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Abstract

We show that Moreira’s (2003) conditional critical value function for the likelihood
ratio statistic that tests the structural parameter in the iid linear instrumental variables
regression model with one included endogenous variable provides a bounding distribution
for the subset likelihood ratio statistic that tests one structural parameter in an iid linear
instrumental variables regression model with several included endogenous variables. The
only adjustment concerns the usual degrees of freedom correction for subset tests of the
involved 2 distributed random variables. The conditional critical value function makes
the subset likelihood ratio test size correct under weak identification of the structural
parameters and efficient under strong identification. When the hypothesized value of
the parameter of interest is distant from the true one, the subset Anderson-Rubin and
likelihood ratio statistics are invariant with respect to the parameter of interest and equal
statistics that test the identification of all structural parameters. The value of the statistic
testing a distant value of any of the structural parameters is therefore the same. All results

extend to tests on the parameters of the included exogenous variables.

1 Introduction

For the homoscedastic linear instrumental variables (IV) regression model with one included
endogenous variable, size correct procedures exist to conduct tests on its structural parameter,
see e.g. Anderson and Rubin (1949), Kleibergen (2002) and Moreira (2003). Andrews et al.
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(2006) show that the (conditional) likelihood ratio statistic is optimal amongst size correct
procedures that test a point null hypothesis against a two sided alternative. Efficient tests of
hypotheses specified on one structural parameter in a linear IV regression model with several
included endogenous variables which are size correct under weak instruments are, however, still
lacking. There are statistics for testing hypotheses on subsets of the parameters that are size
correct and near-optimal under weak instruments for the untested structural parameters but
which are not efficient under strong instruments, like, for example, the subset Anderson-Rubin
(AR) statistic, see Guggenberger et al. (2012) and Guggenberger et al. (2017). There are also
statistics that are efficient under strong instruments but which are not size correct under weak
instruments, like, for example, the ¢-statistic. Neither one of these statistics leads to confidence
sets for all structural parameters, including those on the included exogenous parameters, which
are valid under weak instruments and have minimum length under strong instruments. We
construct a conditional critical value function for the subset likelihood ratio (LR) statistic
which makes it size correct under weak instruments and efficient under strong instruments.
Thus it allows for the construction of optimal confidence sets that remain valid under weak
instruments.

The conditional critical value function for the subset LR statistic that we construct is iden-
tical to the conditional critical value function of the LR statistic for the homoscedastic linear IV
regression model with one included endogenous variable from Moreira (2003). That conditional
critical value function depends on a conditioning statistic and two independent x? distributed
random variables. Instead of the common specification of the conditioning statistic as in Mor-
eira (2003), it can also be specified as the difference between the sum of the two (smallest) roots
of the characteristic polynomial associated with the linear IV regression model and the value
of the AR statistic at the hypothesized value of the structural parameter. This specification
of the conditioning statistic generalizes to the conditioning statistic of the conditional critical
value function of the subset LR statistic which conducts tests on one structural parameter when
there are several included endogenous variables. Alongside the conditioning statistic, the con-
ditional critical value function of the subset LR statistic also has the usual degrees of freedom
adjustment of one of the involved y? distributed random variables when conducting tests on
subsets of parameters.

When testing a value of the structural parameter that is distant from the true one, the subset
AR and LR statistics no longer depend on the structural parameter that is tested. Hence, for
large values of the hypothesized parameter, the value of the subset AR and LR statistics are

the same for all structural parameters. At these values, the subset AR and LR statistics are



identical to statistics that test the hypothesis of a reduced rank value of the reduced form
parameter matrix. The rank condition for identification is for the reduced form parameter
matrix to have a full rank value so at distant values of the hypothesized structural parameter,
the subset AR and LR statistics become identical to tests of the identification of all structural
parameters.

