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Abstract

We present a residual-based ADF test that allows for detection of stationary
cointegration within a system that may contain both I (2) and I (1) observables.
The test can also detect situations of multicointegration, where �rst di¤erences
of the I (2) observables enter the cointegrating relationships. We �nd the null
limiting distribution of the test statistic and show that our procedure is more
generally applicable than previous proposals. Critical values are computed for
a variety of situations. Finally, a small Monte Carlo experiment is carried out
and an empirical application is provided as an illustrative example.
JEL Classi�cation: C12, C22, C32.
Keywords: I(2) systems; stationary cointegration; multicointegration; residual-
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1 Introduction

The concept of cointegration has received much attention in the last two decades.

Its importance stems from the fact that cointegration provides the link between the

economic concept of (long-run) equilibrium relationships and the statistical notions
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of nonstationarity and trending behavior: nonstationary variables may display rela-

tionships that are representative of long-run equilibria, in that deviations from the

equilibrium are short-lasting. These ideas can be formalized using the concepts of in-

tegrated and cointegrated processes. Formally, we say that a scalar or vector process

�t, t = 1; 2; :::, is integrated of order zero (I (0)) if �t�E (�t) is covariance stationary
with nonzero and bounded spectral density at all frequencies. Alternatively, a scalar

or vector �t, t = 1; 2; :::, is integrated of order d (I (d)), d = 1; 2; :::, if the d-di¤erence

of �t � E (�t), t = d + 1; d + 2; :::, is a zero-mean I (0) process. These are processes
which arise naturally from model (1) proposed below. For completeness, although

overdi¤erenced processes will not be the focus of our analysis, we say that a scalar or

vector �t, t = 1; 2; :::, is I (�d), d = 1; 2; :::, if �t�E (�t) is d-di¤erences of a zero-mean
I (0) process for t = d + 1; d + 2; ::. Note that if a vector �t is I (d), d = 1; 2; :::, our

de�nition implies that at least one of the individual components of �t must be I (d).

The rest of the components might also be I (d) or, alternatively, they might have a

smaller order of integration. In this sense, our de�nition is similar to that of Johansen

(1995a). Note also that this de�nition does not preclude the existence of components

of an I(d) vector which are fractional processes (I (c), c being a real number smaller

than d), but the model proposed below will exclude this possibility. Next, we de�ne

cointegration for an I (d), d = 1; 2; :::, process. Given a p � 1 process zt � I (d),

zt is cointegrated if there exists a p � 1 vector  6= 0 such that 0zt � I (c), with

c < d, prime denoting transposition. Again, this de�nition permits the existence of

fractional linear combinations of the observables (I (c), c being a real number smaller

than d), but our model below excludes this possibility. Thus, the focus on the present

paper will be on observables and cointegrating errors with integer (not fractional)

orders of integration. Our de�nition of cointegration is similar to that of Johansen

(1995a) and it is signi�cantly more general than the standard notion of Engle and

Granger (1987), where all observables are required to have identical integration or-

ders. Note that according to our de�nition some of the cointegrating vectors might

be unit vectors, just indicating that a particular observable has an integration order

smaller than the order of the vector. As usual, the cointegrating rank among the

elements of zt is the number of linearly independent cointegrating vectors, and the

space generated by these vectors will be denoted as cointegrating space.

Since the seminal contributions of Engle and Granger (1987) and Johansen (1995a),

cointegration has been quite well studied both in uni-equation and system settings

where the observables may behave like I (1) or stationary variables. However, many

observables (especially nominal variables such as price indexes) are smoother than
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what I (1) behavior would suggest. For example, in�ation rates have a behavior close

to that of an I (1) variable, so that (log)price indexes might be characterized as I (2).

Thus, structural models that involve aggregate prices could be combining variables

with di¤erent integration orders (see Juselius, 1995, or Banerjee et al., 2001, for two

di¤erent illustrations of such settings). A similar rationale applies to nominal GDP

or, maybe, to nominal wealth, which is the result of the time-accumulation of nominal

income. In general, models that involve both stock and �ow variables may present

a mixture of I (2) and I (1) variables (Granger and Lee, 1989, Lee 1992, Engsted et

al., 1997). When dealing with I (2) systems, where some (or all) of the observables

are I (2), the cointegrating structure of the data might be very rich even omitting the

possibility of fractional processes. Indeed, I (2) variables might cointegrate to I (1) or

to stationary relations (I (c), with c � 0), and, in addition, these I (1) relations might
combine with I (1) observables and/or �rst di¤erences of the I (2) observables to sta-

tionary relations. The situation where �rst di¤erences of I (2) observables combine

with levels of the observables to achieve stationarity is popularly known as (polyno-

mial) multicointegration.

As in the I (1) case, two di¤erent approaches have been developed in order to ex-

amine cointegration in I (2) systems. Johansen (1995b), Paruolo (1996), Nielsen and

Rahbek (2007), among others, proposed cointegration tests within a vector autore-

gressive framework, which includes also the possibility of detecting multicointegration

(see also, Gregoir and Laroque, 1994, Engsted and Johansen, 1999, Juselius, 1995,

or Banerjee et al., 2001 for empirical applications). An alternative procedure is to

rely on a regression-based analysis. This methodology extends the Phillips and Ou-

liaris (1990) residual based tests for cointegration to the I(2) setting, and has been

pursued in uni-equation settings by Haldrup (1994), and in the particular case of

multicointegration, by Granger and Lee (1989, 1990), Lee (1992) and Engsted et al.

(1997). The aim in these papers is to detect stationary cointegration within an I (2)

cointegrated vector of observables. In general, cointegration in I (2) systems can be

assessed by residual-based methods (see Section 3 below), but the standard approach

is not informative about the departures from the null of no cointegration, that is,

whether the cointegrating errors are I (1) or stationary. Hence the interest of a test

which might discern between these two possibilities, especially because stationary lin-

ear combinations are usually those with empirical relevance. Note also that if I (1)

observables are part of an I (2) system, there is necessarily cointegration, so in many

interesting applications (see Section 3 below), an I(2) vector of observables zt can be

assumed to be cointegrated and the relevant question is whether there are stationary
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relations.

In the present paper we focus on regression-based methods. Obviously, as in the

I (1) setting, a residual-based test for cointegration o¤ers a more limited description

of the cointegrating structure of the system than a likelihood-based system approach.

However, residual-based methods can be useful in at least two relevant contexts. First,

there are situations where the solution of an economic model has one main equation of

interest, so for empirical purposes uniequation methods might su¢ ce. Alternatively,

Gomez-Biscarri and Hualde (2010) (GBH hereafter) showed that the residual-based

Augmented Dickey-Fuller (ADF) test of Phillips and Ouliaris (1990) can be used as

the main tool to infer the whole cointegrating structure in I (1) systems. In the same

vein, a residual-based test might serve as the main tool to unveil a corresponding

structure in I (2) settings. In Section 3 below, we brie�y elaborate on the precise

contexts in which our proposal will be useful.

