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In this paper we study a two period contest where the strength of players in the second period depends on
the result of the contest in the first stage. We show that in contrast to one-shot contests in the same setting,
heterogeneous players exert different efforts in the first stage and rent dissipation in the first period may be
large. We study the conditions under which the discouragement effect holds. In addition, new issues emerge
like the evolution of the strengths and the shares of the prize during the game.
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1. Introduction

The theory of contests analyzes situations in which several con-
tenders expend effort to win a prize. The theory developed from
the initial papers by Tullock (1967), Krueger (1974) and Becker
(1983), see also Hirshleifer (1991), assumed in the main that the ef-
fort of different players had an identical impact in the contest. We
will refer to this impact as the strength of a player. Static models in
which players have different strengths were considered by Hillman
and Riley (1989), Gradstein (1995), Corchón (2000) and Cornes
and Hartley (2005).

Dynamic contests have been studied in a number of papers focus-
sing on infinite horizon models (Cairns, 1989; Leininger and Chun-Lei,
1994; McBride and Skaperdas, 2007; Wirl, 1994), two period models
of war and settlement (Garfinkel and Skaperdas, 2000; Skaperdas and
Syropoulos, 1996) and models in which players have to win a number
of contests in order to win a grand contest (Konrad and Kovenock,
ler, W. Leininger, C. Ponsati, S.
s referees and the participants
rnaments, Contests and Rela-
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2009; see also the surveys of Konrad, 2009, Chpt. 8, and Konrad,
2010). All these papers assume that the strength of players does not
vary during the contest.

In this paper we present a two period, two players contest in
which the strength of players is endogenous. The contest in each pe-
riod is modeled by an asymmetric Tullock contest success function
(CSF) where effective effort in the contest is determined by the
strength of the player and her effort. At the end of each period,
players receive their share in the contested resource. This departs
from the usual interpretation of a CSF in which the outcome of the
contest is probabilistic.

We assume that the strength of a player in the second period de-
pends on the share obtained in the first period. This assumption cap-
tures situations such as wars in which the strength of a country
depends on the fraction of the territory owned by this country. An-
other example might be the cold war between the USSR and the US
in which the relative strength of each side could be measured by
the territories (or the population) under its control. Also a firm
with greater market share today could build its “brand” for the fu-
ture; and a team that wins today can receive more money that will,
in turn, make it more competitive in the future. Finally, in a political
campaign, the first period contest is a poll which determines the
strength of the two candidates in the election.

We prove the existence of a Subgame Perfect Nash Equilibrium
which, under some additional assumptions, is unique. In equilibri-
um, the player with the largest relative strength exerts the largest ef-
fort. The latter does not hold in one shot games with two players and
Tullock CSF where players with different strength exercise the same
effort. Relative strengths count here because the second period
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creates different incentives for players with different relative
strengths. We show that the ratio of the effort of player 1 with re-
spect to player 2 in period 1 is increasing in the strength of player
1. Thus, when the effort in the first period is also an investment for
the second period, the stronger player exerts more effort in both ab-
solute and relative terms than the weaker player.

The previous properties prompt us to compare the effort made in
the first period of our game with the effort made if the game were
one shot. This issue has been studied in several papers and discussed
in Konrad (2010). In many cases, multi-stage contests involve a “dis-
couragement effect” in which weak players exert less effort in early
stages than they would if the contest were one shot. We find that
the discouragement effect also holds in our framework when the
weak player is sufficiently weak. But it does not always hold. Even
if a player is three times stronger than the other the latter exerts
more effort than in a one shot game. This is because in our frame-
work players receive a prize in each period and not only at the end
of the grand contest.

The Matthew effect is the phenomenon where “the rich get richer
and the poor get poorer”. To study this effect in our model, we distin-
guish between the trajectory of strength and the dynamics of the
share of the prize. When the link between periods is strong (no dis-
count and the strength in the second period equals the share in the
prize in the first period) an initially strong player will be even stron-
ger in the second period. We call this the “avalanche effect” because
the initial advantage of a player is amplified later on. However when
the link between periods is not strong the avalanche effect only oc-
curs when initial strengths are similar.When initial strengths are un-
equal the relative strength of the strong player decreases in the
second period. We call this the “level-off” effect. It is caused by an in-
crease in the relative effort of the weak player. When the link be-
tween periods is weak the avalanche effect disappears, so in the
second period relative strengths are leveled off with respect to
what they were in the first period.

The trajectory of the share of the prize, does not follow the behav-
ior of strengths: the player having initiallymore than half of the prize
ends having a smaller share in the second period than in the first one.
This is because the trajectory of the prize is determined by two
forces. First, in the second period both players exert the same effort
and therefore their shares coincide with their strength in this period.
And two, the transition function is a contraction which means that it
translates the impact of shares on strength in a moderate way.

Finally we study rent dissipation. We show that only when
players have identical initial strengths and the link between periods
is the strongest, rents are completely dissipated. When players are
very similar and the link between periods is strong, there is more
rent dissipation in the two period game than in the one shot game.
But rent dissipation is not monotonic with the link between periods.
Weak links can be associated with more rent dissipation than strong
links due to the discouragement effect.

There are papers which also endogenize the strength of the players,
see Nti (2004) and Franke et al. (2009) for a model where the strength
is chosen by a planner. In other papers the CSF is not determined by a
planner. Fearon (1996) (see also Leventoglu and Slantchev, 2007)
presented a model in which the bargaining power is endogenous and
determined by the size of the territory and the threat of a war in
which one of the countries would disappear. In our model there is no
final battle but a protracted conflict like in the multi-battle models.

The closest paper to ours is by Klumpp and Polborn (2006). In
their model, candidates to office have to win a certain number of
elections in order to win the grand contest. They show that the out-
come of the first election creates an asymmetry in later roundswhich
might be decisive for the grand contest. They provide an explanation
based on rational players for the “momentum effect” which is the
tendency of early winners in preliminary contests to win the grand
contest. Themain differencewith our paper is that the prize is obtained
at the end of the grand conflict and that the strengths of players are ex-
ogenous. In their case the expected value of the prize at eachmoment is
the variable which changes as the game is unfolding.

