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Abstract

Recently there has been considerable work on stochastic time-varying coefficient
models as vehicles for modelling structural change in the macroeconomy with a focus
on the estimation of the unobserved sample path of time series of coefficient processes.
The dominant estimation methods, in this context, are based on various filters, such as
the Kalman filter, that are applicable when the models are cast in state space represen-
tations. This paper examines, in a rigorous manner, alternative kernel based estima-
tion approaches for such models in a nonparametric framework and derives their basic
properties. The use of such estimation methods for stochastic time-varying coefficient
models, or any persistent stochastic process for that matter, is novel and has not been
suggested previously in the literature. The proposed inference methods have desirable
properties such as consistency and asymptotic normality and allow a tractable studen-
tisation. In extensive Monte Carlo and empirical studies, we find that the methods
exhibit very good small sample properties and can shed light on important empirical
issues such as the evolution of inflation persistence and the PPP hypothesis.
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1 Introduction

This paper proposes kernel-based nonparametric methods for inference on the time series
of the unobserved coefficient processes of random, or time varying, coefficient (RC) models,
such as (3.1). As the next section on the related literature makes clear, RC models have
been widely discussed in the last few years in applied macroeconomic time series analysis.
Work has ranged across topics such as accounting for the Great Moderation, documenting
changes in the effect of monetary policy shocks and documenting changes in the degree of
exchange rate pass-through. At this stage it is sufficient to cite a selection of papers that
make use of such models. These are Cogley and Sargent (2001), Cogley and Sargent (2005),
Cogley, Sargent, and Primiceri (2010), Benati (2010), Benati and Surico (2008), Mum-
taz and Surico (2009), Pesaran, Pettenuzzo, and Timmermann (2006), Stock and Watson
(1998), Koop and Potter (2008) and Koop and Potter (2007). It is clear that RC models
provide a de facto benchmark technology for analysing structural change. The breadth of
this previous work means that the results of this paper can have many applications. While
kernel based methods form the main approach for estimating models, whose parameters
change smoothly and deterministically over time, they have never been considered in the
literature as potential methods for estimating RC models. This is especially the case for
providing inference on the unobserved random coefficient processes of RC models which have
been estimated in the context of state space model representations. While the theoretical
asymptotic properties of estimating such processes via the Kalman, or related, filters are
unclear, we show that under very mild conditions, kernel-based estimates of such coefficient
processes have very desirable properties such as consistency and asymptotic normality.

The crucial conditions that need to be satisfied to obtain our theoretical results are those
that are commonly imposed for RC models used in applied macroeconomic analysis. These
are pronounced persistence of the coefficient process (usually a random walk assumption)
coupled with a restriction that the process remains bounded. We formalise these conditions,
in a direct intuitive way, while noting that a variety of devices can be used to bound the
persistent processes serving as a model for time-varying coefficients. The question of how
to bound the process is important. We use a simple approach to achieve that, which is
illustrative and allows us to focus on the novelty of the kernel approach to estimating
these models. Many other approaches can be used that result in different data generating
mechanisms but which, we note, are estimable with the kernel approach. It is important
to note further on this matter, that the question of how to restrict the coefficient process
is not clearly addressed in the macroeconometric literature. Invariably, the restriction is
imposed in a way that is computationally convenient without discussing the properties of
the resulting model. As a result, it is unclear what is the best way to restrict the process
from an economic point of view or what are the properties of the alternative models used.

The crucial issue of the choice of bandwidth that is perennially present in kernel based
estimation is also addressed. We find that a simple choice of bandwidth has wide appli-
cability and can be used irrespective of many aspects of the true nature of the coefficient
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processes. We also consider the possibility that coefficient processes have both a deter-
ministic and a stochastic time varying component thus generalising the two existing polar
paradigms. We find that kernel estimation can cope effectively with such a general model
and that the choice of bandwidth can be made robust to this possibility.

Although we focus on a simple autoregressive form for the model as a vehicle to investi-
gate our estimator of the unobserved coefficient process, our results are relevant much more
widely. They apply to general regression models, multivariate VAR-type models and can be
straightforwardly extended to models that allow for time-varying stochastic volatility such
as those used widely in applied macroeconometrics.

The theoretical analysis in this paper is coupled with an extensive Monte Carlo study
that addresses a number of issues arising out of our theoretical investigations. In particular,
we find that our proposed estimator has the desirable properties identified in our theoretical
analysis. For example, the theoretically optimal choice of bandwidth is also one of the best
in small samples. Finally, we illustrate the usefulness of the kernel estimator in two appli-
cations that have received attention in previous work. The first uses our kernel estimator
to document changes in inflation persistence over time. The second documents changes in
the persistence of deviations from purchasing power parity (PPP) has fallen or not.

The rest of the paper is structured as follows: Section 2 discusses the existing literature
and provides a framework for our contribution. Section 3 presents the model and some of its
basic properties that are of use for later developments. Section 4 contains main theoretical
results on the asymptotic properties of the new estimator. Section 5 provides an extensive
Monte Carlo study while Section 6 discusses the application of the new inference methods
to an empirical application on CPI inflation and real exchange rate data. Finally, Section 7
concludes. The proofs of all results are relegated to an Appendix.

2 Background literature

The investigation of structural change in applied econometric models has been receiving
increasing attention in the literature over the past couple of decades. This development is
not surprising. Assuming wrongly that the structure of a model remains fixed over time, has
clear adverse implications. The first implication is inconsistency of the parameter estimates.
A related implication is the fact that structural change chance is likely to be responsible
for most major forecast failures of time invariant series models.

As a result a large literature on modelling structural change has appeared. Most of the
work assumes that structural changes in parametric models occur rarely and are abrupt.
A number of tests for the presence of structural change of that form exist in the litera-
ture starting with the ground-breaking work of Chow (1960) who assumed knowledge of
the point in time at which the structural change occurred. Other tests relax this assump-
tion. Examples include Brown, Durbin, and Evans (1974), Ploberger and Kramer (1992)
and many others. In this context it is worth noting that little is being said about the
cause of structural breaks in either statistical or economic terms. The work by Kapetanios
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and Tzavalis (2004) provides a possible avenue for modelling structural breaks and, thus,
addresses partially this issue.

A more recent strand of the literature takes an alternative approach and allows the
coefficients of parametric models to evolve randomly over time. To achieve this the pa-
rameters are assumed to be persistent stochastic processes giving rise to RC models. An
early and influential example is Doan, Litterman, and Sims (1984) who estimate an RC
model on macroeconomic time series and emphasise the utility of Bayesian methods as a
way to encode - amongst other things - theoretically informed views that explosive models
for data ought to have very low or zero probability. Cogley and Sargent (2005) deploy an
RC model to address the question of whether it was changes in the variance of shocks, or
changes in coefficients - policy or otherwise- that gave rise to the period of macroeconomic
calmness in the 90’s and early 2000’s, dubbed the ‘Great Moderation’. In this work, and
work influenced by it, the authors assume a random walk process for the coefficients, but
bound the coefficients of the VAR model such that at each point in time the VAR is non-
explosive. In the univariate case this amounts to bounding the coefficients between -1 and
+1. This assumption is justified on the grounds that the monetary authorities would act
somehow to ensure that inflation was not explosive. A main point of Cogley and Sargent
(2005) was to respond to criticisms of earlier work (Cogley and Sargent (2001)) that had
found evidence of changes in coefficients but without allowing for changes in volatilities,
thus potentially biasing their findings in favour of documenting structural change in VAR
coefficients. Cogley and Sargent (2005) find evidence of change in the coefficients of the
inflation process despite the inclusion of time-varying volatilities. Subsequent work by these
authors in Cogley, Sargent, and Primiceri (2010) used the same model to investigate whether
there had been significant changes in the persistence of inflation (more precisely the gap
between inflation and its time varying unobserved permanent component) during the Great
Moderation, using the same RC tool. Other examples of the use of this RC tool abound.
Benati and Surico (2008) estimate a similar VAR model for inflation and use it to infer that
the decline in the persistence of inflation is related to an increased responsiveness of interest
rates to deviations of inflation from its target. Mumtaz and Surico (2009) estimate an RC
model to characterise evolutions in the term structure and the correspondence of changes
therein with the monetary regime. Benigno, Ricci, and Surico (2010) estimate an VAR
with random walks in the propagation coefficients involving productivity growth, real wage
growth and the unemployment rate and find that increases in the variance of productivity
growth have a long run effect on the level of unemployment. Researchers have also debated
some of the difficulties with the approach. For example, Stock and Watson (1998) discuss
how maximum likelihood implementations tend to find low variances for the shock to the
equation governing the law of motion of the coefficients; Koop and Potter (2008) discuss the
difficulty in imposing inequality restrictions on the time-varying autoregressive coefficients,
particularly in large dimensional applications and note that it can be hard to find posterior
draws that satisfy such conditions.

A particular issue with the use of such models is the relative difficulty involved in
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estimating them. As the focus of the analysis is quite often the inference of the time series
of the time-varying coefficients, models are usually cast in state space form and estimated
using variants of the Kalman filter. More recently, the addition of various new features in
these models has meant that the Kalman filter approach may not be appropriate and a
variety of techniques, quite often of a Bayesian flavour, have been used for such inference.

Yet another strand of the vast structural change literature assumes that regression co-
efficients change but in a smooth deterministic way. Such modelling attempts have a long
pedigree in statistics starting with the work of Priestley (1965). Priestley’s paper suggested
that processes may have time-varying spectral densities which change slowly over time.
The context of such modelling is nonparametric and has, more recently, been followed up
by Dahlhaus (1997) and others who refer to such processes as locally stationary processes.
We will refer to such parametric models as deterministic time-varying coefficient (DTVC)
models. A disadvantage of such an approach is that the change of deterministic coefficients
cannot be modelled or, for that matter, forecasted. Both of these are theoretically possible
with RC. However, an important assumption underlying DTVC models is that coefficients
change slowly. As a result forecasting may be carried out by assuming that the coeffi-
cients remain at their end-of-observed-sample value. The above approach while popular
in statistics has not really been influential in applied macroeconometric analysis where, as
mentioned above RC models dominate. Kapetanios and Yates (2008) is an exception, using
DTVC models to discuss the recent evolution of important macroeconomic variables. It is
important to note that while both approaches can be used for the same modelling purposes,
the underlying models have very distinct properties and have been analysed in very distinct
contexts. As we noted in the introduction, it is this kernel approach that we consider in
the context of carrying out inference on RC models.

