂RB
= 1−

1

R

1

F ′(0)
−
1

R

1

F ′(0)
= 1−

2

RF ′ (0)

and the result follows.

(b) We proceed as in part (a).

∂U

∂RA
(RA, RB) = 2I(α)F (α)F

′(α)
∂α

∂RA
+

∫ γ

α

I(q)F ′(α)F ′(q)
∂α

∂RA
dq+

I(γ)F (α)F ′(γ)
∂γ

∂RA
− I(α)F (α)F ′(α)

∂α

∂RA
−

1

R2ARB

∫ [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq+

1

RARB

∫ [1−F (γ)]RA+γ

γ

I(q)

[
2 (−1 + F ′ (γ)RA)

∂γ

∂RA
+ [2F (γ)− 1]

]
dq+

1

RARB
I ([1− F (γ)]RA + γ) (RA +RB)

[
1− F (γ) + (1− F ′(γ)RA)

∂γ

∂RA

]
−

1

RARB
I (γ) (2F (γ)RA − (RA −RB))

∂γ

∂RA
−

1

2

[
1 +

(
1−

R2B
R2A

)
(1− F (α))2 − 2

(
RA − 2RB +

R2B
RA

)
(1− F (α))F ′ (α)

∂α

∂RA

]
.

When RA = RB = R, then γ = α and α satisfies F ′(α)R = 1. Therefore,

∂U

∂RA
(RA = R,RB = R) =

1

R
I(α)F (α)

∂α

∂RA
−
1

R
I(α)F (α)

∂γ

∂RA
−

2

R3

∫ [1−F (α)]R+α

α

I(q) [q − α+ F (α)R] dq +
1

R2

∫ [1−F (α)]R+α

α

I(q) [2F (α)− 1] dq+

2

R
I
([
1− F (θ̂)

]
R+ α

)
[1− F (α)]−

1

2
.

The derivative of the designer’s payoff with respect to RB is

∂U

∂RB
(RA, RB) = 2I(α)F (α)F

′(α)
∂α

∂RB
+

∫ γ

α

I(q)F ′(α)F ′(q)
∂α

∂RB
dq+

I(γ)F (α)F ′(γ)
∂γ

∂RB
− I(α)F (α)F ′(α)

∂α

∂RB
−

1

RAR2B

∫ [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq+

1

RARB

∫ [1−F (γ)]RA+γ

γ

I(q)

[
2 (−1 + F ′ (γ)RA)

∂γ

∂RB
+ 1

]
dq+
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1

RARB
(1− F ′(γ)RA)

∂γ

∂RB
I ([1− F (γ)]RA + γ) (RA +RB)−

1

RARB

∂γ

∂RB
I (γ) (2F (γ)RA − (RA −RB))−

1

2

[
1 +

(
−2 + 2

RB
RA

)
(1− F (α))2 − 2

(
RA − 2RB +

R2B
RA

)
(1− F (α))F ′ (α)

∂α

∂RB

]
,

which implies

∂U

∂RB
(RA = R,RB = R) =

1

R
I(α)F (α)

∂α

∂RB
−
1

R
I(α)F (α)

∂γ

∂RB
−

2

R3

∫ [1−F (α)]R+α

α

I(q) (q − α+ F (α)R) dq +
1

R2

∫ [1−F (α)]R+α

α

I(q)dq −
1

2
.

A marginal increase in RA and a simultaneous marginal decrease in RB from a nondis-

criminatory contest R leads to
[
∂U

∂RA
−

∂U

∂RB

]
(RA = R,RB = R) =

1

R
I(α)F (α)

[
∂α

∂RA
−

∂γ

∂RA
−

∂α

∂RB
+

∂γ

∂RB

]
−

2

R2

∫ [1−F (α)]R+α

α

I(q) [1− F (α)] dq +
2

R
I ([1− F (α)]R + α) [1− F (α)] .