For the homoscedastic linear IV regression model with one included endogenous variable,
Andrews et al. (2006) show that the LR statistic is optimal. They construct the power enve-
lope for testing a point null hypothesis on the structural parameter against a two-sided point
alternative. The rejection frequencies of the LR statistic using the conditional critical value
function are on the power envelope so the LR statistic is optimal. Under point hypotheses on
the structural parameter, the linear IV regression model with one included endogenous vari-
able is equivalent to a linear regression model so the power envelope can be constructed using
the Neyman-Pearson Lemma. When the null hypothesis concerns the structural parameter of
one included endogenous variable of several, the linear IV regression model no longer simpli-
fies to a linear regression model under the null hypothesis. We can then no longer use the
Neyman-Pearson Lemma to construct the power envelope. Alternatively we could determine
the maximal rejection frequency under least favorable alternative hypotheses. Least favorable
alternatives result when the structural parameters of the remaining included endogenous vari-
ables are not identified. Given the behavior of the subset AR and LR statistics at distant values
of the hypothesized parameter, the maximal rejection frequency under least favorable alterna-
tives equals the size of tests for the identification of the (non-identified) structural parameters
of the remaining endogenous variables. It therefore does not provide a useful characterization
of efficiency of size correct subset tests in the linear IV regression model either. When all non-
hypothesized structural parameters are well identified, testing a hypothesis on the remaining
structural parameter using the subset LR statistic is equivalent to testing the structural para-
meter in a linear IV regression model with only one included endogenous variables using the
LR statistic. Since the LR statistic is optimal in that setting, the subset LR statistic is optimal
when all non-hypothesized structural parameters are well identified and size correct in general.

The optimality results for testing the structural parameter in the homoscedastic linear
IV regression model with one included endogenous variable have been extended in different
directions. Andrews (2015), Montiel Olea (2015) and Moreira and Moreira (2013) extend it
to general covariance structures while Montiel Olea (2015) and Chernozhukov et al. (2009)
analyze the admissibility of such tests. Neither one of these extensions, however, analyzes tests

on subsets of the structural parameters.



The homoscedastic linear IV regression model is a fundamental model in econometrics. It
provides a stylized setting for analyzing inference issues which makes it straightforward to
communicate the results. As such there is an extensive literature on it. This paper provides
a further contribution by solving an important open problem: how to optimally construct
confidence sets which remain valid when instruments are weak for all structural parameters.
The linear IV regression model with iid errors can be extended by allowing, for example,
for autocorrelation and/or heteroscedasticity. These extensions are empirically relevant and
when the structural parameters are well identified, inference methods extend straightforwardly.
Kleibergen (2005) shows that the same reasoning applies to the weak instrument robust tests
on the full structural parameter vector. The extensions to tests on subsets of the parameters
are, however, far less straightforward. They can be obtained for the homoscedastic linear IV
regression model because of the algebraic structure it provides, see also Guggenberger et al.
(2012). This structure is lost when the errors are autocorrelated and/or heteroscedastic. We
then basically have to resort to explicitly analyzing the rejection frequency of the subset tests
over all possible values of the nuisance parameters as, for example, in Andrews and Chen (2012).
Unless you resort to projection based tests, weak instruments robust tests on subsets of the
parameters for the linear IV regression model with a more general error structure is therefore
conceptually very different from a setting with iid errors. It is thus important to determine the
extent to which it is analytically possible to analyze the distribution of tests on subsets of the
parameters while allowing for weak identification. Since the estimators that are used for the
non-hypothesized structural parameters are inconsistent in such settings, it is from the outset
unclear if any such analytical results can be obtained.

The paper is organized as follows. The second section states the subset AR and LR statistics.
In the third section, we discuss the bound on the conditional critical value function of the subset
LR statistic. The fourth section discusses a simulation experiment which shows that the subset
LR statistic with conditional critical values is size correct. The fifth section provides extensions
to more than two included endogenous variables. The sixth section covers the behavior of the
subset AR and LR statistics at distant values of the hypothesized parameter. The seventh
section deals with the usual iid homoscedastic setting to which all results straightforwardly
extend. Finally, the eighth section concludes.