3 The model and its basic properties

3.1 The model

In this section we introduce a class of autoregressive models driven by a random drifting
autoregressive parameter that evolves as a non-stationary process, standardised to take
values in the interval (−1, 1).

Such an autoregressive model is aimed to replicate patterns of evolution of autoregressive
coefficients that are relevant for the modelling of the evolution of macroeconomic variables
such as inflation. Such models have been extensively discussed in the recent macroecono-
metric literature, see e.g. Cogley and Sargent (2005) and Benati (2010). Our objective is
to develop a suitable statistical model that allows forecasting and estimation.

The limit theory for stationary autoregressive models with non-random coefficients is
well developed and understood. The asymptotic theory for AR models with time-invariant
coefficients was developed by Anderson (1959) and Lai and Wei (2010). Phillips (1987),
Chan and Wei (1987), Phillips and Magdalinos (2007), Andrews and Guggenberger (2008)
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extended it to AR(1) models that are local to unity. A class of a locally stationary processes
that includes AR processes with deterministic time-varying coefficients was introduced by
Dahlhaus (1997). Estimation of such process was discussed in Dahlhaus and Giraitis (1998).
In this paper, we develop an AR(1) model with a random coefficient, which encompasses
stationary and locally stationary AR(1) models. The simplest case of a drifting coefficient
process is a driftless random walk.

We consider the AR(1) model

yt = ρn,t−1yt−1 + ut, t = 1, 2, · · · , n, (3.1)

with a drifting coefficient ρn,t and initialization y0, where {ut} is an i.i.d. sequence with
zero mean and variance σ2

u. Formally, yt = ytn and ρn,t, t = 0, · · · , n are triangular arrays,
where ρn,1, · · · , ρn,n represents a history between time moments 1 and n, which is the object
of interest of estimation. For simplicity of notations we skip the index n for yt.

The definition of ρn,t, is based on the following structural assumption. Given a (non-
stationary) process {at} and a parameter ρ ∈ (−1, 1), the time-varying parameter ρn,t is
defined as a standartized version of {at}:

ρn,t = ρ
at

max0≤k≤n |ak|
, t = 1, 2, · · · , n, (3.2)

where the stochastic process {at} determines the random drift and ρ restricts ρn,t away
from the boundary points −1 and 1. Both {at} and ρ are unknown. Observe that ρn,k ∈
[−ρ, ρ] ⊂ (−1, 1), for all k = 1, · · · , n.

To assure asymptotic stabilization of {yt} and enable statistical inference of the coeffi-
cient process ρn,t, we need additional assumptions on at and initialization y0.

Assumption 3.1. The random variables (a0, · · · , an) are independent of the errors
(u1, · · · , un); Ea2

0 <∞ and Ey2
0 <∞.

We assume that at evolves as

at = at−1 + vt, t = 1, · · · , n, (3.3)

where {vt} is a stationary process with the zero mean. Denote by

Sn(τ) :=
[nτ ]∑
j=1

vj , 0 ≤ τ ≤ 1

the partial sum process of vj .
The popular empirical choice of vt as i.i.d. sequence of random variables (with zero

mean and variance σ2
v) corresponds to a driftless random walk at (see, e.g. Cogley and

Sargent (2005)). In i.i.d. case, the additional moment assumption E|v1|2+δ < ∞ for some
δ > 0, assures weak convergence

n−1/2Sn(τ)⇒D[0,1] σ
2
vBτ , 0 ≤ τ ≤ 1
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in Shorokhod space D[0, 1] to a standard Brownian motion Bτ .
In our work, which covers the i.i.d. case, the variables vt’s are allowed to be dependent.

The only assumption imposed on vt, is a weak convergence of a renormalized partial sums
process to a possibly non-Gaussian limit process. We denote it by Wτ to indicate that it
may be different from the standard Brownian motion Bτ , and may be even non-Gaussian.

Assumption 3.2. There exists γ ∈ (0, 1) such that

n−γSn(τ)⇒D[0,1] σ
2
vWτ , 0 ≤ τ ≤ 1 (3.4)

converges weakly in Shorokhod space D[0, 1] to some limit process (Wτ , 0 ≤ τ ≤ 1) with zero
mean and variance Var(Wτ ) = 1 and continuous paths in [0, 1], for some σ2

v > 0.

Remark 3.1. Assumption 3.2 (weak convergence) is satisfied by a wide class of linear
models

vj =
∞∑
k=0

akζj−k, j ≥ 0, (3.5)

where {ζk} is a sequence of i.i.d. variables with zero mean and variance 1,
∑∞

k=0 a
2
k < ∞,

such that

Var(
n∑
j=1

vj) ∼ Cn2γ , γ ∈ (0, 1). (3.6)

If a linear model (3.5) satisfies (3.6), then weak convergence of Assumption 3.2 holds true,
if γ > 1/2, or 0 < γ ≤ 1/2 and E|ζ1|p <∞ for some p > 1/γ, see, e.g., Giraitis, Koul, and
Surgailis (2010), Proposition 4.3.6. Conditions (3.5)-(3.6) are satisfied by short and long
memory and seasonal time series models. ARMA(p, q) models satisfy them with γ = 1/2.
ARFIMA(p, d, q), |d| < 1/2 models, which are used to model short memory (d = 0), long
memory (0 < d < 1/2) and negative memory (−1/2 < d < 0) times series, satisfy (3.5)-(3.6)
with γ = (1/2) + d. The definition of aj also allows stationary processes {vj}, exhibiting
seasonal long memory behaviour. Such processes can be generated by GARMA(p, d, q)
models. Covariance functions of GARMA models resemble slowly decaying damped sine
waves, whereas a spectral density has a singularity/zero point at frequency ω 6= 0 and is
continuous at zero frequency. GARMA models satisfy (3.5)-(3.6) with γ = 1/2, see section
7.2.2. of Giraitis, Koul, and Surgailis (2010).

Under Assumption 3.2, the coefficient process {ρn,t, t = 1, · · · , n}, as n increases, con-
verges in distribution to the limit

{ρn,[nτ ], 0 ≤ τ ≤ 1} →D {ρW̃τ , 0 ≤ τ ≤ 1}, (3.7)

W̃τ :=
Wτ

sup0≤s≤1 |Ws|
,

where Wτ , τ ∈ [0, 1] is the same as in (3.4). In particularly, Wτ can be a Brownian motion
or fractional Brownian motion. (3.7) shows that the parameter ρn,[nτ ] evolves around mean
0, and can take any value in the interval [−|ρ|, |ρ|]. The variance of the limit coefficient
changes with t/or u.
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Remark 3.2. To restrict ρn,t in the interval [−ρ, ρ], we use the normalization ρn,t =
ρ at/max0≤k≤n |ak|. Our methods and theory may be extended also to alternative standard-
izations such as ρn,t = ρ at/max0≤k≤t |ak| , t = 1, · · · , n. Another implicit standardisation
that is popular in the applied macroeconometric literature is ρn,t = at,

at =

{
at−1 + vt, if |at−1 + vt| < ρ

ρ, otherwise.

Such alternative standardisations may allow the relaxation of the assumption of indepen-
dence between the processes {at} and {uj}. In general the question of how to restrict ρn,t
can be tackled in a variety of ways none of which detracts from the main findings of the
paper. It is important to note that the question of how to restrict ρn,t is not clearly ad-
dressed in the macroeconometric literature. Usually the restriction is imposed in a way that
is computationally convenient without discussing the properties of the resulting model. As
a result it is unclear what is the best way to restrict the process from an economic point of
view.

Remark 3.3. It is important to stress that the paper restricts the model of interest to be
an AR(1), so as to set up an AR time-varying random framework and identify conditions
that allow rigorous inference on it. Our main finding is that kernel estimation and inference
extends to coefficients composed of time varying random and deterministic parts. Such a
finding neither is intuitively obvious nor has a trivial formal justification. Establishing the
framework and inference for AR(1) models opens the possibility for general inference theory
for AR and VAR models that may possess time-varying variances, and to more general error
processes, such as martingale differences. To illustrate a flavour of such extensions we briefly
outline some frameworks used in macroeconomic applications and ways in which these can
be adapted to our setting.
(1) Time Varying AR(p) model.

yt =
p∑
i=1

ρn,t−1,iyt−i + ut, t = 1, 2, · · · , n,

can be defined using the bounding condition

ρn,t,i = ρ
at,i

max0≤k≤n
∑p

i=1 |ak,i|
, t = 1, 2, · · · , n,

where 0 < ρ < 1, and each at,i are independent versions of the at process used above. These
bounding restrictions provide a sufficient condition for the maximum eigenvalue in absolute
value of the matrix

An,t =


ρn,t,1 ρn,t,2 ... ρn,t,p

1 0 ... 0
... ... ... ...

0 ... 1 0
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to be bounded above by one, for all t.
(2) Time Varying V AR(1) model

yt = Ψn,t−1yt−i + ut, t = 1, 2, · · · , n,

where yt is an m−dimensional vector, involves a bounding condition obtained by setting

Ψn,t−1 = QtΛn,t−1Q
′
t

where Qt and Λn,t−1 are defined as follows. Let

Ψ̃t−1 = [ψt−1,ij ], ψt,ij = ψt,ij + vψt,ij , t = 1, · · · , n; i, j = 1, · · · ,m

where vψt,ij is a zero mean i.i.d. sequence with finite variance. Further, let

Ψ̃t−1 = Qt−1Λ̃t−1Q
′
t−1

be the Schur decomposition of Ψ̃t−1. Then, Λn,t−1 is obtained from Λ̃t−1 by replacing the
i-th diagonal element of Λ̃t−1, denoted by λ̃t−1,i, by λn,t−1,i where

λn,t,i = λ
λ̃t,i

max1≤i≤m, 0≤k≤n |λ̃k,i|

and 0 < λ < 1. This ensures that the maximum eigenvalue of Ψn,t−1 is bounded above by
one in absolute value.