The rest of the paper goes as follows. Section 2 presents the model.
Section 3 gathers our results on the existence and the uniqueness of
equilibrium. The properties of equilibrium are shown in Section 4.
Section 5 concludes.

2. The model

2.1. Players and payoffs

Two players, i∈ {1,2}, fight for a divisible prize in two periods,
t∈ {1,2}. Each player ends each period with a fraction pi

t of the
prize. The value of the prize for each player in each period is V. The
interpretation is that the resource under conflict produces a certain
surplus each period that can be expropriated by the owner (harvest,
money, slave population, human capital, etc.) and that this surplus
does not depend on the intensity of conflict.

Player i exerts an effort eit in period t. We assume that the margin-
al cost of effort is constant and equal to 1. Payoffs in period t are de-
noted by πit and equal pitV−ei

t, i∈ {1,2}. Payoffs for the whole game
are ∑ t=1

2 δt−1πit≡Πi where δ∈ [0,1] is the discount rate of the
players.

Players have relative strengths which determine the impact of
their effort. We denote by αt∈ [0,1] the relative strength of player 1
at t, and by 1−αt the relative strength of player 2 at t. The contest
success function (CSF) maps efforts and strengths in a period into
the fraction of the prize owned by the players in this period. This de-
parts from the usual interpretation of the CSF in which the outcome
of the conflict is a probability of winning it. Let p (resp. 1−p) be the
fraction obtained by player 1 (resp. 2). We assume the CSF takes the
asymmetric general Tullock form:

pt ¼
αt et1

� �γ

αt et1
� �γ þ 1−αt

� �
et2
� �γ if et1 > 0; pt ¼ αt otherwise: ð2:1Þ

1−pt ¼
1−αt

� �
et2

� �γ

αt et1
� �γ þ 1−αt

� �
et2
� �γ if et1 þ et2 > 0; 1−pt ¼ 1−αt otherwise:

ð2:2Þ

The parameter γ measures the sensitivity of the probability of
winning to the efforts. When γ=0, the outcome of the contest is in-
dependent of efforts. When γ=1, the CSF is proportional. It seems
reasonable to require that the CSF is homogeneous of degree zero,
so winning probabilities do not depend on how resources are mea-
sured (euros or dollars, thousands or millions of soldiers, etc.).
Clark and Riis (1998), following Skaperdas (1996), have shown
that under certain assumptions the only functional form that is ho-
mogeneous of degree zero is precisely the one above.

Efforts and relative strength enter multiplicatively in the CSF. Think
of the relative strength as capital (social or physical) or territory and of
αt(eit)γ as the (Cobb–Douglas) production function of the influence of
player i in the contest. Thus influence in the contest is produced by cap-
ital and labor. This interpretation of the influence of a player in the
contest as a production function that depends of multiple inputs
was already pointed out by Nti (2004), Kolmar and Wagener
(2005), Cornes and Hartley (2005) and Ray and Sarin (2009).

Finally, note that the only source of asymmetry among players in
payoffs and strategies comes from relative strength in period one
which is exogenously given.
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2.2. The transition function

The relative strength of player 1 changes from period one to peri-
od two according to the following transition function:

αt ¼ f pt−1
� �

: ð2:3Þ

According to the production function interpretation in which α
was thought as an input, the share of the prize received today allows
for the accumulation of the alpha input that can be used next period.

We assume that f: [0,1]→ [0,1] fulfills the following properties:

i) f(1/2)=1/2,
ii) 0b f′(p)≤1, f″(p)≤0, for all p ∈[0,1].

Property (i) says that when both players have identical resources
they have identical strength. Property (ii) says that f(·) is an increas-
ing, and concave contraction. In order to motivate these properties,
consider the following linear transition function:

f pt−1
� �

¼ apt−1 þ b; with 0 < a≤ 1; α ¼ 1−2b; b≥ 0; ð2:4Þ

where a measures the importance of the share of the resource in the
previous period and b the strength of country 1 which does not de-
pend on the share. Since a>0 the ownership of the resource contrib-
utes positively to the relative strength, i.e. more people to draft or
more/better sources of food, money, etc. The condition a=1−2b
makes p and 1−p symmetric because the strength for player 2
evolves according to

1−αt ¼ 1−apt−1−b ¼ a 1−pt−1
� �

þ 1−a−b: ð2:5Þ

Even if a country has a zero share in the resource it has a non-
negative relative strength. Thus,

b≥ 0 and 1≥ aþ b: ð2:6Þ

It is also natural to assume that the relative strength of a country is
not maximal when it owns zero of the resource. Thus

b≤ 0 and bþ a≥ 0: ð2:7Þ

Conditions (2.6) and (2.7) imply a∈ [0,1] which corresponds to
the assumption that f(·) is an increasing contraction.

3. Equilibrium

We look for a Subgame Perfect Nash Equilibrium of the game de-
scribed in the previous section. Since there are only two periods, the
game is solved backwards.

In what follows and in order to simplify the notation we will de-
note with a hat the variables in the second period and without a hat
the variables in the first period.

In the second period, since the game ends, players play the one
shot Nash equilibrium. Thus,

ê1 ¼ ê2 ¼ γ 1−âð Þα̂V ; ð3:1Þ

and the fraction of the prize that player 1 gets in the second period is
given by:

p̂ ¼ α̂ ¼ f pð Þ: ð3:2Þ
Payoffs in the second period, given Eq. (3.2), are:

π̂1 ¼ f pð ÞV−γf pð Þ 1−f pð Þð ÞV ¼ ð3:3Þ

¼ f pð ÞV 1−γ 1−f pð Þð Þð Þ: ð3:4Þ
π̂2 ¼ 1−f pð Þð ÞV−γf pð Þ 1−f pð Þð ÞV ¼ ð3:5Þ

¼ 1−f pð Þð ÞV 1−γf pð Þð Þ: ð3:6Þ

In the first period, each player solves:
max
e1

pV−e1 þ δf pð ÞV 1−γ 1−f pð Þð Þð Þ ð3:7Þ

max
e2

1−pð ÞV−e2 þ δ 1−f pð Þð ÞV 1−γf pð Þð Þ: ð3:8Þ

First order conditions of payoff maximization for both players are:

∂p
∂e1

V 1þ δf ′ pð Þ 1−γ þ 2γf pð Þð Þ
h i

¼ 1; ð3:9Þ

− ∂p
∂e2

V 1þ δf ′ pð Þ 1þ γ−2γf pð Þð Þ
h i

¼ 1: ð3:10Þ

In Appendix A we show the concavity of the payoff function in the
player's own strategy.