We propose a test which relates directly to that of Haldrup (1994). This author

developed a residual-based ADF test for the null of I (1) versus the alternative of

stationary cointegration among a set of I (1) and I (2) observables. In particular,

in Haldrup�s model, the I (2) observables cointegrate (with rank one) to an I (1)

cointegrating error, which under the null does not further cointegrate with the I (1)

observables. The test is carried out by regressing an I (2) observable on the I (1)

observables and the rest of I (2) series (which are assumed to be non-cointegrated).

In view of the results of Haldrup�s (1994) Theorem 4, the null limiting distribution of

the test just depends on the number of I (1) and I (2) regressors. We �nd that there

are two empirically relevant limitations of this test. First, and more importantly, the

result appears to be valid only in the case where the coherence at frequency zero

between the I (0) error input processes generating the I (1) and I (2) components of

the system, respectively, is zero. This is a very stringent requirement, which is not

in general satis�ed if, e.g., this I (0) is a vector autoregressive and moving average

process. Therefore, in general, the null limiting distribution of Haldrup�s ADF test

statistic is not free of nuisance parameters. Second, the test assumes that the I (2)

variables cointegrate with rank exactly equal to one, which in systems with several

I (2) observables might not be the case.

Our aim is to develop a generally applicable residual-based test for stationary

cointegration in I (2) settings which does not su¤er from the drawbacks of Haldrup�s

proposal. The main novelty of our approach is that allowing for nonzero coherence

(at frequency zero) requires implementing a correction in the cointegrating regression.

Nicely, this correction is intimately related to the issue of multicointegration. In
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Haldrup�s setting multicointegration is not allowed, but Engsted et al. (1997) applied

Haldrup�s results to the multicointegration case in a simple bivariate setting, and

suggested that Haldrup�s (1994) critical values might be used. We, however, believe

that this is not the case, given that one I (2) observable appears as regressor both in

levels and �rst di¤erences, a circumstance which must a¤ect the limiting distribution

of the test statistic and it is not captured by Haldrup�s (1994) setting.

Our proposed correction can be viewed as a way of obtaining a nuisance para-

meter free null limiting distribution of the ADF test statistic. However, given the

nature of such correction, our test is also consistent to the alternative of multicointe-

gration, covering therefore the case of Engsted et al. (1997) and providing a uni�ed

treatment of stationary cointegration in I (2) settings. In addition, we show that the

distribution of the test depends on the number of I (2) common trends present in the

system (or, alternatively, on the cointegrating rank of the I (2) vector), and tabulate

corresponding critical values in various scenarios. Finally, we also justify that both

the required correction and a correct speci�cation of the cointegrating regression may

follow from data-based information.

The outline of the rest of the paper is as follows. Section 2 presents the model,

the residual-based ADF test statistic and develops its null asymptotic distribution.

Section 3 comments on some issues regarding the empirical implementation of the

test, placing special emphasis on describing the contexts in which the test might

be a useful tool. Section 4 presents the results of a small Monte Carlo experiment

analyzing the power of the test, and an illustrative empirical example is discussed in

Section 5. Section 6 concludes. Proofs are provided in the Appendix.

2 The ADF test: the model, assumptions and prop-

erties

Our purpose is to present an ADF statistic to test the null hypothesis of no stationary

cointegration in a p-dimensional cointegrated I (2) vector of observables zt, which is

composed of I (2) and possibly also of I (1) individual series. We assume that the

cointegrating rank of zt is r, where 0 < r < p. Under the null, zt is assumed to be

generated by the model 
Ir B

0 Ip�r

!
(zt � E (zt)) =

 
��1Ir 0

0 ��2Ip�r

!
f�t1 (t > 0)g , t = 1; 2; 3; :::;

(1)
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where � = 1 � L, L is the lag operator, Ip is the p-rowed identity matrix, �t is
a zero-mean I (0) vector process whose spectral density at all frequencies is �nite

and nonsingular, B is an r � (p� r) matrix and 1 (�) is the indicator function. The
truncation on the right side of (1) ensures that zt is well de�ned in mean square

sense. The presence of deterministic components might be allowed by nonzero E (zt),

although for simplicity we will consider that E (zt) = 0. Partition zt =
�
z0(1)t; z

0
(2)t

�0
,

where z(1)t collects the �rst r components of zt (and z(2)t the rest). Model (1) captures

a variety of situations where the cointegrating rank of zt is r. If none of the rows of

B is identically zero, all individual observables in zt are I (2). Alternatively, if B = 0,

the r individual components in z(1)t are I (1), and the I (2) components (z(2)t) do not

cointegrate. In this case, the r cointegrating relations are trivial. The situation where

there are some I (1) components and the I (2) individual components cointegrate,

is also covered by (1), in the case where some (but not all) of the rows of B are

identically zero. Note also that there is no loss of generality in the representation (1).

If zt cointegrates with rank r, a trivial extension of Theorem 2 of GBH ensures the

existence of a (p� r)-dimensional subvector of zt (z(2)t) whose individual components
are I (2) and do not cointegrate. These variables represent the common trends of

the system. Also, collecting the rest of the observables in z(1)t, by the same theorem,

there exists an r � (p� r) matrix B such that z(1)t + Bz(2)t � I (1) under the null.

Of course, in practice one usually does not know which variables are in z(1)t or z(2)t,

but we outline in Section 3 below a procedure that allows for inference of both r and

z(2)t from the data.

Haldrup (1994) considers the case where there are r� 1 I (1) observables, and the
p � r + 1 I (2) observables cointegrate with rank one, so the cointegrating rank in
zt is r. Thus, in his setting, z(1)t is composed of the r � 1 I (1) and one of the I (2)
variables (the one which is not part of the common trends). His ADF test is based on

the (ordinary least squares) regression of the I (2) variable in z(1)t on the rest of the

observables. The null limiting distribution of this statistic is dependent on a vector

of both nonintegrated and integrated Brownian motions, the former arising from the

I (1) observables and the single cointegrating relation among the I (2) observables,

the latter arising from the I (2) common trends (z(2)t). Unless these two types of

Brownian motions are mutually independent (due for example to a zero coherence at

frequency zero between the I (0) error input processes generating the I (1) and I (2)

components, respectively), the typical decomposition (see e.g. the proof of Lemma

2 in Haldrup, 1994) leading to standard (and mutually independent) nonintegrated

and integrated Brownian motions is not valid. Therefore, in general, the limiting
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distribution of Haldrup�s statistic is not free of nuisance parameters.

Fortunately, a simple correction can be carried out in the regression, so a proper

orthogonalization can be achieved in general circumstances. This correction leads to

our proposed test statistic, which is based on residuals arising from the regression

of z1t on z�1;t and �z(2)t, where z1t is the �rst component of zt (which obviously

coincides with the �rst component of z(1)t) and z�1;t collects the rest of elements of zt.