A third extension can be obtained by allowing time variation in the variance of the error
term of the autoregressive model. Then, kernel estimators can be used to estimate time
varying processes modelling that variance. The latter two extensions are currently the topic
of further research by the authors. It is clear that there is great scope for adapting our
framework to suit the needs of empirical researchers in applied macroeconometrics.

Remark 3.4. Our formal analysis assumes that the sequence ut is i.i.d. This assumption
can be straightforwardly relaxed to allow, for example, that ut be a martingale difference
sequence such that maxs

∑
t |Cov(u2

t , u
2
s)| <∞ and E(u4

t ) is uniformly bounded over t. We
prefer to stick to the i.i.d. assumption for simplicity and clarity of exposition.

3.2 Basic properties of yt

In this subsection we investigate the structure of yt and properties of its covariance function.
To write yt as a moving average of the noise uj , define the (random) weights

ct,0 := 1, ct,j :=
j∏

k=1

ρn,t−k, 1 ≤ j ≤ t ≤ n.

Note that
|ct,j | ≤ |ρ|j , 1 ≤ j ≤ t ≤ n.

Next theorem describes basic properties of yt, t = 1, · · · , n.
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Theorem 3.1. Under Assumption 3.1, the random process {yt, t = 1, · · · , n} of (3.1) has
the following properties.
(i) yt can be written as

yt =
t−1∑
j=0

ct,jut−j + ct,ty0 (3.8)

=
k∑
j=0

ct,jut−j + ct,k+1yt−k−1, (1 ≤ k ≤ t− 1).

(ii) The variance and covariance functions satisfy:

|Var(yt)| ≤
σ2
u + Ey2

0

1− ρ2
, Ey2

t ≤
σ2
u + Ey2

0

1− ρ2
, (3.9)

|Cov(yt+k, yt)| ≤ |ρ|kVar(yt), t ≥ 1, k ≥ 0, (3.10)

≤ |ρ|k

1− ρ2
(σ2
u + Ey2

0).

The next theorem derives the asymptotic autocovariance Cov(yt+k, yt), as t → ∞. In
addition to Assumption 3.1, we need also Assumption 3.2.

Theorem 3.2. Suppose, in addition, that in Theorem 3.1 Assumption 3.2 is satisfied.
If t = [nτ ], τ ∈ (0, 1), then as n→∞,

Cov(yt+k, yt)→ E
{ (ρW̃τ )k

1− (ρW̃τ )2

}
σ2
u, ∀k ≥ 0, (3.11)

yt =
∞∑
j=0

(ρW̃τ )jut−j + oP (1). (3.12)

4 Estimation and Inference

In this section we construct a feasible estimation procedure of the drifting coefficient
ρn,1, · · · , ρn,n, based on observables y1, · · · , yn. We consider an estimate of ρn,t, that can
be written as a weighted sample autocorrelation at lag 1. We shall show that under As-
sumptions 3.1 and 3.2, it is consistent and asymptotically normally distributed. Since
computation of standard errors is straightforward, the method allows to construct the con-
fidence band for the drifting coefficient under minimal restrictions on at, as long as {at} is
independent of the errors {ut}. Finally, we propose and analyse an extension of the model
to allow for a deterministic as well as a stochastic component in the unobserved coefficient
process.

Let H = Hn is a sequence of integers such that

H →∞, H = o(n). (4.1)
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To estimate ρ̂n,t, one can use the following estimator

ρ̂n,t :=
∑t+H

k=t−H ykyk−1∑t+H
k=t−H y

2
k−1

,

which is a local sample correlation of yt’s at lag 1, based on 2H + 1 observations
yt−H , · · · , yt+H .

We shall also consider a more general class of estimators

ρ̂n,t :=
∑n

k=1K( t−kH )ykyk−1∑n
k=1K( t−kH )y2

k−1

, (4.2)

where K(x) ≥ 0, x ∈ R is a continuous bounded function (kernel) such for some δ > 1,

|K(x)| ≤ C|x|−1−δ, x→∞. (4.3)

K does not require to be an even function. For example,

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√

2π)e−x
2/2, Gaussian kernel.

The flat and Epanechnikov kernels have a finite support, whereas Gaussian kernel has an
infinite support.

In case when K has a finite support, asymptotic properties of ρ̂n,t will be derived under
Assumption 3.2, whereas if K has an infinite support, we shall need the following slightly
stronger assumption.

Assumption 4.1. Assumption 3.2 is satisfied with some γ ∈ (0, 1) and

Var(n−γSn(1)) ≤ C, n ≥ 1, ∀n ≥ 1, (4.4)

Eu4
1 <∞, Ey4

0 <∞.

Assumption (4.4) about the variance Var(n−γSn(1)) is closely related to (3.4) and in
most of cases is easy verifiable under conditions that imply the weak convergence (3.4). We
include it because formally (3.4) does not imply (4.4).

Now we discuss the asymptotic properties of the estimator ρ̂n,t of (4.2).
Denote

btk := K(
t− k
H

), 1 ≤ t, k ≤ n, TH,t :=
∑n

k=1 btk(∑n
k=1 b

2
tk

)1/2
, (4.5)

ξn,t :=
∑n

k=1 btkukyk−1∑n
k=1 btky

2
k−1

, t = 1, · · · , n. (4.6)
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Theorem 4.1. Let y1, · · · yn be defined as in (3.1), and t = [nτ ], where 0 < τ < 1 is
fixed. Assume that Assumptions 3.1 and 3.2 hold true with some γ ∈ (0, 1), and H and K
satisfy (4.1) and (4.3), respectively. If K has an infinite support, assume, in addition, that
Assumption 4.1 holds true.
Then,

ρ̂n,t − ρn,t = ξn,t +OP ((H/n)γ) (4.7)

= OP (1/
√
H) +OP ((H/n)γ),

TH,t

(1− ρ2
n,t)1/2

ξn,t →D N(0, 1). (4.8)

In addition, if H = o(nγ/(0.5+γ)), then

TH,t√
1− ρ̂2

n,t

(
ρ̂n,t − ρn,t

)
→D N(0, 1). (4.9)

In particular, for γ ≥ 1/2, (4.9) holds true, if H = o(n1/2).

Since K is a continuous function, by (4.3) and the theorem of dominated convergence
(TDC), for t = [nτ ], 0 < τ < 1, as n→∞,

TH,t ∼ H1/2

∫
R
K(x)dx

/(∫
R
K2(x)dx

)1/2

.

In particular, for a flat kernel, TH,t ∼
√
H. The above estimator requires persistence of

the process ρn,t, and non-stationarity (stochastic or deterministic trending behavior) of at,
which is measured by the parameter 0 < γ < 1, that defines the magnitude of the error
term in the normal approximation:

ρ̂n,t − ρn,t = OP (H−1/2 + (H/n)γ), (4.10)
√
H√

1− ρ̂2
n,t

(
ρ̂n − ρn

)
∼ N(0, 1) +OP (H1/2(H/n)γ). (4.11)

Larger values of γ correspond to a stronger persistence in at; a deterministic coefficient ρn,j
corresponds to γ = 1 in (4.11). Also, ρn,t ≡ const corresponds to γ = ∞. Application
of the normal approximation (4.11) does not require knowledge of γ. A process {vj} in
at = at−1 + vt can have short, long or negative memory. The main restriction on {vj} is
to satisfy the functional central limit theorem with some normalization n−γ , 0 < γ < 1. In
applications, it is practical to choose H = o(n1/2). Such a bandwidth leads to a negligible
error in (4.11) for short memory processes {vj} (γ = 1/2) and long memory processes
(1/2 < γ < 1). When γ tends to 0, the pattern of trending behavior of at and the quality of
approximation (4.11) deteriorate. In case of a stationary process at, the above estimation
is not consistent.
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In order to give an idea of the nature of the confidence bands implied by Theorem 4.1,
we present in Figure 2 an ρn,t realisation based on a random walk model for a sample size of
500, its estimate based on flat kernel and a bandwidth of

√
n together with 90% confidence

bands. As we can see the process is well tracked and the confidence band contains the true
process most of the time (85.4% of the time to be exact).

Next, we consider the case when the process at, defining the AR(1) coefficient, ρn,t,
includes a deterministic drift:

at = at−1 + µ(t/n) + vt, t = 1, · · · , n, (4.12)

where µ(x) is a continuous function on [0, 1], such that sup0≤x≤1 |µ(x)| > 0, and vt’s are
the same as in (3.3). If µ(x) 6= 0, then the non-stationary process at is a trending unit root
process:

at =
t∑

j=1

µ(j/n) +
t∑

j=1

vj + a0 (4.13)

= ”Deterministic trend” + ”stochastic trend”.

The following theorem shows that results of Theorem 4.1 extend to the model (4.12).
Comparing to (3.3), in (4.13) the deterministic trend dominates the stochastic trend which
improves quality of estimation. It also indicates that asymptotic results obtained for an
AR(1) model with a random coefficient remain valid for an AR(1) model with a time varying
deterministic coefficient:

at = ϕ(t/n), t = 1, · · · , n, (4.14)

where ϕ(x), x ∈ [0, 1] is a continuous function with a bounded derivative, such that
sup0≤x≤1 |ϕ(x)| > 0.

Theorem 4.2. Let y1, · · · yn and at be defined as in (3.1), and (4.1) and (4.3) be valid.
(i) Suppose that at is as in (4.12) and satisfies Assumptions 3.1-3.2. If K has an infinite
support, assume in addition, that Assumption 4.1 is satisfied.