To compute the partial derivatives of α and γ, we use equations (15) and (16) that

implicitly define these variables. Then,

 −F ′ (α)RB F ′ (γ)RA

F ′ (α)RA − 1 −F ′ (γ)RA + 1




 dα

dγ


 =


 1− F (γ) −1 + F (α)

F (γ)− F (α) 0




 dRA

dRB




from which,

 dα

dγ


 =

1

∆


 −F ′ (γ)RA + 1 −F ′ (γ)RA

−F ′ (α)RA + 1 −F ′ (α)RB




 1− F (γ) −1 + F (α)

F (γ)− F (α) 0




 dRA

dRB




where

∆ = F ′ (α)RB [F
′ (γ)RA − 1] + F ′ (γ)RA [1− F ′ (α)RA] .

We notice that ∆ > 0 because α is in the decreasing part, while γ is in the increasing

part, of F (θ)RA − θ, that is, F ′ (α)RA − 1 < 0 and F ′ (γ)RA − 1 > 0. Therefore,

∂α
∂RA

− ∂γ

∂RA
− ∂α

∂RB
+ ∂γ

∂RB
= Ω

∆
, where

Ω = [−F ′ (γ)RA + 1] [1− F (γ)]− F ′ (γ)RA
[
F (γ)− F

(
θ̂A
)]
−

[−F ′ (α)RA + 1] [1− F (γ)] + F ′ (α)RB [F (γ)− F (α)]−

[−F ′ (γ)RA + 1] [−1 + F (α)] + [−F ′ (α)RA + 1] [−1 + F (α)] =
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− F ′ (γ)RA + F ′ (γ)F (α)RA + F ′ (α) [1− F (γ)]RA+

F ′ (α) [F (γ)− F (α)]RB + F ′ (γ) [−1 + F (α)]RA − F ′ (α) [−1 + F (α)]RA =

− 2F ′ (γ) [1− F (α)]RA+ F ′ (α) [2RA − F (γ)RA + F (γ)RB − F (α)RB − F (α)RA] .

Both ∆ and Ω depend on (RA, RB) and we need to compute Ω
∆

at (RA = R,RB = R) .

We note that Ω (RA = R,RB = R) = 0 and ∆(RA = R,RB = R) = 0. We use that

limRB−→RA
Ω
∆
(RA, RB) =

limRB−→RA
∂Ω
∂RB

limRB−→RA
∂∆
∂RB

(RA, RB) .

∂Ω

∂RB
= −2F ′′ (γ) [1− F (α)]RA

∂γ

∂RB
+ 2F ′ (γ)F ′ (α)RA

∂α

∂RB
+

F ′′ (α) [2RA − F (γ)RA + F (γ)RB − F (α)RB − F (α)RA]
∂α

∂RB
+

F ′ (α)

[
F (γ)− F ′ (γ) (RA −RB)

∂γ

∂RB
− F (α)− F ′ (α) (RB +RA)

∂α

∂RB

]
,

which, taking into account that γ = α and F ′ (α) = 1
R

when RA = RB = R, implies

∂Ω

∂RB
(RA = R,RB = R) = 2F ′′ (α) [1− F (α)]R

[
∂α

∂RB
−

∂γ

∂RB

]
.

Similarly,

∂∆

∂RB
= F ′ (α) [F ′ (γ)RA − 1] + F ′′ (α)RB [F

′ (γ)RA − 1]
∂α

∂RB
+

F ′ (α)RBF
′′ (γ)RA

∂γ

∂RB
+ F ′′ (γ)RA [1− F ′ (α)RA]

∂γ

∂RB
− F ′ (γ)RAF

′′ (α)RA
∂α

∂RB
,

hence,
∂∆

∂RB
(RA = R,RB = R) = F ′′ (α)R

[
∂γ

∂RB
−

∂α

∂RB

]
.