The inclusion of the additional regressors �z(2)t (�rst di¤erences of the I (2) common

trends) implies that the asymptotic distribution of the statistic is characterized by a

vector of nonintegrated Brownian motions (due to the I (1) components and the �rst

di¤erences of the I (2) common trends) and integrated Brownian motions (due to the

I (2) common trends). We show in the Appendix (see Proof of Theorem 1) how a

proper orthogonalization can be achieved in this case, hence leading to a nuisance

parameter free null limiting distribution.

We should comment on several crucial issues here. First, as described in Section

3 below, r and z(2)t can be inferred from data by applying a simple extension of the

procedure proposed by GBH. Second, the null limiting distribution of our proposed

test statistic is invariant to the choice of left hand side variable on the regression

from which the residuals but = (1;�b�0)(z0t;�z0(2)t)0 (where b� is the ordinary least

squares estimator in this regression), are derived, as long as this choice is taken from

z(1)t. However, as in any residual-based test for cointegration, the choice of left hand

side variable in the regression is important for power considerations. Finally, the null

limiting distribution of our statistic is invariant to B. The reason is that de�ning

T =

0B@ Ir B 0

0 0 Ip�r

0 Ip�r 0

1CA ;
then but = (1;�b�0)T�1T (z0t;�z0(2)t)0 = (1;�b�0)vt; (2)

where vt =
��
z(1)t +Bz(2)t

�0
;�z0(2)t; z

0
(2)t

�0
, and b� is the ordinary least squares esti-

mator of v1t on v�1;t (where v1t is the �rst component of vt, and v�1;t collects the rest

of elements of vt). Noting (1), vt is just a simple transformation of �t which does not

depend on B.

Before presenting our main result, we introduce some assumptions which are sim-

ilar to those in Chang and Park (2002). When applied to matrices, denote by k�k
the norm kAk = supkxk�1 kAxk, whereas k�k applied to vectors is the usual Euclid-
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ean norm. Notice that if aij denotes the (i; j)-th element of a p � p matrix A,
kAk2 � �pi=1�

p
j=1a

2
ij:

Assumption 1. The process �t in (1) has representation

�t = A (L) "t, where A (u) = Ip +
1X
j=1

Aju
j;

and the Aj are p� p matrices such that:

(i) det (A (u)) 6= 0, juj = 1;

(ii) A
�
ei�
�
is di¤erentiable in � with derivative in Lip (�), � > 1=2;

(iii) ("t;Ft) is a martingale di¤erence sequence with some �ltration (Ft) such that
E ("t) = 0, E ("t"0t) = �, � is positive de�nite, n

�1�nt=1"t"
0
t !p �, E k"tku < K

with u � 4, where K is some constant that depends only upon u:

Assumption 1 implies that �t is a fairly general linear process with martingale

di¤erence innovations. Notice that (ii) implies the summation condition �1j=1j kAjk <
1, so (ii) and (iii) imply that �t is weakly stationary, whereas (iii) holds under suitable
mixing conditions. In addition, Assumption 1 enables us to apply the multivariate

invariance principle

1p
n

[ns]X
t=1

�t ) B (s) ; (3)

where [�] denotes integer part and B (s) is a p-vector Brownian motion with covariance
matrix 
 = A (1)�A (1)0.

Given the previously de�ned residuals but, the standard ADF test statistic is the
t-ratio corresponding to the coe¢ cient of but�1 in the regression of �but on but�1,
�but�1; :::�but�q. We will denote this t-ratio by tn, and give its null limiting distribu-
tion in Theorem 1 below. This theorem covers the case where no constant is included

in the cointegrating regression, but results for alternative speci�cations including con-

stant and/or deterministic trends might be easily derived by minor modi�cations of

the proof of this theorem.

As is well known (see, e.g., Phillips and Ouliaris, 1990), it is necessary in general

to let q increase with n, for which we impose the following condition.

Assumption 2. Let q !1 and q = o
�
n1=3

�
as n!1:

This condition guarantees the consistency of the estimators of autoregressive para-

meters in a particular autoregressive approximation (see, e.g., Berk, 1974, Chang and
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Park, 2002), which is a required step when calculating the null limiting distribution

of our test statistic.

Before presenting the main result we introduce some additional notation. For a

vector process G (s), G1 (s) denotes its �rst component and G�1 (s) the subvector

resulting from omitting this �rst component. Also, given an arbitrary Brownian

motion G (s), de�ne the integrated Brownian motion G (s) =
R s
0
G (l) dl.

Let W (s) be a p-dimensional standard Brownian motion, let W(2) (s) be the sub-

vector made of the last p� r components of W (s) and let V (s) = (W 0 (s) ;W
0
(2) (s))

0.

Finally, let Q (s) = �0V (s), where

� =

0B@1;� 1Z
0

V1 (s)V
0
�1 (s) ds

0@ 1Z
0

V�1 (s)V
0
�1 (s) ds

1A�1
1CA
0

Theorem 1. Let zt be generated by (1) and Assumptions 1 and 2 hold. Then, as
n!1, q !1;

tn ) � (p; r) �

1Z
0

Q (s) dQ (s)

0@ 1Z
0

Q2 (s) ds

1A
1
2  
�0

 
Ip 0

0 0

!
�

! 1
2

: (4)

The proof is provided in the Appendix. The distribution of the ADF test is free

of nuisance parameters, but it depends on p and r. This test is consistent under the

alternative of stationary cointegration, including also any type of multicointegration

(see Proposition 1 below). Note that this possibility is not contemplated by Haldrup�s

(1994) setting. We present in Table 1 the simulated quantiles of the distributions

of this residual-based ADF test for series of length n = f50; 100; 250; 500; 50; 000g,
200,000 replications and di¤erent (p; r) combinations. In particular, we generated the

vector of observables zt for cases p = 2; :::; 5, r = 1; :::; p � 1, choosing �t to be a p-
dimensional zero mean normal innovation with covariance matrix Ip and independent

over time. We computed the ADF statistic from the auxiliary regression

�but = �but�1 + 't;
where a constant was included in the cointegrating regression. The estimated dis-
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tributions of the ADF statistic for alternative speci�cations of �t and the number of

lags in the ADF regression have also been tabulated, and are available from the au-

thors. The small-sample quantiles di¤er from those in Table 1, but the approximate

asymptotic ones (n = 50; 000) are the same, as Theorem 1 implies. Critical values

for cointegrating regressions with a linear and possibly also quadratic trends are also

available upon request.

3 Issues regarding the implementation of the test

From a practical point of view, in order to apply our test, the researcher must know

both the rank r and the set of I (2) common trends in the system. Given these

requirements and the fact that likelihood based procedures for analysis of I(2) systems

have been developed (Johansen, 1995b, Paruolo, 1996, and, more recently, Nielsen and

Rahbek, 2007), it is warranted that we motivate the usefulness of our proposal. As

mentioned in the Introduction, there are at least two contexts in which the current test

can be of direct interest. Of course, these contexts are parallel to those in which the

regression-based tests of Phillips and Ouliaris (1990) are of interest in I(1) systems.