Then

ρ̂n,t − ρn,t = ξn,t +OP ((H/n)) (4.15)

= OP (1/
√
H) +OP ((H/n)),

and (4.8) holds true.
If H = o(n2/3), then ρ̂n,t satisfies (4.9).

(ii) If at is defined as in (4.14), then (4.15) remains true.
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5 Monte Carlo study

In this section, we report results of a Monte Carlo study on the small sample properties of
the new kernel based estimator of a coefficient process. We consider the following model
which accords with that analysed in the preceding section.

yn,t = ρn,tyn,t−1 + ut, 1 ≤ t ≤ n,

ρn,t = ρ
at

max0≤i≤n|at|
, |ρ| ≤ 1. (5.1)

and
at = at−1 + vt.

(5.1) uses the same specification to bound ρn,t between −ρ and ρ as that applied in the
previous section. As we have noted earlier, this is only one of a multitude of ways in which
boundedness can be imposed on ρn,t and should not be viewed as either restrictive or unique.
For example, we note that (5.1) can be replaced with

ρn,t = ρ
at

max0≤i≤t|at|
, |ρ| ≤ 1, (5.2)

without affecting in any significant way the conclusions reached in our Monte Carlo study.
Detailed results supporting this statement are available upon request.

While the baseline case is one where both {vt} and {ut} are martingale difference pro-
cesses, we will consider cases where this assumption is relaxed. The martingale difference
assumption is much more crucial for {ut}, whereas theoretical result allow for a wide class
of dependent vt’s. Therefore, to investigate robustness of the estimation to dependence in
ut’s, we only consider one form of deviation from i.i.d-ness by assuming that

ut = θut−1 + ε1t,

where θ = 0, 0.2, 0.5. For vt we assume that it is either a short memory process given by

vt = φvt−1 + ε2t

or a long memory process given by

(1− L)d−1vt = ε2t.

We let φ = 0, 0.2, 0.5, 0.9, θ = 0, 0.2, 0.5 and d = 0.51, 0.75, 1.25, 1.49. Both ε1t and ε2t
are assumed to be standard normal variates. We set ρ = 0.9, 1. Note that although
ρ = 1 is not covered by the theory, which assumes that |ρ| < 1, it is of interest to see
how the estimator works in that case. We consider two-sided kernel estimators with two
different kernels: a normal kernel and a flat kernel. The bandwidth H for both kernels
are set to nα where α = 0.2, 0.4, 0.5, 0.6, 0.8. Note that the value α = 0.5 corresponds
to the optimal value for the bandwidth derived in the previous section. Finally we set
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n = 50, 100, 200, 400, 800, 1000. Results are reported in Tables 8.1-8.3 for the various exper-
iments discussed above. The performance measure chosen is an MSE type measure given
by MSEn = 1

n

∑n
t=1 (ρ̂n,t − ρn,t)2. Averages of MSEn over 1000 replications are reported.

Table 8.1 reports results for ρ = 0.9 and allowing short memory for vt’s. In results not
fully reported in the paper, due to space considerations but available on request, we consider
the case where ρ = 1 which is not covered by theory but is in line with the models used
in the empirical literature. In general, the same patterns emerge as in Table 8.1 but the
estimators perform slightly worse with higher average MSEs. We comment next on some
clear patterns that emerge from Table 1, including the case θ = 0 covered by the theory,
and cases θ = 0.2, 0.5 analyzing the impact of dependence in ut’s (cases θ = 0.2, 0.5 are not
reported due to space considerations but are available on request). We focus on the normal
kernel estimator as very similar patterns occur for the flat kernel. In the case θ = 0, the
consistency of ρ̂n,t is clear as the average MSE falls substantially with sample size, from,
say, 0.036 for φ = 0, and an optimal bandwidth, for n = 50, to 0.011 for n = 1000. This
fall is observed for all choices of bandwidths.

The choice of bandwidth has a substantial effect on the performance of the estimator.
Rather neatly, it is clear that the theoretically optimal choice, H = n0.5, of the bandwidth
is also very good in finite samples. For the case ρ = 0.9, this is clear for the larger sample
sizes (≥ 800), and for all sample sizes for ρ = 1. So for, say, φ = 0, ρ = 0.9 and n = 1000
the optimal bandwidth has an MSE equal to 0.011, compared to 0.012 for the second best
bandwidth choice and 0.049 for the worst such choice. This superiority of the theoretically
optimal bandwidth, is further accentuated for larger samples.

The presence of short memory in vt does not seem to affect the estimator adversely. If
anything the performance of the estimator improves as vt becomes more persistent which
corresponds to a stronger persistence for ρn,t. For example, when φ = 0, n = 50 and α = 0.5,
the MSE is 0.036 while for φ = 0.9, n = 50 and α = 0.5, the MSE is 0.032. This is, in fact,
reasonable if one notes that it is the high persistence of ρn,t that allows kernel estimators to
be consistent in this setting. On the contrary dependence in ut is problematic as expected.
Low levels of persistence can be tolerated as is the case when the AR coefficient θ of ut is
0.2. When this coefficient θ rises to 0.5 problems of inconsistency are much more evident.
As a result, and to save space, we only consider nonzero values for θ in Table 8.1. The
estimator based on the flat kernel performs only slightly worse but otherwise the patterns
are similar to those observed for the normal kernel.

Table 8.2 reports results for the case where vt is a strongly persistent process. There, we
clearly see once again the familiar pattern whereby more persistent processes for ρn,t allow
for better estimation when kernel estimators are used. So when at is I(0.51) or I(0.75),
the performance of the estimator is somewhat worse compared to the case where at is I(1)
which is itself somewhat worse than the performance of the estimator when at is I(1.25)
or I(1.49). For example, when d = 0.51, n = 50 and α = 0.5, the MSE is 0.13 while for
d = 1.49, n = 50 and α = 0.5, the MSE is 0.068. This accords with the theory for |ρ| < 1
developed in the previous section. Otherwise, the same patterns emerge as in Table 8.1.
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Finally, to compare the performance of the estimator in case of a random and non-
random coefficient we consider the case where in fact there is no time variation in ρn,t, and
ρn,t = 0.9. Results for this case are presented in Table 8.3. The estimators in this case also
work very well and are consistent as standard theory would immediately suggest. Clearly,
here the best bandwidth is the highest one. Otherwise, similar patterns to those apparent
in Tables 8.1-8.2, also emerge.

6 Empirical Application

In this section we use the kernel estimator to contribute new evidence to two debates that
have attracted considerable attention in empirical macroeconomics. These debates relate
to the time-varying persistence of inflation and the validity of the PPP hypothesis.

6.1 Data and Setup

Our CPI inflation dataset is made up of 6 countries: Australia, Canada, Japan, Switzerland,
US and UK. The real exchange rate (RER) dataset is made up of 6 countries where the
US dollar is the base currency: Australia, Canada, Japan, Norway Switzerland and UK.
The data span is 1957Q1 to 2009Q1. All data are obtained from the IMF (International
Financial Statistics (IFS)). We construct the bilateral real exchange rate q against the i-th
currency at time t as qi,t = si,t+pj,t−pi.t, where si,t is the corresponding nominal exchange
rate (i-th currency units per one unit of the j-th currency), pj,t the price level (CPI) in the
j-th country, and pi,t the price level of the i-th country. That is, a rise in qi,t implies a real
appreciation of the j-th country’s currency against the i-th country’s currency.

We consider a model whereby we fit an AR(1) model with a time varying autoregressive
coefficient and a ‘constant’ term which is allowed to vary over time as well. We have
considered fitting the simpler model where the constant term is time-invariant but found
that, in the majority of cases, allowing for time variation in this coefficient makes material
difference in the results suggesting that indeed the ‘constant’ term needs to be allowed to
vary over time. We estimate the model using the kernel estimators presented in Section
2 but having obtained similar results for both kernels, choose to report results only for
the normal kernel due to space considerations. We use a bandwidth H equal to n1/2 as
suggested by theory. Results are reported pictorially in Figures 2-3. Figure 2 relates to CPI
inflation and Figure 3 to real exchange rates. They report the estimated time-varying AR
coefficient and the standard time-invariant AR(1) coefficient together with their standard
errors.

6.2 Empirical Results

The empirical results presented in Figures 2-3 can help provide answers to two important
empirical topics: Inflation persistence and the validity of the PPP hypothesis. We will
examine each issue in turn.
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6.2.1 Inflation persistence

Our first application examines whether inflation persistence has changed over time. As
noted above, Cogley, Sargent, and Primiceri (2010) document using an RC model that
inflation gap persistence rose during the Great Inflation of the 1970s, then fell in the 1980s.
Benati (2010) presents similar findings using different techniques: sub-sample estimates of a
fixed-coefficient univariate model for inflation, and of a DSGE model that encodes inflation
persistence into price-setting.

Establishing whether inflation persistence has changed over time can help shed light on
its causes. The more it is observed to have changed, the less it is likely that this persis-
tence is a product of hard-wired features of price-setting like those described by Christiano,
Eichenbaum, and Evans (2005) and Smets and Wouters (2003) and the more likely it is
that this persistence reflects changes in the monetary regime. Benati (2010) adopts exactly
this tactic, and infers from the fact that both structural DSGE and time-series estimates of
inflation persistence are highly variable across monetary regimes that inflation persistence
has its origin in the nature of monetary policy and not price-setting.

Figure 2 record our results. Overall, it is quite clear that persistence has varied con-
siderably and, once confidence bands are taken into account, statistically significantly, over
time. It is also clear that assuming a fixed autoregressive coefficient is problematic since
for most cases the time-varying coefficients and fixed coefficients are significantly different
for most of the sample. Further, we note that both the autoregressive coefficient and the
‘constant’ term in the autoregression vary over time since, allowing for time variation in the
‘constant’ term, changes the profile of the time-varying autoregressive coefficient.