We use the following notation throughout the paper: vec(A) stands for the (column) vec-
torization of the k x n matrix A, vec(A) = (a}...al) for A= (a;...a,), P4 = AAA)TA is
a projection on the columns of the full rank matrix A and M4 = Iy — P4 is a projection on

the space orthogonal to A. Convergence in probability is denoted by “—” and convergence in
p



distribution by “7” .

2 Subset statistics in the linear IV regression model

We consider the linear IV regression model

y = XB+Wry+e
X = ZIx+ Vy (1)

with y and W N x 1 and N x m,, dimensional matrices that contain endogenous variables, X
a N x m, dimensional matrix of exogenous or endogenous variables,! Z a N x k dimensional
matrix of instruments and m = m, + m,,. The specification of X is such that we allow for
tests on the parameters of the included exogenous variables. The N x 1, N x m,, and N X m,,
dimensional matrices €, Vi and Vyx contain the disturbances. The unknown parameters are
contained in the m, x 1, m,, x 1, £ x m, and k£ x m,, dimensional matrices 3, v, I[1x and IIy .
The model stated in equation (1) is used to simplify the exposition. An extension of the model
that is more relevant for practical purposes arises when we add a number of so-called included
(control) exogenous variables, whose parameters we are not interested in, to all equations in
(1). The results that we obtain do not alter from such an extension when we replace the
expressions of the variables that are currently in (1) in the specifications of the subset statistics
by the residuals that result from a regression of them on these additional included exogenous
variables. When we want to test a hypothesis on the parameters of the included exogenous
variables, we just include them as elements of X.

To further simplify the exposition, we start out as in, for example, Andrews et al. (2006),
assuming that the rows of u = e+Viyv+Vx 3, Vi and Vi, which we indicate by u;, Viy,;, and V. ;,
sou = (ur...un), Viw = Viwa...Viwn)', Vx = (Vx1...Vx ), are i.i.d. normal distributed
with mean zero and known covariance matrix 2. We also assume that the instruments in
Z = (Zy...Zy) are pre-determined. These random variables are therefore uncorrelated with

the instruments Z; so:

E(Zi(ei - Vx,; : Viyy) =0, 1=1,...,N. (2)

'When X consists of exogenous variables, it is part of the matrix of instruments as well so Vy is in that case
equal to zero.



We extend this in Section 7 to the usual i.i.d. homoscedastic setting.

We are interested in testing the subset null hypothesis

Ho : B = B, against H, : 8 # . (3)

In Guggenberger et al. (2012), the subset AR statistic for testing Hy is analyzed. We focus
on the subset LR statistic. The distributions of these statistics for testing the joint hypothesis

H™: = fy and v = v, (4)

are robust to weak instruments, see e.g. Anderson and Rubin (1949), Moreira (2003) and
Kleibergen (2007). The expressions of their subset counterparts result when we replace the
hypothesized value of 7, v, in the expression of these statistics to test the joint hypothesis by
the limited information maximum likelihood (LIML) estimator under Hy, which we indicate by
5(B,)-2 We note beforehand that our results only hold when we use the LIML estimator and
do not apply when we use the two stage least squares estimator. Since the subset LR statistic

involves the subset AR statistic, we state both their expressions.

Definition 1: 1. The subset AR statistic (times k) to test Hy : B = B, reads

1 -X —W~) P - X W
AR(Sy) = e, (TR
=ty — X By — WA(B) Paly — X By — WH(B,)) (5)
= )\miny

with 5(8,) the LIML(K) estimator,

. ' ) 1 0 1 0
655(50) = ( ~ ) 9(50) ( ~ ) ) 9(50) = —50 0 Q —50
—7(By) —7(By) 0 I, 0 I,

and Amin equals the smallest root of the characteristic polynomial

Pmmwwy—xmfwwa—X%sw>=m. )

2Since we treat the reduced form covariance matrix as known, the LIML estimator is identical to the LIMLK
estimator, see e.g. Anderson et. al. (1983).



