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Abstract

We develop an econometric methodology to infer the path of risk premia from a large unbalanced
panel of individual stock returns. We estimate the time-varying risk premia implied by conditional
linear asset pricing models where the conditioning includes both instruments common to all assets and
asset specific instruments. The estimator uses simple weighted two-pass cross-sectional regressions,
and we show its consistency and asymptotic normality under increasing cross-sectional and time series
dimensions. We address consistent estimation of the asymptotic variance, and testing for asset pricing
restrictions induced by the no-arbitrage assumption in large economies. The empirical analysis on returns
for about ten thousands US stocks from July 1964 to December 2009 shows that conditional risk premia
are large and volatile in crisis periods. They exhibit large positive and negative strays from unconditional
estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard sets
of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model capturing
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1 Introduction

Risk premia measure financial compensation asked by investors for bearing systematic risk. Financial
and macroeconomic variables influence risk. Conditional linear factor models aim at capturing their time-
varying influence in a simple setting (see e.g. Shanken (1990), Cochrane (1996), Ferson and Schadt (1996),
Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005)). Time varia-
tion in risk biases unconditional estimates of alphas and betas, and therefore asset pricing test conclusions
(Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and Simutin (2010)).
Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-
sectional regression method developed by Black, Jensen and Scholes (1972) and Fama and MacBeth (1973).
A series of papers address its large and finite sample properties for unconditional linear factor models, see
e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan, Robotti and
Shanken (2012), and the review paper of Jagannathan, Skoulakis and Wang (2009). The literature has not
yet formally addressed statistical inference for equity risk premia in conditional linear factor models despite
its empirical relevance.

In this paper, we study how we can infer the time-varying behaviour of equity risk premia from large,
stock returns databases under conditional linear factor models. Our approach is inspired by the recent trend
in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series information
simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng
(2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng
(2007, 2009) exemplify this promising route when studying bond risk premia. Connor, Hagmann, and Linton
(2012) show that large cross-sections exploit data more efficiently in a semiparametric characteristic-based
factor model of stock returns. Our approach relying on individual stocks returns is also inspired by the
theoretical framework underlying the Arbitrage Pricing Theory (APT). In this setting, approximate factor
structures with nondiagonal error covariance matrices (Chamberlain and Rothschild (1983, CR)) answer the
potential empirical mismatch of exact factor structures with diagonal error covariance matrices underlying
the original APT of Ross (1976). Under weak cross-sectional dependence among idiosyncratic error terms,

such approximate factor models generate no-arbitrage restrictions in large economies where the number of



assets grows to infinity. Our paper develops an econometric methodology tailored to the APT framework.
Indeed, we let the number of assets grow to infinity mimicking the large economies of financial theory.

The potential loss of information and bias induced by grouping stocks to build portfolios in asset pricing
tests further motivate our approach (e.g. Litzenberger and Ramaswamy (1979), Lo and MacKinlay (1990),
Berk (2000), Conrad, Cooper and Kaul (2003), Phalippou (2007)). Avramov and Chordia (2006) have al-
ready shown that empirical findings given by conditional factor models about anomalies differ a lot when
considering single securities instead of portfolios. Ang, Liu and Schwarz (2008) argue that we lose a lot of
efficiency when only considering portfolios as base assets, instead of individual stocks, to estimate equity
risk premia in unconditional models. In our approach, the large cross-section of stock returns helps to get
accurate estimation of the equity risk premia even if we get noisy time-series estimates of the factor load-
ings (the betas). Besides, when running asset-pricing tests, Lewellen, Nagel and Shanken (2010) advocate
working with a large number of assets instead of working with a small number of portfolios exhibiting a
tight factor structure. The former gives us a higher hurdle to meet in judging model explanation based on
cross-sectional R2.

Our theoretical contributions are threefold. First, we derive no-arbitrage restrictions in a multi-period
economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain and Rothschild
(1983)) with a continuum of assets. We explicitly show the relationship between the ruling out of asymptotic
arbitrage opportunities and an empirically testable restriction for large economies in a conditional setting.
We also formalize the sampling scheme so that observed assets are random draws from an underlying pop-
ulation (Andrews (2005)). Such a construction is close to the setting advocated by Al-Najjar (1995, 1998,
1999) in a static framework with exact factor structure. He discusses in detail several key advantages of
using a continuum economy in arbitrage pricing and risk decomposition. Second, we derive a new weighted
two-pass cross-sectional estimator of the path over time of the risk premia from large unbalanced panels of
excess returns. We study its large sample properties in conditional linear factor models where the condition-
ing includes instruments common to all assets and asset specific instruments. The factor modeling permits
conditional heteroskedasticity and cross-sectional dependence in the error terms (see Petersen (2008) for
stressing the importance of residual dependence when computing standard errors in finance panel data).

We derive consistency and asymptotic normality of our estimators by letting the time dimension 7" and the



cross-section dimension n grow to infinity simultaneously, and not sequentially. We relate the results to bias-
corrected estimation (Hahn and Kuersteiner (2002), Hahn and Newey (2004)) accounting for the well-known
incidental parameter problem of the panel literature (Neyman and Scott (1948)). We derive all properties for
unbalanced panels to avoid the survivorship bias inherent to studies restricted to balanced subsets of avail-
able stock return databases (Brown, Goetzmann, Ross (1995)). The two-pass regression approach is simple
and particularly easy to implement in an unbalanced setting. This explains our choice over more efficient,
but numerically intractable, one-pass ML/GMM estimators or generalized least-squares estimators. When
n is of the order of a couple of thousands assets, numerical optimization on a large parameter set or nu-
merical inversion of a large weighting matrix is too challenging and unstable to benefit in practice from the
theoretical efficiency gains, unless imposing strong ad hoc structural restrictions. Third, we provide a test
of the asset pricing restrictions for the conditional factor model underlying the estimation. The test exploits
the asymptotic distribution of a weighted sum of squared residuals of the second-pass cross-sectional re-
gression (see Lewellen, Nagel and Shanken (2010), Kan, Robotti and Shanken (2012) for a related approach
in unconditional models and asymptotics with fixed n). The test statistic relies on consistent estimation of
large-dimensional sparse covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008),
Fan, Liao, and Mincheva (2011)). As a by-product, our approach permits inference for the cost of equity on
individual stocks, in a time-varying setting (Fama and French (1997)). We know from standard textbooks in
corporate finance that cost of equity = risk free rate + factor loadings x factor risk premia. It is part of the
cost of capital and is a central piece for evaluating investment projects by company managers. For pedagog-
ical purposes, the three theoretical contributions are first presented in an unconditional setting before being
extended to a conditional setting.

For our empirical contributions, we consider the Center for Research in Security Prices (CRSP) database
and take the Compustat database to match firm characteristics. The merged dataset comprises about ten thou-
sands stocks with monthly returns from July 1964 to December 2009. We look at factor models popular in
the empirical finance literature to explain monthly equity returns. They differ by the choice of the factors.
The first model is the CAPM (Sharpe (1964), Lintner (1965)) using market return as the single factor. Then,
we consider the three-factor model of Fama and French (1993) based on two additional factors capturing the

book-to-market and size effects, and a four-factor extension including a momentum factor (Jegadeesh and



Titman (1993), Carhart (1997)). We study both unconditional and conditional factor models (Ferson and
Schadt (1996), Ferson and Harvey (1999)). For the conditional versions, we use both macrovariables and
firm characteristics as instruments. The estimated path shows that the risk premia are large and volatile in
crisis periods, e.g., the oil crisis in 1973-1974, the market crash in October 1987, and the recent financial
crisis. Furthermore, the conditional risk premia estimates exhibit large positive and negative strays from un-
conditional estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard
sets of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model capturing
market, size, value and momentum effects.

The outline of the paper is as follows. In Section 2, we present our approach in an unconditional linear
factor setting. In Section 3, we extend all results to cover a conditional linear factor model where the
instruments inducing time varying coefficients can be common to all stocks or stock specific. Section 4
contains the empirical results. In the Appendices, we gather the technical assumptions and some proofs. We
use high-level assumptions to get our results and show in Appendix 4 that they are all met under a block
cross-sectional dependence structure on the error terms in a serially i.i.d. framework. We place all omitted
proofs and the Monte Carlo simulation results in the online supplementary materials. There, we also include

some empirical results on the cost of equity and robustness checks.

2 Unconditional factor model

In this section we consider an unconditional linear factor model in order to illustrate the main contributions

of the article in a simple setting. This covers the CAPM where the single factor is the excess market return.

2.1 Excess return generation and asset pricing restrictions

We start by describing the generating process for the excess returns before examining the implications of
absence of arbitrage opportunities in terms of model restrictions. We combine the constructions of Hansen
and Richard (1987) and Andrews (2005) to define a multi-period economy with a continuum of assets having
strictly stationary and ergodic return processes. We use such a formal construction to guarantee that (i) the

economy is invariant to time shifts, so that we can establish all properties by working at¢ = 1, (ii) time series



averages converge almost surely to population expectations, (iii) under a suitable sampling mechanism (see
the next section), cross-sectional limits exist and are invariant to reordering of the assets, and (iv) the derived
no-arbitrage restriction is empirically testable. This construction allows reconciling finance and econometric
analysis in a coherent framework.

Let (2, F,P) be a probability space. The random vector f admitting values in R¥, and the collection
of random variables £(v), v € [0, 1], are defined on this probability space. Moreover, let 5 = (a,b’)’ be
a vector function defined on [0, 1] with values in R x R¥. The dynamics is described by the measurable
time-shift transformation S mapping €2 into itself. If w € ) is the state of the world at time 0, then S*(w) is
the state at time ¢, where S denotes the transformation S applied ¢ times successively. Transformation S is
assumed to be measure-preserving and ergodic (i.e., any set in F invariant under S has measure either 1, or

0).

Assumption APR.1 The excess returns Ry() of asset vy € [0,1] at dates t = 1,2, ... satisfy the uncondi-

tional linear factor model:

Ri(7) = a(y) +b(y) fi + eu(v), (1)

where the random variables €;(v) and f; are defined by £; (v, w) = €[y, St(w)] and fi(w) = f[St(w)].

Assumption APR.1 defines the excess return processes for an economy with a continuum of assets. The
index set is the interval [0, 1] without loss of generality. Vector f; gathers the values of the K observable
factors at date ¢, while the intercept a(+) and factor sensitivities b(y) of asset v € [0, 1] are time invariant.
Since transformation .S is measure-preserving and ergodic, all processes are strictly stationary and ergodic

(Doob (1953)). Let further define x; = (1, ft/ )/ which yields the compact formulation:

Ri(7) = B(7) s + e4(7). (2)

In order to define the information sets, let /o C F be a sub sigma-field. Random vector f is assumed
measurable w.r.t. Fy. Define 7; = {S7¢(A), A € Fy}, t = 1,2, ..., through the inverse mapping S~¢
and assume that /7 contains J. Then, the filtration F;, ¢ = 1,2, ..., characterizes the flow of information
available to investors.

Let us now introduce supplementary assumptions on factors, factor loadings, and error terms.



Assumption APR.2 The matrix / b(v)b(y) d is positive definite.

Assumption APR.2 implies non-degeneracy in the factor loadings across assets.
Assumption APR.3 Forany v € [0,1], E[e¢(v)|Fi—1] = 0 and Covle(y), ft| Fi—1] = 0.

Hence, the error terms have mean zero and are uncorrelated with the factors conditionally on information
Fi—1. In Assumption APR.4 (i) below, we impose an approximate factor structure for the conditional
distribution of the error terms given J;_; in almost any countable collection of assets. More precisely, for
any sequence (7;) in [0, 1], let ¥, ; , denote the n x n conditional variance-covariance matrix of the error
vector [e4(71), .-, €¢(7n)]” given Fy_1, for n € N. Let pr be the probability measure on the set I' = [0, 1]
of sequences (~;) in [0, 1] induced by i.i.d. random sampling from a continuous distribution G with support

[0, 1].

Assumption APR.4 For any sequence (v;) in set J: (i) eigmax (Xctn) = 0(n), as n — oo, P-a.s.,
(ii) Tllr;fl €igmin (Xe.tn) > 0, P-a.s., where J C T is such that ur(J) = 1, and €igmin (Xctn) and
€igmax (Xet,n) denote the smallest and the largest eigenvalues of matrix ¢ ¢ p, (iii) €igmin (V[ ft| Fi-1]) >
0, P-a.s.
Assumption APR.4 (i) is weaker than boundedness of the largest eigenvalue, i.e., SUp €igmax (Xc ¢,n) < 00,
P-as., as in CR. This is useful for the checks of Appendix 4 under a block crgisl—sectional dependence
structure. Assumptions APR.4 (ii)-(iii) are mild regularity conditions for the proof of Proposition 1.
Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies
(Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios p,,

n € N. Portfolio p,, is defined by the share oy, invested in the riskfree asset and the shares ; ;, invested in

the selected risky assets 7;, for i« = 1, ....,n. The shares are measurable w.r.t. Fy. Then, C(p,,) = Z Qin
=0

n
is the portfolio cost at t = 0, and p,, = C(p,)Ro + Z a; nR1(;) is the portfolio payoff at ¢ = 1, where

=1
Ry denotes the riskfree gross return measurable w.r.t. 4. We can work with ¢ = 1 because of stationarity.

Assumption APR.5 There are no asymptotic arbitrage opportunities in the economy, that is, there exists

no portfolio sequence (py,) such that le Plp, >0] =1 and ILm P[C(pn) < 0,p, > 0] > 0.
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Assumption APR.5 excludes portfolios that approximate arbitrage opportunities when the number of in-
cluded assets increases. Arbitrage opportunities are investments with non-negative payoff in each state of
the world, and with non-positive cost and positive payoff in some states of the world as in Hansen and

Richard (1987), Definition 2.4. Then, Proposition 1 gives the asset pricing restriction.
Proposition 1 Under Assumptions APR.1-APR.5, there exists a unique vector v € R¥ such that

a(v) = b(y)v, A3)

for almost all v € [0, 1].

We can rewrite the asset pricing restriction as

E[R(7)] = b(7)'\, 4)

for almost all v € [0, 1], where A\ = v + E [fy] is the vector of the risk premia. In the CAPM, we have
K = 1and v = 0. When a factor f},; is a portfolio excess return, we also have v, = 0,k =1, ..., K.
Proposition 1 is already stated by Al-Najjar (1998) Proposition 2 for a strict factor structure in an un-
conditional economy (static case) with the definition of arbitrage as in CR. We extend his result to an
approximate factor structure in a conditional economy (dynamic case) with the definition of arbitrage as in
Hansen and Richard (1987). Proposition 1 differs from CR Theorem 3 in terms of the returns generating
framework, the definition of asymptotic arbitrage opportunities, and the derived asset pricing restriction.
Specifically, we consider a multi-period economy with conditional information as opposed to a single pe-
riod unconditional economy as in CR. We extend such a setting to time varying risk premia in Section 3.
We prefer the definition underlying Assumption APR.5 since it corresponds to the definition of arbitrage
that is standard in dynamic asset pricing theory (e.g., Duffie (2001)). As pointed out by Hansen and Richard
(1987), Ross (1978) has already chosen that type of definition. It also eases the proof based on new argu-
ments. However, in Appendix 2, we derive the link between the no-arbitrage conditions in Assumptions
A.1 1) and ii) of CR, written P-a.s. w.r.t. the conditional information Fy and for almost every countable

collection of assets, and the asset pricing restriction (3) valid for the continuum of assets. Hence, we are



able to characterize the functions 8 = (a, ')’ defined on [0, 1] that are compatible with absence of asymp-
totic arbitrage opportunities under both definitions of arbitrage in the continuum economy. CR derive the

2
pricing restriction Z ( a(yi) — b)) ) < 00, for some v € R and for a given sequence (+y;), while we
derive the restrlctlon (3) for almost all v € [0,1]. In Appendix 2, we show that the set of sequences (7;)

such that Vlerlg Z ( a(vy;) — b(%) ) < o0 has measure 1 under pur, when the asset pricing restriction (3)
holds, and measure 0, otherwise. This result is a consequence of the Kolmogorov zero-one law (see e.g.
Billingsley (1995)). In other words, validity of the summability condition in CR for a countable collection
of assets without validity of the asset pricing restriction (3) is an impossible event. From the proofs in Ap-
pendix 2, we also get a reverse implication compared to Proposition 1: when the asset pricing restriction (3)
does not hold, asymptotic arbitrage in the sense of Assumption APR.5, or of Assumptions A.1 i) and ii) of
CR, exists for ur-almost any countable collection of assets. The restriction in Proposition 1 is testable with
large equity datasets and large sample sizes (Section 2.5). Therefore we are not affected by the Shanken

RN
(1982) critique, namely the problem that finiteness of the sum Z ( —b(i) 1/) for a given countable

economy cannot be tested empirically. The next section descrlbes how we get the data from sampling the

continuum of assets.

2.2 The sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for n assets and 7" dates. In
available databases, we do not observe asset returns for all firms at all dates. We account for the unbalanced
nature of the panel through a collection of indicator variables I(vy), v € [0, 1], and define I;(vy,w) =
Iy, S'(w)]. Then I;(y) = 1 if the return of asset 7 is observable by the econometrician at date ¢, and
0 otherwise (Connor and Korajczyk (1987)). To keep the factor structure linear, we assume a missing-at-

random design (Rubin (1976)), that is, independence between unobservability and returns generation.

Assumption SC.1 The random variables I(y), v € [0, 1], are independent of e1(7), v € [0, 1], and f;.

Another design would require an explicit modeling of the link between the unobservability mechanism

and the returns process of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor



structure.
Assets are randomly drawn from the population according to a probability distribution G on [0, 1]. We
use a single distribution G in order to avoid the notational burden when working with different distributions

on different subintervals of [0, 1].

Assumption SC.2 The random variables v;, i = 1,...,n, are ii.d. indices, independent of (%), I;(7),

v € [0, 1] and f, each with continuous distribution G with support [0, 1].

For any n,T" € N, the excess returns are R;; = R;(7;) and the observability indicators are I; ; = I¢(7;),
fori =1,..,n,and ¢t = 1,...,T. The excess return R;; is observed if and only if I;; = 1. Similarly, let
Bi = B(vi) = (a;,b;)" be the characteristics, &;+ = €4(;) the error terms and 04+ = Ele; 1€ ¢|xt, Vi, ;)
the conditional variances and covariances of the assets in the sample, where x; = {x¢, z¢_1, ...}. By random
sampling, we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). The characteristic /3; of
asset ¢ is random, and potentially correlated with the error terms ¢;; and the observability indicators I; ;,
as well as the conditional variances o;; ¢, through the index ~;. If the a;s and b;s were treated as given
parameters, and not as realizations of random variables, invoking cross-sectional LLNs and CLTs as in
some assumptions and parts of the proofs would have no sense. Moreover, cross-sectional limits would
be dependent on the selected ordering of the assets. Instead, our assumptions and results do not rely on a
specific ordering of assets. Random elements (ﬁ; 2 Oty €t Ii,t)/’ 1 = 1,...,n, are exchangeable (Andrews
(2005)). Hence, assets randomly drawn from the population have ex-ante the same features. However, given

a specific realization of the indices in the sample, assets have ex-post heterogeneous features.

2.3 Asymptotic properties of risk premium estimation

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen and Scholes (1972)) building
on Equations (1) and (3).
First Pass: The first pass consists in computing time-series OLS estimators

N . N A 1
,31' = (di, b;)/ = ;jf Zji,txtRi,ta for ¢ = 1, ., n, where Qmﬂ' = ? Zli,twtx; and Tz = Z[M. In
ot ot t

available panels, the random sample size T; for asset ¢ can be small, and the inversion of matrix Qm can be

numerically unstable. This can yield unreliable estimates of 3;. To address this, we introduce a trimming de-
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vice: 1¥ =1 {CN (sz) <x1,7:TiT < X2,T}, where CN <Q$z) = \/e’igmax (Qm) /€igmin (sz)
denotes the condition number of matrix Qm TiT = T/T;, and the two sequences x1,7 > 0and x27 > 0
diverge asymptotically. The first trimming condition {C' N (Qm> < x1,7} keeps in the cross-section only
assets for which the time series regression is not too badly conditioned. A too large value of CN (Q“) in-
dicates multicollinearity problems and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)).
The second trimming condition {7; 7 < x27} keeps in the cross-section only assets for which the time
series is not too short. We use both trimming conditions in the proofs of the asymptotic results.

Second Pass: The second pass consists in computing a cross-sectional estimator of v by regressing the
a;’s on the b;’s keeping the non-trimmed assets only. We use a WLS approach. The weights are esti-
mates of w; = v;” 1 where the v; are the asymptotic variances of the standardized errors VT (&i — i);V)
in the cross-sectional regression for large 7. We have v; = 7;¢,Q;'S;Q; ¢y, where Q, = E [z42}],

T—o00 T—o00

.1 : -
S;i = plim T Z(m,txtxg = E [e} jweai|vi]. 7 = plim mip = E[Liz|y] ™", and ¢, = (1,—1/)". We use
¢

~ A A N 1 o
. N ’ 1 —1 . 22 roa / _
the estimates 0; = 7; 1¢j, Qm Sn-Qm’icl;l, where S;; = T g L &7 ey, Eip = Rig — Bixy and ¢y, =
1
t

-1

(1,—24)". To estimate c¢,, we use the OLS estimator 7y = (Z 155,32) Z 1§<Bidi, i.e., a first-step
i i

estimator with unit weights. The WLS estimator is:

oAl N
V= Qb 15 Zwibiai, (5)

A 1 La . o L . ..
where QQp = - Z wibibg and w; = 1?111- L Weighting accounts for the statistical precision of the first-

(3
pass estimates. Under conditional homoskedasticity o; ; = o0y; and a balanced panel 7; 7 = 1, we have
v =c,Q Le, 0. There, v; is directly proportional to 0;;, and we can simply pick the weights as w; = 7;; L

1
where 6;; = T Z éit (Shanken (1992)). The final estimator of the risk premia vector is
¢

“ . 1
e ©)

We can avoid the trimming on the condition number if we substitute Q; ! for Q;i in the first-pass estimator
definition. However, this increases the asymptotic variance of the bias corrected estimator of v, and does

not extend to the conditional case. Starting from the asset pricing restriction (4), another estimator of X is

11



_ -~ 1 P _ 1 3
A= Qb_l — Z w;b; R;, where R; = — E I; +R; +. This estimator is numerically equivalent to A in the bal-
n Z I'ZL t kl )
_ 1 .
anced case, where I; ; = 1 for all ¢ and ¢. In the unbalanced case, it is equal to A = o + Q;l — E W;bibL f;,
n 4
(]

_ 1 _
where f; = T Z I; ; fi. Estimator A is often studied by the literature (see, e.g., Shanken (1992), Kandel
iy

and Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating F [f;] with a
simple average of the observed factor instead of a weighted average based on estimated betas simplifies the
form of the asymptotic distribution in the unbalanced case (see below and Section 2.4). This explains our
preference for A over .

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.

Assumption A.1 There exists a positive constant M such that for all n.:

a) E [gi,t|{5j,§,’}/j,j =1, ...,n}’xﬁ] = 0, with Ejt—1= {Ej,tflagj,t72, ce. } and T = {9Ut,9€t71, . };

1

. 1 1/2
b) i <oug <M, i=1,...n ¢FE - ZE [Uz‘zj,t|7i77j] / < M, where 053 = E [e;4254|m¢, 7,75

1]
Assumption A.1 allows for a martingale difference sequence for the error terms (part a)) including potential
conditional heteroskedasticity (part b)) as well as weak cross-sectional dependence (part ¢)). In particular,
Assumption A.1 c) is the same as Assumption C.3 in Bai and Ng (2002), except that we have an expectation
w.r.t. the random draws of assets. More general error structures are possible but complicate consistent
estimation of the asymptotic variances of the estimators (see Section 2.4).
Proposition 2 summarizes consistency of estimators © and A under the double asymptotics

n, T — oo.

Proposition 2 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1 b)and C.1, C4, C.5, we geta) ||V — v| =
op (1) and b) HS\ - )\H =0, (1), when n, T — oo such thatn = O (T7) for 5 > 0.