Our findings confirm the claims of previous work that inflation was both high and
persistent in the 70’s and the beginning of the 80’s. From then on, we see that persistence
fell in most countries, through to the early 2000s. Although persistence seems to have risen
through the last decade, it remains a weakly autocorrelated process compared to the degree
of autocorrelation observed prior to that. (An exception here is the US, where inflation
persistence has not risen latterly).

We estimate using alternative kernels. The flat kernel produces estimated processes
that look more ‘stochastic’ than those produced by the normal kernel. This is a mechanical
consequence of the extra weight that the flat kernel gives to observations entering and
leaving the sample for the coefficient estimated for a particular time period. However, the
overall estimated pattern for inflation persistence is the same, suggesting a clear degree of
robustness to the choice of the kernel used.

Our findings of significant time-variation in inflation persistence shed light on the eco-
nomic structure underlying inflation. In particular, if it is not plausible to argue that index-
ation or other frictions that give rise to persistence vary over time, then such rigidities are
less likely to be the cause of inflation persistence. The likelihood is that such persistence has
changed for other reasons, for example, because of some change in monetary policy. Such
an inference would correspond with the spread of monetary regimes involving independent
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central banks, inflation or similarly transparent targets; and also with the increasing accep-
tance of the doctrine that inflation is caused by and can be tamed by monetary policy, and
that unemployment cannot be permanently held down by loose monetary policy.

6.2.2 Persistence of deviations from PPP

Our second application considers the debate surrounding the persistence in deviations of
relative prices from purchasing power parity (PPP). A vast literature has focused on this
problem, so we motivate our analysis with only a few examples. The survey by Rogoff (1996)
adduces the essential finding in many papers that deviations from PPP take a very long
time to die out. We note selectively the work of Frankel and Rose (1996), Papell (1997),
Papell and Theodoridis (1998), Papell and Theodoridis (2001), Chortareas, Kapetanios, and
Shin (2002) and Chortareas and Kapetanios (2009). One reason that persistent deviations
from PPP can open up is because of nominal rigidities. But Chari, Kehoe, and McGrattan
(2002) note that this persistence in the data - they report an autoregressive coefficient
of around 0.8 for 8 U.S bilateral real exchange rates - is greater than can be plausibly
accounted for by nominal stickiness in traded goods prices. Benigno (2002) offers another
explanation, illustrating how the persistence of the real exchange rate is in part a function of
the difference between monetary policy rules in operation in two countries. Imbs, Mumtaz,
Ravn, and Rey (2005) and Chen and Engel (2005) have debated whether real exchange rate
persistence is a function of aggregation bias, discussing differences between the persistence
of the aggregate and its subcomponents. A final possibility is that the dynamics of PPP
are affected by Balassa-Samuelson effects. When non-traded goods like labour or land are
in short supply, productivity improvements in the traded sector bid up non-traded prices
(higher incomes in the traded sector translate to increased demand for non-traded services)
and hence the real exchange rate.

The estimator proposed in this paper can uncover the potential evolution in the persis-
tence of deviations from PPP. Turning to the results, there is clear evidence of time-variation
in both the ‘constant’ term and the autoregressive coefficient, when a time-varying autore-
gressive model is fitted to the data. The time-varying autoregressive coefficients and the
fixed autoregressive coefficients are clearly quite different most of the time. Real exchange
data are considerably more persistent than CPI inflation data. It is very interesting to
note that, across both countries and kernels, the values estimated by the time-varying au-
toregressive coefficient model are, in general, lower, and mostly significantly so, than those
estimated by the fixed autoregressive coefficient model. This is likely to be a result, in
part, of the fact that, as Perron (1990), noted, failing to account for time-variation in the
mean leads one incorrectly to estimate higher persistence. There is a tendency for the time-
varying coefficient to exhibit a cyclical behaviour with a number of clearly identified cycles.
Nevertheless, there is also an overall tendency for the coefficient to drop over time. This
tendency is more clearly visible when the normal kernel is used although it is also apparent
for the flat kernel (results are not reported but available upon request).
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Overall, our results support the conclusion that the persistence of deviations from PPP
has fallen. The average autoregressive coefficient peaks at above 0.95 in the early seventies,
and falls to below 0.9 by the end of the sample. In economic terms this is a large fall. To
put this number in perspective: note that while, say, an autoregressive coefficient of 0.98
implies a half life of about 35 quarters for a shock to the real exchange rate, one of 0.88
implies a half life of about 5 quarters.

A number of inferences can be drawn from these findings. One inference is that imped-
iments to goods and factor price arbitrage that acts as an attractor for prices in different
countries have lessened over time. Such impediments might include nominal and real rigidi-
ties or barriers to trade. The reduction of the impact of these impediments is consistent
with the increase in the ratio of world trade to GDP over our sample period. This could
have allowed a greater increase in competition, which would have increased the costs of firms
trading across national boundaries keeping nominal prices fixed. The above clearly suggests
that barriers to trade have been reduced. A second inference is that monetary policies have
evolved in a way that reduced PPP deviation persistence. Finally, a third implication re-
lates to a possible decline in the prevalence or size of shocks inducing Balassa-Samuelson
effects on the real exchange rate.

7 Concluding Remarks

This paper has proposed a new and admittedly novel approach to the estimation of time-
varying coefficient models. It has advocated the use of kernel inference for estimating
unobserved stochastic coefficient processes in stochastic time-varying coefficient models. To
our knowledge, it is the first time that kernel estimation has been proposed for inference
a stochastic entity related to macroeconomic variables. The proposed estimation approach
has desirable properties such as consistency and studentised asymptotic normality under
very weak conditions. The potential of our theoretical findings has been supported by an
extensive Monte Carlo study and illustrated by some interesting and informative empirical
findings relating to CPI inflation persistence and the PPP hypothesis. In particular, we have
uncovered evidence in support of the PPP hypothesis for the recent past. Our theoretical
results provide the justification for according to kernel estimation an important role in
inference of time variation. Our findings coupled with the well known applicability of kernel
estimation for locally stationary processes, suggests that estimating coefficient processes via
kernels is robust to a number of aspects of the nature of the unobserved process such as
whether it is deterministic or stochastic and, if stochastic, to the exact specification of the
process. The theoretical properties of the kernel estimator are to be contrasted with the
lack of knowledge about the properties of state-space estimates of RC models. As we noted
earlier in the paper, these models have been shown to display pathologies that our approach
avoids, as documented in Stock and Watson (1998) and Koop and Potter (2008).

The theoretical properties of the kernel estimator are obviously only relevant from a
classical perspective. Many of the implementations of RC models adopt a Bayesian ap-
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proach. To the extent that those papers are truly Bayesian the theoretical advantages of
our estimator are not relevant. That said, many of the Bayesian implementations of the
RC approach have only the thinnest of Bayesian veneers, using determinedly uninformative
priors wherever possible.

One further extremely attractive aspect of the new estimator - which ought to appeal
to Bayesians and frequentists alike - relates to its relative computational tractability. Esti-
mation of RC models using standard methods, including Bayesian estimation, is extremely
computationally demanding. Relatively small multivariate models can potentially take nu-
merous hours to estimate, even on powerful PCs. Further, the use of these estimators
requires considerable programming experience. The need for significant computing power
and programming expertise, has in fact inhibited the investigation of the small sample
properties of such estimators via Monte Carlo studies. On the contrary, the computational
demands, associated with the use of the new estimator, are extremely modest, with the
estimation of even moderately large multivariate models being completed almost instantly.

At this point it might be worth summarising a possible course of action for empirical
researchers faced with the task of modelling time-variation in macroeconomic time series.
It is reasonable to assume that researchers do not know know whether the true coefficient
process is random or not. In the absence of such information and given the theoretical
findings in this paper, there is a sound case in favour of adopting a kernel estimator. This
case is strengthened by our Monte Carlo evidence which shows that these estimators work
well in small samples, and by the considerable computational advantage conferred by the
kernel estimator.

Before concluding, it is of interest to suggest topics of future research in this area. Firstly,
it is important to generalise the theoretical framework to a general regression model. While
this appears reasonably straightforward from a theoretical perspective, it is of interest to
note of the possibility to relax the assumption that the errors of the model are independent
or more generally martingale difference, which is desirable for autoregressive models, when
regressors are exogenous. Secondly, allowing for time-variation in the variance of the error
term is important and of clear relevance to applied macroeconometricians who work on
issues like the relative importance of time-varying shock variances versus coefficient time
variation for policy analysis. Given our work and the work of Kapetanios (2007) it is clear
that consistent kernel estimation of stochastically time-varying shock variance processes is
feasible. Thirdly, it is of interest to develop estimation of unobserved stochastic time varying
processes standing for parameters of nonlinear models. This will allow for the introduction
of time variation and its estimation in more complex models such as DSGE models in
macroeconomics. Fourthly, our work allows for a wide class of unobserved processes to
be estimated via the kernel approach in a semiparametric set-up. It is then of interest
to investigate the possibility of using the estimated process to determine its parametric
structure. While consistent estimation of parameters of an underlying model should be
possible, the issue of how to carry out inference on such estimated parameters remains an
open question.
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8 Appendix. Proof of Theorems 3.1-4.2.

Proof of Theorem 3.1. (i) Equations of (3.8) follow using recursions

yt = ρn,t−1yt−1 + ut

= ρn,t−1(ρn,t−2yn,t−2 + ut−1) + ut

= ρn,t−1ρn,t−2ρn,t−3yt−3 + ρn,t−1ρn,t−2ut−2 + ρn,t−1ut−1 + ut

= · · ·
= ρn,t−1 · · · ρn,0y0 + ρn,t−1 · · · ρn,1u1 + · · ·+ ρn,t−1ut−1 + ut

= ct,ty0 + ct,t−1u1 + ct,t−2u2 + · · ·+ ct,1ut−1 + ct,0ut.