Note first that p is as a function of relative efforts and relative
strengths. Let x=e1/e2. And let h1(·,·) and h2(·,·) be

h1 x;αð Þ ¼ 1þ δf ′ pð Þ 1−γ þ 2γf pð Þð Þ; ð3:11Þ

h2 x;αð Þ ¼ 1þ δf ′ pð Þ 1þ γ−2γf pð Þð Þ: ð3:12Þ

Thus, the first order conditions can be rewritten as:

γα 1−αð Þeγ−1
1 eγ2

αeγ1 þ 1−αð Þeγ2
� �2 Vh1 x;αð Þ ¼ 1; ð3:13Þ

γα 1−αð Þeγ1eγ−1
2

αeγ1 þ 1−αð Þeγ2
� �2 Vh2 x;αð Þ ¼ 1: ð3:14Þ

Thus,

e2h1 x; að Þ ¼ e1h2 x;αð Þ: ð3:15Þ

Dividing the above equation by e2 we get:

h1 x;αð Þ−xh2 x;αð Þ ¼ 0: ð3:16Þ

We show in Appendix A that the above equation has a solution. Let
x=x(α) be one of the solutions of this equation. Thus, from Eq. (3.13)
we get that

e1 αð Þ ¼ γα 1−αð Þ x αð Þð Þγ
α x αð Þð Þγ þ 1−αð Þð Þ2 Vh1 x αð Þ;αð Þ; ð3:17Þ

e2 αð Þ ¼ γα 1−αð Þ x αð Þð Þγ−1

α x αð Þð Þγ þ 1−αð Þð Þ2 Vh1 x αð Þ;αð Þ: ð3:18Þ

which are the equilibrium efforts. Thus we have shown,

Proposition 1. A Subgame Perfect Nash Equilibrium exists.

Note that periods are linked by the discount rate δ and the transi-
tion function. When δ is zero, or the transition function is constant,
this link is severed and our equilibrium is just the one shot equilibri-
um. Indeed from Eqs. (3.11) to (3.12) we obtain h1(x,α)=h2(x,α)=



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

Strength

E
ff

or
t

Fig. 1. The discouragement effect with a=1 and δ=1.
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1 so x(α)=1 and efforts in Eqs. (3.17) and (3.18) collapse in the one
shot equilibrium values which are

eos1 αð Þ ¼ eos2 αð Þ ¼ γα 1−αð ÞV : ð3:19Þ

Even if the strength of players is different, the effort made in equi-
librium in the one shot game is the same for both players. This prop-
erty holds as long as there are two players with identical valuations
and the CSF is homogeneous of degree zero (Corchón, 2000). In our
two period game this property does not hold in the first period,
reflecting the different strategic opportunities for both players in
the continuation game.

In general, we cannot guarantee uniqueness of equilibrium.
Uniqueness is obtained if the transition function is linear and the
contest success function is proportional to weighted efforts. We
formally state this in the following proposition. The proof is in
Appendix A.

Proposition 2. If γ=1 and f(p) is linear, there exist a unique Subgame
Perfect Nash Equilibrium.

To close this section, note that in the case described in Proposi-
tion 2, plugging Eqs. (3.17) and (3.18) in Eq. (2.1) we obtain that
the fraction of the resource owned by player 1 in period 1 is

p αð Þ ¼ αx αð Þ
αx αð Þ þ 1−α

: ð3:20Þ

It is easy to show that since x(·) is increasing (see Proposition 4
below) p(·) is increasing. So, as in the one shot game –where p(α)=
α– the fraction of resources owned by player 1 in period 1 depends pos-
itively on the initial strength (as intuition suggests), though in a more
complicated way.

Finally, notice that V does not affect the equilibrium distribution of
the prize between players in both periods. This also happens in the
one shot game.

In what follows we restrict the analysis of the properties of
equilibrium to the special case described in Proposition 2. This as-
sures uniqueness of equilibriumwhich seems a sensible requirement
when exploring the properties of equilibrium.

4. Properties of equilibrium

4.1. Preliminary properties

We first state and prove some properties of equilibrium efforts
that will be useful later on. We will see that some of these properties
differ from the corresponding properties in a one shot game. All the
proofs are gathered in Appendix A.

Proposition 3. The equilibrium efforts in the first period satisfy the
following:

(i) e2(α)=e1(1−α);
(ii) e1(α)=e2(α) for α=1/2, α=0, α=1;
(iii) e1(α)>e2(α) if and only if α>1/2.

Proposition 3 says that individual efforts display symmetry prop-
erties inherited from the symmetry of the basic data of the problem.
Part (i) says that the effort of player 1 is the mirror image of the effort
of player 2 when her relative strength α is substituted by 1−α. Part
(ii) says that the effort of both players are identical either when
they have the same relative strength (α=1/2) or when one of them
has zero strength. Part (iii) says that the player with larger strength
exerts larger effort. Notice that this is not true in the one shot game,
so this fact is explained by the existence of a second period.

The next result studies the ratio of efforts.
Proposition 4. The ratio of the equilibrium efforts in the first period,
x(α), is increasing in α.

Proposition 4 says that relative efforts are increasing with rela-
tive strength. Thus, the strong player exerts more effort in the first
period than the weaker player, which leaves her in better shape for
the conflict in the second period. This contrasts with the one shot
game where x(α)=1 for all α∈ [0,1].

4.2. The discouragement effect

We now address the question of when players exert more effort in
our two period game than in the one shot game. We start by consid-
ering the following example.