Consistency of the estimators holds under double asymptotics such that the cross-sectional size n grows not
faster than a power of the time series size 71'. For instance, the conditions in Proposition 2 allow for n large
w.r.t. T' (short panel asymptotics) when 4 > 1. Shanken (1992) shows consistency of © and A for a fixed n
and 7" — oo. This consistency does not imply Proposition 2. Shanken (1992) (see also Litzenberger and

Ramaswamy (1979)) further shows that we can estimate v consistently in the second pass with a modified
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cross-sectional estimator for a fixed 7" and n — oco. Since A = v + E [f;], consistent estimation of the risk
premia themselves is impossible for a fixed 1" (see Shanken (1992) for the same point).
Proposition 3 below gives the large-sample distributions under the double asymptotics
n,T — oo. Let us define 7;; 7 = T/Ty;, where Ty; = > Iijy and Ijy = Ijy Iy ford, j = 1,...,n. Let us
t
further define 7;; = plim 7,57 = E[Iij,thi,vj]_l, Si; = plim — Z oijixiry = Eleie;xiay]vi, ;] and

T—o0 T—><>o

Qp = plim — Z w;b;b, = E[w;b;b}]. The following assumption describes the CLTs underlying the proof

n—oo 1

of the dlstrlbutlonal properties.

1 1
Assumption A.2 Asn,T — oo, a) % E wiTi (Yir ® b;)) =N (0,Sp) , where Y; 7 = ﬁ E Iiyxeeiy
i t

TZT] TrLTj

1
dSy= lim F |—
and Sy, im nZw

n—oo

S,]®bb' —as-hm—g wiw;
n—oo n
).] 7‘7

Z fi = E[f)) = N (0,3y), where 5y = lim ch*ov (fi, fs) -

SZJ & blb;,

i

Assumptions A.2a) and b) require the asymptotic normality of cross-sectional and time series averages of
scaled error terms, and of time-series averages of factor values, respectively. These CLTs hold under weak

serial and cross-sectional dependencies such as temporal mixing and block dependence (see Appendix 4).
Assumption A.3 Forany 1 <t,s <T, T € Nand~ € [0,1], we have E [e,(7)*es(7)|z1]| = 0.

Assumption A.3 is a symmetry condition on the error distribution given the factors. It is used to prove that
the sampling variability of the estimated weights w; does not impact the asymptotic distribution of estimator
U. Our setting differs from the standard feasible WLS framework since we have to estimate the incidental
parameters S5;;. We can dispense with Assumption A.3 if we use OLS to estimate parameter v, i.e., estimator

1, or if we put a more restrictive condition on the relative rate of n w.r.t. 7.

Proposition 3 Under Assumptions APR.I-APR.5, SC.1-SC.2, A.I-A.3, and C.I-C.5, we get:
TiTj

( Q 15@3@ )bib;‘

Tij

. 14 . (1
a)VnT <1/ —v— TBV> =N (0,%,),where¥, = a.s.-nh_{glo Q, - Z wiw;—=

Z'7j
and the bias term is B, = Q;l ( szTzTEQQz 1SMQZ iC ) with By = (0: Ix), ¢y = (1,—0'), and

b)ﬁ(ﬂ—A) = N (0,3)), whenn,T%oosuchthatn: (T7) for 0 < 5 < 3.
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The asymptotic variance matrix in Proposition 3 can be rewritten as:

1 1 1 -1
Sy =as- lim S, Sy = <B§LWHBH> =B W,\VuaW, B, <B;Wan> NG))
n—o0 n n n
where B,, = (bl, ceey bn)/, W, = diag(wl, cesy wn) and V,, = ['Uij]i’jzl 77777 n With Vij = TiTj cf,Qu,;lSinglcy,

ij
which gives v; = v;. In the homoskedastic and balanced case, we have c’VQ; 1cl, =14 )\’V[ ft]_l)\ and

Vo = (14 )\’V[ft]_lA)Eg,n, where . , = [04ji j=1,...n. Then, the asymptotic variance of © reduces to

1 11 1 !
a.s.- lim (1 4+ NV[f]7')) (B;Wan> —B W, % , W, B, <B;Wan) . In particular, in the
n—o00 n n n

2
CAPM we have K = 1 and v = 0, which implies that VI is equal to the slope of the Capital Market
t
. Elfi]* . : .
Line VIR i.e., the Sharpe Ratio of the market portfolio.
t

Proposition 3 shows that the estimator © has a fast convergence rate V/nT and features an asymptotic
bias term. Both a; and I;i in the definition of ¥ contain an estimation error; for I;i, this is the well-known
Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let 7' grow to
infinity. However, it induces the bias term B, /T which centers the asymptotic distribution of 2. The upper
bound on the relative expansion rates of n and 7' in Proposition 3 is n = O(T7) for ¥ < 3. The control
of first-pass estimation errors uniformly across assets requires that the cross-section dimension 7 is not too
large w.r.t. the time series dimension 7.

If we knew the true factor mean, for example E[f;] = 0, and did not need to estimate it, the estimator
4+ E[fi] of the risk premia would have the same fast rate v/nT as the estimator of v/, and would inherit its
asymptotic distribution. Since we do not know the true factor mean, only the variability of the factor drives

. 1
the asymptotic distribution of A, since the estimation error O, (1 / VT ) of the sample average T Z f+ dom-
¢

inates the estimation error O,, (1 / VnT + 1 / T) of ©. This result is an oracle property for A, namely that its
asymptotic distribution is the same irrespective of the knowledge of v. This property is in sharp difference
with the single asymptotics with a fixed n and T" — oc. In the balanced case and with homoskedastic errors,
Theorem 1 of Shanken (1992) shows that the rate of convergence of A is /T and that its asymptotic variance
is ¥y, =X+ %(1 + NV~ <;B,’IWHBH> %B;LW”ZE,”W”B” (:LB;LW”BH) , for fixed n
and T' — oo. The two components in X ,, come from estimation of E|[f;] and v, respectively. In the het-

eroskedastic setting with fixed n, a slight extension of Theorem 1 in Jagannathan and Wang (1998), or Theo-
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rem 3.2 in Jagannathan, Skoulakis, and Wang (2009), to the unbalanced case yields
Yoan =25+ %Eym, where Y, ;, is defined in (7). Letting n — oo gives Xy under weak cross-sectional
dependence. Thus, exploiting the full cross-section of assets improves efficiency asymptotically, and the
positive definite matrix X , — X ¢ corresponds to the efficiency gain. Using a large number of assets instead
of a small number of portfolios does help to eliminate the contribution coming from estimation of v.

1

Proposition 3 suggests exploiting the analytical bias correction B, /T and using estimator vp = 1 — TBU

instead of 7. Furthermore, A B=7Vpg+ %Z fi delivers a bias-free estimator of \ at order 1/7", which
shares the same root-7" asymptotic distributiotn as \.

Finally, we can relate the results of Proposition 3 to bias-corrected estimation accounting for the well-
known incidental parameter problem (Neyman and Scott (1948)) in the panel literature (see Lancaster (2000)
for a review). We can write model (1) under restriction (3) as R;; = b,(fi + v) + ;4. In the likelihood
setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the b; correspond to the individ-
ual fixed effects and v to the common parameter of interest. Available results on the fixed-effects approach
tell us: (i) the Maximum Likelihood (ML) estimator of v is inconsistent if n goes to infinity while 7" is held
fixed; (ii) the ML estimator of v is asymptotically biased even if 7" grows at the same rate as n; (iii) an
analytical bias correction may yield an estimator of v that is root-(n7") asymptotically normal and centered
at the truth if 7" grows faster than n'/3. The two-pass estimators 2 and g exhibits the properties (i)-(iii)
as expected by analogy with unbiased estimation in large panels. This clear link with the incidental param-
eter literature highlights another advantage of working with v in the second pass regression. Chamberlain
(1992) considers a general random coefficient model nesting Model (1) under restriction (3). He establishes
asymptotic normality of an estimator of v for fixed 7" and balanced panel data. His estimator does not admit
a closed-form and requires a numerical optimization. This leads to computational difficulties in the con-
ditional extension of Section 3. This also makes the study of his estimator under double asymptotics and
cross-sectional dependence challenging. Recent advances on the incidental parameter problem in random

coefficient models for fixed T" are Arellano and Bonhomme (2012) and Bonhomme (2012).
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2.4 Confidence intervals

We can use Proposition 3 to build confidence intervals by means of consistent estimation of the asymptotic
variances. We can check with these intervals whether the risk of a given factor f, ; is not remunerated, i.e.,
A = 0, or the restriction v, = 0 holds when the factor is traded. We estimate ¥ by a standard HAC
estimator 3. 7 such as in Newey and West (1994) or Andrews and Monahan (1992). Hence, the construction
of confidence intervals with valid asymptotic coverage for components of \is straightforward. On the
contrary, getting a HAC estimator for 3 ¢ appearing in the asymptotic distribution of ) is not obvious in the
unbalanced case.

The construction of confidence intervals for the components of  is more difficult. Indeed, 3, involves

2

a limiting double sum over S;; scaled by n and not n°. A naive approach consists in replacing S;; by

any consistent estimator such as S’ij = lej Z Iij,téiytéj,txta:;, but this does not work here. To handle this,
we rely on recent proposals in the statistical fiterature on consistent estimation of large-dimensional sparse
covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva
(2011) focuses on the estimation of the variance-covariance matrix of the errors in large balanced panel with
nonrandom coefficients.

The idea is to assume sparse contributions of the .S;;’s to the double sum. Then, we only have to account
for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing
asymptotically. Thresholding permits an estimation invariant to asset permutations; the absence of any
natural cross-sectional ordering among the matrices .S;; motivates this choice of estimator. In the following
assumption, we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework

with random coefficients.

Assumption A.4 There exist constants q,9 € [0, 1) such that max Z [1Si111 = Op <n5>
7 .
J

Assumption A 4 tells us that we can neglect most cross-asset contributions ||.S;;||. As sparsity increases, we
can choose coefficients g and J closer to zero. Assumption A.4 does not impose sparsity of the covariance
matrix of the returns themselves. Assumption A.1 c) is also a sparsity condition, which ensures that the
limit matrix ¥, is well-defined when combined with Assumption C.4. Both sparsity assumptions, as well as

the approximate factor structure Assumption APR.4 (i), are satisfied under weak cross-sectional dependence
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between the error terms, for instance, under a block dependence structure (see Appendix 4).

As in Bickel and Levina (2008), let us introduce the thresholded estimator S’ij = S’ijl { ‘ S’ij

> /{} of
Si;, which we refer to as S’ij thresholded at x = K, 7. We can derive an asymptotically valid confidence

interval for the components of © from the next proposition giving a feasible asymptotic normality result.

Proposition 4 Under Assumptions APR.I-APR.5, SC.1-SC.2, A.I-A4, C.I-C.5, we have

~ 1 . ~ A 1 i T'T A1 A A s
Z;l/QV nT (I) — TBV — I/> = N (0,Ig)where ¥, = Qb_l - szw]%(c’ﬁle&jQ;lcﬁ)bz 3
irj “

_ 1—
when n,T — oo such that n = O (T"’)forO <H < min{?),n%q}, andk = M

M > 0andn € (0, 1] as in Assumption C.1.

In Assumption C.1 we define constant € (0, 1] which is related to the time series dependence of
processes (¢; ) and (x;). We have = 1, when (&; ) and (z) are serially i.i.d. as in Appendix 4 and Bickel
and Levina (2008). The stronger the time series dependence (smaller 7)) and the lower the sparsity (¢ and §
closer to 1), the more restrictive the condition on the relative rate y. We cannot guarantee the matrix made of
thresholded blocks S; ; to be semi definite positive (sdp). However, we expect that the double summation on
1 and j makes 3, sdp in empirical applications. In case it is not, El Karoui (2008) discusses a few solutions

based on shrinkage.

2.5 Tests of asset pricing restrictions

The null hypothesis underlying the asset pricing restriction (3) is
Ho : there exists v € RE such that a(v) = b(y)'v, for almost all v € [0, 1].

This null hypothesis is written on the continuum of assets. Under Hg, we have E [(ai — bgy)ﬂ = 0. Since
we estimate v via the WLS cross-sectional regression of the estimates a; on the estimates b;, we suggest a
test based on the weighted sum of squared residuals SSR of the cross-sectional regression. The weighted

~ 1 R
SSRis Q. = - Z u?iéf , with é; = ¢, 3;, which is an empirical counterpart of E [wi (a; — bgu)ﬂ.
i

1 ) . .
T g Ii,taiiytxtx;, and introduce the commutation matrix W, ,, of order mn xmn
t

such that W, nvec[A] = vec[A’] for any matrix A € R™*", where the vector operator vec [-] stacks

Let us define Sj; 7 =
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the elements of an m X n matrix as a mn x 1 vector. If m = n, we write W, instead W,, ,,. For two
(K +1) x (K + 1) matrices A and B, equality Wi (A® B) = (B ® A) Wi also holds (see Chapter
3 of Magnus and Neudecker (2007) for other properties).
1
Assumption A.5 Forn,T — oo we have T Z wnf (Yir @Y, —vec[Sir]) = N (0,Q), where the
n =
(2

asymptotic variance matrix is:

Q = lmE Zwle T% [Sij ® Sij + (Sij ® Sij) Wic1]
7_27_2
v )]

= as. -nh_>nolo - sz: Wiw; —5— T,% [Sij ©@ Sij + (Sij ® Sij) Wik1] .

Assumption A.5 is a high-level CLT condition. We can prove this assumption under primitive conditions on
the time series and cross-sectional dependence. For instance, we prove in Appendix 4 that Assumption A.5
holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of the
variance-covariance matrix 2 is related to the result that, for random (K + 1) x 1 vectors Y; and Y2 which
are jointly normal with covariance matrix S, we have Cov (Y1 ® Y1,Yoa ® Ys) = S®@ S+ (S ® S) Wik 41.

Let us now introduce the following statistic énT =Tn <Qe — ;B§> , Where the recentering term

simplifies to Eg =1 thanks to the weighting scheme. Under the null hypothesis Hg, we prove that
énT = (vec [Q 101, D \F Z witi (Yir @ Vi —vec[Sir]) + 0p (1), which  implies

. ) 1 1
&nr = N (0,%¢), where X¢ = 2nh_>ngoE - Zwiwjvfj =2 a.s.—nh_{go - Zwiwjv?j asn,T — oo
7j ’7]’
1
(see Appendix A.2.5). Then a feasible testing procedure exploits the consistent estimator 25 =2— Z WiW;v 12]
7-]

of the asymptotic variance ¢, where 0;; = KCLE TP LQ 18,05 e
Tij,T

PropositionS Under Ho, and Assumptions APR.I-APR.5, SC.1-SC.2, A.1-A.5 and C.1-C.5, we have

_ 1
1/2§nT:>N(O 1), asn,T—>oosuchthatn:O(TV)forO<’_y<min{2 n 25(]}'

1 TiT; Oij
In the homoskedastic case, the asymptotic variance of §nT reduces to X¢ = 2a.s.- lim — E —
n—oo n g Tij 0410345
For fixed n, we can rely on the test statistic 7'Q)., which is asymptotically distributed as — g eig; X? for
n -
J
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j=1,...,(n— K), where the x? are i.i.d. chi-square variables with 1 degree of freedom, and the coeffi-
cients eig; are the non-zero eigenvalues of matrix an / Z(Wn — WyB,(B,W,,B,) "B, W,,) nl /2 (see Kan,
Robotti and Shanken (2012)). By letting n grow, the sum of chi-square variables converges to a Gaussian
variable after recentering and rescaling, which yields heuristically the result of Proposition 5. The condition
on the relative expansion rate of n and 7" for the distributional result on the test statistic in Proposition 5 is
more restrictive than the condition for feasible asymptotic normality of the estimators in Proposition 4.

The alternative hypothesis is

Hy - inf E [(ai - bgu)g] > 0.

veREK

Let us define the pseudo-true value v, = arg ielﬁng QY (v), where Q5 (v) = F [wi (ai — bjv) 2} (White
(1982), Gourieroux et al. (1984)) and populatiorul errors ¢; = a; — bguoo = cjjoo Bi,i=1,...,n, for all n. In
the next proposition, we prove consistency of the test, namely that the statistic igl/ anT diverges to +00
under the alternative hypothesis #; for large n and 7'. The test of the null H against the alternative H; is

a one-sided test. We also give the asymptotic distribution of estimators © and A under ;.

Proposition 6 Under Hi and Assumptions APR.1-APR.5, SC.1-SC.2, A.I-A.5 and C.1-C.5, we have:
1 . R A~ .1 PP
a) Vn <19 — TBV‘” - VOO> = N(0,%,.), where B, = Q;lf ZUA}Z'T,L"TEQQ;%SZ‘Z‘Q;%CQ and
n - b I
KA

Yo, = Qb_lE[w?e?bibg]Qb_l, andb) T (5\ — )\oo) = N (0,X5), where Ao = Voo +E [fi], asn, T — o0

such that n = O (T7) for 1 < 5 < 3; ¢) igl/QénT L 4o, as n, T — oo such that n. = O (T7) for
l—q

0<% in< 2, n——.

<’y<m1n{ , M 25 }

Under the alternative hypothesis 71, the convergence rate of © is slower than under g, while the conver-

Q . e . . . .14
gence rate of )\ remains the same. The asymptotic distribution of the bias-adjusted estimator 7 — TB

.
the same as the one got from a cross-sectional regression of a; on b;. The condition 4 > 1 in Propositions 6
a) and b) ensures that cross-sectional estimation of v has asymptotically no impact on the estimation of A.
To study the local asymptotic power, we can adopt the local alternative
: Y
H :inf QY (v) = ——
1,nT JERK Qoo( ) \/ET

and the test is locally asymptotically powerful. Pesaran and Yamagata (2008) consider a similar local anal-

> 0, for a constant ¢» > 0. Then we can show that énT = N(v,3¢),

ysis for a test of slope homogeneity in large panels.
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Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are

portfolio excess returns:
Ho : a(y) = 0 foralmostally € [0,1] <  E[a?] =0,

against the alternative hypothesis
Hi: B [a?] > 0.

We only have to substitute a; for é;, and £y = (1,0 )' for ¢; in Proposition 5. This gives an extension of
Gibbons, Ross and Shanken (1989) with double asymptotics. Implementing the original Gibbons, Ross and
Shanken (1989) test, which uses a weighting matrix corresponding to an inverted estimated n X n covariance
matrix, becomes quickly problematic. We expect to compensate the potential loss of power induced by a
diagonal weighting via the larger number of restrictions. Our Monte Carlo simulations show that the test
exhibits good power properties already for a thousands of assets with a time series dimension similar to the

one in the empirical analysis.

3 Conditional factor model

In this section, we extend the setting of Section 2 to conditional specifications in order to model possibly
time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive equilibrium
version of the APT yielding time-varying risk premia and Ludvigson (2011) for a discussion within scaled
consumption-based models). We do not follow rolling short-window regression approaches to account for
time-variation (Fama and French (1997), Lewellen and Nagel (2006)) since we favor a structural economet-
ric framework to conduct formal inference in large cross-sectional equity datasets. A five-year window of
monthly data yields a very short time-series panel for which asymptotics with fixed 1" and large n are better
suited, but keeping 1" fixed impedes consistent estimation of the risk premia as already mentioned in the

previous section.

3.1 Excess return generation and asset pricing restrictions

The following assumptions are the analogues of Assumptions APR.1 and APR.2, and Proposition 7 is the

analogue of Proposition 1.
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Assumption APR.6 The excess returns R;(7y) of asset v € [0, 1] at dates t = 1,2, ... satisfy the conditional

linear factor model:

Re(v) = ar(y) + be() fi + ee(v), ®)

where a;(y,w) = a[y, ST H(w)] and by (7, w) = by, St Hw)], for any w € Q and v € [0, 1], and random

variable a(y) and random vector b(~y), for v € [0, 1], are Fo-measurable.

The intercept a; () and factor sensitivity b;(7) of asset v € [0, 1] at time ¢ are F;_;-measurable, where the

information set F; is defined by F; = {S*t (A), Ae ]-"g} , for Fo € F, as in Section 2.

Assumption APR.7 The matrix / b(v)b(y) dry is positive definite, P-a.s..

Since transformation S is measure preserving, Assumption APR.7 implies that the matrix / be(7)be(y) dry

is positive definite, P-a.s., for any date t = 1,2, ....

Proposition 7 Under Assumptions APR.3-APR.7, for any date t = 1,2, ... there exists a unique random

vector vy € RE such that vy is Fy_1-measurable and:

ar(v) = be(v)'vn, 9

P-a.s. and for almost all y € [0, 1].

We can rewrite the asset pricing restriction as

E[Ri(y)|Fe-1] = be(7) At (10

for almost all v € [0, 1], where Ay = vy + E'[f|Fi—1] is the vector of the conditional risk premia.

To have a workable version of Equations (8) and (9), we further specify the conditioning information
and how coefficients depend on it. The conditioning information is such that instruments 7 € RP and
Z(v) € R4, for v € [0,1], are Fo-measurable. Then, the information F;_; contains Z;_1 and Z;_1(7),
for v € [0,1], where we define Z;(w) = Z[S'(w)] and Z;(y,w) = Z[v, S*(w)]. The lagged instruments

Zy—1 are common to all stocks. They may include the constant and past observations of the factors and
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some additional variables such as macroeconomic variables. The lagged instruments Z;_;(vy) are specific
to stock v. They may include past observations of firm characteristics and stock returns. To end up with
a linear regression model, we specify that the vector of factor sensitivities b;(7y) is a linear function of
lagged instruments Z;_; (Shanken (1990), Ferson and Harvey (1991)) and Z;_1 () (Avramov and Chordia
(2006)): by(v) = B(y)Zi—1 + C(v)Zi—1(7y), where B(y) € RE*P and C(v) € RE*4 for any « € [0, 1]
and ¢t = 1,2, .... We can account for nonlinearities by including powers of some explanatory variables
among the lagged instruments. We also specify that the vector of risk premia is a linear function of lagged
instruments Z; 1 (Cochrane (1996), Jagannathan and Wang (1996)): \; = AZ;_1, where A € REXP, for
any ¢. Furthermore, we assume that the conditional expectation of Z; given the information F;_; depends
on Z;_1 only and is linear, as, for instance, in an exogeneous Vector Autoregressive (VAR) model of order
1. Since f; is a subvector of Z;, then E [f;|F;_1] = FZ;_1, where ' € REXP_for any ¢. Under these
functional specifications the asset pricing restriction (9) implies that the intercept a.(+y) is a quadratic form

in lagged instruments Z;_; and Z;_1 (), namely:
ar(7) = Z{_1B(y) (A= F) Zy 1+ Zi1(7)'C(v) (A= F) Zy . (11)

This shows that assuming a priori linearity of a,(y) in the lagged instruments Z;_; and Z;_1(y) is in general
not compatible with linearity of b;(+y) and E [f;|Z;—1].