First, many economic models lead to equilibrium equations which might contain

both I(1) or I(2) variables. In particular, some models deliver one single equilibrium

condition or several, but one of them is of special interest to the researcher. Examples

of these are the analyses of money demand equations (which involve I(2) variables

such as nominal money and price indices, and variables with I(1) behavior, such

as interest rates or real output: see, e.g., Stock and Watson, 1993, Haldrup, 1994,

Bae and DeJong, 2007), purchasing power parity (PPP) models of the exchange

rate (which postulate a relationship between domestic and foreign price indices, both

I(2), and the exchange rate, typically I(1); see, e.g., Rogo¤, 1996, Caner and Kilian,

2001, Pedroni, 2004), or structural models of the exchange rate (which also lead to an

expression of the exchange rate as a function of the di¤erentials between domestic and

foreign variables: some of these �exchange rate fundamentals�are I(2), such as money

or prices, and some are I(1), such as real output or interest rates; see, e.g., Mark and

Sul, 2001, Rapach and Wohar, 2002, Rossi, 2006). The empirical researcher may be

interested in testing these equilibrium relationships, without necessarily attempting

to give a full description of the cointegrating structure of the complete system. Our

proposed test is, then, a straightforward way to carry out this analysis. Of course,

knowledge of the cointegrating rank among the I(2) components is needed, but usually

familiarity with the variables involved and, sometimes, economic theory, provides
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with this information. For example, in the simplest models of PPP there are only

three variables involved, namely the (log)exchange rate between two currencies and

the two (log)price indices in the foreign and domestic countries. Log-price indices

can be taken to be I(2) (or a simple test for the order of integration would lead to

this conclusion), and (log)exchange rates are typically I(1). A simple bivariate test

for cointegration among the (log)price indices usually shows that these cointegrate

with cointegration vector statistically indistinguishable from (1,-1). This leads to a

system with p = 3 variables and r = 2 and, therefore, if one wants to test for PPP

(a stationary relationship between the three variables), this could be carried out by

using our proposed test, with one of the price indices or the exchange rate as the

left-hand side variable. The other price index would be taken as the common trend

and, therefore, it would be included both in levels and �rst di¤erences in the right-

hand side of the cointegrating regression. Incidentally, our theoretical results suggest

that some of the tests in the vast empirical literature devoted to PPP may not have

been properly designed, since �rst di¤erences of the common trend were not included

as regressors, and the critical values employed were typically those of Phillips and

Ouliaris (1990).

Second, our proposed test can be a key tool in order to unveil the whole cointe-

grating structure of an I(2) system. In an I(1) setting, GBH propose a sequential

procedure based on the regression-based ADF tests of Phillips and Ouliaris (1990)

which leads to an estimator of the cointegrating rank (r) and to an identi�cation of

the common trends. The intuition behind this method is the following. First, if all

pairs of observables are cointegrated, then necessarily r = p � 1. If not, there is at
least a pair of non-cointegrated observables (common trends), and the next step is

to test whether trios containing this pair are cointegrated. If they are, r = p � 2,
while if they are not, we proceed to the next step. The procedure is �nalized when

all corresponding groups of observables are cointegrated, or, alternatively, when in

the last possible step, cointegration among all observables is checked. This tests are

carried out by residual-based ADF, and one of the most appealing features of this pro-

cedure is that in every step the choice of left-hand side variables in the cointegrating

regressions is automatic.

The GBH method can be equally applied to infer the cointegrating rank in I(2)

systems. There is an important di¤erence, though, because under the null of no cointe-

gration, the residuals of the di¤erent cointegrating regressions are linear combinations

of non-cointegrated I(2) variables. Hence, the critical values of Phillips-Ouliaris are

not applicable. More importantly, the test based on these residuals is not consistent
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under the alternative of I(1) cointegration. However, performing the standard ADF

test on the �rst di¤erences of these residuals sorts out this latter problem. It is nec-

essary to modify slightly the proof arguments of Phillips and Ouliaris (1990) in order

to �nd the appropriate null limiting distribution of this ADF statistic (which di¤ers

from that in Phillips and Ouliaris, 1990). Thus, this modi�ed GBH procedure leads

to an estimator of the rank r and, as a by-product, to the identi�cation of the p� r
common trends.

However, in I(2) settings, this might not capture the whole cointegrating struc-

ture of the data, which can be also characterized by a possible cointegrating subspace,

where particular directions of the cointegrating space lead to stationary linear combi-

nations of the observables (and, possible, also of the �rst di¤erences of these observ-

ables). The ADF tests on di¤erenced residuals are not informative about the I(1) or

stationary nature of the cointegrating relationships, so they are not a proper tool in

order to infer the dimension of this subspace. Our test, which is speci�cally designed

to distinguish between I(1) and stationary cointegration, becomes the appropriate

tool for this second stage of the analysis. Nevertheless, a fully detailed explanation of

the precise use of our test within this procedure goes beyond the scope of the present

paper.

As mentioned before, the choice of left hand side variable is a critical issue. This

problem a¤ects any test for cointegration based on regression methods even in the

standard I (1) setting. Speci�cally, the tests proposed by Phillips and Ouliaris (1990)

do not have power if the left-hand side variable does not enter the stationary relation

with nonzero coe¢ cient. We postulated this left-hand side variable to be one of the

observables in z(1)t, noting that if there is stationary cointegration, at least one of

the variables in z(1)t must have necessarily a nonzero coe¢ cient in the stationary

linear combination of observables (and possibly also �rst di¤erences of I (2)). Note,

however that this test only has power with respect to stationary relations in which

the chosen left-hand side variable appears with a nonzero coe¢ cient. Again, in our

setting, this is not of overriding concern. In the analysis of single equations, there

will be typically theoretical reasons which imply that a particular variable must enter

the stationary cointegrating relation. Alternatively, if the test is being used with the

aim of inferring the rank of a possible cointegrating subspace, a properly designed

sequential procedure will select automatically the variable to place in the left-hand

side of the equations in every step (as it is the case in the GBH procedure applied to

I (1) systems).

A �nal point of concern is the following: given that we just include �rst di¤erences

12



of z(2)t in the cointegrating regression, we might wonder whether other multicointe-

grating relations (apart from those evaluated by the test) are possible. Fortunately,

Proposition 1 below rules out the existence of these alternative relations: if there

are multicointegrating relations, these must arise from combinations between zt and

�z(2)t:

Proposition 1. Let zt be a p-dimensional cointegrated I (2) vector, with cointegrat-
ing rank r, where 0 < r < p. De�ne two subspaces R, T of the cointegrating space

(C) in the following way:

i. � 2 R � C if there exists a p-dimensional vector � (�) such that �0zt+�0 (�)�zt �
I (c), c � 0;

ii. � 2 T � C if there exists a (p� r)-dimensional vector � (�) such that �0zt +
�0 (�)�zt � I (c), c � 0, where zt is a (p� r)-dimensional subvector of zt with
I (2) and not cointegrated individual components.