Example 1. Suppose that a=1, b=0 and V=10. In this case we ob-
tain a closed form solution for efforts and x, namely

x αð Þ ¼ 2α−2δþ 4αδ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δþ 4δ2 þ 16α2δ2−16αδ−16αδ2 þ 16α2δþ 1

p
2α

:

ð4:1Þ

In Fig. 1 below, we show the effort in the first period for both
players as a function of α. We draw the case of δ=1. The solid line
corresponds to player 1 and the dashed line to player 2. Note the
symmetry of the two lines, as proved in 3 part i. The dotted line cor-
responds to the effort of each player in the one shot game.

When the strength of a player is very large or very small, this
player exerts little effort. This is because the outcome of the contest
is very biased for her. When the contest is “fair” in the sense that sim-
ilar efforts have similar impacts on the contests, efforts are larger.

We can see the effect of introducing a second period. If a player has
little strength (approximately less than .3 in the figure for player 1)
she is discouraged by the existence of a second period in the sense
of exerting less effort in the two-period game than in the one period
game. However, for larger values of strength, the existence of a sec-
ond period encourages players to exercise more effort than in the
one period game.

The example above exhibits a “discouragement effect” which is
when weak players “reduce their incentives to expend effort in
early rounds,” (Konrad and Kovenock, 2010, p. 95 see the references
there for earlier analysis of this effect and Konrad (2009, pp. 189–
191) for a survey). This effect runs counter to the intuition that in
a multiperiod game, players exert more effort than in a single period
game because each period adds more return to the effort and thus
incentives to expend more effort are enhanced by the existence of
additional periods. This intuition is correct when first order
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Fig. 2. The discouragement effect is less severe as a becomes smaller.
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conditions of payoff maximization are unaffected by the effort of
other players. But when this is not the case the situationmight be re-
versed. The next proposition analyzes this effect for player 1. The
analysis for player 2 would be totally symmetric.

Proposition 5. If a, δ >0, there exist α⁎∈(0,1/2) such that for all
α∈(0,α⁎), the equilibrium effort of player 1 in period 1 is smaller than
the equilibrium effort in the one shot game.

This result says that the discouragement effect happenswhen one
of the players is sufficiently weak. But as Fig. 1 makes clear, even for
reasonably low values of the strength of the weak player, say α=1/3,
the discouragement effect does not hold.

The discouragement effect is less and less severe as a or δ become
smaller. In the limit case (a=0 or δ=0) the effect disappears be-
cause the equilibrium values of efforts collapse in the value corre-
sponding to the one shot equilibrium. In Fig. 2, we represent the
effort of player 1 for different values of a and δ=1. The solid line cor-
responds to a=1, the dashed line corresponds to a=0.8, and the
dotted line corresponds to the one shot game which is equal to a=0.
Similar effects are obtained when δ decreases.
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4.3. Avalanches or level off?

The second question that we address is the trajectory of strengths.
Since â is increasing in p which in turn is increasing in α, it follows
that â is increasing in α. But this does not imply anything about
whether α ≷ α̂ .1

A possibility is that when player 1 is initially strong (α>1/2) she
will be even stronger in the second period (α̂ > α). We call this situ-
ation the avalanche effect of the second period because the strength
of strong (resp. weak) players is amplified.2 We see that this is the
case when a=δ=1 and b=0. This follows from the fact that α̂ ¼
αx= αxþ 1−αð Þ is increasing in x and for α>1/2, x>1. This is repre-
sented in Fig. 3 below by a sinusoid solid line. The straight solid
line is the 45° line.

But when a=0.8, δ=1 and b=0.1 –represented in Fig. 3 by the
dotted line– this line intersects the 45° line in three points. From 1/2
to the intersection to the right of 1/2 (or from the intersection to
the left of 1/2 to zero) the avalanche effect still holds. However for
α close to one, α̂ b α and for α close to zero α̂ > α. Thus the existence
of a second period levels off relative strengths.

Finally, the dashed line in Fig. 3 represents the case a=0.5, δ=1
and b=0.25. In this case the avalanche effect disappears completely
and starting from any position the relative strength of players is
leveled off in the second period.

In fact these three cases exhaust all the possibilities that might
arise in our framework. This is shown in the next proposition where
the case a) corresponds to the solid line, the case b) corresponds to
the dotted line and the case c) corresponds to the dashed line in Fig. 3.

Proposition 6.

a) If b=0 there is an avalanche effect for all α∈ [0,1]∖{1/2}.
b) If 0bbb1/4 and δ>2b/(1−2b)(1−4b), there exist �α b 1=2 (resp.

~α > 1=2) such that for all α∈ 0 �;αð Þ (resp. α∈ ~α;1ð Þ) there is a
level-off effect. For allα∈ �α ;1=2ð Þ (resp.α∈ 1=2; ~αð Þ) there is an av-
alanche effect.

c) If 0bbb1/4 and δb2b/(1−2b)(1−4b), or if b≥1/4 and δ∈ [0,1]
1 Clearly, if α=1/2, α̂ ¼ 1=2 too.
2 This effect has consequences similar to the momentum effect in Klumpp and

Polborn (2006). But the momentum effect operates through the value of the prize
and the avalanche effect through the strength of players.
there is a level-off effect for all α∈ [0,1] except, possibly, for two iso-
lated values of α.

The condition δ>2b / (1−2b)(1−4b) and bb1/4 is equivalent to
dα̂=dα > 1 at α=1/2. In this case the curve relating α and â crosses
the 45° from below like the solid line (where dα̂=dα ¼ 2 at α=1/2)
and the dotted line (where dα̂=dα ¼ 1:2414 at α=1/2) in Fig. 3.
Finally, the conditions bb1/4, and δb2b/(1−2b)(1−4b), or b≥1/4
and δ∈ [0,1] imply that dα̂=dαb1 at α=1/2 like the dashed line in
Fig. 3 (where dα̂=dα ¼ 0:6 at α=1/2).

4.4. The domino effect

The third question that we address is the trajectory of the share of
the prize in the hands of player 1. This share summarizes the equilib-
rium outcome of our game. One would expect that this share follows
the behavior of α. We see that this is not the case.

Following the ideas introduced in the previous subsection consid-
er the possibility that when player 1 is having initially more than half
of the prize (p>1/2) she will have even a larger share in the second
period (p̂ > p). We call this situation the domino effect of the second
period because the initial share of a strong (resp. weak) player is am-
plified later on in the game. Notice that

p̂ ¼ apþ b ¼ 1−2bð Þpþ b: ð4:2Þ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Fig. 3. The avalanche effect.