The sampling scheme is the same as in Section 2.2, and we use the same type of notation, for example
bit = bi(vi), Bi = B(vi), C; = C(v;) and Z; 41 = Zy—1(7;). In particular, we allow for potential corre-
lation between parameters B;, C; and asset specific instruments Z; ;_; via the random index ;. Then, the

conditional factor model (8) with asset pricing restriction (11) written for the sample observations becomes
Rit =2y \Bi(A=F)Z 1+ Zjy 1Ci (A= F)Z 1+ Zy 1 Bifi + Zi; 1 Cife + e, (12)

which is nonlinear in the parameters A, F, B;, and C;. In order to implement the two-pass methodology
in a conditional context, we rewrite model (12) as a model that is linear in transformed parameters and
new regressors. The regressors include x;; = (ft’ RZ{_1, fi® Z£7t_1)/ € R% with dy = K(p + q).
The first components with common instruments take the interpretation of scaled factors, while the second
components do not since they depend on . The regressors also include the predetermined variables 1 ; ; =

/
<vech X, Zi 1 ® Zlﬁt_l) € R% with d; = p(p+1)/2-+pq, where the symmetric matrix X; = (Xt ki €
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RP*P is such that X, = th_l’k, if k =10 and Xy = 22,1 Zs—1,, otherwise, k,0 = 1,...,p. The
vector-half operator vech [-] stacks the lower elements of a p x p matrix as a p (p + 1) /2 x 1 vector (see
Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). To parallel the analysis of the
unconditional case, we can express model (12) as in (2) through appropriate redefinitions of the regressors
and loadings (see Appendix 3):

Rit = Biwiy + iy, (13)

/ !/
where z; ; = (w’l it Th t) has dimension d = d; + dg, and ; = (,6’{ i B35 Z—) is such that

/
Bri = VPa, B2i = (vec [B]],vec [C{]/> ) (14)
- IDS[(A=F)Y @I, +1,® (A= F)W, k] 0
0 (A-F)®lI,

The matrix D is the p(p + 1)/2 x p? Moore-Penrose inverse of the duplication matrix D,, such that
vech [A] = D; vec [A] for any A € RP*P (see Chapter 3 in Magnus and Neudecker (2007)). When Z; = 1
and Z;; = 0, we have p = 1 and ¢ = 0, and model (13) reduces to model (2).

In (14), the d; x 1 vector 31 ; is a linear transformation of the dy x 1 vector 32 ;. This clarifies that the
asset pricing restriction (11) implies a constraint on the distribution of random vector [3; via its support. The
coefficients of the linear transformation depend on matrix A — F'. For the purpose of estimating the loading

coefficients of the risk premia in matrix A, we rewrite the parameter restrictions as (see Appendix 3):
/
Bri=psw,  v=vec[N-F], = ([0 (Blen)] Wy (Clen)]). a3

Furthermore, we can relate the d; x Kp matrix 33 ; to the vector 32 ; (see Appendix 3):

vee [B3;] = JaB, (16)
: . o Jiu 0
where the dipK X d» block-diagonal matrix of constants J, is given by J, =
0 Joo
with diagonal blocks Jii = Wypi1) 2k (Ix @ [(Ip © D) (W, © 1) (I, ® vec[I,])]) and

Joo = Wpgpk (Ix @ [(Ip @ Wpq) Wpe ® Ip) (Ig ® vec[Ip])]). The link (16) is instrumental in deriving
the asymptotic results. The parameters 31 ; and 32 ; correspond to the parameters a; and b; of the uncondi-
tional case, in which the matrix J, is equal to Ix. Equations (15) and (16) in the conditional setting are the

counterparts of restriction (3) in the unconditional setting.
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3.2 Asymptotic properties of time-varying risk premium estimation

We consider a two-pass approach building on Equations (13) and (15).

First Pass: The first pass consists in computing time-series OLS  estimators
A s oA A 1
B = (5371.75571.)’ =Q,; T ZI”:U% tRiy, fori = 1,...,n, where Q. ; = T Zli,t$i,tl';7t. We use the
(2
t

same trimming device as in Sectlon 2.

Second Pass: The second pass consists in computing a cross-sectional estimator of v by regressing the
Bl,i on the B&i keeping non-trimmed assets only. We use a WLS approach. The weights are estimates of
w; = (diag [vi])_l, where the v; are the asymptotic variances of the standardized errors VT (,5’1Z — [3’371-1/>
in the cross- sectional regression for large 7". We have v; = TZ-CI’,Q;%SMQ;%I-CV, where Q. ; = E [:U”x;t\%]

Sii —Tpgm ZU“ tx”:czt =F [ﬁjtfci’txg’tm],aii,t =F [6127t|xi7§,%],and C, = (Ei — (Idl ® 1/) JaEé)/,
o T
with By = (Ig, : Odlde) s By = (0dyxd, : Id2)/. We use the estimates ©; = TZTCll,lQ;%SuQ 101,1, where

5 1 . R 5 . .
Sy = T E Ii7t5?7txi,tx;7t, €ip = Riy — Blaiy and Cp, = (B} — (Ig, @ 1)) JaEé)/. To estimate C,,, we
T
¢

1
use the OLS estimator 7y = (Z 15‘352332> Z lz‘BgzﬁA“, i.e., a first-step estimator with unit weights.
i i
The WLS estimator is:
oAl 5 a5
= Qg D Baawibui, (17)
i
a 1 ~ ~ ~
where Qg, = — Z B4 jiviBs 4 and w; = 1) (diag [0;])"". The final estimator of the risk premia is \; =
n ="
1

AZ,_1, where we deduce A from the relationship vec [A/} = U + vec [ﬁ‘ ’} with the estimator F' obtained

-1
by a SUR regression of factors f; on lagged instruments Z;_1: F= Z fiZi_4 (Z Zt1Z£_1> .
t t

The next assumption is similar to Assumption A.1.

Assumption B.1 There exists a positive constant M such that for all n, T':

. . 1 )
a)E [82"15‘{2’5]'7&,.1']'7;,7]‘,] =1, ,n}} =0,withxj; = {zs,xj1—1, -}, b) i <ot <M,i=1..,n
1 ) 1/2
o) B~ > E [I%‘,t| |%%} < M, where 015, = E [£i4254|i.4, T, s 5]
—

Proposition 8 summarizes consistency of estimators 2 and A under the double asymptotics

n,T" — oo. It extends Proposition 2 to the conditional case.
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Proposition 8 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1b) and C.1,C4-C.6, we get
a) |0 —v|| =0, (1), b) HA - AH =0, (1), when n, T — oo such that n = O (T"7) for 5 > 0.

Part b) implies sup Hj\t — )\tH = 0p (1) under boundedness of process Z; (Assumption C.4 written for the
conditional modetl).

Proposition 9 below gives the large-sample distributions under the double asymptotics
n, T — oo. It extends Proposition 3 to the conditional case through adequate use of selection matrices.
The following assumptions are similar to Assumptions A.2 and A.3. We make use of (g, = E [ﬁéviwi 6371} ,
Q. =E|[Z:7]], Si = phm ZO’U ‘T txjt = Eleiej i1 4|vi, 75 and Sqij = Q;%SijQ;}, other-

wise, we keep the same notatlons as in Section 2.

Assumption B.2 Asn, T — o0, a) — Zn [ Q“Y;T)®vgl} = N (0,Sy,),withY;r = \FZIztl"ztht,

1 T T 1 T TH
/ . J iTj
v3; = veelBh w;land Sy, = lim E | — S, ® vg Uk | = a.s.- im — S, & V34V
3,0 [B5 wi] vy = Hm E |~ E Ty D@1 @ Usil, S — > p [SQ.i5 @ vs,iv5 s
Z?] Z?]

VT

Assumption B3 Forany 1 <t,s <T, T € Nand~ € [0, 1], we have E [e,(7)?es(¥)| Zz, Z1(7)] = 0.

1
b)—= u®Z1= N(0,5,), where 5y, = E [wu} @ Zy_1Z{_,| and uy = f; — FZ;_1.
t

Proposition 9 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1-B.3 and C.1-C.6, we have
1 . A R 1 A_1A A
a) VnT (p —v— TBV> = N(0,%,) where B, = Qg;JbE > mirvec [EQQ;}SiiQ;}cﬁwi} and
i

Y, = <vec [C] ® QE;)l Sos (vec C)] @ QE;), with J, = (vec[ly,) ® Ixp) (Ig, ® Jo) and
Cy = (B — (I, ® V') JBb)'; b)VTvec [[\’ — A’} = N (0,Z)) where Sy = (Ix ® Q') By (Ix ® Q71),

when n, T — oo such thatn = O (T7) for 0 < 5 < 3.

Since A\ =AZ;1 = (Z{_; ® Ix) Wy gvec[A'], part b) implies conditionally on Z;_; that
VT (A= M) = N (0, (2 @ Iic) Wk ZaWicy (Zi1 ® I)).

We can use Proposition 9 to build confidence intervals. It suffices to replace the unknown quantities ),
Q:, Qp,, Xy, and v by their empirical counterparts. For matrix S,,, we use the thresholded estimator S'ij as
in Section 2.4. Then we can extend Proposition 4 to the conditional case under Assumptions B.1-B.3, A.4

and C.1-C.6.
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3.3 Tests of conditional asset pricing restrictions

Since the equations in (15) correspond to the asset pricing restriction (3), the null hypothesis of correct

specification of the conditional model is
Hp : there exists v € RPX such that 3; () = B3(7)v, for almost all y € [0, 1],

where (3; () and (3 () are defined as 3; ; and (3 ; in Equations (14) and (15) replacing B () and C ()
for B; and C;. Under Hg, we have E/ [(51,1‘ — 6372-1/)/ (Bri — ﬁg,il/)] = 0. The alternative hypothesis is

Hi: inf E[(Bi; — B3v) (Bri— Bsv)] >0

veRPK
. 1 A A 3
As in Section 2.5, we build the SSR Q.= = éjbié;, with & =p1;— P30 = CjB; and
n =
7
. L1 -
the statistic &,7 = Tv/n (Qe - TB§> ; where Be = d.

Assumption B.4 Forn,T — oo, we have — Z |:(Q£E i ®Q, l) Yir @Y1 — vec [S“T]) ® vec[w;]

= N (0, ), where the asymptotic variance matrlx is:

. 1 7_27_2 /
O = n11_>n010E - ; T@J [SQ ij @80, + (5Q,ij ® Sq.ij) Wa] ® (vec[wi]vec[wﬂ )
. 1T ,

= a.s.-nlgrolo - ; T—Ej [50,i7 ® Sq.ij + (50,ij ® Sq.ij) Wa] ® (vec[wi]vec[wj] ) )

PropOSItlon 10 Under Ho and Assumptzons APR 3-APR.7, SC.1-SC.2, B.1-B.4, A.4 and C.1-C.6, we have
-2
%0 = N(0,1), where S = 2 Z ’T P e [ (305185 @, 500 )y (€32, 380,10 )|

zyT
1—
asn,T—)oosuchthatn:O(TV)forO<7<min{2 n 25(1}.

Under H;, we have igl/QénT TN +00, as in Proposition 6.

As in Section 2.5, the null hypothesis when the factors are tradable assets becomes:

Ho: B1(y) = 0 for almost all v € [0, 1],

26



against the alternative hypothesis

Hi: E [ﬁiﬂﬂl,i] > 0.
We only have to substitute Qu = %ZB{II&LBU for Q., and E; = (Lg, - Odlxdz)/ for C. This gives
an extension of Gibbons, Ross and Shfanken (1989) to the conditional case with double asymptotics. The
implementation of the original Gibbons, Ross and Shanken (1989) test is unfeasible here because of the

large number nd; of restrictions; each 3y ; is of dimension d; x 1, and the estimated covariance matrix to

invert is of dimension nd; X ndj.

4 Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with f; = (7., Tsmb,ts Thmit, rmom,t)/ where 7, ¢ 1s
the month ¢ excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free
rate, and 7 g,,p ¢, "himi,¢ A0d T'0m, ¢ are the month ¢ returns on zero-investment factor-mimicking portfolios for
size, book-to-market, and momentum (see Fama and French (1993), Jegadeesh and Titman (1993), Carhart
(1997)). We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. To account
for time-varying alphas, betas and risk premia, we use a conditional specification based on two common
variables and a firm-level variable. We take the instruments Z; = (1, Z;'), where bivariate vector Z;
includes the term spread, proxied by the difference between yields on 10-year Treasury and three-month
T-bill, and the default spread, proxied by the yield difference between Moody’s Baa-rated and Aaa-rated
corporate bonds. We take a scalar Z;; corresponding to the book-to-market equity of firm 7. We refer to
Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the chosen
conditional specification. The vector x; ; has dimension d = 25, and parsimony explains why we have not
included e.g. the size of firm ¢ as an additional stock specific instrument. We report robustness checks with
other conditional specifications in the supplementary materials.

We compute the firm characteristics from Compustat as in the appendix of Fama and French (2008). The
CRSP database provides the monthly stock returns data and we exclude financial firms (Standard Industrial

Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching
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CRSP and Compustat contents comprises n = 9,936 stocks and covers the period from July 1964 to De-
cember 2009 with T = 546 months. For comparison purposes with a standard methodology for small n, we
consider the 25 and 100 Fama-French (FF) portfolios as base assets. We have downloaded the time series of

factors, portfolio returns and portfolio characteristics from the website of Kenneth French.

4.2 Estimation results

We first present unconditional estimates before looking at the path of the time-varying estimates. We use
X1,7 = 15 as advocated by Greene (2008), together with y2 7 = 546/12 for the unconditional estimation
and x2 7 = 546/60 for the conditional estimation. In the results reported for each model, we denote
by nX the dimension of the cross-section after trimming. We compute confidence intervals with a data-
driven threshold selected by cross-validation as in Bickel and Levina (2008). Table 1 gathers the estimated
annual risk premia, with the corresponding confidence intervals at 95% level, for the following unconditional
models: the four-factor model, the Fama-French model, and the CAPM. For the Fama-French model and the
CAPM, the trimming level x; 7 is not binding when x2 7 = 546/12. In Table 2, we display the estimates
of the components of v. For individual stocks, we use bias-corrected estimates for A and v. For portfolios,
we use asymptotics for fixed n and T" — oo. The estimated risk premia for the market factor are of the same
magnitude and all positive across the three universes of assets and the three models. For the four-factor
model and the individual stocks, the size factor is positively remunerated (2.86%) and it is not significantly
different from zero. The value factor commands a significant negative reward (-4.60%). Phalippou (2007)
obtains a similar growth premium for portfolios built on stocks with a high institutional ownership. The
momentum factor is largely remunerated (7.16%) and significantly different from zero. For the 25 and 100
FF portfolios, we observe that the size factor is not significantly positively remunerated while the value
factor is significantly positively remunerated (4.81% and 5.11%). The momentum factor bears a significant
positive reward (34.03% and 17.29%). The large, but imprecise, estimate for the momentum premium
when n = 25 and n = 100 comes from the estimate for v, (25.40% and 8.66% ) that is much larger
and less accurate than the estimates for v,,, Venp and vy (0.85%, -0.26%, 0.03%, and 0.55%, 0.01%,
0.33%). Moreover, while for portfolios the estimates of v, Ve, and vy,,; are statistically not significant,

for individual stocks the estimates of v,,, and vy,,; are statistically different from zero. In particular, the
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estimate of vy, is large and negative, which explains the negative estimate on the value premium displayed
in Table 1. The size, value and momentum factors are tradable in theory. In practice, their implementation
faces transaction costs due to rebalancing and short selling. A non zero v might capture these market
imperfections (Cremers, Petajisto, and Zitzewitz (2010)).

A potential explanation of the discrepancies revealed in Tables 1 and 2 between individual stocks and
portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed
in Lewellen, Nagel and Shanken (2010), the portfolio betas are all concentrated in the middle of the cross-
sectional distribution obtained from the individual stocks. Creating portfolios distorts information by shrink-
ing the dispersion of betas. The estimation results for the momentum factor exemplify the problems related
to a small number of portfolios exhibiting a tight factor structure. For A, Agmp, and Ap,y,;, we obtain similar
inferential results when we consider the Fama-French model. Our point estimates for A,,, Agymp and Apnis
for large n agree with Ang, Liu and Schwarz (2008). Our point estimates and confidence intervals for A,
Asmb and Ap,,7, agree with the results reported by Shanken and Zhou (2007) for the 25 portfolios.

Let us now consider the conditional four-factor specification. Figure 1 plots the estimated time-varying
path of the four risk premia from the individual stocks. For comparison purpose, we also plot the uncon-
ditional estimates and the average lambda over time. A well-known bias coming from market-timing and
volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and
Simutin (2011)) explains the discrepancy between the unconditional estimate and the average over time.
After trimming, we compute the risk premia on nX = 3,900 individual assets in the four-factor model.
The risk premia for the market, size and value factors feature a counter-cyclical pattern. Indeed, these risk
premia increase during economic contractions and decrease during economic booms. Gomes, Kogan and
Zhang (2003) and Zhang (2005) construct equilibrium models exhibiting a countercyclical behavior in size
and book-to-market effects. On the contrary, the risk premium for the momentum factor is pro-cyclical.
Furthermore, conditional estimates of the value premium are often negative and take positive values mostly
in recessions. The conditional estimates of the size premium are most of the time slightly positive.

Figure 2 plots the estimated time-varying path of the four risk premia from the 25 portfolios. We also plot
the unconditional estimates and the average lambda over time. The discrepancy between the unconditional

estimate and the averages over time is also observed for n = 25. The conditional point estimates for A, ¢
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are typically smaller than the unconditional estimate in Table 1. Finally, by comparing Figures 1 and 2,
we observe that the patterns of risk premia look similar except for the book-to-market factor. Indeed, the
risk premium for the value effect estimated from the 25 portfolios is pro-cyclical, contradicting the counter-
cyclical behavior predicted by finance theory. By comparing Figures 2 and 3, we observe that increasing the

number of portfolios to 100 does not help in reconciling the discrepancy.

4.3 Results on testing the asset pricing restrictions

As already discussed in Lewellen, Nagel and Shanken (2010), the 25 FF portfolios have four-factor market
and momentum betas close to one and zero, respectively. For the 100 FF portfolios, the dispersion around
one and zero is slightly larger. As depicted in Figure 1 by Lewellen, Nagel and Shanken (2010), this
empirical concentration implies that it is easy to get artificially large estimates p? of the cross-sectional R?
for three- and four-factor models. On the contrary, the observed heterogeneity in the betas coming from
the individual stocks impedes this. This suggests that it is much less easy to find factors that explain the
cross-sectional variation of expected excess returns on individual stocks than on portfolios. Reporting large
p?, or small SSR Qe, when n is large, is much more impressive than when n is small.

Table 3 gathers the results for the tests of the asset pricing restrictions in unconditional factor models.
As already mentioned, when n is large, we prefer working with test statistics based on the SSR Qe instead
of p? since the population R? is not well-defined with tradable factors under the null hypothesis of well-
specification (its denominator is zero). For the individual stocks, we compute the test statistics igl/ ZénT
based on Qe and Qa as well as their associated one-side p-value. Our Monte Carlo simulations show that
we need to set a stronger trimming level x2 7 to compute the test statistic than to estimate the risk premium.
We use 27 = 546/240. For the 25 and 100 FF portfolios, we compute weighted test statistics (Gibbons,
Ross and Shanken (1989)) as well as their associated p-values. For individual stocks, the test statistics reject
both null hypotheses Hg : a = 'v and Hy : a = 0 for the three specifications at 5% level. Instead, the null
hypothesis Hy : a = b'v is not rejected for the four-factor specification at 1% level. Similar conclusions
are obtained when using the two sets of Fama-French portfolios as base assets. Table 4 gathers the results
for tests of the asset pricing restrictions in conditional specifications. Contrary to the unconditional case,

we do not report the values of the weighted test statistics (Gibbons, Ross and Shanken (1989)) computed
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for portfolios because of the numerical instability in the inversion of the covariance matrix. The latter has
dimension 2,500 x 2, 500 for the conditional four-factor specification with the 100FF portfolios. Instead,
we report the values of the test statistics TQ. and TQ,. For individual stocks, the test statistics reject both
null hypotheses Hg : (51 = B3v and Hy : 31 = 0 for the three specifications at 5% level, but not for
the conditional CAPM at the 1% level. For portfolios, the two null hypotheses are not rejected under the
conditional CAPM even at 5% level.

For individual stocks, the rejection of the asset pricing restriction using a conditional multi-factor specifi-
cation (at 1% level), and the non rejection under an unconditional specification, might seem counterintuitive.
Indeed, for a given choice of the factors and instruments, the set of unconditional specifications satisfying
the no-arbitrage restriction a = b'v, is a strict subset of the collection of conditional specifications with
a; = bjvy. However, what we are testing here is whether the projection of the DGP on a given conditional or
unconditional factor specification is compatible with no-arbitrage. The set of unconditional factor models is
included in the set of conditional factor models, and it may well be the case that the projection of the DGP
on the former set satisfies the no-arbitrage restrictions, while the projection on the latter does not. Therefore,
the results in Tables 3 and 4 for individual stocks are not incompatible with each other. A similar argument
might explain why in Table 4 we fail to reject the asset pricing restriction Hg : 1 = [sv under the con-
ditional CAPM (at level 1% for individual assets, and 5% for portfolios), while this restriction is rejected
under the three- and four-factor specifications.

The analysis of the validity of the asset pricing restrictions could be completed by an analysis of correct
specification of the different conditional and unconditional factor models. A specification test would assess
whether the proposed set of linear factors captures the systematic risk component in equity returns, and
clearly differs from the test of the no-arbitrage restrictions introduced above. Developing a test of correct
specification of conditional factor models with an unbalanced panel and double asymptotics is beyond the

scope of the paper. We leave this interesting topic for future research.
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Appendix 1: Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample properties

of the estimators and test statistics. For unconditional models, we use Assumptions C.1-C.5 below with

Ty = (17 ftl)/

Assumption C.1 There exist constants 0,7 € (0,1] and Cy,Co,C3,Cy > 0 such that for all 6 > 0 and
T € N we have:

1 _
a)P = Z (:ntzcg - F [:Utx;]) | > 5] < CiT exp {—CgéQT"} + O30 L exp {—C4T77}.

t
Furthermore, for all6 >0, TeN and1 < k,l,m < K + 1, the same upper bound holds for:

b) sup P ZIt xtx;—E[xta:Q]) >4, c) sup P th Yred(Y)|| =01 ;
~v€[0,1] ~€[0,1]
1
) sup P qut(wtw) ~ BILOLG))| 2 6|
v,v'€[0,1] ¢
e) sup P th (ee(ee(Y)weat — B [ee(7)ee(v) i) 25];
v,7' €[0,1]
f) sup P ZIt V) paizemen(y)| > 0.
¥,Y'€[0,1]

Assumption C.2 There exists a constant M > 0 such that for all T' € N we have:

sup E Z |cov(ef, (1), &6, (V)ers (V)]ar) || < M.
7€[0,1] tl,tz,ts

Assumption C.3 There exists a constant M > 0 such that for all n,T' € N we have:

: 1/2
a)E n7 Z Z E Dcov (5?,t175?,t2|$1, 71,7]’) ’2 |%\%} <M.

5, l1,t2
1/2
b) E T2 5 E Ucov (€it1€i,t0> €j,t5E 5,02 1T, Yiy V) ! I%,vj} <M;
1,J l1,t2,t3,t4 1
1/2 )
¢) T2 Z Z “COU Mit1€i,t25 15,t3E5, t4|55T7%,’Y])‘ ‘%7'7]} < M, where n; 1 := &t — Tty
4,J t1,t2,l3,ta

}1/2

d)E TQZ > [\cov (Mt st Mty M |2 i 7)1 5 < M;

1,5 t1,t2,t3,t4
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) 1/2
e)E ng Z [!cov (Eit186 428035 EtaEut5E e 12T Yis V5 | Iw,’yj} < M;
5,J L1y
) 1/2
f)E TSZ Z [COU 771t181t282t5777]t4€]tr€jte‘xTafyw’Y])‘ ‘7277]] SM

5,J t1,...

Assumption C.4 a) There exists a constant M > 0 such that ||z|| < M, P-a.s.. Moreover

b) sup [|B(7)|| <ocandc) inf E[Li(y)] > 0.
v€[0,1] v€[0,1]

Assumption C.5 The trimming constants satisfy x1,7 = O ((log T')"') and x2,7 = O ((log T')"?), with k1,

Ko > 0.