Then, � 2 R if and only if � 2 T .
The proof of Proposition 1 is in the Appendix. Incidentally, this result is parallel

to that in Johansen (1995b), where multicointegration is tested with �rst di¤erences

of the common trends, which, in his setting, are particular linear combinations of the

I (2) observables. In our case, however, we identify these p� r common trends by the
p� r dimensional vector of observables z(2)t.

4 Monte Carlo evidence

We investigate the �nite sample power of our proposed test by means of a simple

Monte Carlo experiment. We �x p = 3, and in all cases the analysis is based on

10,000 replications of series of lengths n = 50,100,250. We generated "t as a Gaussian

white noise with E ("t) = 0, V ar ("t) = I3, and examine three di¤erent DGPs for

the innovation vector �t: A (L) = I3 (WN), A (L) = (1� 0:8L)
�1 I3 (AR), A (L) =

(1� 0:5L) I3 (MA). We generate processes under the alternative using the six possible
stationary cointegrating structures in a 3-variable I(2) vector. The simulated models

are:

�zt = �(L) f�t1 (t > 0)g ;
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where

� =

0B@ 1 0 �1
0 1 �1
0 0 1

1CA , Models 1, 2; =
0B@ 1 �1 �1
0 1 �1
0 0 1

1CA , Models 3, 4;

=

0B@ 1 �1 �1
0 1 0

0 0 1

1CA , Models 5, 6,
and

�(L) =

0B@ 1 0 0

0 1 0

0 0 ��2

1CA , Model 1; =
0B@ 1 0 ��1

0 1 0

0 0 ��2

1CA , Model 2;

=

0B@ 1 0 0

0 ��1 0

0 0 ��2

1CA , Model 3; =
0B@ 1 0 ��1

0 ��1 0

0 0 ��2

1CA , Model 4;

=

0B@ 1 0 0

0 ��2 0

0 0 ��2

1CA , Model 5; =
0B@ 1 ��1 ��1

0 ��2 0

0 0 ��2

1CA , Model 6.
In the case of Models 1-4, the cointegrating rank of the I(2) system is r = 2, and

in models 5, 6, r = 1. Also, in Models 1, 2, all directions in the cointegrating space

lead to stationarity, whereas in Models 3, 4, there is just one direction leading to

stationarity. Multicointegration is present in models 2, 4 and 6. Critical values for

tests of nominal size � = 0:1; 0:05; 0:01 are taken from Table 1 (cases p = 3, r = 2 for

Models 1-4 and p = 3, r = 1 for models 5, 6). Our proposal requires the test to be

based on the residual from the following cointegrating regressions

Models 1-4 : z1t = �0 + �1z2t + �2z3t + �3�z3t + ut; (5)

Models 5, 6 : z1t = �0 + �1z2t + �2z3t + �3�z2t + �4�z3t + ut:

We record the proportions of rejection of the null hypothesis of no stationary cointe-

gration and show them in Table 2. Overall, the performance seems quite satisfactory

and rejection proportions behave very similarly for all six models considered. For rel-

atively small sample sizes (n = 100), the test rejects the null hypothesis almost with
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certainty under the white noise and moving average speci�cations. In the case of the

autoregressive process, more observations are needed to achieve high rejection rates,

but for a reasonable sample size (n = 250) the test already rejects with frequencies

close to one.

5 An empirical application: markups and in�ation

Banerjee et al. (2001) (BCR, hereafter) analyze a model of the markup of prices for

a closed economy. Their main interest is to show that there is a long run negative

relationship between the markup of prices over cost and in�ation. This implies that

the real wage may respond positively to in�ation. As a consequence, real activity

(and unemployment) would be related in the long run to in�ation, thus making the

long run Phillips curve not vertical, and, for example, �rm�s pro�tability (and stock

returns) would be negatively correlated with in�ation. In order to justify the empirical

analysis, BCR setup a model which delivers a solution for the long-run markup of the

form

mu � p� �ulc� (1� �)pm = !0 + !1x� !2�p; (6)

where �, !0, !1, !2, are parameters,mu denotes the markup, p, ulc, and pm are prices,

unit labor costs and import prices, respectively, and x captures shifts in the bargaining

position of labour and �rms. In particular, x includes variables that characterize the

�rm�s competitive environment. The relationship (6) expresses a long-run equilibrium

among the variables involved. Under certain assumptions, BCR simplify the equation

above by assuming that the competitive environment of the �rm (variables in x) is

constant. Thus, they express the long-run markup as a function of the in�ation rate

exclusively. The long-run markup equation (6) is then estimated using quarterly

Australian data that run from 1970:1 to 1995:2. In these data, the core variables,

pt, ulct and pmt, are de�ned on a national accounts basis as the private consumption

de�ator, the Australian Treasury�s measure of non-farm unit labour costs and the

imports implicit price de�ator respectively.

BCR suggest that the three core variables are I(2), so they consider scenarios

where the core variables may cointegrate to I(1) or to stationarity or present mul-

ticointegration, as implied by the presence of �p in (6). Thus, the setup of their

long-run analysis is an immediate testing ground for the test proposed in the present

paper. As mentioned before, BCR assume that the variables in x are all stationary,

i.e., they are only present as determinants of short-run deviations from the long-run
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markup. These variables include the unemployment rate, a measure of tax rates, oil

prices and a measure of the number of labor strikes. In fact, there is evidence that

the �rst three of these variables are I(1), and therefore BCR include them in �rst

di¤erences in the analysis. However, there seems to be no theoretical reason to omit

the variables in x from the analysis of cointegration, which could in principle allow

for a long run relation that involves the six nonstationary variables in the dataset.

We �rst replicate the BCR analysis by testing for an stationary relationship among

the three core variables and, possibly, the in�ation rate (�pt). BCR characterize pt,

ulct and pmt as I(2) variables that cointegrate with two cointegrating vectors, so

r = 2. This can be checked by analyzing the relationships in levels and showing that

the residuals of the cointegrating regressions of pmt and pt and of ulct and pt are of

order smaller than I(2). Then, under the hypothesis that there is not a stationary

cointegrating relationship, the test for a stationary markup would be performed by

running the following regression (where we allow for an intercept, but not a trend in

the cointegrating vector)

ulct = �0 + �1pt + �2pmt + �3�pt + ut:

From our previous analysis, the necessary correction in the cointegrating regression

is the inclusion of the �rst di¤erence of just one I (2) variable (given that p = 3 and

r = 2), so the above equation, which includes �pt and that corresponds exactly

to BCR�s markup equation, is statistically well speci�ed. Choosing one lag in the

ADF regression (based on SIC), the ADF-test yields a value of -2.98, which should

be compared with critical values (from Table 1) corresponding to p = 3 and r = 2,

which are -3.83 (10%), -4.35 (5%) and -4.66 (1%). Thus, there is no strong evidence

against the null hypothesis of no stationary cointegration.