3 Notice that this result cannot be obtained directly from the function B() since this
function does not incorporate the restriction that x=x(α).
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Rearranging Eq. (4.2) we obtain

p̂−p ¼ b 1−2pð Þ: ð4:3Þ

Thus we have two cases. In the extreme case in which only the
outcome in the first period is relevant to determine the strength
next period (i.e. b=0), p̂ ¼ p so shares are invariant in time. In any
other case, b>0 and p>1/2 imply p̂ b p, irrespective of whether
there is an avalanche or a level off effect. The explanation of this re-
sult is that trajectory of the prize reflects, on the one hand that in the
second period both players exert the same effort and therefore their
shares coincide with their strength in this period. On the other hand
we assumed that the transition function is a contraction.

Our result suggests that protracted conflicts tend to end up in an
impasse inwhich players have to spend resources period after period
in order to maintain their position. Examples like the Roman empire
vs. Germanic tribes or vs. the Persian Empire, the first World War
(until the entry of US in the conflict) or the cold war come to our
mind. However, a full proof of this conjecture would take a model
with several periods which is not attempted here. We do not enter
in the discussion of what kind of modeling is preferable, a two period
model or an infinite horizon model. For an enthusiastic defense of
the former see Shapiro (1989).

4.5. Rent dissipation

Our final question is the impact of the second period on the rent
dissipation in the first period. In the second period since efforts
equal those in a one shot game rent dissipation is like in a one shot
game.

Total effort in the first period amounts to

α 1−αð Þx αð Þ
αx αð Þ− 1−αð Þð Þ2 Vh1 x αð Þ;αð Þ þ α 1−αð Þ

αx αð Þ þ 1−αð Þð Þ2 Vh1 x αð Þ;αð Þ: ð4:4Þ

Since in equilibrium

h1 x αð Þ;αð Þ ¼ x αð Þh2 x αð Þ;αð Þ; and h1 x αð Þ;αð Þ þ h2 x αð Þ;αð Þ
¼ 2 1þ δað Þ; ð4:4Þ

can be written as:

α 1−αð Þx αð Þ2 1þ δað ÞV
αx αð Þ þ 1−αð Þð Þ2 : ð4:5Þ

Call this function B(α,d,x) where d≡δa. We now study the maxima
of B() with respect to α,d and x. Given that B() does not take into ac-
count the dependence of x with respect to the other variables, the
maxima of B() is always larger or equal than the maximum amount
of effort. We see immediately that B() is increasing in d so in the max-
imum d=1 (which implies that a=δ=1). We also see that the max-
imum with respect to α cannot be at the boundaries of [0,1] because
there, the function takes the value 0. Also, the maximum cannot be at
either x=0 (where the function takes the value 0) or at an arbitrarily
large value of xwhere the function takes a value arbitrarily close to 0.
Thus the maximum with respect to α and x must be interior. Com-
puting

∂B α;d; xð Þ
∂α ¼ 0 yields α ¼ 1

xþ 1
ð4:6Þ

∂B α;d; xð Þ
∂x ¼ 0 yields x ¼ 1−α

α
: ð4:7Þ

Eqs. (4.6) and (4.7) are identical so there is a continuum of solu-
tions. We now introduce the fact that x is increasing in α and it is al-
ways positive. Thus 1/(x(α)+1) is decreasing in α and strictly
positive. So Eq. (4.6) has a unique solution. Note that for α=1/2,
x(α)=1, and this is always a solution of Eq. (4.6). So, this must be
the unique solution. We have proved the following.

Proposition 7. Rents are completely dissipated iff α=1/2, δ=a=1.

The previous result calls for a comparison of the rent dissipation in
our game and in the one shot game. In the latter total efforts are

2α 1−αð ÞV : ð4:8Þ

In this case, rents are never completely dissipated. Thus we have
the following

Proposition 8. For α close to 1/2 and δ and a close to 1, there is more
rent dissipation in the two period game than in the one shot game.

The result follows from the fact that the correspondence mapping
α, δ and a into efforts has a closed graph in (0,1)×[0,1]×[0,1]. Since
this correspondence is a function (because equilibrium is unique)
this function is continuous and the result follows.3

Thus, when the link between periods is stronger (no discount and
strengths are derived directly from the share in the first period) com-
petition among players dissipates the prize entirely. In this case com-
petition is tougher because to the effect of fighting for the prize in
the first period, we have to add the effect of maintaining relative
strengths in the second period. Clearly, as strength in the second pe-
riod depends less on effort in the first period, this second effect van-
ishes. In Fig. 4, we show how total effort in the first period changes
with a for the case of δ=1. The solid line corresponds to a=1, the
dashed line corresponds to a=0.5, and the dotted line corresponds
to a=0. We note that, due to the discouragement effect, in some
cases, conflict is less severe than in the one shot game.

5. Final comments

In this paper we have developed a theory of endogenous strength.
We assumed that the strength in a period is a function of the fraction
of the resources enjoyed by a player. We have found that equilibrium
displays some features different from the one shot game. In particu-
lar rents might be completely dissipated in the first period and
players with different strengths exert different efforts in the first pe-
riod. Our model also differs from other multi-contest models in
which the discouragement effect is pervasive. Finally new issues ap-
pear like the avalanche/level-off effect and the domino effect.

In order to get a tractable model, we assume two players, two pe-
riods and a linear transition function. The assumption that a≤1
plays also an important role in our proofs. Therefore, it would be in-
teresting to investigate a model in which α>1 or in which the tran-
sition function is not always increasing reflecting that too much
territory might be disadvantageous for strength. But this is outside
the scope of this paper. Here we try to make a first cut in the issue
of the evolution of strength when it depends on past outcomes.
Our conclusions are, of course, tentative.

Our model does not pay attention to issues which play an impor-
tant role in dynamic conflicts. Among them we note the following
two.