2. The subset LR statistic to test Hy reads

LR‘(BO) = )\min ~ Hmin> (8)

with

o —XB-WH) Py (y—XB—W
Hmin = MINgeRme, yeR™Mw ((1y -p": —Z’))Q?l(y i —77))” (9)

which equals the smallest root of the characteristic polynomial
Pl — (y: X : W)YPz(y: X : W)| =0. (10)

Under Hy and when Iy has a full rank value, the subset AR statistic has a x*(k — my)
limiting distribution. This distribution provides an upper bound on the limiting distribution
of the subset AR statistic for all values of Iy, see Guggenberger et al. (2012). Alongside
the bound on the limiting distribution of the subset AR statistic, Guggenberger et al. (2012)
also show that the score or Lagrange multiplier statistic to test Hy is size distorted. While the
subset AR statistic is size correct under weak instruments, it is less powerful than optimal tests
of Hy under strong instruments, like, for example, the t-statistic. It is therefore important to
have statistics that test Hy which are size-correct under weak instruments and are as powerful

as the t-statistic under strong instruments. The subset LR statistic is such a statistic.

3 Subset LR statistic

The weak instrument robust statistics proposed in the literature to test H* are based upon inde-
pendently distributed sufficient statistics. These can be constructed under the joint hypothesis
H* but not under the subset hypothesis Hy. To obtain a weak instrument robust inference

procedure for testing Hy using the subset LR statistic, we therefore proceed in three steps:

1. We characterize the conditional distribution of the subset LR statistic under the joint

hypothesis H* (4) which depends on 1m(m + 1) conditioning statistics defined under H*.

2. We construct a bound on the conditional distribution of the subset LR statistic under
the joint hypothesis H* that depends on only m, conditioning statistics which are defined

under H*.

3. We provide an estimator for the conditioning statistics which can be computed under Hy

and show that its leads to a conditional bounding distribution for the subset LR statistic.



3.1 Subset LR statistic under H*.

The subset LR statistic consists of two components, i.e. the subset AR statistic and the smallest
root fi,;, (10). Theorems 1 and 2 state them as functions of the independent sufficient statistics
defined under H*. For reasons of brevity, we initially focus only on the case of one structural
parameter that is tested and one which is left unrestricted so m, = m,, = 1. We later extend this
to more unrestricted structural parameters. Theorem 1 first states the independent sufficient
statistics defined under H* and thereafter expresses the subset AR statistic as a function of
them. Theorem 2 states the smallest characteristic root p.,;, as a function of the independent

sufficient statistics.

Theorem 1. Under H* : B = (,, 7 = 7, the independent sufficient statistics:

(B0 = (22)32(y =Wy = Xpo)os? (1)
©(Bos70) = (Z/Z)_%Z' [(W cX) = (y— Wry — X By) % S0

which are N(0,1) and N((Z'Z)z(Ily : Tx)Sy2 _, L) distributed random variables with

1 o0 o\ 1 0 0
5 <O'se : 05v> =| -8, Im, O Q| =By In, O : (12)
oye Xyv

O : 1 X1, 0p.=0L, :mx1, Xyy :mxm and Lyye. = Xyy — 0ve0ev/0ce; can be used to
specify the distribution of the subset AR statistic that tests Hy : = [, as

AR(ﬁo) = Milgermuw ﬁ (f(ﬂmVo) - @(60770) (Inéw)g)/ (5(5& '70) - @(BmVo)(Ingw)g)
= L+ +yn+ s - \/(902 F U2+ s*)? — 42 + n’n)s*]

(13)



where

l\)\»—l

‘0 (B0,70)'©(Bo, v0) (I w)) (Imw) (B0, 70)"€(Bos v0) ~ N(0, In,,)

") ©
[([mx)/ (B0, 70)'©(Bo; 70)] 1(177(1) )]
(0. )" 1080y 70)©(Bo: o)l ©(Bos 10) € (Bos Vo) ~ N (0, Iy )
n=0(80,7)"1.£Bo,70) ~ N0, I—m)
CS (ITS) (50770)/@(60770)([%w)

with @, v and n independently distributed, O(5y, Vo)1 is a kX (k—m) dimensional orthonormal

matriz which is orthogonal to ©(5y,vo) : (Lo, V)L © (8o, Vo) =0 and ©(5By, 7o) O(Bos Vo)L =
Iiomy, Occ : 1 X 1L, ope =0, :m X 1, Byy :mxm and Lyye = Lyy — OyeOey /Oce.