Assumptions C.1 and C.2 restrict the serial dependence of the factors and the individual processes of
observability indicators and error terms. Specifically, Assumption C.1 a) gives an upper bound for large-
deviation probabilities of the sample average of random matrices x;x}. It implies that the first two sample
moments of the factor vector converge in probability to the corresponding population moments at a rate
O,(T~"%(log T)*), for some ¢ > 0. Assumptions C.1 b)-f) give similar upper bounds for large-deviation
probabilities of sample averages of processes involving factors, observability indicators and error terms,
uniformly w.r.t. 7 € [0,1]. We use these assumptions to prove the convergence of time series averages
uniformly across assets. Assumption C.2 involves conditional covariances of products of error terms. As-
sumptions C.1 and C.2 are satisfied e.g. when the factors and the individual processes of observability
indicators and error terms feature mixing serial dependence, with mixing coefficients uniformly bounded
w.rt. v € [0,1] (see e.g. Bosq (1998), Theorems 1.3 and 1.4). Assumptions C.3 a)-f) restrict both serial
and cross-sectional dependence of the error terms. They involve conditional covariances between products
of error terms €; ; and innovations 1; ; = 512,15 — 04;,¢ for different assets and dates. These assumptions can be
satisfied under weak serial and cross-sectional dependence of the errors, such as temporal mixing and block
dependence across assets. Assumptions C.4 a) and b) require uniform upper bounds on factor values, factor
loadings and intercepts. Assumption C.4 c¢) implies that asymptotically the fraction of the time period in
which an asset return is observed is bounded away from zero uniformly across assets. Assumptions C.4 a)-c)

ease the proofs. Assumption C.5 gives an upper bound on the divergence rate of the trimming constants.
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The slow logarithmic divergence rate allows to control the first-pass estimation error in the second-pass
regression.

For conditional models, we use Assumptions C.1-C.5 with x; replaced by the extended vector of com-
mon and firm-specific regressors as defined in Section 3.1. More precisely, for Assumption C.1a) we re-
place z; by z4(v) := (vech(Xy)', Zi_y ® Z1 (7)), [ ® Z{_1, f{ ® Zt,l(y)’)/, and require the bound to
be valid uniformly w.r.t. v € [0, 1]. For Assumptions C.1 b)-f) we replace x; by x¢(~y). For Assumptions C.2
and C.3 we replace x by x7 (), and by 27 (v;), z7(7;), respectively. For Assumption C.4a) we replace

the bound on ||| with bounds on || Z||, and on || Z;(~)|| uniformly w.r.t. v € [0, 1]. Furthermore, we use:

Assumption C.6 There exists a constant M > 0 such that HE [utuﬂZt_ﬂ H < M for all t, where u; =

Jt = E[ft| Fea]-

Assumption C.6 requires a bounded conditional variance-covariance matrix for the linear innovation u,
associated with the factor process. We use this assumption to prove that we can consistently estimate matrix

F of the coefficients of the linear projection of factor f; on variables Z;_; by a SUR regression.

Appendix 2: Unconditional factor model

A.2.1 Proof of Proposition 1 and link with Chamberlain and Rothschild (1983)

To ease notations, we assume w.l.o.g. that the continuous distribution G is uniform on [0, 1]. For a given
countable collection of assets 1,72, ... in [0, 1], let p, = A, + BpE[f1|Fo] and X,, = B, V|[f1|Fo| B,
+Xe1m, for n € N, be the mean vector and the covariance matrix of asset excess returns

(Ri(11), ..., Ri(7n)) conditional on Fo, where 4, = [a(y1), ...,a(7,)], and By = [b(71), ..., b(7»)] -
Let e, = pun — Bn (B;Bn>_1 B;Mn = A, — B, (B;Bn>_1 B;An be the residual of the orthogonal
projection of pu,, (and A,) onto the columns of B,,. Furthermore, let P, denote the set of portfolios p,,
that invest in the risk-free asset and risky assets 71, ..., 7n, for n € N, with portfolio shares measurable
w.r.t. JFo, and let P denote the set of portfolio sequences (p,), with p, € P,. For portfolio p,, € Pn,
the cost, the conditional expected return, and the conditional variance are given by C'(p,,) = agn + a;an,

/

E [pn|Fo] = RoC(pn) + oz;lun, and V' [p,|Fo] = a;Enan, where ¢, = (1, ..., 1)/ and a,, = (A1, .oy A p) -
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Moreover, let p = sup E[p|Fo]/V [p|Fo]'/?, where the sup is w.r.t. portfolios p € U Py, with C(p) =
p

neN
and p # 0, be the maximal Sharpe ratio of zero-cost portfolios. For expository purpose, we do not make

explicit the dependence of 1i,,, ¥y, €5, Py, and p on the collection of assets (~y;).

The statement of Proposition 1 is proved by contradiction. Suppose that inf [ [a(y) — b(v)'v]*dy =
veERK

~1
/[a(”y) — b(7) veo)?dy > 0, where vy, = </ b(’y)b(fy)’d’y) /b(’y)a(’y)d”y. By the strong LLN and

Assumption APR.2, we have that:

1, 9 . .1
~llenll® = Vg;@n,i;[ a() = b ﬁ/ 7 vec Py, (18)

1=
as n — oo, for any sequence (7;) in a set J; C I, with measure pur(J1) = 1. Let us now show that an
asymptotic arbitrage portfolio exists based on any sequence in J; [ J, where set J is defined in Assump-

tion APR.4 (i). Define the portfolio sequence (g,) with investments «;, = e, and

2
agn = —t,0n. This static portfolio has zero cost, i.e., C(g,) = 0, while E [qnlg-%u = 1 and
VignlFo] < €igmax(Ze1n)|len] 2. Moreover, we have V [g,|Fo] = E [(qn — E[qn|Fo))? ].7-"0] >
E |(gn — B [galF0))* | Fo, gn < 0] Plgn < 0|F0] = P [gn < 0[Fo]. Hence, we get: P [g, > 0[Fo] > 1 —
V gn|Fo] > 1 —€igmax(Xe,1,n) l|len]| 2. Thus, by using €igmax(2e,1,n) = o(n) from Assumption APR.4 (i)
and ||e,|| =2 = O(1/n) from Equation (18), we get P [g, > 0|F] — 1, P-a.s.. By using the Law of Iterated
Expectation and the Lebesgue dominated convergence theorem, P [g, > 0] — 1. Hence, portfolio (g,) is an
asymptotic arbitrage opportunity. Since asymptotic arbitrage portfolios are ruled out by Assumption APR.5,

it follows that we must have /[a(’y) — b(y) Voo)2dy = 0, that is, a(y) = b(7)"v, for v = vu, and almost all

v € [0, 1]. Such vector v is unique by Assumption APR.2, and Proposition 1 follows.

Let us now establish the link between the no-arbitrage conditions and asset pricing restrictions in CR on
the one hand, and the asset pricing restriction (3) in the other hand. Let J* C I be the set of countable col-

lections of assets (+y;) such that I [Conditions (i) and (ii) hold for any static portfolio sequence (p,,) in P| = 1,

where Conditions (i) and (ii) are: (i) If V [p,|Fo] — 0 and C(p,) — O, then E [p,|Fo] — 0; (i) If
V [pn|Fo] — 0, C(pn) — 1 and E [p,|Fo] — 9, then 6 > 0. Condition (i) means that, if the conditional
variability and cost vanish, so does the conditional expected return. Condition (ii) means that, if the con-

ditional variability vanishes and the cost is positive, the conditional expected return is non-negative. They
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correspond to Conditions A.1 (i) and (ii) in CR written conditionally on JF{ and for a given countable col-
lection of assets (+;). Hence, the set J* is the set permitting no asymptotic arbitrage opportunities in the

sense of CR almost surely (see also Chamberlain (1983)).

Proposition APR: Under Assumptions APR.1-APR.4, either ur ( inf Z a(y;) — b(vi) ] < oo) =

pr(J*) =1, or pr ( inf Z a(y) — b(v)v)* < ) = ur(J*) = 0. The former case occurs if, and
only if, the asset pricing restrlctton (3) holds.

The fact that up 1nf Z a(y) — b(v:)v)? < oo) is either = 1, or = 0, is a consequence of the

oo
Kolmogorov zero-one law (e.g., Billingsley (1995)). Indeed, inf Z[a(%) —b(v;)'v]? < o if, and only
veRA £
i=1

e}

if, ian [a(’yi) —b(v;)'v]? < o0, for any n € N. Thus, the zero-one law applies since the event
veR

oo
inf Z a(i) — b(7:)'v]* < oo belongs to the tail sigma-field 7 = ﬂ o(vi,9=mn,n+1,...), and the
veERK

n=1
Varlables v, are i.i.d. under measure pr.
Proof of Proposition APR The proof involves four steps.
STEP 1: If pur ( inf Z a(y) — b(v:)v)? < ) > (, then the asset pricing restriction (3) holds. This

step is proved by contradlctlon Suppose that the asset prlcmg restriction (3) does not hold, and thus

/[a('y) - b(’Y)/Voo]zd’Y > 0. Then, we get ur < inf Z a(y;) — b(vi) ] < oo> = 0, by the conver-
gence in (18).

o
STEP 2: If the asset pricing restriction (3) holds, then pr ( ian Z[a(%) —b(y)v]? < oo) = 1. Indeed,
VvERK £
=1

[e.e]

Hr <Z[a('yi) —b(y)v)? = 0) = 1, if the asset pricing restriction (3) holds for some vector v € R,
i=1

STEP 3: If up(J*) > 0, then the asset pricing restriction (3) holds. By following the same arguments as in

CR on p. 1295-1296, we have p* > iy, 501 pin and $71 ) > €igmax(Se,10) ' [In — Bn(B,Byn) ' By, for

any (vy;) in J*. Thus, we get: erigmax(E&l,n) >l (In — Bn(B;LBn)le;L) Hn = f&i@ |t — Bn|]? =
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min || A, — Buv|* = Z a(vi) — b(v;)'v)?, for any n € N, P-a.s.. Hence, we deduce
veRK P

n

1 1
in — i) b 7 "v)? < 2 e max EE n 1
min ~ > [a(y) = b(%) v]* < p—eigmax(Se.1n), (19)

vERK M £
i=1

for any n, P-a.s., and for any sequence (y;) in J*. Moreover, p < oo, P-a.s., by the same arguments as in
CR, Corollary 1, and by using that the condition in CR, footnote 6, is implied by our Assumption APR.4 (ii).
Then, by the convergence in (18), the LHS of Inequality (19) converges to / [a(y) = b(7) veo|?dry, for pup-
almost every sequence (y;) in J*. From Assumption APR 4 (i), the RHS is o(1), P-a.s., for up-almost every
sequence (v;) in I'. Since pr (J*) > 0, it follows that /[a(’y) —b(Y) veo)2dy = 0, ie., a(y) = b(v)'v, for
V = Vs and almost all y € [0, 1].

STEP 4: If the asset pricing restriction (3) holds, then up(J7*) = 1. If (3) holds, it follows that e,, = 0 and
pn = By (Bl B) "L Bl iy, for all n, for pur-almost all sequences (7;). Then, we get E[p,|Fo] = RoC(pn)
+, Bp (B! B /n) "' B! i /n Moreover, we have: V [p, | Fo] = (B,,cn)'V[f1|Fol (Bian) + e 1 ntn >
eitimin (V11 o)) | B

converges to a positive definite matrix and B, 11, /n is bounded, for pp-almost any sequence (+; ), Conditions

, where €igmin (V' [f1|Fo]) > 0, P-a.s. (Assumption APR.4 (iii)). Since B), B, /n

(i) and (ii) in the definition of set [J* follow, for pr-almost any sequence (v;), that is, ur(J*) = 1.

A.2.2 Proof of Proposition 2

a) Consistency of 7. From Equation (5) and the asset pricing restriction (3), we have:
b= QS e, (B —ﬁ) (20)
- b n £ 1ViCy 7 7] -
K3

The consistency of © follows from the next Lemma, which is proved in Section A.2.2 c) below. The notation
It = Opog (an,7) means that I,, 7/a,, 7 is bounded in probability by some power of the logarithmic term

log(T) as n, T — oc.

Lemma 1 Under Assumptions A.lI b), SC.1-SC.2, C.1, C4 and C.5 we  have:
. 5 _ . 1 .
(i) sup 1¥(|B; — Bill = Op.iog (T 77/2>; (i) supwi=O0(); (i) — |y —wi| = 0p(1);
A T

7

(iv) Qp — Qp = 0p(1), when n, T — oo such thatn = O (T7) for 7 > 0.

51



“ 1
b) Consistency of A\. By Assumption C.la), we have TZ ft—E[f] =0p(1), and thus
t

HS\—)\H <o —v|| + =0,(1).

73S ELA

¢) Proof of Lemma 1: (i) We use 3 — f3; = Ti,T

VT

K+1
. A L N\2
||Q;1”2 =Tr (Q;f) = g )\,ﬁ <(K+1)CN (Qm> , where the )\ ; are the eigenvalues of matrix
k=1

Q;%Y%,T and 1,7 < xor. Moreover,

Qu; and we use €igmar (Qm) > 1, which implies 12‘“@;1” < Cxir. Thus, sup1X||5; — Bi| =
i
Op,iog <T1/2 sup HY;TH> from Assumption C.5. Now let 67 := T—"/2(log T)(1+7)/(2C2)  where 1, Cy >
i
0 are as in Assumption C.1 and 4 > 0 is such that n = O(T7). We have:

B[ ¥l 2 | < [TAYi 2 0] = [P (7 21Yor | 2 i)

<n sup P > or

v€[0,1]

= 0(1),

;thft(v)xt&ﬁ)

from Assumption C.1 c). Part (i) follows. By using w; = vi_l, 7; > 1 and €igmin(Si;) > M~ eigmin(Qy)
from Assumption A.1 b), part (ii) follows. Part (iii) is proved in the supplementary materials by us-

A 1 ~ o~
ing Assumptions C.1, C4 and C.5. Finally, part (iv) follows from Qp — Q; = — > " (tbibib} — wibib})

)

1
+E Z w;b;b; — Qp, by using parts (i)-(iii) and the LLN.
i

A.2.3 Proof of Proposition 3

a) Asymptotic normality of 7. From Equation (20) and by using BZ— — B = %Q;%ET we get:
v = QS b (B ) e+ @S (b —0i) (B - )
v—=v = b ‘ W;0; | Pi i| Cv b, A Ws | b3 i i i| Cv
7 K3
I~ 1 A I A-1 L~ gl A2 o A—l oAl
= 7@ s 2 emabYinQuies + 1Qy " 1 ) imir ByQ ViY@ e Q)
i i
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Let I .= Z Wi Tb;Y; TQx ;Cv- Then, from Equation (21) and the definition of By, we get:

1. N 1 1 R N
vnT (ﬁ - =B, — V) = Q'h+—=0Q,'By,—= Z@‘TZZT (Q;%YiT TQ;,H -7 ;zl-Su‘Q;%Co)
T \/T \/ﬁ - ) ) 5 5 5
A 1 ~ ;.
= Q,'I+ ﬁQb LB, I,. (22)

Let us first show that Qb_ll 1 is asymptotically normal. We use the next Lemma, which is proved below in

Subsection A.2.3 ¢).

Lemma 2 Under Assumptions A.l, A.3, SC.1-SC.2 and C.I, C.3-C.5, we  have
1 ~ _
L = 7 E wiTib Y Q5 tey + 0p(1), when n, T — oo such that n = O (T7) for 5 > 0.
n 4 '
K3

From Lemmas 1 (iv) and 2, and the properties of the Kronecker product, we have:
A A 1
lelleb1<\/ﬁZwi7—ibiYZT>Q CV+0p( ) < Q ®Qb >\/—sz7—1 2T®b)+0p( )
i

Then we deduce Qb_ll 1= N (0,3,), by Assumptions A.2a) and C.1a) and Lemma 1 (iv).

1
Let us now show that —=1I» = 0,(1). We have:

VT
I, = \F Z w;T, 1 TQx , ( i TY Sz'z’,T) Q:L‘ i Cv f Z Wy, i TQI ) (7’;%3’2 - Sii7T> Q;,zl'c’/
- Z W;T; TQx i ( i zz) Q;}CV - % ZZ: sz'L,TQ;jSuQ;j (Cﬁ - Cu)
=: (121 - 122 —Is3)ey — Iag (¢p — ¢u) s (23)

N 1 / 1 . .
where SZOZ» = T E Ii,ts?txtmt and Si; 7 = T E Iiytoii,txt:v;. The various terms are bounded in the next
i b

t
Lemma.

1 A !/ A
Lemma 3 Under Assumptions A.1, A.3, SC.1-SC.2, C.1-C.5, (i) Io; = NG > wirt Q! (Yi,TYM - Su»,T) Q'
7

1
+Op,log <éﬁ> =0 ( )+ @) Jlog (éj) (ii) Izo = Op,log <\/T + \éjﬁ)’ (iii) Ir3 = Op,log <\§;ﬁ>

1 _
(iv) Io4 = Op 109 (\/ﬁ) and (v) cp — ¢, = Op og <\/7 T , whenn, T — oo such that n = O (T"7) for

5> 0.
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1 Vn _
From Equation (23) and Lemma 3 we get — I = 0,(1) + O ———— |. Fromn = O(T7) with7 < 3,
quation (23) et =12 = 0y(1) + O () (1) with 5

we get I5 = 0p(1) and the conclusion follows.

VT
b) Asymptotic normality of A. We have VT ()\ A) \f Z (fe —E[ft]) + VT T (0 — v). By using

1 1
VT (0 —v) =0, (\/ﬁ + \/T> = 0, (1), the conclusion follows from Assumption A.2b).

¢) Proof of Lemma 2: Write:

1 . A AL A
I, = NG Zwm b Y rQ; ﬁ > i iV (Qmi - Q; 1) Cy = 1Q; "¢, + Lacy.
i
Let us decompose [7; as:
1 / 1 X / 1 X /
In = I > wimbi Y + 7n > (AX = D) wirb Yy + NG > Vwi (rir — ) biYiy
1 . _
+%Zlf (5,71 =) T rbiY] 7 =: I11 + lie + Iz + D

Similarly, for 72 we have:
Ly = le v; 'Y, <Q;;—Q;1)
—|——le o7t — oY) b Y (Q;i —Qf) =: Tio1 + 122

The conclusion follows by proving that terms 112, 1113, 1114, 121 and I122 are op(1).

Proof that 1112 = 0,(1). We use the next Lemma.
Lemma 4 Under Assumptions SC.1-SC.2, C.1 b), d) and C.4 a), ¢): P[1} = 0] = O(T_B), for any b > 0.

In Lemma 4, the unconditional probability P [1} = 0] is independent of 7 since the indices (7;) are i.i.d. By
using the bound ||I112|| < 55 Z(l — 1X)||Y; 7| from Assumptions C.4 b) and ¢) and Lemma 1 (ii), the
bound sup E[||Y; r|||zz, I, {%}Z} < C from Assumptions A.l a) and b), and Lemma 4, it follows 112 =
Op(\/ﬁlz*i’), for any b > 0. Since n = O (T7), with 5 > 0, we get I112 = 0,(1).

C

2

Proof that Iy = 0p(1). We have E [ Tus ez, I, {7i}] < - = Z th 1A i — millyr — 7illoij.il
lh]

from Assumption A.1 a). By Cauchy-Schwarz inequality and Assumption A.1 ¢), we get E [||I113 12| {v}] <
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1/2 . 1
CM sup,ep,1 £ [1§<|Ti7T — 7|y = y] /2, By using 77 — 7 = —TiTTir Z (Iiy — E[l;¢|vi]) and
t
) 4
1irir < xor weget sup E [1¥mr — 7'y =] < Cxar sup E TZ (Le(v) = E[L()])]| | =o(1)
v€[0,1] 7€[0,1] t
from Assumption C.5 and the next Lemma.
) 4
Lemma 5 Under Assumption C.1d): sup E T Z (Ie(y) = E[L(y)D)| | =0T ), for some c > 0.
76[0»1] t
Then 1113 = Op(l).
Proof that I114 = op(1). From ﬁi_l — vi_l = —vi_2 (0; —v;) + ﬁ;lvi_2 (0; — vi)Q, we get:
i1y = ——— Z 1X _2 v;) Ti,7bi Y rt—F Z 1XA_1 2 (0; — vi)Q Ti,TbiYitT =: I1141 + T1142.

Let us first consider I7147. We have:
O —v; = TTc Qx ; ( i — Sii) Q;;Cﬁl + 27 7(co, — Cu)/Q;;SiiQ;;Cﬁl
1A—1 A—1 / A—1 -1 A—1
+7ir(co, — ) @y SiQ, ;i (coy — ¢v) +2TiC, (Qx,i - Q; ) SiiQyicv
/ A—1 - 1 / —1 -1
+7i,1C, (Qm - Q; ) i (Qm Qr ) e+ (Tir — 1)6,Qy SuQy . (24)
The contribution of the first two terms to [7747 is:
Ly = —721 Tclem ( u_Sii> Q“c,,lbY

1 A—1 A—1 /
Lige = —— E 1?77 (co, — ¢ Qi 5iQy i conbiYip.

We first show 111412 = op(1). For this purpose, it is enough to show that ¢;, — ¢, = Op(T'~°), for some
¢ > 0, and — Z 1% 2_2 fT ( . 15’”@“) lbiYi/,T =0y (X%’Txg,T), for any k,l. The first statement
follows from the proof of Proposition 2 but with known weights equal to 1. To prove the second statement,
we use bounds 1X7; 7 < xor and 1?!\@;1\\ < Cxi1,r and Assumption A.1 ¢). Let us now prove that

I11411 = 0p(1). For this purpose, it is enough to show that

Z v < Qi (Sn - Sz'z') QZ}% biYip = 0p(1), (25)
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for any k,l. By using &;; = ;s — 7y (Bl - ﬁi) =gt — 7T T 1Yl T, We get:

1 1 .
Sii — Sy = T E I (E?t$t$2 — Sii) + f E I (Eg,t - Ezzt) Ty
vt vt
. 27'.2 R 3
Ti,T Ti, T T - T
: Wair = —2=WairQyiYir + —

A(4) A—1 A1
\/TWL’L,T + \/» LZ‘QI,Z‘YLTYZTQ%@ (26)

1 1
o 2 _ 2 . ._ 2
where Wy ;7 := Nia g I ixinie, mip = €5 — Oiigs Woir i= Nia E I; 1Gits Git = iy — Sis
¢ ¢

1 A 1 ) .
Wsir = ﬁ Z Ii7t€i7txf’, fofz = T Z Iwa;? and x; is treated as a scalar to ease notation. Then:
t

t

1 o A . ~
Jio= lefvi QWi Qe ibiYir + Z DT QriWairQy biY,

fTZl’ Qe Wi Qy Yir Qb + le Qe QU Qi Y QY

= Jin+ Jio + Jiz + Jua.

Let us consider J71. We have:

E [J11|1‘Z, II’ {'Yz \/7 Z Z _2 3 bzl’?l‘sE [5%7t6i75|m17 ’71] =0,
i

from Assumption A.3. Moreover, from Assumption C.4:

xz x]H |COU (77@15151152777] tSEJ»t4|$T7’yl77]) |

V [Juler, Ir, {vi}] < nng > 1kl

1,7 t1,t2,t3,t4

By using 12‘||Q;i|] < Cxir, Y71 < xo,r, the Law of Iterated Expectations and Assumptions C.3 c¢)
and C.5, we get E[J11] = 0 and V[J11] = o(1). Thus J1; = 0,(1). By similar arguments and using
Assumptions A.1 ¢) and C.3 e), we get Ji2 = 0p(1), Ji3 = 0,(1) and Jy14 = 0,(1). Hence the bound in
Equation (25) follows, and I11411 = 0,(1). Paralleling the detailed arguments provided above, we can show
that all other remaining terms making /114 are also o,(1).

Proof that 1121 = 0,(1). From:

)

" (1 ) . . o .
Qi — Q' =-Q5) (T- > Lgwah — Qx) Q' = —TirQ i WirQy + QiWrQ.t, (27
ot
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1 1
where W; 1 := T Z L i(zx) — Q) and Wy = T Z(mt:cg — @), we can write:
t t

1 _ . . A_
Iy = <_\/ﬁ Z LYo b Y r Qi Wi + —= Z 1Xv; 1Ti,Tbm{TQm;WT> Q!