1. There are no resource constraints in the model. Consequently
there are no bankruptcies. But the history of Europe has plenty of
examples where conflict was ended by bankruptcy: the bankrupt-
cy of 1607 which sealed the fate of the Spanish Habsburgs in their
fight against France, the bankruptcy of France in 1788 –caused by
the war with Great Britain– which paved the way for the French
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revolution and the British dominance in the next hundred years,
and the bankruptcy of the USSR in the late eighties of the past
century –caused by the military expenses– that led to the collapse
of the socialist block.

2. The role of chance. The importance of random events in conflicts
cannot be underestimated. von Clausewitz (1832) devoted the
seventh chapter of his book to highlighting the influence of “fric-
tions” on the outcome of war. Also there is a sizeable literature of
contest in which the CSF arises as a reduced form of the effort of
players and a random variable (Baye and Hoppe, 2003; Dixit,
1987; Fullerton and McAfee, 1999; Hillman and Riley, 1989; Jia,
2008; Lazear and Rosen, 1981). In our case, a possible way to intro-
duce random events would be by making the parameter b a ran-
dom variable.

We plan to study these aspects in the near future.

Appendix A

Second order conditions

In what follows, we show the concavity of the payoff function in a
player's own strategy. Indeed,

∂2Πi

∂e21
¼ ∂2p

∂e21
V 1þ δf ′ pð Þ 1−γ þ 2γf pð Þð Þ
h i

þ ∂p
∂e1

� �2

Vδ2γ f ′ pð Þ
� �2þ

ð6:1Þ

þ ∂p
∂e1

� �2

Vδf ″ pð Þ 1−γ þ 2γf pð Þð Þ: ð6:2Þ

Note that,

∂p
∂e1

¼ − γα 1−αð Þeγ−1
1 eγ2

αeγ1 þ 1−αð Þeγ2
� �2 ; ð6:3Þ

which is positive, and

∂2p
∂e21

¼ − γα 1−αð Þeγ−2
1 eγ2

αeγ1 þ 1−αð Þeγ2
� �3 eγ2 1−αð Þ 1−γð Þ þ eγ1α 1þ γð Þ� �

; ð6:4Þ

which is negative.
We show first that ∂2p /∂e12+2(∂p /∂e1)2≤0. Note that ∂2p /
∂e12+2(∂p /∂e1)2 can be written as:

γα 1−αð Þeγ−2
1 eγ2

αeγ1 þ 1−αð Þeγ2
� � 2eγ1e

γ
2γα 1−αð Þ− eγ2 1−αð Þ 1−γð Þ þ eγ1α 1þ γð Þ� �

αeγ1 þ 1−αð Þeγ2
� �	 


:

ð6:5Þ
Note that the term in brackets can be rewritten as:

2eγ1e
γ
2α 1−αð Þ γ−1ð Þ−e2γ2 1−αð Þ2 1−γð Þ−e2γ1 α2 1þ γð Þ; ð6:6Þ

which is negative because γ≤1. Thus, ∂2p /∂e12+2(∂p /∂e1)2≤0.
Note that since f″(p)≤0, and γ≤1, the last term in Eq. (6.1) is

less or equal than zero. Since f′(p)≥0, and ∂2p /∂e12≤0, the first
term is less or equal to V(∂2p /∂e12), and since f′(p)≤1, δ≤1, and
γ≤1, ∂p /∂e1>0, the second term is less or equal to 2V(∂p /∂e1)2.
Finally, since ∂2p /∂e12+2(∂p /∂e1)2≤0 we obtain that ∂2Πi /∂e12≤0,
as we wanted to show.

Existence of x(α)

Existence: Recall that x(α) is defined as the solution of

1þ δf ′ pð Þ 1−γ þ 2γf pð Þð Þ ¼ x 1þ δf ′ pð Þ 1þ γ−2γf pð Þð Þ
h i

: ð6:7Þ

Suppose x→0. Then, the left hand side is larger than the right
hand side (which tends to zero). But if x→∞ the right hand side
tends to infinite (note that, because of the assumptions on the tran-
sition function, the term in brackets is bounded) and is larger than
the left hand side which tends to a positive real number. By the inter-
mediate value theorem there is an x such that both sides are identi-
cal, so Eq. (6.7) has indeed a solution.

Proof of Proposition 2

Existence of equilibrium is guarantee as we proved in the last sec-
tion. We show that in the case of γ=1, and a linear transition func-
tion the equilibrium is unique. For that it is enough to show that
the solution to h1(x,α)−xh2(x,α)=0 is unique. For γ=1, and a line-
ar transition function, h1(x,γ)−xh2(x,α)=0 can be written as:

1þ δ2a a
αx

αxþ 1−αð Þ þ b
� �

¼ x 1þ δ2a 1−a
αx

αxþ 1−αð Þ−b
� �� �

:

ð6:8Þ

Write Eq. (6.8) as follows

1þ δ2a2
αx

αxþ 1−αð Þ xþ 1ð Þ þ δ2ab ¼ x 1þ 2δa−2δabð Þ: ð6:9Þ

The right hand side of Eq. (6.9) is linear and increasing, being zero
when x=0. The left hand side of Eq. (6.9) takes a positive value
when x=0. Furthermore, when α>1/2 it is strictly concave. A linear
function and a strictly concave function can intersect, at most twice.
But given the behavior of both functions at x=0 the intersection is
unique. If α≤1/2 the left hand side of Eq. (6.9) is convex (linear if
α=1/2), thus the slope of the curve is increasing with x. When x
tends to infinity the slope tends to δ2a2. But notice that since
a+b≤1, 1−2δab+2δα≥1+δ2α2, which implies that δ2α2b1−
2δab+2δa thus the slope of the convex curve is always smaller
than the slope of the linear function. Thus, given the behavior of
both functions at x=0, the linear function and the convex function
intersect just once.
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Proof of Proposition 3

(i) If the strength of player 1 is 1−α, the first order conditions of
the maximization problem for each player can be written as:

α 1−αð Þe2
1−αð Þe1 þ αe2ð Þ2 Vg1 y;1−αð Þ ¼ 1; ð6:10Þ

α 1−αð Þe1
1−αð Þe1 þ αe2ð Þ2 Vg2 y;1−αð Þ ¼ 1; ð6:11Þ

where y=e2/e1, and

g1 y;1−αð Þ ¼ 1þ δ2a apþ bð Þ; ð6:12Þ

g2 y;1−αð Þ ¼ 1þ δ2a a 1−pð Þ þ bð Þ; ð6:13Þ

p ¼ 1−αð Þ
1−αð Þ þ αy

; 1−p ¼ αy
1−αð Þ þ αy

: ð6:14Þ

Thus, from Eqs. (6.10), to (6.11) we get that

yg1 y;1−αð Þ−g2 y;1−αð Þ ¼ 0: ð6:15Þ

Notice that g1(y,1−α)=h2(y,α), and g2(y,1−α)=h1(y,α),
thus Eq. (6.15) is identical to Eq. (3.16), which implies that

y 1−αð Þ ¼ x αð Þ: ð6:16Þ

Thus, from Eq. (6.10) and the definition of y we obtain that

e1 1−αð Þ ¼ α 1−αð Þy 1−αð Þ
1−αð Þ þ αy 1−αð Þð Þ2 Vg1 y;1−αð Þ ¼ ð6:17Þ

¼ α 1−αð Þx αð Þ
1−αð Þ þ αx αð Þð Þ2 Vh2 x;αð Þ ¼ ð6:18Þ

¼ α 1−αð Þ
1−αð Þ þ αx αð Þð Þ2 Vh1 x;αð Þ ¼ e2 αð Þ; ð6:19Þ

where we have made use of the fact that g1(y,1−α)=h2(y,α)
and Eq. (3.16).

(ii) Trivially, if α=1, or α=0, e1=e2=0. And since e2(α)=
e1(1−α), e1(1/2)=e2(1/2). Thus x(1/2)=1.

(iii) We finally show that when α>1/2, x(α)>1 which implies that
e1(α)>e2(α). Recall that x(α) is the solution of 0=h1(x,a)−
xh2(x,α). Since h1(x,α) is increasing in α, h2(x,α) is decreasing
in α, and α>1/2, we have that h1(x,α)−xh2(x,α)>h1(x,1/2)−
xh2(x,1/2). Since x(1/2)=1, h1(1,1/2)−h2(1,1/2)=0. Thus,
h1(x,1/2)−xh2(x,1/2)>h1(1,1/2)−h2(1,1/2). But note that
h1(x,1/2)−xh2(x,1/2) can be written as

1þ 2δa2
x

xþ 1
þ 2δab−x 1þ 2δa−2δa2

x
xþ 1

−2δab
� �

: ð6:20Þ

Rearranging terms,

1þ 2δabþ x 2δa aþ b−1ð Þ−1ð Þ; ð6:21Þ

which is decreasing in x because a+b≤1. Therefore, h1(x,1/2)−
xh2(x,1/2) is decreasing in x. Thus, x(α)>1 for α>1/2. ■
Proof of Proposition 4

Since x(α) is given by h1(x,α)−xh2(x,α)=0,

x′ αð Þ ¼
−∂h1

∂α þ x
∂h2
∂α

∂h1
∂x −h2−x

∂h2
∂x

: ð6:22Þ

The sign of ∂h1/∂α depends on the sign of ∂p/∂α which is positive.
The sign of ∂h2/∂α depends on the sign of −∂p/∂α which is negative.
Thus, the numerator in Eq. (6.22) is negative. We show next that the
denominator is also negative. Note first that the denominator can be
written as:

2δa2
∂p
∂x−1−2δa a 1−pð Þ þ bð Þ þ x2δa2

∂p
∂x : ð6:23Þ

Eq. (6.23) can be rewritten as:

2δa2
∂p
∂x 1þ xð Þ− 1−pð Þ−1−2δab: ð6:24Þ

Since ∂p/∂x=(α(1−α))/(αx+(1−α))2 Eq. (6.24) can be rewrit-
ten as

2δa2
1−α

αxþ 1−αð Þ
α 1þ xð Þ

αxþ 1−αð Þ−1
� �

−1−2δab: ð6:25Þ

Simplifying Eq. (6.25) we obtain

2δa2
1−α

αxþ 1−αð Þ
2α−1

αxþ 1−αð Þ
� �

−1−2δab: ð6:26Þ

Since the expression in brackets is negative for α≤1/2, Eq. (6.25)
is negative as we wanted to prove.

We show next that this is also the case for α>1/2. If α>1/2,
x(α)>1 and since Eq. (6.26) is decreasing in x it is smaller than

2δa2 1−αð Þ 2α−1ð Þ−1−2δab ð6:27Þ

which has a maximum at α=3/4 then Eq. (6.27) is smaller than

δa2

4
−1−2δab ð6:28Þ

which is always negative. ■

Proof of Proposition 5

Recall that eios denotes the equilibrium effort of player i in the one
shot game. Note that in the one shot game both players spend the
same effort and e1

os=e2
os=α(1−α)V. We show that there exists

α⁎b1/2 such that for all α∈(0,α⁎), e1(α)be1os(α). Note first that by
Eq. (3.17) the equilibrium effort of player 1 can be written as:

e1 αð Þ ¼ eos1 αð Þ x αð Þ
αx αð Þ þ 1−αð Þð Þ2 h1 x αð Þ;αð Þ: ð6:29Þ

Let us see that there exists a unique α⁎b1/2 such that

x αð Þ
αx αð Þ þ 1−αð Þð Þ2 h1 x αð Þ;αð Þ ¼ 1: ð6:30Þ

For α=1/2, x(α)=1 and therefore Eq. (6.30) is equal to
h1(x(α),α). Recall that h1(x(α),α)=1+δ2a(ap+b)>1. Thus, for
α=1/2 the left hand side of Eq. (6.30) is bigger than 1. When α is
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close to zero, the left hand side of Eq. (6.30) is close to zero. Thus, by
the intermediate value theorem there exists α⁎b1/2 such that
Eq. (6.30) is satisfied. We show that the left hand side of Eq. (6.30)
is strictly increasing for all α≤1/2 which guarantees that α⁎ is
unique. Since h1(x(α),α) is strictly increasing, it only remains to be
proved that x(α)/(αx(α)+(1−α))2 is increasing for all α≤1/2.
The first derivative of x(α) /(αx(α)+(1−α))2 can be written as:

x′ αð Þ −αx αð Þ þ 1−αð Þð Þ þ 2x αð Þ 1−x αð Þð Þ
αx αð Þ þ 1−αð Þð Þ3 : ð6:31Þ

Since αb1/2, x(α)b1, and (1−α)>α>αx(α). Thus, Eq. (6.31) is
positive as we wanted to show. Thus, there exists a unique α⁎b1/2
such that for all α∈(0,α⁎), e1(α)be1os(α). ■