Proof. see the Appendix and Moreira (2003). m

Theorem 2. Under H* : 5 = (,, 7 = 7y, the smallest characteristic root p;, (10) equals

Hipin = Milperma | geRmu m (f(ﬁoa%) - @(50770)(2)>/ (5(50770) = O(Bo;7) (2)) )

(15)
and is identical to the smallest root of the characteristic polynomial:
VY +n'n V'S
Iy — =0 16
Hdm+1 ( »S S2 (16)
with 8 = diag(s2,., $2:); Soax = Saim, @ diagonal matriz that contains the two eigenvalues of

O(58y,70)'©(By, Vo) in descending order and

U= (0(Bo:70)"©(Bo, %)) "20(Bo, o) (B, o)+ (17)

so ¥ and n are m and k — m dimensional independent standard normal distributed random

vectors.
Proof. see the Appendix and Kleibergen (2007). m

The closed form expression for the distribution of the subset AR statistic in Theorem 1
results since it is the smallest root of a second order polynomial. The smallest root in Theorem
2 results from a third order polynomial so we only provide it in an implicit manner. Theorems 1
and 2 state the distributions of the subset AR statistic and the smallest root p,,;, as functions
of the independent sufficient statistics £(8,,7,) and O(5y,7v,) (11) which are defined under



H*.3 Since £(By,7,) and ©(f8,,7,) are independent, we use the conditional distributions of
the subset AR statistic and the smallest root pu,,, given the realized value of (a function of)
O(B9,70) : ©(By, 7o), see Moreira (2003). Theorems 1 and 2 show that these further simplify

so we can use the conditional distributions of the subset AR statistic given the realized value

of s*, §*, and the conditional distribution of s, given the realized values of s, and s2
§2.., 82 . This makes the total number of conditioning statistics equal to three. Theorem 3

shows that these three conditioning statistics are an invertible function of ©(5,,7,)'© (8o, Yo)-
Theorem 3 also shows how, given ©(S3,,7,)'©(8,7,), We can construct (¢, v) from v, which is
a standard normal distributed random vector, and vice versa. Since both ¢ and 7 are standard
normal distributed random vectors, they constitute the random components in the conditional

distribution of the subset LR statistic under H* given the realized value ©(8,, 7,)'© (B, 7o)-

Theorem 3. Under H* : B = 3, ¥ = 7y, the conditional distribution of the subset LR statistic

that tests Hy - 8 = f3, given the realized value of ©(By,7,)'©(Bo,Y0), ©(Bos 70)©(Bose)s can
be specified as

R(Bo) = & |02+ 02 4 n+ 8 — /(@ 02 b+ 6% — 402 + n’n)ﬁ*} ~ fgins (18)

where i, results from (16) usmg the realized value of S. The relationship between (p, v, §*)

from Theorem 2 is characterized by

used in Theorem 1 and (¢, 8%, , 82 )

A e\ A A . m - A 2 ~ 72 R
= ("57) ©(Bo:70) O (B0, 10) (") = (5 VSQV/ ("e") = Shnax T [Sln(e)} Sin
_% cos( smaxwl—sm(O)smmwz
( ® ) (( ) PS2Y (M )) (Imw) VS V [cos(®)] 82,0t [sin(®)] 82,
— 1 sln(G)w cos(e)w <:>
2 Smax Smin
Y [( ; ) 2V/ ] VS ¢ (sm(e)>2+(cos(9))2

min

N|=

smax cos 0)

)
VS

p= SV(fw) (I’"w )'Vs2yr (i l“))_ e+ S V()| fmx ) Vs zvl(fmx)}_ Y
)

/ COS :|282 [sm ] 52 sm /smax \/sm cos (0))2
max min cos(@)/smm 2 2.