If we were willing to consider that the competitive environment may not be con-

stant in the long-run, then some of the variables in x may enter the equilibrium

relationship. We include oil prices (pett), the unemployment rate (uet) and a tax rate

(taxt) in the cointegration analysis. If any of these three variables enters a station-

ary cointegrating relationship, the resulting cointegrating error may be interpreted as

the markup net of persistent shocks and in�ation or, in BCR�s terminology, as the

markup that includes the possibility of changes in the competitive environment of the

�rm. Since there is evidence that these three additional variables are I(1), the system

now has p = 6 variables and cointegrating rank r = 5. Hence, only the �rst di¤erence

of one of the I(2) variables (�pt) must be included in the cointegrating regression on
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which the test is based. This is:

ulct = �0 + �1pt + �2pmt + �3�pt + �4pett + �5uet + �6taxt + ut;

where we note that ulct is one of the variables which constitutes the markup and,

therefore, it should necessarily enter the possible cointegrating relation with nonzero

coe¢ cient. An ADF test carried out on the residuals (with zero lags as selected by

SIC) yields the value -6.09, which should be compared with critical values correspond-

ing to p = 6 and r = 5 (available from the authors upon request). The critical values

are -4.70 (10%), -5.23 (5%) and -5.52 (1%). Thus, the null hypothesis of no-stationary

cointegration can be strongly rejected at the 1% level, suggesting that the markup

itself is persistent, even accounting for the e¤ect of in�ation, but that a markup net

of shocks to the competitive environment is indeed stationary: �rms set their markup

conditional on their competitive environment, and, when this changes, �rms adapt

their markup behavior. Estimated coe¢ cients in the above regression are given by

ulct = 2:36 + 0:94pt + 0:03pmt + 2:99�pt�0:03pett + 0:10uet�0:23taxt + but;
signs and magnitudes being consistent with those expected by theory.

6 Conclusions

Our main interest in the paper was the analysis of long run relationships that involve

I (2) and, possibly, I (1) observables. The objective was to detect linear combina-

tions of these observables that led to stationary cointegrating errors. Cointegrating

regressions that combine the I (2) and I (1) observables can be used to test for this

possibility, but care has to be exercised to make sure that these regressions are well

speci�ed. We show that an adjustment must be made in the cointegrating regres-

sion, which consists of including as additional regressors the �rst di¤erences of a

non-cointegrated set of I (2) observables that characterize the common trends in the

system. Detection of this set of non-cointegrated I (2) observables must be based

either on familiarity with the variables involved in a speci�c equilibrium relationship

or on a previous step, where both the rank and the common trends in an I(2) system

are identi�ed.

Once the adjustment has been done, traditional ADF tests can be applied to the

residuals of the cointegrating regression in order to test the null hypothesis of no

stationary cointegration. We have derived the asymptotic distribution of this ADF
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test and show that it depends on the number of observables p and on the number

of I (2) common trends (p � r) (or, alternatively, on the cointegrating rank of the
system, r). We have tabulated the critical values of this distribution for a number of

cases, given evidence of the �nite sample power of the test and illustrated the use of

the test by means of an empirical analysis of markups and in�ation.

Appendix

Proof of Theorem 1. Using similar notation to that of Phillips and Ouliaris (1990),
the ADF statistic is

tn =
bU 0�1QXq�bU�bU 0�1QXq bU�1� 1

2 b� ; (7)

whereQXq = In�q�1�Xq

�
X 0
qXq

��1
X 0
q,Xq = (xq;q+2; :::; xq;n)

0, xq;t = (�but�1; :::;�but�q)0,bU�1 = (buq+1; :::; bun�1)0, �bU = (�buq+2; :::;�bun)0 ;
b�2 = 1

n� q � 1
X
t

 
�but � b�0but�1 � qX

j=1

b�j�but�j!2 ;
where �t = �nt=q+2 and b�j, j = 0; :::; q, are the ordinary least squares coe¢ cients in
the regression of �but on but�1, �but�1; :::;�but�q. First, noting that but = �1;�b�0� vt,
de�ne b� =  Ip 0

0 nIp�r

! 
1

�b�
!
:

By (3) and the continuous mapping theorem

b� ) � �

0B@1;� 1Z
0

X1 (s)X
0
�1 (s) ds

0@ 1Z
0

X�1 (s)X
0
�1 (s) ds

1A�1
1CA
0

; (8)

where X (s) =
�
B0 (s) ; B

0
(2) (s)

�0
, B(2) (s) being the subvector made of the last p� r

components of B (s). We will stress the dependence of the ADF statistic on b� by
de�ning tn(b�) � tn. Theorem 1 follows on showing that, as n!1, q !1;

tn(b�)� tn(�) = op (1) ; (9)

tn(�) ) � (p; r) ; (10)

where tn(�) is as tn(b�), just replacing b� by �. We show (10) �rst. The proof will
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be based on the following result. Under our assumptions, n�1=2
X[nr]

t=1
�t is a mixing

sequence (see, e.g., Rootzén, 1976, Phillips and Durlauf, 1986, Phillips and Ouliaris,

1990), so tn(b�) is also mixing. Then, if (9) holds, by Lemma 2.6 of Rootzén (1976)
tn (�) is also a mixing sequence, so conditioning on � does not a¤ect the analysis of

the limiting distribution of tn(�). Thus, we would act as if � were �xed. Noting that

by (2)

�but = �1;�b�0� �t

�z(2)t

!
= b�0 �t

n�1�z(2)t

!
;

de�ne ut and xq;t as but and xq;t, respectively, but replacing b� by � in these latter
expressions. There is a slight abuse of notation here because

�ut = �
0

 
�t

n�1�z(2)t

!
;

so, strictly speaking, a more appropriate (but more cumbersome) notation would be

ut;n, given that this is a triangular array.

First, we show that as q !1 and n!1; 
1

n

X
t

xq;tx
0
q;t

!�1
= Op (1) ; (11)

1

n

X
t

ut�1xq;t = Op

�
q
1
2

�
: (12)

Denote by �1, �2, the �rst p and last p � r components of �, respectively, so � =
(�01; �

0
2)
0. Then xq;t = aq;t + bq;t, where

aq;t = (�
0
1�t�1; :::; �

0
1�t�q)

0, bq;t = (
�02
n
�z(2)t�1; :::;

�02
n
�z(2)t�q)

0:

In order to show (11), we �rst prove that

1

n

X
t

xq;tx
0
q;t = Cn +Rn;
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where Cn = (Iq 
 �01) �q (Iq 
 �1), 
 denotes the Kronecker product,

�q =

0BBBB@
� (0) � (1) � � � � (q � 1)
� (�1) � (0) � � � � (q � 2)
...

...
. . .

...