Proof of Proposition 6

We first recall the equations that we will use here, namely:

α̂ ¼ apþ b; ð6:32Þ

p ¼ αx
αxþ 1−α

; ð6:33Þ

x ¼ 1þ 2δa apþ bð Þ
1þ 2δa 1−ap−bð Þ ; ð6:34Þ

a ¼ 1−2b: ð6:35Þ

Using Eq. (6.32), Eqs. (6.33) and (6.34) can be written as

αx α̂−b−að Þ ¼ b−α̂ð Þ 1−αð Þ: ð6:36Þ

x ¼ 1þ 2δaα̂
1þ 2δa 1−α̂ð Þ: ð6:37Þ

Substituting the value of x in Eq. (6.37) in Eq. (6.36) we obtain that

α α̂−b−að Þ 1þ 2δaα̂ð Þ− b−α̂ð Þ 1−αð Þ 1þ 2δa 1−α̂ð Þð Þ ¼ 0 ð6:38Þ

which will be our main equation in this proof.
Our first step is to study the roots of Eq. (6.38) whenα ¼ α̂ . Notice

that in this case Eq. (6.38) is a cubic function of α

α α−b−að Þ 1þ 2δaαð Þ− b−αð Þ 1−αð Þ 1þ 2δa 1−αð Þð Þ ¼ 0: ð6:39Þ

Note that α=1/2 is always a solution of Eq. (6.39), and if �α is a so-
lution of Eq. (6.39), then1−�α is also a solution of Eq. (6.39). Also note
that Eq. (6.39) can be written as

4δ 1−2bð Þα3 þ 6δ 2b−1ð Þα2 þ 2 δ−4δb2 þ b
� �

α þ b 4bδ−1−2δð Þ ¼ 0:

ð6:40Þ

By using numerical methods it can be shown that Eq. (6.40) has, at
most, three solutions in α.

Our second step is to compute dα̂=dα. Let us call the left hand side
of Eq. (6.38) F α ^;αð Þ. Totally differentiating Eq. (6.38) we obtain that

dα̂
dα

¼ −∂F α ^;αð Þ
∂α

∂F α ^;αð Þ
∂α′

: ð6:41Þ

We now compute

−∂F α ^;αð Þ
∂α ¼ 1þ 2δaα̂ð Þ aþ b−α̂ð Þ þ α̂−bð Þ 1þ 2δa 1−α̂ð Þð Þ: ð6:42Þ
Since α̂ > b (from Eq. (6.32)) and α ¼ α̂ ¼ 1=2 (from Eq. (6.36)),
both terms in the right hand side of Eq. (6.42) are positive.

Let us now study the denominator of Eq. (6.41). We compute

∂F α ^;αð Þ
∂α̂ ¼ 2δa 4αα̂−2α−2α̂ þ 1þ bð Þ þ 1: ð6:43Þ

Thus, using Eqs. (6.42) and (6.43), Eq. (6.41) can be written as

dα̂
dα

¼ 1þ 2δaα̂ð Þ 1−b−α̂ð Þ þ α̂−bð Þ 1þ 2δa 1−α̂ð Þð Þ
2δa 4αα̂−2α−2α̂ þ 1þ bð Þ þ 1

: ð6:44Þ

Next we compute dα̂=dα evaluated at α ¼ α̂ ¼ 1=2 which
amounts to

dα̂
dα

¼ 2 1þ δað Þ 1=2−bð Þ
2δabþ 1

: ð6:45Þ

Rearranging the previous expression we obtain that

dα̂
dα

> 1 if and only if δ >
2b

1−2bð Þ 1−4bð Þ and b < 1=4; ð6:46Þ

dα̂
dα

b1 if and only if δb
2b

1−2bð Þ 1−4bð Þ and b < 1=4; or b≥1=4 and δ∈ 0;1½ �:

ð6:47Þ

Finally when α=0, Eq. (6.38) which defines α̂ as a function of α is
− b−α̂ð Þ 1þ 2δa 1−α̂ð Þð Þ ¼ 0. This equation has only one root α̂ ¼ b.

Now we have all the necessary ingredients to prove the proposi-
tion. We will do it for the case αb1/2. The case αb1/2 is totally
symmetric.

Part a) If b=0,dα̂=dα > 1 so the curve relating αwith α̂ cuts the 45°
degree line from below. In this case Eq. (6.39) has three solu-
tions in alpha, namely 0,1/2 and 1. Given the geometry of the
problem, the avalanche effect occurs for all α ∈[0,1]∖{1/2}.

Part b) If δ>2b / (1−2b)(1−4b) and bb1/4,dα̂=dα > 1. Since when
αb1/2, but sufficiently close to 1/2, α̂ b α and when α=0,
α̂ ¼ b, by continuity the function relating α to α̂ must cut
the 45° line so the existence of �α is guaranteed. The symme-
try of the function around 1/2 and the existence of at most
three solutions to Eq. (6.40) imply that this intersection is
unique in (0,1/2). Thus for allα∈ 0 �;αð Þ there is a level-off ef-
fect and for α∈ �α ;1=2ð Þ there is an avalanche effect.

Part c) If bb1/4 and δ>2b / (1−2b)(1−4b), or if b≥1/4 and δ
∈[0,1], dα̂=dα b 1. Thus when α is less than 1/2, but suffi-
ciently close to 1/2, α̂ > α and when α=0, α̂ ¼ b. The func-
tion relating α and α̂ does not fall below the 45°. There
might be a point at which α ¼ α̂ but just one because if
this function cuts twice the 45°, by symmetry, there would
be 5 solutions to Eq. (6.40) which is impossible. Thus the
level-off effect holds for all α∈ [0,1] except, possibly, for
two values of α. ■
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