(19)

—8min sm(0)

with V = <COS o) Sin@) .0 < 0 < 2 : the matriz of orthonormal eigenvectors of ©(B4,7%0)'© (Lo, Vo)

sin() cos(0)

3see Moreira (2003) and Andrews et. al. (2006) for a proof that £(,,7,) and ©(8,,v,) are sufficient statistics
for the parameters under H* which they remain to be under Hy.

10



Proof. It results from the singular value decomposition,

O(By.7e) = USV',

with & and V k& x m and m x m dimensional orthonormal matrices, i.e. U'U = I,,, V'V = I,,,
and the diagonal m x m matrix S containing the m non-negative singular values ($; ... 5,,) in
decreasing order on the main diagonal, that v» = U'((5,,7,). The remaining part results from

using the singular value decomposition for the expressions in Theorems 1 and 2. =

The conditional distribution of the subset LR statistics is a function of three conditioning
statistics none of which is defined under Hy. To obtain a workable bound of it, we first reduce

the number of conditioning statistics for which we thereafter provide estimators which are
defined under Hg.

3.2 Bound on subset LR statistic with one conditioning statistic.

The conditional distribution of the subset LR statistic depends in an implicit manner on its
conditioning statistics. This makes it hard to show that it is a monotone function of any (or
several) of them which would make it straightforward to obtain a bound on it. In order to
construct such a bound, we therefore start out to show that the two elements that comprise

the subset LR statistic are monotone functions of (some of) their conditioning statistics.

2

min’

Theorem 4. The conditional distributions of the subset AR statistic and i, given (5, §

§2 ..) are respectively non-decreasing functions of §* and §2,_.

max

Proof. see the Appendix. m
Theorem 4 implies that the conditional distributions of the subset AR statistic and p;,

are bounded by their (conditional) distributions that result for the smallest and largest feasible

values of the realized value of their conditioning statistics §* and §2, resp.. Given the realized
2 22 2

~ Ak /\2 . . . . ~
value of sZ, , 5z, both §* and 52 . can be infinite while their lower bounds are equal to 57 ;..

11



Theorem 5. Given the realized value of s> the conditional distribution of the subset

min * m1n7

AR statistic is bounded according to

ARy |s* = 82,,) = ARJs* = §2,)
p* + 17 +nn+smm—\/90 U+ 82,0 — A2 )ad, (20)
< AR(B)[s™ = §7) <
v?+n'n= ARy, = ARs* = 00) ~ x*(k —m,)
and the conditional distribution of (i, s bounded according to
Hiow| Stain = Siin) = Hunin|Stain = Smains Smax = Swin)
=3 [w% F 5 0+ S — \/ (03 + 03+ + 85,) " — 477’n§3nm]
< Humin|Sthin = Sthins Stmax = Smax) < (21)
3 [w% 0 S — \/ (3 +mm + 824,)° — s mm]
= Humin| Shin = Smins Smax = 00) = HuplSthin = Smin)-

Proof. see the Appendix. m
< § < §2 % the bounds on the conditional distribution of the subset AR

max ?

Since 52,

n

statistic are rather wide but they are sharp for large values of 52 . Both the lower and upper

n’
bound of the conditional distribution of j,;, are non-decreasing functions of §2. and are equal
when 52 equals zero and for large values of §2. in which case they both equal n'n. It implies

that they are tight which can be further verified by conducting a mean-value expansion of the

lower bound. The bounds are tight since the conditional distribution of p,;, given (s2. = §2. |
s2 . = &2 ) primarily depends on 52, and much less so on §2__ (as one would expect from

the smallest characteristic root).