(ii) To prove (3.9), use Var(X) ≤ EX2, |ct,j | ≤ |ρ|j and (3.8), to obtain

Var(yt) = Var
( t−1∑
j=0

ct,jut−j + ct,ty0

)
≤ E

( t−1∑
j=0

ct,jut−j

)2
+ c2t,tEy

2
0

=
t−1∑
j=0

c2t,jσ
2
u + c2t,tEy

2
0 ≤ (σ2

u + Ey2
0)
∞∑
j=0

ρ2j

≤ (σ2
u + Ey2

0)(1− ρ2)−1,

because by Assumption 3.1, variables us, s = 1, · · · , t are independent of y0, · · · , yt. The
bound (3.9) for Ey2

t follows using the same argument as above.
To prove (3.10), use (3.8) and the fact that the random variables us, s > t are indepen-

dent of yt and ct+k,j for any k, j, t ≥ 0, to obtain

Cov(yt+k, yt) = Cov
(k−1∑
j=0

ct+k,jut+k−j + ct+k,kyt, yt

)
= Cov

(
ct+k,kyt, yt

)
≤ Var1/2(ct+k,kyt)Var1/2(yt) (8.1)

≤ |ρ|kVar(yt),

which together with (3.9) implies (3.10).

Proof of Theorem 3.2. To show (3.11), use (8.1) and (3.8) to obtain

Cov(yt+k, yt) = Cov
(
ct+k,kyt, yt

)
= E

[
ct+k,k

t−1∑
j=0

c2t,j
]
σ2
u + Cov

(
ct+k,kct,ty0, ct,ty0

)
.

By |Cov(X,Y )| ≤ (EX2EY 2)1/2 it follows that∣∣∣Cov
(
ct+k,kct,ty0, bt,ty0

)∣∣∣ ≤ |ρ|2t+kEy2
0 → 0,
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because |ρ| < 1, Ey2
0 < ∞ and t = [nτ ] → ∞. Hence, to show (3.11), it suffices to prove

that

E

ct+k,k t−1∑
j=0

c2t,j

→ E
{ (ρW̃τ )k

1− (ρW̃τ )2

}
. (8.2)

We split the proof into two steps:

sup
n≥1

E[ct+k,k
t−1∑
j=M

c2t,j ]→ 0, M →∞, (8.3)

E[ct+k,k
M∑
j=0

c2t,j ]→ E[(ρW̃τ )k
M∑
j=0

(ρW̃τ )2j ], n→∞, ∀M ≥ 1, (8.4)

→ E
{ (ρW̃τ )k

1− (ρW̃τ )2
}, M →∞. (8.5)

Relations (8.4) and (8.5) imply (8.2)
To prove (8.3), use |ct,j | ≤ |ρ|j , which yields

|E[ct+k,k
t−1∑
j=M

c2t,j ]| ≤
∞∑
j=M

|ρ|2j+k → 0, M →∞.

To prove (8.4), recall that ct,k = ρn,t−1 · · · ρn,t−k, where |ρn,t−j | ≤ |ρ| < 1, j ≥ 1. Ob-
serve that the sum ct+k,k

∑M
j=0 c

2
t,j is a linear combination of products of bounded variables,

ρn,t−M , · · · , ρn,t+k, and by Assumption 3.2, for any M > 1,

(ρn,t−M , · · · , ρn,t+k)→D (ρW̃u, · · · , ρW̃u), (8.6)

which by standard argument yields (8.4).
Finally, (8.5) follows from (8.4), noting that |W̃τ | ≤ 1, and therefore

E[(ρW̃τ )k
∞∑

j=M+1

(ρW̃τ )2j ] ≤ |ρ|k
∞∑

j=M+1

ρ2j → 0, M →∞. (8.7)

To show (3.12), write (3.8) as

yt =
M∑
j=0

ct,jut−j +Rt,M , Rt,M :=
t−1∑

j=M+1

ct,jut−j + ct,ty0.

By (8.6),

(ct,1, · · · , ct,M )→D ((ρW̃τ )1, · · · , (ρW̃τ )M ), n→∞.

Bearing in mind, that by Assumption 3.1, {ct,j} and {uj} are independent random variables,
this and (8.7) yield

M∑
j=0

ct,jut−j →D

M∑
j=0

(ρW̃τ )jut−j , ∀M ≥ 1,

22



→D

∞∑
j=0

(W̃τ )jut−j , M →∞.

On the other hand,

E|Rt,M | ≤
t−1∑

j=M+1

|ρ|jE|ut−j |+ |ρt|E|y0| → 0, M →∞, t→∞,

which implies Rt,M = oP (1), M →∞ and completes proof of (3.12) and the theorem.

In the sequel, we shall use the following notations:

B2
H,t :=

n∑
k=1

b2tk, βH,t :=
n∑
k=1

btk, (8.8)

B2
H,t ∼ H

∫
R
K2(x)dx, βH,t ∼ H

∫
R
K(x)dx,

where approximations follows from continuity of K, (4.3), applying theorem of dominated
convergence.

Proof of Theorem 4.1. (i) Write

n∑
k=1

btkykyk−1 =
n∑
k=1

btkρn,k−1y
2
k−1 +

n∑
k=1

btkutyt−1

= ρn,t

n∑
k=1

btky
2
k−1 +

n∑
k=1

btkukyk−1 +
n∑
k=1

(ρn,k−1 − ρn,t)btky2
k−1

=: ρn,tVn + Sn,1 + Sn,2.

Setting rnt := Sn,2/Vn, write

ρ̂n,t = ρn,t + ξn,t + rnt.

To obtain (4.7), it suffices to show

rnt = OP ((H/n)γ), (8.9)

ξn,t = OP (1/
√
H). (8.10)

To prove (8.9), observe that by Lemma 8.1 below, Sn,2 = OP
(
(Hn )γH

)
, whereas by (8.24)

of Lemma 8.2, |ρn,t| ≤ ρ < 1, and (8.8),

V −1
n = OP (B−2

H,t) = OP (H−1), (8.11)

which yields

rnt =
Sn,2
Vn

= OP ((
H

n
)γ).
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To prove (8.10), recall that ξn,t = Sn,1/Vn. We show that

ES2
n,1 ≤ CH, (8.12)

which implies Sn,1 = OP (H1/2) and with (8.11) proves that ξn,t = OP (H−1/2), which implies
(8.10). To prove (8.12), recall that by Assumption 3.1, uk, yk−1 are uncorrelated random
variables. Therefore, by (3.9),

Var(Sn,1) = E
( n∑
k=1

btkukyk−1

)2

=
n∑
k=1

b2tkE[u2
k]E[y2

k−1] ≤ C
n∑
k=1

b2tk = CB2
H,t = O(H).

To prove (4.8), note that by Lemma 8.3 and by (8.24) of Lemma 8.2 below,

TH,t√
1− ρ2

n,t

ξn,t =

√
1−ρ2n,t
BH,t

Sn,1

1−ρ2n,t
βH,t

Vn

→D
N(0, σ4

u)
σ2
u

= N(0, 1).

(ii) Observe that (4.7)-(4.8) imply (4.9), which completes proof of Theorem 4.1.

Next three lemmas contain auxiliary results.

Lemma 8.1. Under Assumptions of Theorem 4.1,

n∑
k=1

|ρn,k−1 − ρn,t|bt,k+iy2
k−1 = OP ((

H

n
)γH), i = 0, 1. (8.13)

Proof of Lemma 8.1. We prove (8.13) for i = 0. (Proof for i = 1 follows by the same
argument). Let tn :=

∑n
k=1 |ak−1 − at|btky2

k−1. Since

ρn,t − ρn,k =
at − ak
amax

, amax := max
0≤k≤n

|ak|,

then the left hand side of (8.13) can be written as tn/amax. We show below that

n−γamax →D sup
0≤τ≤1

|Wτ | > 0, in prob., (8.14)

tn = OP (Hγ+1). (8.15)

Then

tn
amax

= (
H

n
)γ

H−γtn
n−γamax

= (
H

n
)γOP (H),

which proves (8.13).
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Proof of (8.14). By (3.3), ak = a0 +
∑k

j=1 vj = a0 + Sk,v, where, Sk,v :=
∑k

j=1 vj ,
k = 1, · · · , n. Under the weak convergence assumption (3.4),

max
1≤k≤n

|n−γSk,v| = sup
0≤τ≤1

|n−γSn+1(τ)| (8.16)

→D sup
0≤τ≤1

|Wτ |, n→∞.

Since

−|a0|+ max
1≤k≤n

|Sk,v| ≤ amax ≤ |a0|+ max
1≤k≤n

|Sk,v|,

and a0 = OP (1), this proves (8.14).
Proof of (8.15). 1. Assume that K has a finite support. Then there exists L > 0, such

that btk = 0, when |t − k| > LH. Without restriction of generality, assume that L = 1.
Then

|tn| ≤ max
k:|t−k|≤H

|ak−1 − at|
n∑
k=1

btky
2
k−1.