= (Iio11 + T1212) Q1

Let us consider term I1211. From Assumption C.4, 12‘||Q;§ | < Cxirand licn,T < x2,7, we have:

CXF X
PN il W
i, t

E (|11 ||, Iz, {vi}]

IN

j’TH'

1
Then, from Cauchy-Schwarz inequality, we get E [[|T1211*[{7:}] < CxiTxé‘,T; Z Elo} |, ]2

i?j
1
sup E [|[ Wiz *r] "2 wheresupE[HWzTH i) < Sl[lp]E 7 2 1) (e} — Qa)
% v€[0,1 t

from Assumptions C.1 b) and C.4 a). Then, from Assumptions A.1 c¢) and C.5 it follows E|||I1211]|?] = o(1)

= O(T™)

and thus I1211 = op(1). Similarly we can show I1212 = 0p(1), and then I12; = op(1).
Proof that 1122 = 0,(1). The statement follows by combining arguments similar as for 1114 and I;2;.
A.2.4 Proof of Proposition 4

From Proposition 3, we have to show that 3, — %, = o, (1). By = (' ® Q_l) b (Qzley ® Qb_l)
and 3, = <c§@;1 ® QbA) S (Q;ICQ ® Q;l), where S, = Z W; AJ T, TS ® 131133, and the con-

sistency of Qw and Qb, the statement follows if S*b — Sy = op(l). The leadlng terms in S'b — Sy are given

1 TiTi [ = 1 _1
by I3 := ﬁ ;wiwj;j] (SU — Sl]) X bzb; and I, := E z@: wiijiTj(Tij,T Tij )S ® b; b while the
other ones can be shown to be 0,,(1) by arguments similar to the proofs of Propositions 2 and 3.

Proof of I3 = op(1). By using that 7; < M, 735 > 1, w; < M and ||b;|| < M, I3 = op(1) follows
. 1 &
if we show: ﬁ Z Sij — Sij

27.]
that extend results in Bickel and Levina (2008) from the i.i.d. case to the time series case including random

= 0, (1) . For this purpose, we introduce the following Lemmas 6 and 7

individual effects.
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Lemma 6 Let o, := max‘ Sij — Si;ll, and W, (&) := max P H S’ij — Sl = 5], for & > 0. Under
1,7 2y}
1 _
Assumptions SC.1, SC.2, A4, =3 ‘ S — S5l =0, (z/;nm&ﬁw + 00k W (1 — v) n)) :
n =
Z)-]

foranyv € (0,1).
1
Lemma7 Under Assumptions SC.1, SC.2, C.1, C.4 and C.5, if k — M\/% with M large, then

1
n2W,r (1 —v)k) = O (1), forany v € (0,1), and Y1 = O, <\ / 3%:) when n, T — oo such that
n =0 (T7) fory > 0.

In Lemma 6, the probability P H Sij — Sij

> 5} is the same for all pairs (i, j) with ¢ = j, and for all pairs

with ¢ # j, since this probability is marginal w.r.t. the individual random effects. From Lemmas 6 and 7, it

followle‘ =0 logn o o) = (1), since n = O(T7) with ¥ < Lo
" 7 b " T

Tn
Proof of Iy = op(1). From w; < M, 7, < M and b; < M, we have E[||Ls]|[{vi}] <
_ _ 1 _ _ 1
Csup El|ry; 7 — 735 i )= Y 1Sl By sup Ell7; 5 — 735 i ] < sup B ” 7 2 L)~
1,] ;g 2y 7’7,6[()’1] t
Y, 4], from Assumptions A.1 ¢) and C.1 d), we get E[||14]|] =

EL()LE))|] and (1S5 < Ellois.

o(1), which implies Iy = op(1).

A.2.5 Proof of Proposition 5
By definition of Qe, we get the following result:
Lemma 8 Under Hgy and Assumptions APR.I-APR.5, SC.1-SC.2, A.1-A.3 and C.I-C.5, we have
N 1 o 2 1 1 _
Qe = n Zw% [C/u (BZ - ﬂl)} + Oplog <nT + TZ>’ when n, T — oo such thatn = O (T7) for ¥ > 0.
i
_ . 1 . 2
From Lemma 4 and n = O(T7) for 0 < 4 < 2, it follows &, = ﬁ Zu?i { {cfjﬁ (61- — ﬁzﬂ +
i
07150 s 1). By using VT (B — B;) = 007 1Y t
TirC Q1 Siiy i o ¢ + 0p (1) . By using Bi — Bi) = nirQy;Yir, we ge
~ 1 R A 1A A
Snr = % Z wiTiQ,TC:Qij (Yz‘,TY;;/,T - 7}7715@'@') QI;CQ +0p (1)
i
1 . Al Al 1 N Al 15 Al
= % ZwiTiQ,Tc;Qm; (Yz’,TYz'/,T - Sz‘i,T) Qxécﬂ - % Z wiTi%Tchx,% (Ti,%sii - Sii,T) Qz,zl'cﬁ
7 7
+op (1) =: Ci;(fgl — Io9 — 123)619 + Op(l),
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where Is;, I and I3, are defined in (23). By Lemma 3 (i)-(iii), and the consistency of 7, we have

A 1 A A n _
Enr = 7 Z witE QL (Y;TY/T — Siir) Qz'co + Opiog (?) +o0, (1). Moreover, fromn = O(T7)
i

with 4 < 2, the remainder term O, ;o4 (v/7/T) is 0p(1). Then, by using tr [A'B] = vec[A] vec[B], and
vec [YY'] = (Y @Y) for a vector Y, we get

b = \/15 Z w;TEtr [Q;lcﬁd;@;l (YirY{r — Sii,T)] + 0, (1)
= (vec [Q;lc,;c:;Q;l}), \;ﬁ Z wm’f Yir® YT — vec [Sii7T]) + 0p (1).

By using Assumption A.5, and by consistency of 7 and Qm we get fnT = N (0,%¢), where
B¢ = (vec [Q;lcycLle] ), Q (vec [Q;lc,,cLQlfl] ). By using MN Theorem 3 Chapter 2, we have

vec [QEICVCLQZI]/ (Sij ® Sij)vee [Q7 e, Q7] = tr[95Q: ec, Q1 S;;Q% v, Q]
= (4Q,'55Q, ), (28)

and
vec [Q;lcycLQf], (Sij ® Sij) Wi y1vec [Q;lcycf/Q;I] = (cﬁ,Q;lSinglcy)z . 29)

Then, from the definition of ) in Assumption A.5 and Equations (28) and (29), we deduce

. 1 i g —1 —1 2 . =
e :2a.s.—nlgn;oEZwiwj ZT%] (c,Q3"S:;Q; " ¢c,)”. Finally, ¥ = ¢ + op(1) follows from
27]
1 ~ 1 ~
- > 11Si; = Sijll = 0p(1) and - D 11555 = SislI* = 0p(1).
i3 i,J

A.2.6 Proof of Proposition 6

a)Asymptotic normality of 7. By definition of © and under #;, we have
Do = QY b, fi= Q) S ibic, (B )+ @y Y b (0)
00 bn, 1ViCy M bn, Vil o % % bn, 1Y1Cq
(2 (2 (2
= Q' b (B 8) e+ Q0 (5 5) () e
b n £ A% 7 7 Voo b n £ 1149 ) 4 ) 4 Voo
(2 (2

+Q;1% Zﬁlibiei + qu% Zu% (l;l — bi) €;.
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Equation (30) is the analogue of Equation (20), and the consistency of © for v, follows as in the proof of

Proposition 2 and by using E [w;b;e;] = 0. Thus, we get:

1 -~
(o L)

A 1 A 1 . 1 N R N
1 N -1 -1 L9 (A1 -1 1A-18 A1
= @, Tt Z WiTi b Y 7 Qy i Cvee + be Eéin Z WiT; 7 (Qx7in,TY;iTQx,icuoo — TRz Singm‘Cﬁ)

+Qb \FZwlb ez—l—Qb \FZ — w; bez—i-Qb FZMMTGZ 1TQ 1E2

=:I51 + Is2 + I3 + I54 + I5s5.

e?]) by the CLT.

1
From Assumption SC.2 and E [w;b;e;] = 0, we get NG Zwibiei = N (0,E [b; biw?e:
i
Thus, I3 = N (O, Q;IE [w?e?bib;] Q;l). Then, the asymptotic distribution of ¥ follows if terms I51,
I52, I54 and I55 are o, (1). From similar arguments as for term /; in the proof of Proposition 3, we have
7 Zwmgpb TQ“ = 0p(1) and —= Zwm T€; ZTQ IEQ Op(1). Thus I5; = o0,(1) and

Iss = op(l) From similar arguments as for term I in the proof of Proposition 3, we have I5o = o0,(1).
Moreover, term I54 = op(l) from similar arguments as for /119 and I714.

N « 1
b) Asymptotic normality of A\. We have VT (A - )\oo> =VT (0 — Vo) + ﬁ E (ft —
t

T 1
using 7 > 1 and VT (¥ — vso) = O, ( — 4+ ﬁ) = op (1), the conclusion follows.
n

¢) Consistency of the test. By definition of Qe. we get the following result:

. 1 ) 2
Lemma 9 Under 1 and Assumptions SC.1, SC.2, A.1-A.3, C.1-C.5, we have Qe = — 3 i [c; (ﬁi _ ,8)]
n =
1

VnT

By similar arguments as in the proof of Proposition 5 and using 7 < 2, we get:

1 1 1 _
+— Zwle + Op.iog < \/ZT:)’), when n, T — oo such thatn = O (T"7) for 5 > 0.

T+\/T> +o0p (1)

) . 1
bt = Z W;T; rY{r — Sur) Qz co + T% zl: wiej + Op,log <\/ﬁ

= T+/nE [wi (ai — b;uoo) } +0,(T).

Under #,, we have E [wi (ai — b‘uoo)ﬂ > 0, since w; > 0 and (a; — biveg)® > 0, P-a.s. Moreover,
Ye = X¢ + 0y (1). Thus, Z M = Tf( B [wi (a; — bivso) } + oy (1)) .
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Appendix 3: Conditional factor model

A.3.1 Proof of Proposition 7

Proposition 7 is proved along similar lines as Proposition 1. Hence we only highlight the slight differences.
We can work at ¢ = 1 because of stationarity, and use that a1 (), b1 (v), for v € [0, 1], are Fp-measurable.
Then, the proof by contradiction uses the strong LLN applied conditionally on Jy and Assumption APR.7
as in the proof of Proposition 1. A result similar to Proposition APR also holds true with straightforward

modifications to accommodate the conditional case.

A.3.2 Derivation of Equations (13) and (14)
From Equation (12) and by using vec[ABC| = [C' ® A] vec[B] (MN Theorem 2, p. 35), we get
Zi \Bifi =vec [Z{_Bif;] = [/{ ® Zi_] vec |Bj] ,and Zj, \Cif; = [f{ ® Zi; 1] vec [C}] , which gives
Zi 4 Bife + Zi, 1 Cife = 2% Ba.

Let us now consider the first two terms in the RHS of Equation (12).

a) By definition of matrix X; in Section 3.1, we have
Zi \Bi(A=F)Zi1 = %Z£—1 [Bi(A=F)+ (A= F) Bj] Z1
= %vech [X:) vech [Bi (A — F)+ (A — F)' B;] .
By using the Moore-Penrose inverse of the duplication matrix D,,, we get

vech [Bj (A — F) + (A — F)' B;] = D;} [vec [Bj (A — F)] 4+ vec [(A — F)' Bi]].

Finally, by the properties of the vec operator and the commutation matrix W), -, we obtain

503 [vee [B{(A— B)] +vec[(A— FY B]] = JDF [(A—FY ® I+ 1,@ (A~ F) Wy ic] vee [B]].
b) By the properties of the ¢r and vec operators, we have
ZL, \CL(A=F)Ziy = tr|Z1Z,_1C}(A—F)] =vec [Ziy-1Z,_1) vec [CL (A — F)]
= (Zt-1® Zig—1)' [(A— F) @ 1] vec [C]] .
By combining a) and b), we get Z;_ B} (A — F) Z;_1 + Zf,tqcz{ (A=F)Zy_1 = 55/1,i,t51,i and 31, =
U3s;.
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A.3.3 Derivation of Equation (15)
/

We use B = <<;D;; fvee [BL(A — F)] + vec [(A — FY BZ-]]>/ (vec [CL(A — )] )’) from Section
A.3.2. a) From the properties of the vec operator, we get
vec [Bi (A — F)] +vec[(A — F)' B;] = (I, ® Bf) vec[A — F] + (B{ ® I,) vec [A" — F'] .
Since vec [A — F] = W), gvec [N — F'], we can factorize v = vec [A" — F'] to obtain
p

%D* [vec [Bi (A — F)] +vec[(A = F) B;]] = %D;; (I, @ B) Wy ik + Bi @ 1| v.

By properties of commutation and duplication matrices (MN p. 54-58), we have (Ip ®BZ’») Wy k =
1
W, (Bi ® I,) and Df W, = D.f, then §D;; (I, ® B)) Wy x + Bi® 1,] = Df (Bj®1,).

b) From the properties of the vec operator, we get

vec [C] (A= F)| = (I, ® C]) vec[A — F| = (I, ® C}) Wy gvec [N — F'| =W, (C] @ I,) v.

A.3.4 Derivation of Equation (16)

/
We use vec [Bél] = (UBC {D)f (B} @ Ip)}’]/ ,vec [{Whyq (Cl® Ip)}’]/> )
a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing I, = I ® I, we obtain
vee [Dy (Bi®1,)] = (Iyx ® Dy)vec B ® 1)

= (IPK ® D;) {Igx ® [(Wp ® Ip) (Ip ® vec [Ip])]} vec [B;]

= {Ixk® [(I, ® D)) (W, ® I)) (I, ® vec[L,])] } vec [Bj] .
Moreover, vec [{ D} (B} ® 1)} | = Wy(pi1)2prvec [ D (Bf @ 1,)].
b) Similarly, vec[Wyq (Cl®1,)] = {Ix ® [(Iy ® Wpq) (W ® I,) (I; ® vec [I,])]} vee [C]] and
vee [{Wpq (CF & Ip) '] = Wpgprvee Wy (C; @ I)].

By combining a) and b) the conclusion follows.

A.3.5 Proof of Proposition 8
A~ 1 . . .
a) Consistency of 7. By definition of I/, we have: ¥ — v = Qggl— Z Bg s (ﬂu — 5371-1/). From Equa-
n “— ’

(]
tion (16) and MN Theorem 2 p. 35, we get Bg,il/ = vec[u'@zﬁ)’i] = (Id1 ® V’) vec[Béﬂ»] = (Id1 ® V/) Jaﬁg,i.
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Moreover, by using matrices E; and E», we obtain (,5’“ - B&iy) = [E] — (14, ® V') JLE}] B; = C’{,Bz =
C, (BZ — BZ) , from Equation (15). It follows that

v = QS By (Bi- ). G

By comparing with Equation (20) and by using the same arguments as in the proof of Proposition 2 applied

to B3 ; instead of b;, the result follows.

vec [[\’ — N

[ I

| <o —vl+

b) Consistency of A. By definition of A, we deduce vec {F’ —F }

‘ . By
1
parta), || — v|| = op (1). By the LLN and Assumptions C.1a), C.4a) and C.6, we have T Z Zy1Z{_1 =0, (1)
t

1 .
d T ZutZg_l = 0, (1). Then, by Slustky theorem, we get that ’vec [F’ —F ]
t

’ = 0p (1). The result
follows.
A.3.6 Proof of Proposition 9
a) Asymptotic normality of ©. From Equation (31) and by using VT (Bz — [31') = Ti,TQ;%Y;’T, we get
Vil (0 —v) = Q[;;;ﬁ S nrf i Qi = Q5! = Zn 1B i CLQ; Vi
i
+Q§31\/15 Z i, T (331 - ﬁ3,z’)/ WiCLQYir = Q§31I61 + Ip2.
i

Term Ig; is the analogue of term I; in the proof of Proposition 3. To analyse Ig2, we use the following

lemma.
Lemma 10 Let A be a m x n matrix and b be an x 1 vector. Then, Ab = (vec[I,]' ® I,) vec [vec[A] V] .
. / A
By Lemma 10, Equation (16) and VTvec |:(63,i — 63,1-) ] = TivTJaEéQ;ll-Yi,T, we have
1
Isy = Qﬁ;\/ﬁ Z TZ%T (vec[Iq,]) ® Ip) vee [JQEQQ 1Y; TY'TQI ZC’,,wl}
= Q' — F Z i Jyvec [EQQ %,TY;’,TQ;}CM} = B + \FQ& I3,

1 A _ .
where Ig3 := % Z TZTJbvec [Eé (QIE’%YZ‘,TYATQ 1C —T; 1Qx 1SMQ ) wz}. We get:
i

1 A
Q3, Ie3, (32)

o=l AP A
TLT(V—TBV—V> :Q53[61+ﬁ
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which is the analogue of Equation (22) in the proof of Proposition 3. Let us now derive the asymptotic
behaviour of the terms in the RHS of (32). By MN Theorem 2 p. 35, we have
— ZTLT {(Y/TQ;D ® (/Bélwl)} vec [Cy)]. Similarly as in Lemma 2, we have
Isy = NG Z i [ {rQu 1) Z (Bélwl)} vec [Cy)] + op(1). Then, by the properties of the vec operator,

A 1
_ -1 -1 .
we get Qﬁs Isi = (vec ()] @ Qs ) NG vaec [(Yi"TQw’i) ® (ﬁg,wl)] + 0,(1). Moreover, by using
7
the equality vec [(Y/TQ;}) ® (Bélwz)} = (Q;%YZT) ® vec [ B3 ;w;] (see MN Theorem 10 p. 55), we get
A ~ 1 B A
Q3 o1 = (vee [C1]) @ Q3)) = > Q2 1Yiir) @ s3] + 0p(1). Then Qo1 = N (0,5, follows
1

from Assumption B.2 a). Let us now consider Ig3. By similar arguments as in the proof of Proposition 3

1 .
(control of term 1), ﬁl&g = 0p (1). The conclusion follows.

b) Asymptotic normality of vec ([X’ ) We have /Tvec [f\’ — N } = +v/Tvec [F’ — F' ] +VT (v —v).By
1
N 1 1
ing VT [F’—F’]: I ~N" 7,7 — 7, d VT (0—v)=
using vec K ® T ; t—124_1 Nix zt:ult ® 41 an (v —v)

1 1
O, < + ) = 0y, (1), the conclusion follows from Assumption B.2b).

Vi T
A.3.7 Proof of Proposition 10

By similar arguments as in the proof of Proposition 5, we have:

Qe = - Z (6@ ﬁz) Corw;C (ﬁz /Bz) + Op <an + 1}2>

- 72 Ttr[C’ 1Y,TY’TQ“CwZ}+O <1T+;2>

By using that 7; rtr [C’{,Q;% S’“Q; Cl;u?,} = 1§<d1, Lemma 4 in the conditional case and n = O(T7) with

¥ < 2, we get:
- 1 A— -16.\ O~ i
by = NG > rlptr [C{,Qxi (Yi,TYi/,T - Ti,Tlsii) Q:E;Cl;wi} +op(1)
i

= \/15 ZTftr [C{;Q;} (YirYir — Sir) Q;jC,;wz} + 0,(1).
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Now, by using tr(ABCD) = vec(D')'(C" @ A)vec(B) (MN Theorem 3, p. 31) and vec(ABC) = (C' ®

A)vec(B) for conformable matrices, we have:

tr [C/ﬁQ;,l (YirY{r — Sur) Q;;Cﬁwi} = veclw;]' (C; ® C;) vee {Q;j (YirYir — Siixr) Q;ﬂ
= wveclw] (C}, @ C}) (Q;} ® Q;j) vec [YirY{r — Sir]
= weclw;]' (C;, @ C}) (Q;i ® Q;i) Yir ® Y1 — vec[Sii])

= vec [C,’, ® C’,’;]/ { KQE ® Q;i) Yire®Yir— ’Uec[Sii,T])] ® vec[wi]} )

Thus, we get &7 = vec [Cl ® C1]' \/15 S [(@n) @ @r)) (Vir @ Yir — vee[Sur)] @ veclw]. From
Assumption B.4, we get &, = N(0, zg)l, where ¢ = vec [Cl, ® C!]" Quec [C, @ C]. Now, by using
that tr(ABCD) = vee(D) (A ® C")vec(B') (see Theorem 3, p. 31, in MN) we have:
vec [Cl, @ O] [(Sq.ij ® Sg.ij) ® veclwilveclw;]'] vee [Cl, @ C]
= tr[(S9,ij ® 8q,ij) (Cv @ Cy) veclw;lvecw;) (C, @ C,))]
= wveclwi]' [(C}SqiiCv) ® (C18q,i;Cv)] veclw;] = tr [(C},Sq.4;Cv) wj (C1,Sq.5iCy) wi]
r {(CLQ;}SMQ;}@> w; (CI//Q;;'SjZ‘Qa:%CV) wz} :

and  similarly we have wec[C] ® C’l’,]/ [(S0,i; ® Sq.,ij)Wa @ vec[w;lveclw;]'] vec [C), @ C}]

=tr [(C{,Q;}SMQ;}C,,) wj (C’LQ;;S@-Q;%C,,) wi]. Thus, we get the asymptotic variance matrix
1« 7272 .

e=2lim B | =3 ke [(CLQ01S5Q0 0 ) w (CLQ1S1Q71C, ) wi] | From £¢ = ¢ +

n—00 n

ij W
op(1), the conclusion follows.

Appendix 4: Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in Assumption APR.4 (i), and the cross-sectional/time-
series dependence and CLT conditions in Assumptions A.1-A.5, are satisfied under a block-dependence

structure in a serially i.i.d. framework. Let us assume that:

BD.1 The errors &/(v) are i.i.d. over time with E[e;(7)] = 0 and E|[g4(7)3] = 0, for all € [0, 1]. For any

n, there exists a partition of the interval [0, 1] into .J,, < n subintervals Iy, ..., 7, , such that £;(~y) and
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e¢(7') are independent if -y and 7 belong to different subintervals, and .J,, — 0o as n — oo.

JIn Jn
BD.2 The blocks are such that n Z B2 =0(1),n%? Z B3, = o(1), where B, = / dG ().
m=1 m=1 Im

BD.3 The factors (f;) and the indicators (I;(y)), v € [0, 1], are i.i.d. over time, mutually independent, and
independent of the errors (g.()), v € [0, 1].
BD.4 There exists a constant M such that ||f;]| < M, P-as.. Moreover, 51[10p1]E[|5t(fy)|6] < 00,
€10,
S 1B < oo and »,gﬁ)f,u E[L(y)] > 0. '
The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved
industry-specific factors independent among industries and over time, as in Ang, Liu, Schwartz (2010). In
empirical applications, blocks can match industrial sectors. Then, the number .J,, of blocks amounts to a
couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately
nB,, assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes
and block number requires that the largest block size shrinks with n and that there are not too many large

blocks, i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks,

covariances do not need to vanish asymptotically.

Lemma 11 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling
hold. Then, Assumptions APR.4 (i), A.1, A.2, A.3, A4 (withany q € (0,1) and § € (1/2,1)) and A.5 are

satisfied.

The proof of Lemma 11 uses a result on almost sure convergence in Stout (1974), a large deviation theorem
based on the Hoeffding’s inequality in Bosq (1998), and a CLT for martingale difference arrays in White
(2001).

Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal

elements vanishing asymptotically. In that setting, we can carry out similar checks.

66



SUPPLEMENTARY MATERIALS

These supplementary materials provide the proofs of the technical lemmas used in the paper (Appendix
5) and the results of Monte-Carlo experiments that investigate the finite-sample properties of the estimators
and test statistics (Appendix 6). We also derive inference for the cost of equity and include some empirical
results for Ford Motor, Disney Walt, Motorola and Sony (Appendix 7). Finally, we provide some robustness

checks for the empirical analysis (Appendix 8).

Appendix 5: Proofs of the technical lemmas

A.5.1 Proof of Lemma 1 (iii)

We  have by —w; =150, —v; )+ (1Y =1yt and o7t —vt = —@_lvi_l(ﬁi — ;).