We notice that γ > α as soon as RA > RB, which implies that ∂γ

∂RB
− ∂α

∂RB
> 0 at

RA = RB = R. Therefore,

Ω

∆
=
2F ′′ (α)R [1− F (α)]

[
∂α
∂RB

− ∂γ

∂RB

]

F ′′ (α)R
[
∂γ

∂RB
− ∂α

∂RB

] = −2 [1− F (α)] .

We substitute ∂α
∂RA

− ∂γ

∂RA
− ∂α
∂RB

+ ∂γ

∂RB
in the derivative

[
∂U
∂RA

− ∂U
∂RB

]
(RA = R,RB = R)

to obtain
[
∂U

∂RA
−

∂U

∂RB

]
(RA = R,RB = R) = −2

1

R
I(α)F (α) [1− F (α)]−

2

R2

∫ [1−F (α)]R+α

α

I(q) [1− F (α)] dq +
2

R
[1− F (α)] I ([1− F (α)]R+ α) =
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2

R2
[1− F (α)]

[
I ([1− F (α)]R+ α)R− I(α)F (α)R−

∫ [1−F (α)]R+α

α

I(q)dq

]
>

2

R2
[1− F (α)]

[
(I ([1− F (α)]R+ α)− I(α))R −

∫ [1−F (α)]R+α

α

I(q)dq

]
>

2

R2
[1− F (α)]

[
(I ([1− F (α)]R+ α)− I(α)) [1− F (α)]R−

∫ [1−F (α)]R+α

α

I(q)dq

]
> 0

given that I(q) is increasing. Therefore, discriminating marginally always increases the

designer’s payoff.

(c) Proceeding as in the previous cases, the marginal change in costs due to marginal

discrimination is zero. Therefore, it is enough to examine the change in revenues. Rather

than proceeding directly through the designer’s revenue function, we continue the line of

argument that we presented after Proposition 5. We show that ∂β

∂ε
> 0. The equations

determining γ are β are (17) and (18). Differentiating the equations with respect to ε, at

ε = 0, yields

 1 −1 + F ′ (β)R

1−RF ′ (β) −1 + F ′ (β)R




 dγ

dβ


 =


 F (β)

0


 dε

hence,
dβ

dε
=

F (β)

F ′ (β)R
> 0.

Proof of Proposition 6. By Proposition 5 (b), discriminating is optimal if the

equilibrium strategy profile in the nondiscriminatory contest is
(
qCIA , qCIB

)
and if marginal

changes in (RA, RB) lead to
(
q
CIγ
A , q

CIγ
B

)
. Given that F (θ) is convex and F ′(0) = 0, the

equilibrium profile is
(
qCIA , qCIB

)
if the optimal R satisfies R > 1

F ′(1)
. To show that this is

the case if v is large enough, we compare the profits that the designer obtains by choosing

an R ≥ 1
F ′(1)

with those obtained for R = 0 (R = 0 is the optimal choice among all

the rewards that lead to the equilibrium profile of
(
qCA , q

C
B

)
). By Proposition 4 (c), the

designer’s payoff if the equilibrium profile is
(
qCIA , qCIB

)
is

U (R) = 2v

∫ α

0

i(q)F (q)F ′(q)dq +
2v

R2

∫ [1−F (α)]R+α

α

i(q) [q − α+ F (α)R] dq −R

where F ′ (α)R = 1, whereas

U (0) = 2v

∫ 1

0

i(q)F (q)F ′(q)dq.
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The designer’s payoff is higher for some R > 1
F ′(1)

than for R = 0 if

2vh(R) > R,

where we denote

h(R) ≡
1

R2

∫ [1−F (α)]R+α

α

i(q) [q − α+ F (α)R] dq −

∫ 1

α

i(q)F (q)F ′(q)dq.

Since v can be arbitrarily large, it suffices to show that h(R) > 0. We rewrite h(R) as

h(R) =
1

2

∫ [1−F (α)]R+α

α

i(q)
d

dq

(
q − α+ F (α)R

R

)2
−
1

2

∫ 1

α

i(q)
d

dq
(F (q))2 .