By (8.23) of Lemma 8.2 below,
∑n

k=1 btky
2
k−1 = OP (H). Therefore to obtain (8.15), it

suffices to show that

max
k:|t−k|≤H

|ak−1 − at| = OP (Hγ). (8.17)

Recall that {vj} is a stationary process. Therefore

max
t<k≤t+H

|ak−1 − at| ≤ max
1≤l≤H

|
t+l∑

j=t+1

vj | =D max
1≤l≤H

|Sl,v| = OP (Hγ),

by (8.16). Similarly, maxt−H≤k≤t |at − ak−1| = OP (Hγ), which completes proof of (8.17).
2. Suppose that K has an infinite support. We shall show that

E|tn| ≤ CHγ+1, (8.18)

which implies (8.15) and completes the proof of this lemma.
To prove (8.18), we shall need two facts:

max
1≤j≤n

Ey4
j ≤ C, (8.19)

E(at − ak)2 ≤ C|t− k|2γ , k = 1, · · · , n. (8.20)

By Assumption 4.1, Eu4
1 < ∞ and Ey4

0 < ∞. Thus, by Assumption 3.1, (3.8) and |ct,j | ≤
|ρ|j ,

Ey4
t = E

( t−1∑
j=0

ct,jut−j + ct,ty0

)4
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≤ 4E
( t−1∑
j=0

ct,jut−j

)4
+ 4Ec4t,tEy

4
0

≤
t−1∑

j1,··· ,j4=0

|ρ|j1+···+j4(Eu4
t−j1 · · ·Eu

4
t−j4)1/4 + C|ρ|t

≤ C(
∞∑
j=0

|ρ|j)4 <∞, (8.21)

which proves (8.19). To show (8.20), without restriction of generality assume that t > k.
Then by stationarity of {vj} and Assumption 4.1,

E(at − ak)2 = E(
t∑

j=k+1

vj)2 = E(
t−k∑
j=1

vj)2 ≤ C|t− k|2γ , t ≥ j,

which proves (8.20).
Now applying (8.19)-(8.20), one obtains

H−γ−1E|tn| ≤ H−γ−1
n∑
k=1

btk(E(ak−1 − at)2)1/2(Ey4
k−1)1/2

≤ CH−1
n∑
k=1

(
|t− k|+ 1

H
)γK(

t− k
H

)

→
∫

R
|x|γK(x)dx <∞, n→∞, (8.22)

by (4.3) and TDC, which proves (8.18) and completes proof of lemma.

The next lemma deals with properties of the sum Vn =
∑n

k=1 btky
2
k−1.

Lemma 8.2. Under Assumptions 3.1 and 3.2,

E
( n∑
k=1

btky
2
k−1

)
≤ CH, (8.23)

1− ρ2
n,t

βH,t

n∑
k=1

btky
2
k−1 →D σ2

u, (8.24)

with βH,t as in (8.8).

Proof of Lemma 8.2. To prove (8.23), note that by (3.10), Ey2
k ≤ C, 1 ≤ k ≤ n.

Therefore

EVn =
n∑
k=1

btkEy
2
k ≤ C

n∑
k=1

btk = CβH,t = O(H),

by (8.8).
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To show (8.24), let V ′n :=
∑n

k=2 btky
2
k−2.

We shall show that

Vn − ρ2
n,tV

′
n = βH,tσ

2
u + o(βH,t), (8.25)

Vn − V ′n = oP (H). (8.26)

Since by (8.8), βH,t ∼ CH, applying (8.26) in (8.25) yields

(1− ρ2
n,t)Vn = Vn − ρ2

n,tV
′
n + oP (βH,t) = σ2

uβH,t + oP (βH,t),

which proves (8.24).
Proof of (8.25). Note that bt1y2

0 = OP (1), because E|bt1y2
0| ≤ E|y2

0| < ∞. Therefore,
using

y2
k−1 = (ρn,k−2yk−2 + uk−1)2

= ρ2
n,k−2y

2
k−2 + 2uk−1ρn,k−2yk−2 + u2

k−1,

Vn − ρ2
n,tV

′
n =

n∑
k=2

btk(y2
k−1 − ρ2

n,ty
2
k−2) +OP (1)

=
n∑
k=2

btk(ρ2
n,k−2 − ρ2

n,t)y
2
k−2 + 2

n∑
k=2

btkuk−1ρn,k−2yk−2 +
n∑
k=2

btku
2
k−1 +OP (1)

=: Qn,1 +Qn,2 +Qn,3 +OP (1).

We shall show that

Qn,1 = oP (H), (8.27)

Qn,2 = oP (H), (8.28)

Qn,3 = β2
Hσ

2
u + oP (H), (8.29)

which proves (8.25).
To evaluate Qn,1, use |ρn,k| ≤ 1, to obtain

|ρ2
n,k−2 − ρ2

n,t| = |ρn,k−2 − ρn,t||ρn,k−2 + ρn,t| ≤ 2|ρn,k−2 − ρn,t|

and Lemma 8.1, to obtain

|Qn,1| ≤ 2
n∑
k=2

bt,k|ρn,k−2 − ρn,t|y2
k−2 ≤ 2

n∑
k=1

bt,k+1|ρn,k−1 − ρn,t|y2
k−1

= OP ((
H

n
)γH) = oP (H),

because H = o(n), which proves (8.27).

27



To evaluate Qn,2, note that uk−1ρn,k−2yk−2, k = 2, · · · , n are uncorrelated random
variables. Therefore

Var(Qn,2) = E
(

2
n∑
k=2

btkuk−1ρn,k−2yk−2

)2

= 4
n∑
k=2

b2tkEu
2
k−1E[ρ2

n,k−2y
2
k−2]

≤ C
n∑
k=2

b2tk ≤ CB2
H = O(H),

by |ρn,k−2| ≤ 1, (3.9) and (8.8), which implies that Qn,2 = OP (H1/2) = oP (H) and proves
(8.28).

Finally,

Qn,3 =
n∑
k=2

btku
2
k−1 =

n∑
k=2

btkσ
2
u +

n∑
k=2

btk(u2
k−1 − σ2

u).

Note, that
∑n

k=2 btkσ
2
u ∼ βH,tσ2

u. So, to show (8.29), it remains to prove that

Q̃n,3 :=
n∑
k=2

btk(u2
k−1 − σ2

u) = oP (H).

For any ε > 0, one can choose L > 0 such that Eu2
1I(|u1| > L) ≤ ε. Write u2

k − σ2
u =

ηk,1 + ηk,2, where

ηk,1 = u2
kI(|uk| ≤ L)− E[u2

kI(|uk| ≤ L)],

ηk,2 = u2
kI(|uk| > L)− E[u2

kI(|uk| > L)].

Then

Q̃n,3 :=
n∑
k=2

btkηk−1,1 +
n∑
k=2

btkηk−1,2 := qn,1 + qn,2.

Since ηk,1 are i.i.d. variables with a finite variance, and btk ≤ supxK(x) <∞, then

Var(qn,1) = Eη2
1,1

n∑
k=2

b2tk ≤ C
n∑
k=2

b2tk ≤ CB2
H,t = O(H).

Hence, qn,1 = oP (H), for any fixed L. On the other hand, E|ηk,2| ≤ 2Eu2
1I(|u1| > L) ≤ 2ε,

and

E|qn,2| ≤
n∑
k=2

btkE|ηk−1,2| ≤ 2εβH,t ≤ 2εCH = o(H), ε→ 0.
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This completes proof of (8.29).
Proof of (8.26). Changing summation k → k − 1 in Vn, one obtains:

Vn − V ′n =
n+1∑
k=3

bt,k−1y
2
k−2 −

n∑
k=2

btky
2
k−2

=
n∑
k=2

(bt,k−1 − btk)y2
k−2 + bt,ny

2
n−1 − bt,1y2

0.

Since by (3.9), E|bt,ny2
n−1 − bt,1y2

0| ≤ E|y2
n−1| + E|y2

0| ≤ C, and Ey2
k−2 ≤ C, k = 2, · · · , n,

then

E|Vn − V ′n| ≤ C
n∑
k=2

|bt,k−1 − btk|+ C = o(H),

where the last bound o(H) follows from the continuity of K and assumption (4.3), using
theorem of dominated convergence. This completes proof of (8.26) and the lemma.

Lemma 8.3. Under assumptions of Theorem 4.1,√
1− ρ2

n,t

BH,t

n∑
k=1

btkukyk−1 →D N(0, σ4
u). (8.30)

Proof of Lemma 8.3 1. First we prove convergence (8.30) in case when

Eu4
1 <∞, Ey4

0 <∞. (8.31)

By definition, the random variables uk are independent of ρn,t and yk−1, · · · , y1. Therefore,

ξk := ukbtk

√
1− ρ2

n,t

BH,t
yk−1, k = 1, · · · , n

is a martingale difference sequence with respect to the natural filtration Fk =
σ(uk, · · · , u0, an, · · · , a0). By the central limit theorem for martingale differences, to show
asymptotic normality (8.30), it suffices to prove that

n∑
k=1

E[ξ2k|Fk−1]→p σ
4
u, (8.32)

n∑
k=1

E[ξ2kI(|ξk| ≥ δ)]→p 0, (8.33)

for any δ > 0. Note that

n∑
k=1

E[ξ2k|Fk−1] = E[u2
1]

1− ρ2
n,t

B2
H,t

n∑
k=1

b2tky
2
k−1 →p σ

4
u,
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by (8.24). Next,

n∑
k=1

E[ξ2kI(|ξk| ≥ δ)] ≤ δ−1
n∑
k=1

E[ξ4k]

≤ δ−1B−4
H,t

n∑
k=1

b4tkE[u4
ky

4
k−1].

Notice that E[u4
ky

4
k−1] = E[u4

k]E[y4
k−1] ≤ C, k = 1, · · · , n, because by (8.31) and (8.21),

Ey4
t ≤ C(

∑∞
j=0 |ρ|j)4 <∞. Thus, using b4tk ≤ Cb2tk, one obtains

n∑
k=1

E[ξ2kI(|ξk| ≥ δ)] ≤ δ−1CB−4
H,t

n∑
k=1

b2tk = δ−1CB−2
H,t → 0,

since B2
H,t ∼ CH, by (8.8). This proves (8.33) and completes proof of (8.30).

2. In case, when Eu4
1 and Ey4

0 are not finite, we use the truncation argument. Let
L > 0. Define

ζk,1 = ukI(|uk| ≤ L)− E[ukI(|uk| ≤ L)],

ζk,2 = ukI(|uk| > L)− E[ukI(|uk| > L)],

y0,1 = y0I(|y0| ≤ L)− E[y0I(|y0| ≤ L)],

y0,2 = y0I(|y0| > L)− E[y0I(|y0| > L)].

Then uk = ζk,1 + ζk,2, and by (3.8), one can write

yt =
t−1∑
j=0

ct,jut−j + ct,ty0

=
( t−1∑
j=0

ct,jζt−j,1 + ct,ty0,1

)
+
( t−1∑
j=0

ct,jζt−j,2 + ct,ty0,2

)
=: yt,1 + yt,2.