� (1� q) � (2� q) � � � � (0)

1CCCCA ;

with � (j) = E(�t�
0
t�j), and kRnk = Op

�
qn�1=2

�
= op (1) by Assumption 2. This

result follows because it can be shown that under our conditions

E

X
t

�t�i�z
0
(2)t�j


2

= O
�
n2
�
, E

X
t

�z(2)t�i�z
0
(2)t�j


2

= O
�
n4
�
,

E

X
t

(�t�i�
0
t�j � � (j � i))


2

= O (n) ;

uniformly in i, j, so by the properties of the norm

E

1nX
t

aq;tb
0
q;t


2

= O

�
q2

n2

�
, E

1nX
t

bq;tb
0
q;t


2

= O

�
q2

n2

�
;

E

 1nX
t

aq;ta
0
q;t � Cn


2

= O

�
q2

n

�
:

Next kC�1n k = Op (1) because �q is positive de�nite and Iq 
 �1 is a full rank qp� q
matrix. Additionally,

 
1

n

X
t

xq;tx
0
q;t

!�1
� C�1n

 �1� kRnkC�1n � � kRnkC�1n 2 :
Noting that kC�1n k = Op (1), kRnk = op (1), 1 � kRnk kC�1n k > 0 with probability

approaching one, so that
 
1

n

X
t

xq;tx
0
q;t

!�1
� C�1n

 � kRnk kC�1n k
2

1� kRnk kC�1n k
= Op

�
q

n
1
2

�
;
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to conclude the proof of (11). Next, (12) follows by similar arguments noting that

E

 1nX
t

 
v(1)t�1

�z(2)t�1

!
� 0t�j


2

= O (1) , E

 1n2X
t

z(2)t�1�
0
t�j


2

= O (1)

E

 1n2X
t

 
v(1)t�1

�z(2)t�1

!
�z0(2)t�j


2

= O (1) , E

 1n3X
t

z(2)t�1�z
0
(2)t�j


2

= O (1) ,

uniformly in j, where v(1)t = z(1)t +Bz(2)t:

Next we deal with U
0
�1QXq

U�1, where U�1, QXq
, are de�ned as bU�1, QXq , replac-

ing but, xq;t, by ut, xq;t, respectively. This is one of the components of the denominator
of tn (�) (see (7)), and by (11), (12),

1

n2
U
0
�1QXq

U�1 =
1

n2

X
t

u2t�1 +Op

� q
n

�
: (13)

Partitioning


 =

 

11 
12


21 
22

!

according to B (s) =
�
B0(1) (s) ; B

0
(2) (s)

�0
, de�ne

S =

0B@ Ir �
12
�122 0

0 Ip�r 0

0 0 Ip�r

1CA :
Then

1

n2

X
t

u2t�1 =
1

n2
�0S�1

X
t

S

0B@ v(1)t�1

�z(2)t�1

n�1z(2)t�1

1CA�v0(1)t�1;�z0(2)t�1; 1nz0(2)t�1
�
S 0 (S 0)

�1
�:

First, note that S
�
v0(1)t;�z

0
(2)t; n

�1z0(2)t

�0
=
�
w0t;�z

0
(2)t; n

�1z0(2)t

�0
, where wt = v(1)t �


12

�1
22�z(2)t is an I (1) process such that the coherence at frequency zero between

�wt and �2z(2)t is zero. De�ne Z (s) =
�
B0(1:2) (s) ; B

0
(2) (s) ; B

0
(2) (s)

�0
, B(1:2) (s) =

B(1) (s)�
12
�122 B(2) (s), noting that B(1:2) (s) and B(2) (s) are independent Brownian
motions and B(1:2) (s) has covariance matrix � = 
11�
12
�122 
21. Then, by (3) and
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the continuous mapping theorem

1

n2

X
t

u2t�1 ) �0S�1
1Z
0

Z (s)Z 0 (s) ds (S 0)
�1
�

=

1Z
0

Z21 (s) ds

�
1Z
0

Z1 (s)Z
0
�1 (s) ds

0@ 1Z
0

Z�1 (s)Z
0
�1 (s) ds

1A�1 1Z
0

Z1 (s)Z�1 (s) ds;

(14)

because

�0S�1 =

0B@1;� 1Z
0

Z1 (s)Z
0
�1 (s) ds

0@ 1Z
0

Z�1 (s)Z
0
�1 (s) ds

1A�1
1CA : (15)

As in Phillips and Ouliaris (1990), let

� =

 
�11 �12

�21 �22

!
= L0L, where L =

 
l11 0

l21 L22

!
;

where �11, �12, �22, are 1 � 1, 1 � (r � 1), (r � 1) � (r � 1), matrices, respectively,
�21 = �

0
12, and l11 =

�
�11 � �12��122 �21

�1=2
, l21 = �

�1=2
22 �21, L22 = �

1=2
22 . Thus

Z (s) =

0B@ B(1:2) (s)

B(2) (s)

B(2) (s)

1CA =

0BB@
L0 0 0

0 

1
2
22 0

0 0 

1
2
22

1CCAV (s) :
Then, by (13), (14) and obvious manipulations

1

n2
U
0
�1QXq

U�1 ) l211

1Z
0

Q2 (s) ds: (16)

Next

1

n
U
0
�1QXq

�U =
1

n

X
t

ut�1�ut �
1

n

X
t

ut�1x
0
q;t

 X
t

xq;tx
0
q;t

!�1X
t

�utxq;t; (17)
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noting that �ut = � 0t�1 + n
�1�z0(2)t�2. First, by similar arguments to those in the

proofs of (11), (12), it is simple to show that

1

n2

X
t

xq;t�z
0
(2)t�2 = Op

�
q1=2

n

�
,

 
1

n

X
t

xq;tx
0
q;t

!�1
�
 
1

n

X
t

aq;ta
0
q;t

!�1
= op (1) ,

1

n

X
t

bq;t�
0
t�1 = Op

�
q1=2

n

�
;

which implies that (17) equals

1

n

X
t

ut�1

0@� 0t�1 � a0q;t
 X

t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1

1A+ 1

n2

X
t

ut�1�z
0
(2)t�2

� 1
n

X
t

ut�1b
0
q;t

 X
t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1 + op (1) : (18)

We concentrate on the third term of (18). First, we show that

1

n

X
t

ut�1b
0
q;t �

1

n2

X
t

ut�1�z
0
(2)t�2e

0
q = op (1) ; as q !1, n!1; (19)

where eq is a q-dimensional vector of ones. The m-th element of the row vector on

the left of (19) equals

� 1
n2

X
t

ut�1

mX
l=1

�2z0(2)t�l+1�2, for m = 1; :::; q;

which can be easily shown to be Op (qn�1) uniformly in m, so

E

 1nX
t

ut�1b
0
q;t �

1

n2

X
t

ut�1�z
0
(2)t�2e

0
q


2

= O

�
q3

n2

�
;

to conclude (19). Then the sum of the second and third terms of (18) becomes

1

n2

X
t

ut�1�z
0
(2)t�2

0@1� e0q
 X

t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1

1A+ op (1) : (20)