Note that q−α+F (α)R
R

> F (q) because q > α and as such, it is in the increasing part of

RF (θ) − θ. Therefore, the distribution function
(
q−α+F (α)R

R

)2
first-order stochastically

dominates (F (q))2. Given that i(q) is strictly increasing in q, h(R) > 0 for all R > 1
F ′(1)

.

Finally, the proposition is proved if we show that marginal changes from a nondis-

criminatory contest RA = RB = R > 1
F ′(1)

lead to
(
q
CIγ
A , q

CIγ
B

)
. According to Theorem

2, this property certainly holds if RAF (RA −RB)− (RA −RB) < 0. Taking RA = R+ ε

and RB = R − ε, the inequality is equivalent to (R+ ε)F (2ε)− 2ε < 0. The inequality

holds for ε small enough because F ′(0) = 0.

Proof of Proposition 7. By Proposition 5 (c), discrimination is optimal if the

equilibrium strategy profile in the optimal nondiscriminatory contest is
(
qICA , qICB

)
and if

marginal changes in (RA, RB) lead to
(
q
IγC

A , q
IγC

B

)
.

To determine the optimal R in the nondiscriminatory contest, we note that F is

concave with F ′(0) =∞. By Theorem 3, the discussion following it, and F ′(0) =∞, we

have to consider three possible scenarios: (i) R = 0, (ii) 0 < R < 1, and (iii) R > 1.

When R = 0, the effort levels offered are zero and the payoff to the designer is 2vλ
(µ+2λ)

.

When 0 < R < 1, the equilibrium strategy profile is
(
qICA , qICB

)
and by Proposition 4

part (d), the designer’s payoff is given by

U (R) =
2v

R2

∫ β

0

qµ+1dq + 2vλ

∫ 1

β

qµ+2λ−1dq −R =

2v

(µ+ 2)

1

R2
βµ+2 +

2v

(µ+ 2λ)
λ−

2v

(µ+ 2λ)
λβµ+2λ −R

where β > 0 satisfies F (β)R− β = 0, that is, β = R
1

1−λ . Therefore,

U (R) = 2v

(
1

(µ+ 2)
−

λ

(µ+ 2λ)

)
R

µ+2λ
1−λ +

2vλ

(µ+ 2λ)
−R.
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Differentiating the designer’s payoff we obtain U ′ (R) = 2v
(

(1−λ)µ
(µ+2)(µ+2λ)

)
µ+2λ
1−λ

R
µ+2λ
1−λ

−1 −

1 = 2µv
(µ+2)

R
µ+3λ−1
1−λ − 1. We see that U ′ (0) = ∞ because µ + 3λ − 1 < 0 and U ′ (1) =

2µv
(µ+2)

− 1 < 0 because v < µ+2
2µ

.

We now examine the case R ≥ 1. The equilibrium strategy profile is (qIA, q
I
B) and by

Proposition 4 part (b) the designer’s payoff is given by

U (R) =
2v

R2

∫ R

0

qµ+1dq −R =
2v

(µ+ 2)
Rµ −R.

The function U(R) is continuously differentiable at R = 1 (U ′ (R) is also 2µv
(µ+2)

− 1 < 0

using the expression above). Moreover, U ′′ (R) = 2µ(µ−1)v
(µ+2)

Rµ−2 < 0 for all R ≥ 1. The

function is also concave for 0 < R < 1. Therefore, the function U (R) obtains a unique

maximum at some 0 < R < 1.

Finally, the proposition is proved if we show that marginal changes from a nondis-

criminatory contest RA = RB = R with 0 < R < 1 lead to
(
q
IγC

A , q
IγC

B

)
. According to

Theorem 3, this property holds if RA ∈
(

1
F ′(0)

, 1
)
. Taking RA = R + ε and RB = R − ε,

the inequality is satisfied for ε small enough since F ′(0) =∞ and R < 1.
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