Since wv; is uniformly lower bounded from part (ii), we have Z |w; —w;| <

o= Z 1X in =l +C= Z (1 —1Y). The second term in the RHS is o0p(1) from Lemma 4. To

prove that the first term is o, (1) it 1s sufficient to show:
sup 15[0; — vi| = 0p(1). (33)
K3

We use Equation (24). Since 7y — v = O,(T~°), for some ¢ > 0 (by repeating the proof of Proposition 2
with known weights equal to 1), 1}”@;1 | < Cxa1. 1¥71 < x2.1 ||Siill < M, and by using Assumption

C.5, the uniform bound in (33) follows if we prove:

sup 1Y)|Ss — Sull = Op(T7°), (34)
sup 1Y]|Q,1 — Q' = Op(T7°), (35)
sup 1 |rir —mi| = Op(T7°), (36)

for some ¢ > 0. To prove the uniform bound (34), we use Equation (26). As in the proof of Lemma 1 (i), we

have sup 7~/ \Yir| = OpJog(T_”/Q) from Assumption C.1 ¢), and similarly sup 7~/2 Wit + Wair| =
i i

Opiog(T~/?) and sup T*1/2HW3 il =0 (T*”/Q), from Assumptions C.1 e) and f), respectively. More-

over, ||Q H <M and 1XTZ 1 < x2,7- Thus, from Assumption C.5, bound (34) follows. To prove (35)
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we use le Q, L— TQx 1W,TQQC , where W; 7 is defined as in Equation (27) and is such that

sup [|Wirl| = Opiog(T~ "/2) from Assumption C.I b).  Finally, (36) follows from |Tir — 7] <
i

1 . 1
TiTTi | > (Tig — ElLiglw])|» 1¥7mir < xo 7 < M and by using sup T > (Tiy — E[Liglw])| =
t ¢ ¢

OpJog(T_”/Q) from Assumption C.1 d).

A.5.2 Proof of Lemma 3
A.5.2.1 Part i)
Let us write o7 as:
In = Ln Z wirirQui (YirYir — Sur) Qi
= waZzTQ YirYir — Sur) Q'+ — szzT(Qxi Q;)( 7Y/ — Sur) Qr'
—i——sz 72rQ." (YirY/r — Sir) (Qxi—Q;g
+*Zwu:r<@$1 Q. )( 7Y — SiiT) <Qx1 Qf)
=: leI?lle + 1219Q, " + QM oo + o,

We control the terms separately.
1
Proofthat I = = > wir? (YorYir = Siir) + Opiog(v1/T) = Op(1) + Op 1og(v/n/T). We use

(2
a decomposition similar to term [1; in the proof of Lemma 2:

1
= e Dwr? (¥l = Sur) + = S (0 - Duir? (¥ = Sua)
i
1
+% Z 1w (TZT - 71'2) (Yi,TYz‘/,T - Siir)
3
1 A — —
+% Z 1 (2 Ly 1) TZT (YirY/r — Siir) =: Io111 + I2112 + Io113 + I2114.
i
To prove I>111 = Op(1), take k,l = 1,..., K, and consider (7 := — sz YirrYirr — Simr)-

68



Then:

E[Grler, I, {vi}] = szw] micov (YirrYipr YierYi,r

xT, -[27 Vi, ’Y])

= T2 g E ww;T? 7’ cov (Eit1 Eitas €4t E,ta 1T Vis V5) Listr Listo Lt Lj ta Tty kTt 1Tt Tty 1
1,5 t1,t2,13,t4

From Assumptions A.1 ¢), C.3 b) and C.4, it follows E[CT%T} = O(1). Hence, (7 = Op(1) and I9111 =
Op(1). We can prove that I>112 = 0,(1) and I2113 = 0,(1) by using arguments similar to terms /112 and
I113 in the proof of Lemma 2. Finally, let us prove that I114 = Oy jog(+/n/T). Similarly to I14 in the

proof of Lemma 2, we use
o7t — ot = o2 (0 — i) o Mo 2 (0 — i) (37)
and Equation (24). We focus on term:
Iy = ——— Z 1Xv Tclew i ( Sii — Sn’) QA;Zl-Cﬁl (YirYir — Sur)

the other contributions to I2114 can be controlled similarly. Now, we use Equation (26) and treat z; as a

scalar to ease notation. We have:
—2 ~1 A—1 /
biy = ——— E 1Xv; zTCl,lQqu,TQmCﬁl (YirY{r — Sur)
X, —2_4 1 A—-1 A—1 /
—7nT E LN, Qg i WourQy oy (YirYir — Siir)
X A—1 A—1 A—1 /
+27 E 1Xv TC,,l 2 iW3,i 1@y YirQy ;o (YirYir — Siir)
X, —2.6 1 A-1A4) A—1v- I A—=2 - ’ By
T E :li V; "TiTCiy Qx,i 2 Qz,z'YZ,TYz‘,TQx,i% (Yz,TYi,T - Szz,T)
i
/
= —¢p, (I211411 + 211412 + T211413 + I211414)Cp, -
Let us focus on term I211411 and prove that it is Oplog(\/ﬁ/T). We have:
I . 1 X, .—2 4 X 72 N—2 S =T T
211411 = TT E 17, Ti,T Wl,z,T ZT E 17, ,TQM Wi rSiir =: I2114111 + I2114112-
nT &
A
Term 121147111 18 such that:

Cxi TX2 T
|E[I2114111|xZ7 127 {f)/’b}” >~ \/>T2 Z Z 771,t1€z‘,t25z‘,t3’3317 71”7

1 t1,02,03
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and

CxXirXar
Vikuamler, I, {vi}] < — = 0D 1ov( i EitaCitys MjitaEhits it 2T i 1)
4, t1,..t6

From Assumptions C.2, C.3 f) and C.5, we get E[l2114111] = Oiog(v/n/T') and V[I2114111] = o(1), which

implies Io114111 = Op10g(v/7/T). The other terms making I2114 can be controlled similarly, and we get

Ini1a = Op 1og(v/n)T).

Proof that I>12 = op(1). We have:
Iy = %Zlfv[lTZT (Qxi Qw ) ( Y Sii,T)
i
“‘% Z L0, = o iy <Q;1 - Q;1> (YirY!r — Sir) = Ioi21 + I2122.
i
We focus on term Is127, use Equation (27) and treat xz; as a scalar to ease notation. We have:

Iyio = Zlf ! E’T 1WzTQm (YirY{r — Sur)

+% Z 1%0; ! 2TQriWTQ (YirYir — Sir) = (Iz1211 + 21212) Q'
i
Let us focus on Is1211. We have:

9 CX%,TXS,T
El|[In2n[*|zz, Ir, {7} < TZ Z Wi,

2, t1,...,ta

5 lllcov(€it ity €5.ts€jita|lTTs Vis V7))

By the Cauchy-Schwarz inequality, we get:

E[|[Iz2n | {7:}] < CX%,TXS,T sup Ef[|W;, i1

1/2
nT2 E E COU 52t151t258]t35]t4|xT”YZv’YJ)| |’Yla’)/ji| .
1,5 t1,t2,l3,ta

From Assumptions C.1 b), C.3b), C.4 a), and C.5, we deduce E[||I21211]|?|] = o(1), which implies I5121; =
op(1). Similar argument can be used to prove that the other terms making I»19 are o,(1).

Proof that I213 = op(1). This step uses arguments similar as for I5;.
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A.5.2.2 Part (ii)

1 R .
We have [y = \/ﬁ Z ﬁ)iTzTQ;Zl- Wl,i,TQ;j-, where W1 ; 7 is as in Equation (26). Write:
i

1 o172 —1 o201 A1
Iy = TiT zz: Lo 7 Qu iWirQpt + —— Z 15(0 v )T Qy Wi rQy i =1 Taon + Iooo.
Let us first consider I597. We have:

1
El|[ 21 ||z, Ir, {7:}] < CX%,TX%,TW >N leov(igy, i lw, vi 35
i,j ti,t2

From Assumptions C.3 a) and C.5, it follows E[||I222]|2] = O104(1/T), and thus 292 = Oy 104(1/VT).
Let us now consider term I20. We use Equation (37), and plug in the decompositions (24) and (26). We

focus on term c%l 15997 of the resulting expansion, where:

19991 = Z 1% W1 T

The other terms can be treated similarly. We have:

Ellxor|xr, Ir, {vi}] < CX1 TXQTng Z Z |COU Cit1 € t2|mT7%)|

i t1,ta

and
1
V[12221 |$Za Iz, {%H < CX?,TX%,TW Z Z |CO'U(77i,t1 NMijtas Nj,t37j,t4 |xla i 7j)|'
1,5 t1,t2,83,84

From Assumptions C.3 a) and C.5, it follows E[l2221] = Ojo4(+/n/T). By Assumptions C.3 d) and C.5 we
can prove that V' [I2291] = o(1), and it follows I2201 = Op(v/n/T).

A.5.2.3 Part (iii)

(4 A4
We have Io3 = — \FT Z W;T; TQ;,; le iTYiT + — sz T; TQ;,; fQ )Y; T, where W3 ; 7 and Qiz
are as in Equation (26) and we treat x; as a scalar to ease notatlon By similar arguments as in part (ii) we

can prove that Io3 = Op 104(v/n/T).
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A.5.2.4 Part (iv)
The statement follows from Lemma 1 (ii)-(iii), 1} 7 < x2,7, 1?‘”@;1]\ < Cx1,7, bound (34), ||Si;|| < M
and Assumption C.5.
A.5.2.5 Part (v)
1 /oA 12 ~
The statement follows from Equation (21), Lemma 1 (iv), I; = Op(1) and — Z wﬂETEQQ;Zl-Yi,TYi TQ;} =
n - b 9 9 9
K3
OpleQ(l)'
A.5.3 Proof of Lemma 4
We have P [12‘ =0l <Plrnr>xor| +P [C’N (Qm) > Xl,T} =: Py 7 + Por. Let us first control

Py 7. We have Py, <P [ ZIN < Xor

1
<P [T ; (Ii,t — 7-1.—1) < XEIT — M1] , where we use

7; < M for all ¢ (Assumption C.4 c)). Then, for0 < § < M_1/2 and 7" large such that M1 _X2_,1T > 0, we

%Z(I” T ) > 4§ By using that

%Z (it — E[Litv))| > 5‘%” <

t
1 —
sup P T Z (I(y) — E[It(fy)])‘ > (5] , from Assumption C.1 d) it follows Py ,7 = O(T~?), for any
1/6[071} t

b>0.

get the upper bound Pi,r <P

D (k

t

Y = E[Ly|v] and IP’[ >4 P

Let us now consider P, ,7. By using HQmH < M (Assumption C.4 a)), we get eigmax(Qx,i) < M, and
thus CN (Q$Z> < MY/? [ezgmm(Q“)} _1/2. Hence P ;7 <P [ez‘gmm(Qx,i) < M/X%,T}- By using that
eigmm(Qx,z) > €igmin(Qz) — ||Q:m — Qgz||, we get Py, <P |:||Q{L"L — Q2| > €igmin(Qz) — M/X%,T:|-
Now, let 0 < 0 < €igmin(Qz)/2 and T large such that eigmin(Qz) — M/X%,T > ¢§. Then, by using

P [HQM - Q| > 5} <P [ ;;Iz’,t(ﬂct&“t — Q)| > V3| +P |:7'i,T > \/ﬂ we get  Pog,r <

1 —
TZIi,t(xt:rt—Qx) > V6| +0O(T™). The first term in the RHS is O(T~%) by using

Zfzt T — Qy) > /6| and Assumption C.1b).

>\f]< supIP’[

~v€[0,1]

72 ) e = Q)
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Then, P 7 = O(T*E), for any b > 0.

A.5.4 Proof of Lemma 5

1 .
Let Wr(y) := TZ(It(fy) — E[Ii()]) and rp := T~* for 0 < a < n/2. Since |Wr(y)| < 1 for all

t
€ [0, 1], we have:

[ Rl = a5 <t s [ BIWO)] 2 s

sup E[[Wr(1)|"] < sup E[[Wr(y)[] = sup
’76[071] T

~e[0,1] ~e[0,1] ~efo,1] Jo
1 1
. 1
< rp+ CIT/ exp { —Cod*T"} d§ + Cyexp {—C4T"} 5d0
rT T
< rp+ CiTexp {—CQT%T"} + Csexp {—C4T" } log(1/r7) = o(1),

from Assumption C.1 d).

A.5.5 Proof of Lemma 6

By definition of gij, we have

it

Sig {8, || =x}y — S

ii — Sij

S”l{lls 126} ~ S s 120

2]

< . Z ‘ SisL{ssl1>s} — Sij
=: 131+132~
By Assumption A.4,
Ty = Z\|sw||1{usuu<ﬂ}<max2|rs 4170 < k170 (n) = O, (7). (39)
4.
where co(n —maXZHSu” = 0,(n°).
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Let us now consider I3o:
1
I3 = —
52 - Z
Z)-]

1
2|
"5
max Y|

J

1
1{H§ij‘|2f%||5ij|\<’f} + n Z 19551 1{”§in<’%||5info}
Z’-]

A,

IA

Lisullzmislian = m8% D IS L0s, |<n s 12}
J

+II1§1XZ ’ Sij — Sij R e Isg + I3 + Iss.
j
From Assumption A.4, we have:
I35 < H}%X‘ S’ij — Sij mZaXZ 15351979 = O, (¢nTCO (n) /@'_q) ) (39)
j
Let us study I33:
Iy < max D0 ||Sy = Si| L, fomisyiant + Mo D 1S5l Lty j<ny =t Lao + Lo
j J

By Assumption A.4,
I3y < k179 (n) . (40)

Now take v € (0, 1) . Let V; (6) = Z 1{‘|§ij—sij||>€}’ for € > 0, then
J

I = max Y |8 — S| Ly, omisyicon +m D[S = S| Lgs,  mancis,ien)
J J
< max‘ Sii — Sij|| max N; (1 — v) k) + max‘ Sii — Sijl co (n) (ve) 7.
1,J ? 2Y)
Moreover, by the Chebyschev inequality, for any positive sequence 12,7 we have:
n n? .
P [max Ni(e) > RnT} < nP[N;(e) > R,r] < E[N;(e)] < max PP H Sij — Sij|| > e] ,
i Ryr nT i
which implies max V; (€) = O, <n2 max [P H S’ij - Sij|| = e}) . Thus,
1 2¥)
I3 = O, (wnTnzll/nT (1 =) k) + Ppreo () (’Uli>_q) . 41
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Finally, we consider I34. We have

Bu < a3 (185 = S+ 85 ]) 215, pvasiiz
J
< max|| Sy — Sy || max 30 L g+ wmax D Ls, 2
’ J J
= 0, (1/JnTC() (n) k™14 ¢y (n) Hl_q) ) (42)

Combining (38)-(42) the result follows.

A.5.6 Proof of Lemma 7

. N 1
: A / 0 / .
Byusing &;; = €;1 — x} (Bi — Bi) and Sij =T g I;j 1€ 1€ 5,101y, we have:
) t

N N 1 A 1 -
Sy = S : Z ILij €y (ﬁj - 5j) Ty — T Zlij,tfj,tl'; (Bz' - ﬁz‘) Ty
ij

g TT] t

1 i ;L /

+F Zfz‘j,t (ﬁz - BZ> Xy (5] _ 5]> 2,7}
1] t

=: Sloj — Aij — Bz‘j + Cij,

A~

Sij — Sij 89— Sij

<| + [[Aigl) + 1 Bsll + 1y We

where A;; = Bj;. Then, for any i, j, we have ‘

getforany &£ > 0:

B () < maxp |85 -y 2 ]+ max? 1yl 2 §| + moxe 151> §]
1, 4 i, 4 i, 4
b (0] 2 §| = W (€/0) + 2Pr 0+ P (€/0). @)
where T (£/4) := max P U 5’?] — Sij|| > i], Py, (£/4) := max P [HA”H > i, and
2y 2y

Py (£/4) := max P [HCU | > i] . Let us bound the three terms in the RHS of Inequality (43).
27]

A 1
a) Bound of W0, (£/4). We use that S?j — S = 7 Zlijvt (eipej ) — Sij)
i
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1
= TMTT Z Lij (ai,t€j7t:vta:£ - F [€i7t5j7txta:2|%’yj]) and 7;; < M. Then:
t

N 1
155 — Sl < M T Z Liji (eigejpmeay — E [Ei,t€j,t$t$fe|’yz‘7j])H
t

1
i = 7ijl || 7 > L (sipsjimery — E [eiieg ey |yivi]) H -
t

We deduce:

Vo (€/4)

max [P [

IN

,L’]

—|—nr13LXIP> [\TZ]T Tij| > \/é]
. \f
— V8

> &
8M

1
T zt:jij,t (sipejpmiay — E [eizejimemy|vivs]) H > 8§J

7]

+ max P [

1
T Zfij,t (gigejpmeay — E [ 250mwy|viv;))
¢

IN

2maxP
i,

1
T Z Lij (eigejpmea — E (g 850wy viv;])
t

+ max P !Tij,T —Tijl > \/E]

7,7 8
= 2-P3,nT + P4,nT7

forsmall . Weuse P3,7 < sup P

/ / ’ / 5
e Z]t (et(V)er()weas — E [ee(v)ee(v)meay]) || > SM]

and Assumption C.1 e) to get P3,,7 < C1T exp { s §2T”} + 6’3571 exp {—C’4Tﬁ}, for some constants

Cl,C;,C§,04 > 0. To bound P4,nT, WeE use T;; < M and ‘Tij,T —Tij‘ < Tz'ijT’Ti;,IT —7‘51’ <

T_lT — _1|
Tig —1 = _1 < 2M2 ng ’L; , if ‘TZ]T B Ti;I < M71/2' Thus, we have P47TLT <
|Tz]T Z]
-1 _ _—1 1 /€ ing =L = & !
2max P\ |ry; 0 = 7571 = 55\ g |- for small & By using 73,7 = 7 > Lijeand 75 = ElLijalyi, vl
I t

from Assumption C.1 d) we get:

- IS
i TSN | R
max [|TUT Tij | 2 2M?2 8] 7775’161%1] [ r

1 PCACHIACORE E[It('Y)It(’VI)])| > 2]\142 \/S]
C1T exp {—C3€T"} + C5¢ 2 exp {~CyT"} .

IN

t

IN

We deduce:
W01 (€/4) < CfTexp {—C3E*T"} + C356 Hexp {—CuT} . (44)
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b) Bound of Py 1 (£/4) . For some constant C, we have

[ Aij|| < Crjr max
k,l,m

-5

1
T E I;j 1€ 4T kT4 1T m
¢

Let x37 = (logT)%, for a > 0. From a similar argument as in the proof of Lemma 4, and Assumption C.1

d), we have max P [1;; 7 > x3.7| = O(T_B), for any b > 0. Thus,
17‘7

Prr (€/4)
< mixP [TUTmla%( memxt kTe1Ttm HBJ BJ‘ 2 4€C
< maXP[Tz T>X3T]+maX]P’ max Zfi‘té‘itﬂ?tkévtzxtm > ; and 75,7 < X371
= i,j J» i k,l,m - Js I ’ ’ I — 4X37TC Js —_— ’
-l-max]P’ [HBJ @H > 1/4X3 - and 77 < X3,T
< (K 4 1) maxmaxP lZ:I Eit Tt kTt [ Ttm| > ¢
=~ iy klm T ij,tett bt kbt lbtm| = 4X3,TC
B — BH_ and 7,7 < xs.1| +O(T7Y). (45)
H j j 4X3TC 7, X3, ( )
By Assumption C.1 f),
1 § 03¢ }
max max P | |= L 165 44 e T > < CiTexp{ ——==>T"
R [th: 1§t t Tt kTt 1Tt m| = 4X3,TC > 1 P{ a1

(46)

« [ X3,T
+C .
V¢

3 c and 77 < X3,T] . By using

dxsT

1
T D Lwey
t

Let us now focus on P [HBAJ — ,BjH >

HB; - ﬁjH < xar ||Q2 | + X371 HQ;} -

1
T D Lwey
t
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when 7; 7 < x3,7, we get

!Hﬁg ﬁgH > 4X3TC and ;7 < X3,T]

1 1 [ ¢ _
< Tgyﬂ%%tzz s, C&TW?W
S [ e
[l et ] 2
+ Ql‘,] Qm T ; ,txtgj,t 2 4X3,T0X3’T
1 -
S ]P)[ th:[»’txtgj’t 16X3 C HQ 1H
¢ 1/4 T 1 ¢ 1/4
A_l J— . .
+]P) HQLJ (16X C> +]P) T ;IJ,txtsj,t 2 (16X§7T0>
1 ) é_ 1/4
< 2l xnmad = [t e [lon a2 (g) | e

for small £. From Assumption C.1c¢), the first probability in the RHS of Inequality (47) is such that:

1
P[Tgyﬁ%%t

To bound the second probability in the RHS of Inequality (47) we use the next Lemma.

1 _ng n * X%,T
> 16X3 CHQ H ] < ClTexp{ X%TT +C5 ¢

(48)

Y17t we have:

Lemma 12 For any two non-singular matrices A and B such that ||A — B|| < 3 | A

1B~ — A7 < 2|A7H]*|lA - BJ.

From Lemma 12, we get:

1/4 ¢ 1/4
H)—1 —1-2
HQIJ (16X3T > = HQx,J Qz|| 2 5 (W) Q%
+2 Qs - Q] 2 10z
¢ 1/4
< P |]Qns- Q. _Q(W) @
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for small £ > 0. From Assumption C.1b),

1/4
§ —1-2 * 5
z z|| Z 3~ < OiT —C3, [ —=—T"
P Qe Quf 25 (16><§,Tc> [oal Texp | =Gy
N 1/4
+2C§j< ZT> exp {—C4T"} . (49)
Then, from (45)-(49) we get:
. 3/2
* * n 3 03X37T m —b
Pir (€£/4) < CiT exp {—C5¢T /X3,T}+ JE exp {—CyT"} + O(T™"), (50)

for small £ > 0 and some constants C7, C5,C3,Cy > 0.

¢) Bound of P, (€/4) . We have from Assumption C.4

|2
c||a

1G]l

IN

— B

T

Zfzg tLt kTt 1Tt mLt,p
klmp P

IN

- Bi

;-8
Thus, we have:

— B

¢ 1/2
{2 ()

exp {—C4T"} , (51)

Pyt (€/4) < maX]P’[ (

[ 5] > §] <20 |-

By the same arguments as above, we get:

v 3/2
3X3,T

3

Py (€/4) < CT exp {—C3€T" /X3 1} +

for small £ > 0 and some constants C7, C5, C3, Cy > 0.
d) Conclusion. From inequalities (43), (44), (50) and (51) we deduce:

Vo (€) < CiTexp {~C33T7} + ‘;3 exp {—CuT™} + O(T),
T
where {7 := min{¢, \/@}, for small £ > 0 and constants C}, C5,C5,Cs > 0. For £ = (1 —v) k and

/1
k=M %,Wegeth = (1 — v) & for large T" and

n2 [T
n*U,r (1 —v)k) < CanTeXp{ CiM? (1 —v)? logn 1—53M exp{ CiT"}

+on* T =0(1),
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for b and M sufficiently large, when n, T — oo such that n = O (T"7) for 7 > 0.

1
Finally, let us prove that 1,7 = O, ( (;g;l) . Let e > 0. Then,
logn 2 A logn
P [wnT 2N m | = n IIZL%X]P) [’ Sij — Sijl| > Tn €

= n?U,r (@e) <n*V,r (1 —v)r) =0 (1),

for large €. The conclusion follows.