Next, as in Phillips and Ouliaris (1990), denote �t = �
0
1�t, which (conditional on �1)
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has an autoregressive representation

d (L) �t = t, d (s) =
1X
j=0

djs
j, d0 = 1;

where the sequence dj is absolutely summable and t is a zero-mean orthogonal

sequence with variance d2 (1) �01
�1. Next, note that

1� e0q

 X
t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1 = 1 +

qX
j=1

bdj;
where �bdj is the estimated coe¢ cient corresponding to �t�j, j = 1; :::; q, in the

regression of �t on �t�1; :::; �t�q. As in Lemma 3.4 of Chang and Park (2002),

1� e0q

 X
t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1 !p d (1) ; as q !1, n!1:

Then, by (18), (19), (20),

1

n
U
0
�1QXq

�U =
d (1)

n

X
t

ut�1

�
t
d (1)

+
1

n
�z0(2)t�2

�
+
1

n

X
t

ut�1 (bt � t)
+
1

n2

X
t

ut�1�z
0
(2)t�2

0@0@1� e0q
 X

t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�1

1A� d (1)
1A ;
(21)

where bt = � 0t�1 � a0q;t
�X

t
aq;ta

0
q;t

��1X
t
aq;t�

0
t�1. The second and third terms on

the right side of (21) can be easily shown to be op (1), whereas the �rst one can be

analyzed by identical transformations to those employed in the proof of (16), so that

1

n
U
0
�1QXq

�U ) d (1) l211

1Z
0

Q (s) dQ (s) :

Also, by previous arguments

b�2 =
1

n
�U

0
QXq

�U + op (1)

=
1

n

X
t

�01�t�
0
t�1 �

1

n

X
t

�01�ta
0
q;t

 X
t

aq;ta
0
q;t

!�1X
t

�01�taq;t + op (1) ;
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so that b�2 !p d
2 (1) �01
�1:

By (15),

�01
�1 =

0B@1;� 1Z
0

Z1 (s)Z
0
�1 (s) ds

0@ 1Z
0

Z�1 (s)Z
0
�1 (s) ds

1A�1
1CA
0B@ � 0 0

0 
22 0

0 0 0

1CA

�

0BBB@
1

�

0@ 1Z
0

Z�1 (s)Z
0
�1 (s) ds

1A�1 1Z
0

Z1 (s)Z�1 (s) ds

1CCCA ;
so

�01
�1 = l
2
11�

0

 
Ip 0

0 0

!
�;

by identical transformations to the ones employed before, to conclude the proof of

(10).

Finally, we show (9). Clearly

tn(b�)� tn(�) = tn(b�)� t(b�)� (tn(�)� t(�)) + t(b�)� t(�);
where t (�) is like tn (�), but with the normalized summations replaced by the respective
limits in distribution. First, t(b�)� t(�) = op (1), by (8) and the continuous mapping
theorem. Also, noting that b� = Op (1), tn(b�) � t(b�) = op (1) by tedious but simple

calculations, showing that the di¤erence between the individual components of tn(b�)
with the corresponding ones in t(b�) is op (1). For identical reasons, tn(�) � t(�) =
op (1), to conclude (9), and therefore complete the proof of Theorem 1.

Proof of Proposition 1. Given that zt is cointegrated, there exists a r � (p� r)
matrix A such that zt + Azt is I (c), c � 1, where zt is a (p� r)-dimensional sub-
vector of zt with I (2) and not cointegrated individual components, and zt collects

the remaining r components of zt. Without loss of generality set zt = (z0t; z
0
t)
0. If

zt + Azt � I (c), c � 0, the theorem holds trivially because R = T = C. The proof

for the zt + Azt � I (1) situation is as follows. Let � 2 T . Then � 2 R, by setting
� (�) = (00r; �

0 (�))0, where 0r denotes a r-dimensional vector of zeroes. Alternatively,

if � 2 R, there exists � (�) such that �0zt + �0 (�)�zt � I (c), c � 0, or equivalently

�0zt + �
0 (�)�zt + �

0
(�)�zt � I (c) ; c � 0;
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where � (�) = (�0 (�) ; �
0
(�))0 is partitioned according to zt. From the cointegrating

relations

�0 (�)�zt + �
0 (�)A�zt � I (c) ; c � 0;

so obviously

�0zt +
�
�
0
(�)� �0 (�)A

�
�ztI (c) ; c � 0;

and, consequently, � 2 T , to conclude the proof.
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Table 2. Power of the test against stationary alternatives
n = 50 n = 100 n = 250

�t Modeln� .10 .05 .01 .10 .05 .01 .10 .05 .01

WN 1 0.912 0.892 0.856 0.994 0.992 0.986 1.00 1.00 1.00

2 0.900 0.879 0.842 0.995 0.993 0.986 1.00 1.00 1.00

3 0.911 0.891 0.852 0.998 0.995 0.990 1.00 1.00 1.00

4 0.907 0.886 0.842 0.995 0.993 0.987 1.00 1.00 1.00

5 0.891 0.868 0.820 0.993 0.991 0.984 1.00 1.00 1.00

6 0.886 0.866 0.816 0.994 0.992 0.985 1.00 1.00 1.00

AR 1 0.387 0.271 0.103 0.671 0.520 0.242 0.999 0.995 0.965

2 0.383 0.272 0.233 0.665 0.514 0.233 0.998 0.996 0.964

3 0.430 0.310 0.143 0.703 0.547 0.274 0.999 0.997 0.971

4 0.428 0.308 0.137 0.703 0.548 0.265 0.999 0.997 0.968

5 0.458 0.341 0.155 0.644 0.493 0.245 0.998 0.992 0.937

6 0.458 0.335 0.150 0.636 0.490 0.240 0.998 0.992 0.935

MA 1 0.911 0.895 0.865 0.995 0.993 0.989 1.00 1.00 1.00

2 0.905 0.888 0.855 0.995 0.993 0.988 1.00 1.00 1.00

3 0.912 0.895 0.865 0.994 0.993 0.987 1.00 1.00 1.00

4 0.903 0.887 0.854 0.995 0.993 0.988 1.00 1.00 1.00

5 0.895 0.876 0.839 0.992 0.989 0.983 1.00 1.00 1.00

6 0.886 0.867 0.833 0.994 0.991 0.985 1.00 1.00 1.00
The cells show the proportion of rejection of the null hypothesis of no-stationary coin-

tegration. 10,000 replications were carried out for each sample size n. Three di¤erent sig-

ni�cance levels � = f:10; :05; :01g were used in the tests. The number of lags in the ADF
tests was chosen according to the SIC. "t is Gaussian such that E ("t)= 0, V ar ("t)= I3.

The innovation vector �t is generated as: A (L)= I3 (WN), A (L)= (1� 0:8L)
�1 I3 (AR),

A (L)= (1� 0:5L) I3 (MA). The ADF test is based on the residuals from the cointegrating
regressions in (5). Critical values from Table 1, p = 3, r= 2 (Models 1-4) and p = 3, r= 1

(models 5-6).
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