According to (3.8), yt,1, t = 1, 2, · · · , n is a solution of equations yt,1 = ρn,t−1yt−1,1 +ζt,1,
t = 1, · · · , n, with the initial condition y0,1. Write the summand of (8.30) as ukyk−1 =
ζk,1yk−1,1 + (ukyk−1 − ζk,1yk−1,1).

Since Eζ4
1,1 <∞, then as it was shown above in 1), for any L > 0,√

1− ρ2
n,t

BH,t

n∑
k=1

btkζk,1yk−1,1 →D N(0, σ4
ζ,1), (8.34)

where σ2
ζ,1 = Eζ2

k,1 → σ2
u, L→∞. On the other hand, by (3.9),

Ey2
k−1,1 ≤

σ2
u + Ey2

0

1− ρ2
, Eζ2

k,1 ≤ 2σ2
u,
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Ey2
k−1,2 ≤

Eζ2
k,2 + Ey2

0,2

1− ρ2
→ 0, Eζ2

k,2 → 0, L→∞.

Note that the variables zk := ukyk−1 − ζk,1yk−1,1, are uncorrelated, and

Ez2
k = E(ζk,2yk−1,1 + ζk,1yk−1,2 + ζk,2yk−1,2)2

≤ C(Eζ2
k,2 + Ey2

k−1,2)→ 0, L→∞.

Therefore, as n→∞, L→∞,

Var(
n∑
k=1

btkzk) =
n∑
k=1

b2tkEz
2
k = o(B2

H,t),√
1− ρ2

n,t

BH,t

n∑
k=1

btkzk = oP (1),

which together with (8.34) proves (8.30) and completes the proof of lemma.

Proof of Theorem 4.2. Proof of Theorem 4.2 follows the same line as that of Theorem
4.1. It is based on Theorem 3.1 and Lemmas 8.1-8.3. Observe, that under assumption of
Theorem 4.2, conditions of Theorem 3.1 are satisfied. Proof of Lemmas 8.1-8.3 indicates,
that under assumption of Theorem 4.2, Lemmas 8.2-8.3 holds true, whereas Lemma 8.1
needs to be replaced by

Lemma 8.4. Under Assumptions of Theorem 4.2,

n∑
k=1

|ρn,k−1 − ρn,t|bt,k+iy2
k−1 = OP ((

H

n
)H), i = 0, 1. (8.35)

Proof of Lemma 8.4. Let i = 0. (Proof in the case i = 1 follows using the same
argument). Then the left hand side of (8.35) can be written as tn/amax, where tn and amax
are same as in proof of Lemma 8.1.

(i) Assume that at satisfies (4.12). We show that

lim
n
n−1amax > 0, in prob., (8.36)

tn = OP (H2), (8.37)

which yields (8.35).
By (4.13) and (8.14),

n−1amax = max
k=1,··· ,n

n−1

∣∣∣∣∣∣
k∑
j=1

µ(j/n)

∣∣∣∣∣∣+ oP (1)

→D max
0≤τ≤1

∣∣∣∣∫ τ

0
µ(x)dx

∣∣∣∣ > 0,
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which proves (8.36). By (4.13)

tn ≤
n∑
k=1

∣∣∣∣∣∣
k−1∑
j=1

µ(j/n)−
t∑

j=1

µ(j/n)

∣∣∣∣∣∣ btky2
k−1

+
n∑
k=1

∣∣∣∣∣∣
k−1∑
j=1

vj −
t∑

j=1

vj

∣∣∣∣∣∣ btky2
k−1 =: tn,1 + tn,2.

By (8.15), tn,2 = OP (Hγ+1). On the other hand, since |
∑k−1

j=1 µ(j/n) −
∑t

j=1 µ(j/n)| ≤
C|t− k|, this together with Ey2

t ≤ C, 1 ≤ j ≤ n of (3.9) yields

H−2tn,1 ≤ CH−1
n∑
k=1

|t− k|
H

btky
2
k−1

= OP (1)H−1
n∑
k=1

|t− k|
H

btk = OP (1),

by the same argument as in (8.22), which proves (8.37).
(ii) Assume that at satisfies (4.14). We show that

lim
n
amax > 0, (8.38)

tn = OP (H2n−1), (8.39)

which yields (8.35).
Note, that (8.38) holds true, since

amax = max
1≤k≤n

|ϕ(k/n)| > 0, n→∞.

Next, by the mean value theorem,

|ϕ((k − 1)/n)− ϕ(t/n)| ≤ sup
0≤x≤1

|ϕ′(x)| |t− k|/n ≤ C|t− k|/n,

one obtains

H−2tn ≤ CH−1
n∑
k=1

|ϕ((k − 1)/n)− ϕ(t/n)|btky2
k−1

≤ CH−1
n∑
k=1

|t− k|
H

btky
2
k−1

= OP (1)H−1
n∑
k=1

|t− k|
H

btk = OP (1),

as above in 1. This completes proof of lemma and of Theorem 4.2.
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Figure 1: Realisation of ρn,t, its estimate and confidence bands for the normal (Panel 1)
and flat (Panel 2) kernels.
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Table 8.1: MSE results for ρn,t = 0.9 at
maxi≤n|at| and

short memory for vt. The model is yn,t = ρn,tyn,t−1 +
ut, at = at−1 + vt, ut = ε1t, vt = φvt−1 + ε2t.

Normal kernel, bandwidth nα

φ α/n 50 100 200 400 800 1000

0.2 0.096 0.078 0.069 0.060 0.051 0.049

0.4 0.047 0.036 0.027 0.020 0.016 0.015

0 0.5 0.036 0.025 0.018 0.014 0.011 0.011

0.6 0.027 0.019 0.014 0.012 0.013 0.012

0.8 0.021 0.017 0.017 0.023 0.029 0.033

0.2 0.098 0.080 0.067 0.059 0.052 0.049

0.4 0.047 0.034 0.026 0.021 0.016 0.014

0.2 0.5 0.034 0.024 0.018 0.014 0.012 0.011

0.6 0.028 0.018 0.014 0.013 0.012 0.012

0.8 0.022 0.015 0.019 0.023 0.031 0.035

0.2 0.096 0.082 0.069 0.058 0.051 0.048

0.4 0.048 0.034 0.025 0.020 0.015 0.014

0.5 0.5 0.035 0.023 0.017 0.013 0.011 0.011

0.6 0.027 0.018 0.014 0.012 0.012 0.012

0.8 0.021 0.015 0.018 0.022 0.030 0.035

0.2 0.094 0.080 0.066 0.057 0.049 0.048

0.4 0.046 0.032 0.024 0.018 0.014 0.013

0.9 0.5 0.032 0.022 0.015 0.012 0.009 0.009

0.6 0.026 0.016 0.012 0.010 0.011 0.011

0.8 0.018 0.013 0.016 0.023 0.033 0.037
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Table 8.2: MSE results for ρn,t = ρ at
maxi≤n|at| and long

memory for vt. The model is yn,t = ρn,tyn,t−1 + ut,
at = at−1 + vt, ut = ε1t, vt ∼ ARFIMA(0, d− 1, 0).

Normal kernel, bandwidth nα

ρ=0.9

d α/n 50 100 200 400 800 1000

0.2 0.171 0.137 0.120 0.102 0.088 0.085

0.4 0.135 0.107 0.086 0.070 0.059 0.055

0.51 0.5 0.130 0.102 0.079 0.066 0.056 0.052

0.6 0.133 0.100 0.082 0.066 0.058 0.054

0.8 0.134 0.106 0.088 0.073 0.065 0.062

0.2 0.148 0.119 0.099 0.083 0.071 0.068

0.4 0.117 0.085 0.064 0.048 0.037 0.034

0.75 0.5 0.112 0.082 0.060 0.045 0.034 0.032

0.6 0.115 0.085 0.064 0.049 0.039 0.038

0.8 0.131 0.107 0.085 0.073 0.064 0.062

0.2 0.121 0.099 0.084 0.072 0.064 0.061

0.4 0.078 0.053 0.039 0.029 0.021 0.019

1.25 0.5 0.075 0.050 0.032 0.021 0.015 0.013

0.6 0.080 0.054 0.034 0.023 0.016 0.014

0.8 0.115 0.093 0.074 0.061 0.051 0.047

0.2 0.118 0.097 0.084 0.072 0.063 0.061

0.4 0.072 0.048 0.035 0.026 0.020 0.019

1.49 0.5 0.068 0.041 0.027 0.018 0.013 0.012

0.6 0.071 0.045 0.027 0.017 0.011 0.010

0.8 0.111 0.085 0.064 0.054 0.043 0.041

Table 8.3: MSE results for ρn,t = 0.9. The model is yn,t = 0.9yn,t−1 + ut, ut = ε1t.

Normal kernel, bandwidth nα

α/n 50 100 200 400 800 1000

0.2 0.077 0.062 0.050 0.041 0.034 0.032

0.4 0.034 0.019 0.014 0.009 0.006 0.005

0.5 0.020 0.012 0.007 0.004 0.003 0.002

0.6 0.016 0.007 0.004 0.002 0.001 0.001

0.8 0.009 0.004 0.002 0.001 0.000 0.000
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Figure 2: Time-Varying AR Coefficient and 95% confidence bands from an AR(1) model,
with a time-varying ‘constant’ term, for CPI inflation using a standard normal kernel for
6 countries: Australia, Canada, Japan, Switzerland, US and UK. Every panel also reports
the value of the autoregressive coefficient estimated in a fixed coefficient AR(1) together
with 95% confidence bands.
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Figure 3: Time-Varying AR Coefficient from an AR(1) model, with a time-varying ‘con-
stant’ term, for real exchange rates using a standard normal kernel for 6 countries: Australia,
Canada, Japan, Norway, Switzerland and UK. Every panel also reports the value of the au-
toregressive coefficient estimated in a fixed coefficient AR(1) together with 95% confidence
bands.
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