The conditional distribution of the subset LR statistic stated in Theorem 3 depends on
three conditioning statistics which are all defined under H*. The three conditioning statis-
tics result from the three different elements of the estimator of the concentration matrix
O(Bys 70)'© (8o, Vo). This estimator provides an independent estimate of the identification strength
of the two parameters restricted under H*. Under Hy, there is only one restricted parameter
so its identification strength can be represented by one conditioning statistic. The smallest

characteristic root of ©(8y,7,)'©(B: 7o) is reflected by 52, . Since it reflects the minimal iden-

min*

%Since 8" N (I"(l)w)/éwoﬁo) (507’70)( i ), 5* is bounded by the smallest and largest characteristic roots
of 6(B07’70)l®(/807’}’0) SO 82 < s* < max

12



tification strength of any combination of the parameters in H*, we use it as the conditioning
statistic in a bounding function of the conditional distribution of the subset LR statistic given
O(Bys70)'© (8o, Vo). The bounding function then results as the difference between the upper
bounding functions of the subset AR statistic and ., stated in Theorem 5. It is obtained by
noting that

REE
22 1 - . 22
Stax = T3 |8" — |sin 9] St 22

[cos(@)]2 |: |: ( ) :| ( )
so when s§* goes off to infinity, cos(@) # 0, §2 . goes off to infinity as well. Other settings of
the different conditioning statistics do not result in an upper bound. For example, consider
sin(0) = 1, §* = 82, 50 82, = &%,

the subset AR statistic, which constitutes the first component of the subset LR statistic in (18),
2

min

which results from applying 'Hopital’s rule to (22). Since

is an increasing function of §*, we obtain a lower bound on the subset AR statistic given 3
so the resulting setting for the subset LR statistic is more akin to a lower bound than an upper
bound.

*

Definition 2. We denote the conditional distribution of the subset LR statistic given (§*,

§2. 82 ) that results from Theorem 3 when cos(0) # 0, § and §2._ go off to infinity, so

Yy = and Py = v, by OLR(50)35

CLR(By)|Smin = Smin) = 1im(se, 52,,)—00 LR(S)
= 3|V 0= St \/ (V2 + '+ 825,)° — a2y,

(23)

We use CLR(f,) defined in (23) as a conditional bound given 2. for the conditional

distribution of LR(f,) given (82, 82.., §*). It equals the difference between the upper bounds
on AR(f,) and p,;,, stated in Theorem 4 with ¢, equal to v. The difference between the upper
bounds of two statistics not necessarily provides an upper bound on the difference between
the two statistics. Here it does since the upper bound on the subset AR statistic has a lot
of slackness when p, ;. is close to its lower bound. To prove this, we specify the conditional

distribution of the subset LR statistic as

LR(B,) = CLR(5y) — D(By), (24)

’The expression of CLR(f,) is identical to that of Moreira’s (2003) conditional likelihood ratio statistic
which explains the acronym.

13



with
D(BO) - AR’up - AR(BO) + Homin—

L2y + 82, — \/ (2 + 1+ 82,,)° — 4'nsly,

(25)

2

and analyze the properties of the conditional approximation error D(f3,) given §;,, over the

2

max

~

range of values of 5. and $* (#). We note that only negative values of D(,) can lead to size

distortions so we only focus on worst case settings of the conditioning statistics (8*, 82, , %)

that lead to such negative values.

Theorem 6. Under H*, the conditional distribution of CLR(B,) given s, = §2.. provides
2 2 2 a2

min? Smax - Smax?
a%
§%).

an upper bound for the conditional distribution of LR(B,) given (so;, = $

s* = §%) since the approzimation error D(B,) is non-negative for all values of (52,,, s>

max’

Proof. see the Appendix. m

Theorem 6 is proven using approximations to the different components of D(f3,). These
2 2

min’ Smax>

approximations are analyzed over the range of values (§
these do we find that D(f,) is negative.

§*) can take. For none of

Corollary 1. Under H*, the rejection frequency of a (1-a)) x 100% significance test of Hy
2

using the subset LR test with conditional critical values from CLR( ) given S, is less than

or equal to o x 100%.