A.5.7 Proof of Lemma 8

Under the null hypothesis H, and by definition of the fitted residual é;, we have

& = a;—bip+a, (Bz — 5z’>
= a—br+é (5 - 51») V(0 —v) (52)
= 5@(@—@')—52@—@-

By definition of Qe, it follows
0. = lzuv- [é’ (B»—ﬂ-)]2—2(ﬁ—u)’12wb- (B-—ﬁ-)'a +(ﬁ—y)’12wb~b’. (- v)
e n i i [Cy 4 7 n i A% 4 7 v n i AL
_. lzug {é/ <B_/3A>]2_2] +7
- n i [ v % 7 71 72-

Let us study the second term in the RHS:

1 R 1 R A1 1 A
In = \/ﬁ (V - V), % ZwiTLTbi}/ZTQx’zl'CV = \/ﬁ(lj - V)/I7110u7
i

where I711 = Op(1) by the same arguments used to control term I in the proof of Proposition 3. We have

' 1 | o B 1 1
D=1 = Opiog <\/ﬁ + T) and ¢, = O (1) by Lemma 3 (v). Thus, I71 = O, (nT T Tﬁ) '
1

1
Let us now consider I72. From Lemma 1 (ii)-(iii) and Lemma 3 (v), we have I72 = O, 104 T + T2) .

The conclusion follows.
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A.5.8 Proof of Lemma 9

Under H;, and using Equation (52), we have é; = e; + ¢, (BZ — Bi) — b} (7 — v) . By definition of Qe, it

follows:
0. = % S die? + 2% >, (- @) e —2(0—v) % Z wibse;
+% w; [52 (Bz - @‘)r Zw, i ( ﬁl) &y + (0 —v) % szblb; (0 —

=: g1 + Igo + Ig3 + Igq + Ig5 + Igs. (53)

1
From Equations (24) and (26) and similar arguments as in Section A.2.3 c), we have Ig; = — E wie?+
n =
(]

1

Op.iog <\/T> By similar arguments as for term [I; in the proof of Proposition 3, we have
1 1 . ;A1) . 1 ) 1 . 1

Iy = T \ V/n EZ :wiTi7T€iY;7TQx7i ¢ = Op T ) By using — E wibje; = ” % wibie;+

1 1 1 R 1
OPJOQ <\/T> = Op <\/ﬁ> + Op,log <\/T> and U — Voo = P,log (\f T) we get
1 1 1 1
Is3 = Op 104 (n + —+ T)' Similar as for Igs we have Ig5 = O, g ( + > From

nVT — /nT3
1 1
U — Voo = Op,log < T T> we have Igg = Op jog < T2> . The conclusion follows.

A.5.9 Proof of Lemma 10

By applying MN Theorem 2 p.35, Theorem 10 p. 55 and using W), 1 = I,,, we have

Ab = vec(Ab) = (V' ® A)vec(I)

= wvec[(V ® A) vec(I,,)]
(In @ W1 @ Iy, (vec (V) @ vec (A))

@ In)
® L) (In ® In,) vec (vec (A) V)
@ In)

vec (vec (A) V') .

81



A.5.10 Proof of Lemma 11
A.5.10.1 Assumption APR.4 (i)

We use that eigmax(A4) < max E |a;,j| for any matrix A = [aj;]; j=1,....n. Then, for any sequence (7;)
i=1,....n 4
J=1

in [0, 1] we have:

cigmax(Teia) < max, 3 |Covleu(). il < O, mox, 3 105 € I} (54)
= j:

where C' := sup E[e4(v)?]. Define:
v€[0,1]

J = {(%) :mff?.}fmlzzl{% € I} :0(1)}.

=1

Then Assumption APR.4 (i) holds if ur (J) = 1. From Theorem 2.1.1 in Stout (1974), it is enough to show

n

oo
1
that — Hyi€lm} > < oo, f > 0. Now, si By, =o(1),
a n§:1up (mlnaxj ng {vi € In} 5) oo, for any ¢ ow, since max By, =o0(1)

=1,....,Jn P m=1,....Jn

n

1
we have ur ( max ;Z Wy € Iy} > 5) < ur ( max

m=1,...,Jn - m=1,...,Jn
i=1

n

|
S 1y € I} — B
=D i € In}

i=1

> 5/2), for

>5/2>,

for large n. To bound the probability in the RHS, we use |1{v; € I,,} — B,,| < 1 and the Hoeffding’s

large n. Thus, we get:

1 r 1 n

— g 1{~; € 1, > < J — 14~ € L - B

Hr <mirll,aX,Jn n 4 - {72 S m} 5) S nm:HiaX’Jn M“r <|n Z; {72 € m} m
i= P

inequality (see Bosq (1998), Theorem 1.2) to get:

1 n
— H{y; € I} — By,
Hr (‘nz {vi € Im}

i=1

> 5/2) < 2exp (—n€2/8) .

Then, since J,, < n, we get:

nz::l,up< max %Zl{% €ln} >5> SQZnexp (—n52/8) < 00,

Z1od
m n n=1

and the conclusion follows.
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A.5.10.2 Assumption A.1

Conditions a) and b) are clearly satisfied under BD.1, BD.3 and BD.4. Let us now consider condition c). We

have 05 = Eles(7i)et(v)|i,7;] =: o independent of ¢. Thus, E[o7; |7, ~v;]*? = 0. By BD.1, BD.4

Jn Jn
and the Cauchy-Schwarz inequality o;; = Z i, vj € ImYEee(vi)ee(v5) i, 73] < C Z i, vj € Im}s
m=1 m=1
where C' = sup FEl[e;(7)?]. Hence, we get:

~v€[0,1]

IA

J, J,
1 1 - 1 =
=D Bl ] C-Y Y EL{n eI} +C > > Ell{niv € In}]

i i m=1 i#j m=1
JIn JIn Jn
= CZBm+C(n—1)ZBEn:O<1+nZBgl>.
m=1 m=1 m=1
From BD.2, the RHS is O(1), and condition c) in Assumption A.1 follows.

A.5.10.3 Assumption A.2
Let us consider condition a). Under BD.l and BD.3, we have S;; = 04, and

Sy = lim F Z wlw] p— UU (Qz ® bb, ) . This limit is finite (if it exists), since from BD.4 we have

n—o0 ij

1
Zwlw] — am (Qe @ bib})|| < Cﬁ Z |oi |, and E Z loi j| | = O(1) from Assumption A.1.
) ..
/l?-]
Moreover

n

§ w;Ti zt -Tt®b 5zt—
t=1 i=1

Mﬂ

nt,

1 < 1
— > winYir @b =
i VTn

||M%

n

1
where &, = 7 Z w;Tili+ (¢ @ b;) €;¢. The triangular array (&) is a martingale difference sequence
n 4

w.rt. the sigma-field F,,; = {f,€it,7,? = 1,...,n}. From a multivariate version of Corollary 5.26 in

White (2001), the CLT in condition a) follows if we show:

T
.1 /
(1 T ;:1 E[fn,tfn,t] — S,

(ll Z <En tént fn tgn t]) = Op(l),

=1
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(iii) sup E[||&.4]|*T°] = O(1), for some & > 0.
T

Moreover, we prove the alternative characterization of the asymptotic variance-covariance matrix:

(iv) S, = as. —nhm — z; wzwj p Uz](Qz ® b; b’)

Let us check these conditions. (i) Let G,, = {v;,7 = 1, ...,n}. We have:

] = Z Z wzijzT] |: i tht (-’Etl't ® bib; > 5i,t5j,t|7iv 'Yj}
= T7n Z Z wiw; T B[l 1| Vi, ;] (E[l'tx;] ® bd)}) Eleiqejy

= —szwj U@J (Qx®bb>

By taking expectation on both sides, condition (i) follows.

i Vi)

1
Let us now consider condition (ii). Define ¢, 7 = T Z (ntiénti — Eléntk&ntil), where &, ¢ is
t
the k-th element of &, ;. Since E[(, 7] = 0, it is enough to show V[(, 7] = o(1), for any k,I. We show
this for & = [, the proof for k # [ is similar. For expository purpose we omit the index &, and we will have

Ty kTt = xt We have:

Vier] =73 Z VI + g O Cov (0, 62.) (55)
t#s

where:

1
2 § : 2
gn,t = ?l wiijiTin7th7twt bibjgi,tgj,t-
i?j

o Consider first the terms Cov(f?ht, 57217 ¢) for t # s. By the variance decomposition formula:

Cov(&l .60 ) = E [Cov(&},, &2 ,1Gn)] + Cov [E(E] 1Gn), E(&: 4IGn)] -

We have Cov(€7 ;, €2 |Gn) = 0 from the i.i.d. assumption over time. Moreover:

J
1 7—7— 1 n
El&n41Ga) = o E wiijZ_“]QxUz‘jbibj = E g @ijoii 1{vi,v; € Im},
irj K m=1 i,j
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where a;; = wiwjﬂbiijx and Q, = E[z?]. Thus:

J,
1 n
Cov [E(fi,tlgn%E(iﬁ,s\gn)] =2 § § Cov (i 1{7i,j € Im}, caom{ve, v € Ip}) .
m,p=14,j,k,l

In the above sum, the terms such that sets {7, j} and {k, [} do not have a common element, vanish.
Consider now the sum of the terms such that ¢ = k (terms such that ¢ = [, or j = k, or j = [ are

symmetric). Therefore, let us focus on the sum

J,
1 n
Sn = ﬁ E 1 E'l Cov (Ocijaijl{’yi,”yj S Im},ailaill{%,*yl < Ip})
m7p: 27.]7

JIn
1
= 3 >N Cov(aijoil{yi v € I} caoul{yi, v € Im})

m=1 17,1
1 J'"/
3 > Y Elayoiji{yi v € In}] E laoal{vi, v € L,}].
m,p=1,m#p 4,5,

Jn
1
From BD.4, we have a;; < C'and 0;; < C. Thus, we get S, = O 3 Z ZE[I{'yi,'yj,'yl el | +

m=1 1,5,
1 &
@) o Z ZE (H{vi,v; € Im} E[1{vi, v € I,}] |- ByusingthatZE[l{%,fyj,fyl ey} =
mvp:17m7ép i7j7l i’-j’l

O (nBm + 0B, +n°B})  and Y E[1{yi,7; € I} E[{7i,% € I,}] = O (nBpnBp+

i?j7l

I I In 2
n?(B},B, + BynBy) + n’ B}, B2)), weget S, =0 | 1/n+ Y Br+n ) B +n <Z Bi)

m=1 m=1 m=1

The RHS is o(1) from BD.2. Thus, we have shown that:
Cov(&r e &ns) = o(1), (56)

uniformly in ¢ # s.

e Consider now V'[¢2 ,]. By the variance decomposition formula:

V[fi,t] =FE [V(@%,t’gn)] +V [E(fgﬁgn)] .
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By similar arguments as above, we have V' [E(¢2 ;]Gn)| = o(1) uniformly in ¢. Consider now term
E [V (&2 ,1Gn)]. We have:

1

2 2 :

V({njt’gn) = n2 wiijkmekanbibjbkbl
i7j’k’l

2 2
-Cov (LitLaaiei e e liawieneere| Vi Vis Yo M) -

Moreover:

Cov (11 xiei sejp, Tnadixien i vis vis Yoo )
—1_-1
= E L Ly e el vi, vjs e ) E (€48 08 k080 1%i0 Vi Yoo ) El2f] — OiiOkIT; Th E[z?)2.
From the block dependence structure in BD.1, the expectation F [g; 1€ 1€k 1€1.4|Vi, V5> Vi, Vi) is dif-
ferent from zero only if a pair of indices are in a same block I,,,, and the other pair is also in

a same block I, say, possibly with m = p. Similarly, o;;oy; is different from zero only if ~;

and ; are in the same block and ~; and 7; are in the same block. From BD.4, we deduce that

J
1 n
V(&2 ,1Gn) < C— g E 1{7i,vj € Im}1{vk, 7 € Ip}, where in the double sum the elements
: n
Z‘?j7k7l m7p:1
with m # p are not zero only if the pairs (y;,7;) and (v, ;) have no element in common. Thus:

JIn
EVEIG)] = 05 3 " B2 € I}

2,3,k m=1

JIn
1
4 =Y > El{r € InHE e € L}
7’7]7k7l7/3ék7lv‘7#k7l m7p=1m;£p

In JIn
By using Z Z El1{vi,vj, Vs € Im}] = O (Z (nBp, +n*B2, +n®B3, + n4Bﬁl)> and

i,5,k,l m=1 m=1
In JIn
S El{yviy € In}EM{ym € LY =0 Y. (n*BnB,+n*BB,+n'B.,B}) | we
,7,k,l m,p=1 m,p=1

get:
Jn JIn JIn
E [V(§,217t|gn)] =0 (1 +n Z B2 + (n Z B2)% +n? Z B;) .
m=1 m=1 m=1

By BD.2, n max B2 = 0(1), and we get E [V(@%}tlgn)] =0(1).

=1,...,n
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Thus, we have shown:
V(E2,) =0(1), (57)

n,t

uniformly in ¢.

From (55), (56) and (57), we get V[(,r] = o(1), and condition (ii) follows. From (57) and by using

[53 J = 0(1), condition (iii) follows for § = 2. Finally, condition (iv) follows from
1 1
— Z amb by =(1+ NVI[fIN) 2= Z &b b; and the next Lemma 13.
Tij n Tij 0ii0jj
) 1 L oij o
Lemma 13 Under Assumptions BD.1-BD.4: — Z ——>—bb; = L, P-a.s., where:

n Tij 04304
ij iy Y4057

5

e 1 1oy | ("
Lo i B |5 = <W+£wﬁi by,

with w(v,7) = E[L (V) L(Y)] st b(1)b(v') and w(7) = w(7,7).

Then, we have proved part a). Part b) follows by a standard CLT.

A.5.10.4 Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third moment (Assumption BD.1).

A.5.10.5 Assumption A.4
We have to show that max; 3, [|S; |7 = O,(n?), for any ¢ € (0,1) and § > 1/2. From S;; = 0;;Q,, and
an argument similar to (54):

n

maxz 1557 < C _ max Z H{y; €In} <Cn ax Bm+C max Z[l{% € In} — Bnll,

e =00 om=1,, =1,. X
7L _1 n ]:1

for any g > 0. Let us derive (probability) bounds for the two terms in the RHS. From BD.2:

1/2
nm£X|Bm] §\/ﬁ<nZ|Bm|2> =0 (Vn).
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Let e, := n%, with § > 1/2. Then:

n n

P s € Int — Boll >en| < Jn P 1y € I} — Bpl| > en
max | Y [1{y; € I} — Bil| > € max Y 1y €In} —Bul| > ¢

m=1,...,J, -
j=1 " j=1

< 2J,exp(—€2/(2n)) = o(1),

from the Hoeffding’s inequality (see Bosq (1998), Theorem 1.2), and J,, < n. Thus, we have shown that

n

max Z[l{*yj € Iy} — Bp]| = 0p(n?), and the conclusion follows.
m=1,....,Jn =

A.5.10.6 Assumption A.5

We have S;; 7 = Uu‘Qz,i and S;; = 0;;Qy. Letusdenote by H = o ((f¢), (Lt(7)),y € [0,1], 7,1 =1,2,...)
the information in the factor path, the indicators paths and the individual random effects. The proof is in
two steps.

STEP 1: We first show that conditional on H we have
Tor = \szl [ ZT®Y;,T Sii,T]jN(OaQ)7 n, T — oo, (58)

-2
P-as., where Sj; 1 = oyvec(Qqi) and Q = nh_g)lo E Z wiw; 7'12; gi?j Qz ® Qz + (Qz ® Qz) Wiy1] .

For this purpose, we apply the Lyapunov CLT for heterogenous independent arrays (see Davidson (1994),
Theorem 23.11). Write

Jn
Tor = \F Zz:mz:l Hvi € Im}wz [ T QYT — Sii,T} = \/%Tnz::lwm7nT’

where
T ~
Winnr = ﬁ Z i € L yw? [YE,T QYT — Sn’,T} .
KA

Conditional on H, the variables W, 7, form = 1, ..., J,, are independent, with zero mean. The conclusion
follows if we prove:

@) hm — Z V [Winr|H] = Q, P-as, and

(ii) 171%“1 W ZE [HVanTH3 |H| =0, P-as..
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To show (i), we use:

V [Winr|H] = Z wl-ijiQTjQC'ov Yir @Yir,Yir ® Y;r|H]

J,

n -
4,JE€Im

J,

= 2N way P { B |(Yir @ Yir) (YVia © Yir) 1] = Sax S0}
where Z denotes double sum over all 7,j = 1,...,n such that ~;,v; € I,,. Now, we have by the

4,J€Im
independence property over time:

B |(Yir ® Yir) (Vir  Yir)' [H]

]. ! I
= Z Z > Z E e gip€js€ial (ft) s vis vil LitLiplj sl (wtfb’s ® xpxq)

p

= FE [ nE Al 7] Tz Z Lindje (xtxt ® xt%ﬁ) + UZJ T2 Z Z Lijilijp <:tht ® Tpxy, >
t  pFt
—l—anaﬂ T2 Z Z 111 6 (mtx X Ttx ) + Uwﬁ Z Z Iij 11 s (l‘tﬂfls ® xsx;)

t s#t t

= E[eheilvi, ] Avr + 05 Asr + 0505 A + 0 A4T
T;s I;
Moreover, Aj 7 = T—g 721]@; (a:txt ® :z:txt) =0 (E-j/TQ) = O(1/T), uniformly in H. Let us de-
¢

A 1
fine Qz,ij = T Z Iij,txtl‘;, then
1] t

TisT

1 ’ ’ 1 ~ N
A = & Do Lijalije (ﬂft% ® ﬂfpﬂfp) —Air = 5 (Qw,ij ® Qm’j) +01/T),
i p

]. / / A A
A37T = ﬁ Z Z Ii,th,s (mtxs X :L't.%'s) — ALT = vecC (Qz,z) vec <Q$7j> + O (1/T) y
t s

and

1 ! /
Asr = DO Lijalije (fﬂtfﬁs ® fﬂswt) —Air
t s
1 ,
= T SN Lyl (1@ x) (ws @ @) — Arp
t s

1 /
= T SN Lijelijs (0@ x) (2 @ ws) Wien — Air
t s

1 /. .
= 5 (Qx,z‘j ® Qx,ij) Wik +0(1/T).
TijT
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Then, it follows that:

Jn 72-27'32 9 [ A A A A
VIWnarlH] = —= ) wiw; 3055 \@aij @ Quij + Qayij @ Quii W41
ivjelm ZJ7T
+O FT E ’leU}JTZ Tj s
1,j€Im

where the O term is uniform w.r.t. . Thus, we get:

1 1 72-27'-2
=V WanrlH] = | =D Jwiwj =505 | (Qu © Qo+ Qr ® QWi i)
" om ij ij

1 2,2 2 11 2,2

m 1,j5€Im m 1,5€Im

1 R N R A 1
where the a;; = P (Qx,ij ® Quij + Quij ® Qz,ijWK—i-l) =i (Qr ® Qz + Qr ® Q: Wi y1) are o(1)
i3, T 17

ij

2,2
. L TiTj —1y\\—2TiTj 9ij o

uniformly in 4,j, and wiwjl—;a% =1+ N Zfl)\) 222 Then, point i) follows from

Tij Tij Oii0jj
2 2

1 T 02 . 1 TiT; Ois Sy .

— g Z—Qj Y _ [, P-as., where L = lim F |— E —2] J__ |, which is proved by similar ar-

n i Tz’j 0ii03jj n—00 n Tij 01035

)

guments as Lemma 13.
Let us now prove point ii). We have:

1 1
MZEth,nTHBH} < WZ[

m

1/3
+|

> wir? (B |0 @ Vi)l 14

i€l

3
S )
1

3
1/3
32 Z(Zw”?) <SUPE{||Y1',T®Y2‘,TH3|H] +sylp‘
g i

m 1€1m

IN

Sur])

Now,

, 3
B[Wiravial’ 4] < B[l ] = 5| (vietir) 14
1

/ / /
= 73 Z Lit . Lits B [€it, €] Vi) (.CEtIJItz) ($t3$t4) (xt5:ct6) )
t1,....te
By the independence property, the non-zero terms E [€; ¢, ...€; 4,|7;] involve at most 3 different time indices,

which implies together with BD.4 that sup F [HY;T @ Yir|? \’H] = O(1), P-a.s. Similarly sup ’
i i

§uTH =0 (1),
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P-as. Thus, we get:

In Jn 3
J;/Q Z_:IE [HWm,nTII3 \H] < C# z_:l (Z Hyi € Im}> .

Then, point ii) follows from the next Lemma 14.

7 3
1 n
Lemma 14 Under Assumptions BD.1-BD.4: peTe) E ( E 1{v; € Im}) — 0, P-a.s.
m=1 %

STEP 2: We show that (58) implies the asymptotic normality condition in Assumption A.4. Indeed,

from (58) we have:

z
li Pl Y, < =
Jm Pl <= <o (2 ),

for any a € R2X+1 and for any z € R, and P-a.s. We now apply the Lebesgue dominated convergence the-
orem, by using that the sequence of random variables P [o/Y,,p < z|H] are such that P [o/YT,,7 < z|H] <

1, uniformly in n and 7. We conclude that, for any o € R2E+D) > € R:

. . z
Jim P <] = g B (P [ < <)) = ().

. ~ . . . .
since ¢ ( m) is independent of the information set H. The conclusion follows.

A.5.11 Proof Lemma 12

Write:
B AT = [A(T- a7 A= B)] At = {1 At (A= BT -1}
and use that, for a square matrix C such that ||C]| < 1, we have
(I-C)'=I+C+C*+0C3+ ...

and

€]

[-ort -1 <ici+ier+.. <y 5a
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Thus, we get:

IR At A-B)| -
B 1_A 1 H A 1
H I < ey 47
[A~M* 14 - BI

T 1A [A- B

< 2)A7Y*|4- B,
. Lo —1-1
if A= B|| < SIlA7™
A.5.12 Proof of Lemma 13
Let us denote &; ; = TLJJZ bib; = w (i, ;). We have — wa = Zﬁn Z{i,j. By the LLN

ij 041034 i;éj
we get%Zfﬁ = — w(vi) — / ~v)d~y, P-a.s.. Let us now consider the double sum — wa The
P Z#J

proof proceeds in three steps

STEP 1: We first prove that — Z&J = L'+ 0,y(1), where L' := lim n Z / / w(7y,y )dydy'.
I"Tl

n—oo
%#J
1
For this purpose, write — Z &ij = Z X, where X, Z w(vi,v5) {7, v € Im}, by using block-
n
2#] m=1 i#]

dependence. Then, we have:

ZE w(¥i, ) His 75 € Im}] = n—l/I/I w(y,7")dydy =t (n — 1)@,
" mem

which implies:

JIn

1

FE EZ&’] = (n—l) Z(Z)m%L/.
i#j m=1

Moreover:
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VIXn = QZZE w (i ¥7)w (Vs W) i Y Yo N € I} = E[Xom]?
i#) k#l
1

= —3 [n=1)(n=2)(n = 3)@y, + O’ By) + O(n*By)] — (n - 1)y,

— O(nBL)+O(nB%) + O(B%),

and:
Cov(Xm, Xp) = —5 ZZE w (Vi V)W (Vs YO W ¥is Vi € I Pk, W € Ip}] — E[Xin] E[X))]
£y k#l
1
= —[nmn—1)(n—2)(n—3)onwy| — (n - 1) 20w, = O(nB?nt),

for m # p, which implies:

JIn JIn
%ng = Y VIXul+ ). Cov(Xpm, Xp) =o(1),

i#j m=1 m,p=1,m##p
from BD.2. Then, Step 1 follows.

STEP 2: There exists a random variable L such that l Z &ij— IN/, P-a.s.. To show this statement, we
"
use that the event in which series 1 Z &; ; converges is a tail event for the i.i.d. sequence (;). Indeed,
iz
1 . L1 .
we have that — Z &i,j converges if, and only if, — Z &i,j converges, for any integer N. Then, by the
iz " igENi
Kolmogorov zero-one law, the event in which series 1 Z &i,j converges has probability either 1 or 0. The
"
latter case however is excluded by Step 1. Therefore, the sequence % Z &i,j 1s converges with probability
1, and Step 2 follows. 7
STEP 3: We have L = L/, with probability 1. Indeed, by Steps 1 and 2 it follows 1 Z &j— L =o0,(1)
"
and — Z & i — L = 0y(1). These equations imply that L — L’ = 0,(1), which holds if and only if L = L

i
with probability 1 (since L and L’ are independent of n).
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A.5.13 Proof of Lemma 14

The proof is similar to the one of Lemma 13 and we give only the main steps. First, we prove that

7 3
1 n
3 Z (Z 1{v € Im}> = 0p(1). Indeed, we have:
i

In 3
7;&2(21{%6[’”}> = nS/ZZZE 1%, %5, Yk € Im) ( 3/2ZB3>_

i m=114,75,k

In 3
1
from Assumption BD.2, and we can show V' 37 Z (Z IRETRS Im}> = o(1). Second, by us-
oo
ing the monotone convergence theorem and the Kolmogorov zero-one law, we can show that sequence

In 3
3 /2 Z (Z {v € Im}> converges with probability 1. Third, we conclude that the limit is 0 with
n

probablhty 1.

Appendix 6: Monte-Carlo experiments

In this section, we perform simulation exercises on balanced and unbalanced panels in order to study the
properties of our estimation and testing approaches. We pay particular attention to the interaction between
panel dimensions n and T in finite samples since we face conditions like n = o(T®) for inference with
U, and n = o(T?) for inference with Q. and Q,, in the theoretical results. The simulation design mimics
the empirical features of our data. The balanced case serves as benchmark to understand when 7" is not
sufficiently large w.r.t. n to apply the theory. The unbalanced case shows that we can exploit the guidelines
found for the balanced case when we substitute the average of the sample sizes of the individual assets, i.e.,
a kind of operative sample size, for 7". To summarize our Monte Carlo findings, we do not face any finite
sample distortions for the inference with # when n = 1,000 and 7' = 150, and with Qe and Qa when
n = 1,000 and T" = 350. In light of these results, we do not expect to face significant inference bias in our

empirical application.
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A.6.1 Balanced panel

We simulate S datasets of excess returns from an unconditional one-factor model (CAPM), we estimate the
parameter v, and compute the test statistics. A simulated dataset includes: a vector of intercepts a® € R",
a vector of factor loadings b° € R", and a variance-covariance matrix {2° € R™*". At each simulation s =
1,..., 8, we randomly draw n < 9,904 assets from the empirical sample that comprises 9,904 individual
stocks. The assets are listed by industrial sectors. We use the classification proposed by Ferson and Harvey
(1999). The vector b® is composed by the estimated factor loadings for the n randomly chosen assets.
At each simulation, we build a block diagonal matrix €2° with blocks matching industrial sectors. The n
elements of the main diagonal of 2° correspond to the variances of the estimated residuals of the individual
assets. The off-diagonal elements of €2° are covariances computed by fixing correlations within a block
equal to the average correlation of the industrial sector computed from the 9,904 x 9,904 thresholded
variance-covariance matrix of estimated residuals. Hence we get a setting in line with the block dependence
case developed in Appendix 4.

In order to study the size and power properties of our procedure, we set the values of the intercepts a;

according to four data generating processes:
DGP1: The true parameter is 19 = 0.00% and the a; are generated under the null hypothesis Ho : a; = 0;

DGP2: The true parameter is the empirical estimate of v, 1y = 2.57%, and the a; are generated under the

null hypothesis Ho : a] = bjvp;

DGP3: The af are generated under the alternative hypothesis H, : ai = (0.5b7 + 0.5) v, where vy =
2.57%;

DGP4: The a; are generated under the three-factor alternative hypothesis: H, : a] = b‘is/(g)l/o’(g) where

b7 (3
CRSP dataset.

) € R3 and vy (3) = [2.92%, —0.63%, —9.96%)’ are estimates for the Fama-French model on the

DGP1 and DGP2 match two different null hypotheses. The null hypothesis for DGP1 assumes that the factor
comes from a tradable asset, and for DGP2 that it does not. DGP3 and DGP4 match two different alternative

hypotheses as suggested by MacKinlay (1995). DGP3 is a “non risk-based alternative”. It represents a
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deviation from CAPM, which is unrelated to risk: we take the one-factor model calibrated on the data with
intercepts deviating from the no arbitrage restriction. DGP4 is a “risk-based alternative”. It represents a
deviation from CAPM, which comes from missing risk factors: we take intercepts from a three-factor model
calibrated on the data, and then we estimate a one-factor model.

Let us define the simulated excess returns R;, of asset ¢ at time ¢ as follows
R}y =aj +bifi+ej;, fori=1,...,n, andt =1,..,T, (59)

where f is the market excess return and &7, is the error term. The n x 1 error vectors &f are independent
across time and Gaussian with mean zero and variance-covariance matrix 2°. We apply our estimation
approach on every simulated dataset of excess returns. We estimate the parameter v and we compute the
statistics described in Section 2.5 of the paper. Since the panel is balanced, we do not need to fix x2 7.
We only use x1,7 = 15. However, this trimming level does not affect the number of assets n in the simu-
lations. In order to compute the thresholded estimator of the variance-covariance matrix of 7, namely >,
(see Proposition 4 in the paper), and the thresholded variance estimator f)g for the test statistics, we fix the
parameter M equal to 0.0780, that is used in the empirical application. We define the parameter M using
a cross-validation method as proposed in Bickel and Levina (2008). We build random subsamples from
the CRSP sample. For each subsample, we minimize a risk function that exploits the difference between
a thresholded variance-covariance matrix and a target variance-covariance matrix (see Bickel and Levina
(2008) for details).

In order to understand how our estimation approach works for different finite samples, we perform
exercises combining different values of the cross-sectional dimension n and the time dimension 7. Table
5 reports estimation results for estimator /, and for the bias-adjusted estimator 75, under DGP 1 and 2.
The results include the bias of both estimators, the variance and the Root Mean Square Error (RMSE) of
estimator g, and the coverage of the 95% confidence interval for parameter v based on Proposition 4. The
bias of estimator ¥ is decreasing in absolute value with time series size 7" and is rather stable w.r.t. cross-
sectional size n. The analytical bias correction is rather effective, and the bias of estimator 25 is small. For
instance, for sample sizes 7' = 150 and n = 1000, under DGP 2 the bias of estimator ¥p is equal to —0.03,
which in absolute value is about 1% of the true value of the parameter » = 2.57. The variance of estimator

Up is decreasing w.r.t. both time-series and cross-sectional sample sizes T’ and n. These features reflect the
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large sample distribution of the estimators derived in Proposition 3. The coverage of the confidence intervals
is close to the nominal level 95% across the considered designs and sample sizes.

In Table 6, we display the rejection rates for the test of the null hypothesis v = 0 (tradable factor). This
null hypothesis is satisfied in DGP 1, and the rejection rates are rather close to the nominal size 5% of the
test, with a slight overrejection. In DGP 2, parameter v is different from zero, and the test features a power
equal to 100%.

Tables 7 and 8 report the results for the tests of the null hypotheses Ho : @ = 0 and Hg : a = Vv,
respectively, at 5% level. The test statistics are based on Qa and Qe as defined in Proposition 5. DGP
1 satisfies the null hypothesis for both tests. For 7' = 150, we observe an oversize, that is increasing
w.r.t. cross-sectional size n. The time series dimension 7' = 150 is likely too small compared to cross-
sectional size n = 1000 and this combination does not reflect the condition n = o(7?) for the validity of the
asymptotic Gaussian approximation of the statistics. For T' = 500 instead, the rejection rates of the tests are
quite close to the nominal size. DGP 2 satisfies the null hypothesis of the test based on Q.. but corresponds
to an alternative hypothesis for the test based on Qa. The former statistic features a similar behaviour as
under DGP 1, while the power of the latter statistic is increasing w.r.t. n. Finally, the power of both statistics
under the "non risk-based"” and "risk-based" alternatives in DGP 3 and DGP 4 is very large, with rejection

rates close to 100% for all considered combinations of sample sizes n and 7.
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Table 5: Estimation of 1/, balanced case

T =150 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.0742 -0.0567 -0.0585 -0.0586 | -0.1630 -0.1472 -0.1484 -0.1493
Bias(¥B) -0.0244 -0.0063  -0.0082 -0.0083 | -0.0319 -0.0156 -0.0169 -0.0178
Var(0g) 0.1167 0.0394  0.0179  0.0121 0.1140  0.0401 0.0189  0.0121
RMSE () 0.3423 0.1985  0.1340  0.1102 | 0.3390 0.2007 0.1383  0.1114
Coverage 0.9320 0.9290 0.9350 0.9370 | 0.9370 0.9290 0.9320 0.9360
T =500 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias (©) -0.0587 -0.0640 -0.0687 -0.0654 | -0.0847 -0.0926 -0.0972 -0.0937
Bias(¥B) -1.56%107*  -0.0063 -0.0110 -0.0077 | -0.0025 -0.0074 -0.0120 -0.0085
Var(0g) 0.0343 0.0113 0.0060 0.0040 0.0341 0.0114 0.0061 0.0041
RMSE(?g) 0.1851 0.1066  0.0781 0.0634 | 0.1846  0.1068  0.0788  0.0642
Coverage 0.9370 0.9340 09370 0.9390 | 0.9430 09370 0.9360  0.9320
Table 6: Test of v = 0, balanced case
T =150 DGP1 DGP2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0680 0.0710 0.0650 0.0630 | 1.0000 1.0000 1.0000  1.0000
T =500 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0630 0.0660 0.0630 0.0610 | 1.0000 1.0000 1.0000 1.0000
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Table 7: Test of the null hypothesis 7, : a = 0, balanced case

T = 150 DGP 1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.1180 0.1400 0.1500 | 0.3850 0.5720 0.7170 | 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000

T = 500 DGP 1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.0730 0.0610 0.0740 | 0.9240 0.9920 0.9970 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000

Table 8: Test of the null hypothesis H : a = 0'v, balanced case

T = 150 DGP 1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.1110 0.1340 0.1460 | 0.1070 0.1360  0.1420 | 0.9970 1.0000 1.0000 | 1.0000 1.0000  1.0000

T =500 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 | 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.0710 0.0570 0.0730 | 0.0730 0.0690 0.0750 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000

A.6.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simu-

lated datasets. We introduce these characteristics through a matrix of observability indicators I® € R"*T",

The matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size

T = 546 as in the empirical application. In the unbalanced setting, the excess returns 17, of asset ¢ at time

tis:

pe=a; + U fetely, it ;=1 fori=1,...,n, andt =1,...,T,

where I}, is the observability indicator of asset ¢ at time ¢.
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In Tables 9 and 10, we provide the operative cross-sectional and time-series sample sizes in the Monte-
Carlo repetitions for trimming x17 = 15 and four different levels of trimming 2 7. More precisely, in
Table 9 we report the average number nX of retained assets across simulations, as well as the minimum
min(nX) and the maximum max(nX) across simulations. For the lowest level of trimming y2 7 = 7'/12, all
assets are kept in all simulations, while for the level of trimming 2 7 = 7'/60 on average we keep about two
thirds of the assets. In Table 10, we report the average across assets of the T}, that are the average time-series
size T; for asset i across simulations, as well as the min and the max of the 7. Since the distribution of 7}
for an asset ¢ is right-skewed, we also report the average across assets of the median 7;. For trimming level
x2,7 = T'/60, the average mean time-series size is about 180 months, while the average median time-series
size is 140 months.

In Table 11, we display the results for estimators © and 7. The bias adjustment reduces substantially
the bias for estimation of parameter v. For trimming level xo 7 = 7'/60, the coverage of the confidence
interval is close to the nominal size 95% for all considered cross-sectional sizes, while for xo 7 = 7'/12 the
coverage deteriorates with increasing cross-sectional size. In comparison with Table 5, the bias and variance
of estimator U are larger than the ones obtained in the balanced case with time-series size 7' = 500.
However, for trimming level x2 7 = 7'/60, the results are similar to the ones with 7" = 150 in Table 5. In
fact, this time-series size of the balanced panel reflects the operative sample sizes for that trimming level
observed in Table 10. Similar comments apply for Table 12, where we report the results for the test of the
hypothesis » = 0. For trimming level x2 7 = 7'/60, the size of the test is close to the nominal level 5%
under DGP 1, and the the power is 100% under DGP 2.

In Tables 13 and 14 we display the results for the tests based on Qa and Qe, respectively. For trimming
level xo 7 = T/120, we observe an oversize, that increases with the cross-sectional dimension. We get a
similar behaviour with more severe oversize with lower trimming levels (not reported). We expect these
findings from the results in the previous section. Indeed, for trimming level xo 7 = 7'/120, the operative
time-series sample size in Table 10 is around 200 months, and in Tables 7 and 8, for a balanced panel with
T = 150 the statistics are oversized. For trimming level xo 7 = 7'/240 with operative size of about 350
months, the oversize of the statistics is moderate. Finally, the power of the statistics is very large also in the

unbalanced case, and close to 100%.
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Table 9: Operative cross-sectional sample size

trimming level X2,7 = % X2,T = %
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
nx 1,000 3,000 6,000 9,000 | 660 2,000 4,000 6,000
min (nX) 1,000 3,000 6,000 9,000 | 600 1,900 3,900 5,900
max (nX) 1,000 3,000 6,000 9,000 | 700 2,100 4,100 6,100
trimming level X2, T = % X2, T = KTO
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
nx 400 1,250 2,400 3,600 | 140 430 850 1,250
min (nX) 350 1,100 2,300 3,500 | 100 370 800 1,200
max (nX) 440 1,300 2,500 3,650 | 170 470 900 1,300
Table 10: Operative time-series sample size
trimming level XoT =5 Xel = a5 XaT = 155 X2l = 5o5
mean (TZ) 130 180 240 360
min (77) 110 160 210 350
max (7;) 140 190 260 380
mean(median (7;)) 90 140 197 330
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Table 11: Estimation of », unbalanced case

trimming level: x2,r = 135

T

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.3059 -0.3119 -0.3047 -0.3021 | -0.4211 -0.4324 -0.4202 -0.4201
Bias(Ug) -0.0893  -0.0954 -0.0880 -0.0854 | -0.1127 -0.1233 -0.1113  -0.1113
Var(0p) 0.1207  0.0409  0.0214 0.0124 | 0.1222  0.0405 0.0218  0.0124
RMSE(?g) | 03586 0.2235 0.1706  0.1402 | 0.3671 02360 0.1848  0.1574
Coverage 0.9230 09010 0.8740 0.8750 | 0.9180  0.8880  0.8410  0.8320
trimming level: 2,7 = %
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.1703  -0.1738 -0.1675 -0.1596 | -0.2454 -0.2478 -0.0411 -0.2329
Bias(¥p) -0.0349  -0.0381 -0.0318 -0.0238 | -0.0453 -0.0474 -0.0411 -0.0325
Var(2g) 0.1294  0.0436  0.0231  0.0141 | 0.1281  0.0438  0.0232  0.0144
RMSE(¢g) | 03613 0.2122  0.1551  0.1212 | 03606 0.2145 0.1578  0.1241
Coverage 0.9360  0.9310 0.9240 0.9350 | 0.9430 0.9310 0.9200  0.9300
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Table 12: Test of v = 0, unbalanced case

trimming level: x2,r = 135

T

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0770  0.0990 0.1260 0.1250 | 1.0000 1.0000 1.0000  1.0000
trimming level: x2. 7 = GT—O
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0640  0.0690 0.0760 0.0650 | 1.0000 1.0000 1.0000  1.0000

Table 13: Test of the null hypothesis , : 31 = 0, unbalanced case

trimming level: x2,7 = 11

20

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1180 0.1710  0.2420  0.3030 | 0.6010 0.9410  0.9980 1.000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9990 1.0000 1.0000  1.0000
trimming level: 27 = 555
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0880 0.0860 0.1020  0.1310 | 0.5320 0.8730 0.9920  1.0000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9740 1.0000 1.0000  1.0000
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Table 14: Test of the null hypothesis 7/, : 31 = S3v, unbalanced case

trimming level: x2,7 = 1—50
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1130  0.1670  0.2370  0.3010 | 0.0940 0.2190 0.2590  0.3740
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9990 1.0000 1.0000  1.0000
trimming level: x2,7 = ITO
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0800 0.0790  0.1000 0.1290 | 0.0790 0.0870  0.1080  0.1440
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.9990 1.0000 1.0000 1.0000 | 0.9690 1.0000 1.0000  1.0000

Appendix 7: Cost of Equity

VT (C/YEH - CEi,t) = YL ENT (Bz - 51‘)

+(Z)_, @ V,,) Wy iV Tvec [A’ - A’} +op (1),
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reet IA);’t;\t, where 74 is the risk-free rate. We have (see Appendix 7.1)

We can use the results in Section 3 for estimation and inference on the cost of equity in conditional factor

models. We can estimate the time varying cost of equity CE;; = rp; + b;t)\t of firm ¢ with @i,t =

!/ ~
where ;4 = </\£ ® Zi_1, N, ® Z;t_l) . Standard results on OLS imply that estimator (3; is asymptotically
normal, /T (Bi — 6@-) = N ((), TiQ;;SiiQ;;), and independent of estimator A. Then, from Proposition



9, we deduce that v/T' <C/'E” — C’Ei,t) =N (O, ECEM)’ conditionally on Z;_1, where
YoE, = Ti¢§,tE§Q;%Si¢Q;,%E2¢i,t + (Z{_ @b y) Wy kEaWk p (Z1-1 @ biy) .

Figure 4 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and
Sony. The cost of equity has risen tremendously during the recent subprime crisis.
A.7.1 Proof of Equation (61)
We have:
B A = tr [zt_lzg,lf};f\} i [zt_lzg,t,lé;A} = (Z|_,® Z|_,) vec [B;A] +(Z)_ ® Z},_,) vec [é;A} .
Thus, we get:

VT (CEis— CEyy)
= (Z_,®Z_,) VT <vec [E’;f\} — vec [B;A]) +(Z;_1 ® nytfl) VT (vec {

= (2,22 [(A’ ® Ip) VTvec [B; - Bg] + (I, ® B)) VTvec [A - A”
+(Zi_, ® Z,at,l) [(A’ ® Iq> VTovec [C’,{ — CZ/} + (I, ® C}) VTvec [[\ - AH .

Z’f\} — vec [C{A])

By using that A = A + 0,(1) and vec [A - A} = W, kvec [A' - A’} , Equation (61) follows.
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Appendix 8: Robustness checks

In this section, we perform several checks to evaluate the robustness of the empirical results reported in the
paper. In particular, we estimate the paths of the time-varying risk premia and we compute the test statistics

by:
a. Assuming several asset pricing models as baseline specification;

b. Using several sets of asset-specific instruments Z; ;_1;

o

. Using several sets of common instruments Z;_1;

d. Assuming that the time-varying betas b; ; depend only on the asset-specific instruments.

In Table 15, we provide the details of the conditional specifications for the four exercises. We use the
following abbreviations. For common instruments, we denote by ts; the term spread, ds; the default spread,
and divY, the dividend yield. The dividend yield is provided by CRSP. For asset-specific instruments, we
denote by mc; ; the market capitalization, bm; ; the book-to-market, and ind; ; the return of the correspond-
ing industry portfolio. For each exercise, when not explicitly indicated in Table 15, the specification is the
four-factor model, the vector of common instruments is Z;_1 = [1, ts;_1, dst_l]' and the asset-specific
instrument is the scalar Z; ;_1 = bm; ;1. Table 15 reports the operative trimmed population of individual
stocks and the number of regressors in the first-pass time series regression for each exercise that we imple-
ment. Indeed, the population of individual stocks changes depending on the asset pricing model (Exercise a)
as an effect of the trimming conditions: the number of assets decreases as the number K of factors increases.
Moreover, by using the four-factor model as baseline and modifying the sets of instruments, the number of
assets decreases as the number of regressors in the first pass increases (see Exercise c) .

We first present conditional estimates of risk premia by using several asset pricing models as baseline
(Exercise a). Panel A of Figure 5 compares the estimated time-varying paths of market risk premia when
we assume the four-factor model (shown in Section 4) and the CAPM. Panel B compares the estimates
5\m7t for the four-factor model and the Fama-French model. The paths look very similar. The discrepancy
between the estimates of the CAPM and the four-factor model is explained by the three factors (size, value

and momentum factor) that we introduce in the four-factor model. Figure 6 plots the estimated time-varying
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paths of risk premia for the size and value factors computed on the four-factor model and on the Fama-
French model. The risk premium for the size factor is very similar for the two models. The value risk
premium for the Fama-French model takes slightly smaller values than that for the four-factor model and it
exhibits a countercyclical path. Overall, the conditional estimates of the risk premia are stable with respect
to the asset pricing model that is assumed for the excess returns.

Figures 7 and 8 plot the estimates of the risk premia by adopting several sets of asset-specific instruments
Z;+—1 (Exercise b). We do not modify the set of common instruments Z;_; compared to Section 4 of the
paper. In Figure 7, we get the estimates by setting the scalar Z; ;1 equal to the market capitalization of firm
t. In Figure 8, we set Z; ;1 equal to the monthly returns of the industry portfolio for the industry asset i
belongs to. We use the 48 Fama-French industry portfolios. The risk premia paths look very similar to the
results in the paper. The results for the tests of the asset pricing restrictions for the conditional specifications
in Exercise b are reported in Table 16, upper panel. The test statistics reject the null hypotheses at 5% level.

The time-varying paths of the risk premia showed in Figures 9 and 10 are computed by modifying the set
of common instruments Z;_1 = [1, el J/ (Exercise c). In Figure 9, Z; is a bivariate vector that includes
the default spread and the dividend yield. The paths of the risk premia for market, value and momentum
factors look similar to the results in Section 4. However, the risk premium for the size factor features a very
stable pattern that does not correspond to the unconditional estimate. In Figure 10, vector Z; includes the
term spread, the default spread, and the dividend yield. The paths of the risk premia look similar to the
results in Section 4. Introducing the dividend yield increases the discrepancy between the unconditional
estimates and the average over time of conditional estimates for the size and momentum factors w.r.t. the
results shown in Figure 1. On the contrary, this discrepancy is smaller for the value premium. Moreover, the
risk premium of the momentum factor takes larger values than that in the paper. We also notice that including
the dividend yield among the common instruments decreases the number of stocks after trimming. The test
statistics reject the null hypothesis at 5% level (see Table 16), middle panel.

Finally, we consider conditional specifications in which the time-varying betas are linear functions of
asset specific instruments Z; ;1 only (Exercise d). The risk premia are modelled via common instruments
Zi1 =11, tsg1, dst,l]' as usual. In Figure 11, Z; ;_ is a bivariate vector that includes the constant and

the book-to-market equity of firm 7. In Figure 12, vector Z; ;1 includes the constant and the return of the
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industry portfolio as asset-specific instrument. The paths of the risk premia for the four factors in Figure
11 look more volatile w.r.t. the paths in Figure 1. The risk premia for market, size and value factors in
Figure 12 look similar to the results in Section 4. The risk premia for the momentum factor feature a less
stable pattern albeit its confidence intervals look similar to that in Figure 1. In Table 16, lower panel, the
test statistic does not reject the asset pricing restrinction Hg : 31 = Psv for the conditional specification

with time-varying betas depending on book-to-market equity.

Table 15: Operative cross-sectional sample size (nX), number of factors (X) and instruments (¢ and

p) and first-pass regressors (d) in the four exercises of robustness checks

nX K p q d nX K p q d
Exercise a. Exercise c.
CAPM 5,225 1 3 1 13 | Z;—1 = [1,dst_1,dith_1]/ 1,107 4 3 1 25

Fama-French model 4,545 3 3 1 21 | Z;—1=[1,dsi—1,t8¢—1, dz’vY}/ 667 4 4 1 34

Exercise b. Exercise d.
Zi,tfl = McC;t—1 3,835 4 3 1 25 Zi,tfl = [meLt,J 6,208 4 3 2 8
Zi,t—l = z'ndm_l 4,748 4 3 1 25 Zi7t—1 = [1,indi,t_1]/ 6,430 4 3 2 8
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Figure 5: Path of estimated annualized risk premia for the market factor

Panel A

Panel B

Panel A plots the paths of estimated annualized market risk premia j\m,t computed by using the four-factor
model (thin red line) and the CAPM (thick blue line). Panel B plot the paths of market risk premia /A\m7t es-
timated by assuming the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Reasearch (NBER).
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Figure 6: Path of estimated annualized risk premia for the size and value factors

Panel A

Panel B

The figure plots the paths of estimated annualized risk premia j\sm@t (Panel A) and j\hml,t (Panel B) com-
puted by using the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Reasearch (NBER).
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