While the conditional critical value function makes the subset LR test of Hy size correct,
2

it is infeasible since the conditioning statistic 57, is defined under H*. We next construct a

feasible estimator for §2

min

under Hy which is such that the resulting conditional critical value

function makes the subset LR statistic a size correct test of Hy.

3.3 Conditioning statistic under H,

To motivate our estimator of 2.

under Hy, we start out from the characteristic polynomial in

(16) which is when, m,, = m, = 1, a third order polynomial:

(/'l’ - Mmax)(lu - :LLQ)(:LL - :u’min) = :U’S - a’lluz + Qg — a3 = 07 (26)

14



with, resulting from Theorem 2:

ay = YUY+ Spin St = QY X W) P(Y DX D W) = i + g + fhinax
Az = N'N(Shin + Sthax) T StinSmax T qvbfs?nax + ¢§Silin
a3 = 1S pinSmax = Humina max:
(27)
and where ;< 1y < pi. are the three roots of the characteristic polynomial in (26). We
next factor out the largest root .. to specify the third order polynomial as the product of a

first and second order polynomial:

(17— arpi? + agpt — az = (j1 = fya) (2 — bipp +bg) = 0, (28)

with
bl = ¢/¢ + 77/77 + 812nin + 812nax — Mmax
bQ = n,nsilinsgnax/lu’max'

(29)

2

We obtain our estimator for the conditioning statistic s; ., from the second order polynomial.

In order to so, we use that y,. provides an estimator of s2, + 3.
Theorem 7. Under H*, the largest root i, 1S such that
2
Fnax = Smax + 0T+ 5= (05 + ') + h, (30)

With 8%, = 2. + 07 and h = O(max(s;2 (VY5 +1'n)?%, spasme ) > 0, where O(a) indicates

» “min® max

that the respective element is proportional to a.

Proof. see the Appendix. m

2

Theorem 7 shows that s, is an estimator of s2,__ -+ which gets more precise when s2__

2

max

increases. We use it to purge s2__+ v? from the expression of b, :

b1 = d + 82 (31)

min?

with

a= (1= ) @i+am)—h (2)
Since h is non-negative, the statistic d in (32) is bounded from above by a x?(k — 1) distributed

random variable. Theorem 4 shows that under H*, the subset AR statistic is also bounded from

above by a x?(k — 1) distributed random variable. We therefore use the subset AR statistic

15



as an estimator for d in (32) to obtain the estimator for the conditioning statistic §2. that is

feasible under Hy:
g?nin = b — AR(BO)
= tr( QY X WYPZ(Y : X W) — e — AR(B,)
= smallest characteristic root of (27 'Y : X : W) Pz(Y : X 1 W))+

second smallest characteristic root of (Q7 (Y : X : W) Pz(Y : X : W)) — AR(S,)-
(33)

as the conditioning statistic for the conditional bounding distribution CLR(f,)

2 2 2

min min min

2
min
2

min

We use 5

given that s; . = 5. (23). The conditioning statistic 5., in (33) estimates s;,, with error so

it is important to determine the properties of its estimation error.

Theorem 8. Under H*, the estimator of the conditioning statistic 52, can be specified as:

n

§I2nin = S?nin + g, (34)
with
2
9= Vhtby — Vv + = (n + V') — (s ') — hte, (35)

o2+ ) ©(Bo:10)'©(Bovo) (")

Proof. see the Appendix. m

2
©&(Boyv0)' M Iy, £(Bo0)
and where e = O(( o0 (5" ) ).

The common element in the (upper) bounding distributions of the statistic d and the subset

AR statistic is the y*(k — 2) distributed random variable 7/n. It implies that the difference
2

between these two statistics, which constitutes the estimation error in 5 . consists of:

1. The difference between two possibly correlated x?(1) distributed random variables:

Uty — V'Y, (36)

with v, that part of £(5,,,) that is spanned by the eigenvectors of the smallest singular
value of ©(5,,7,) and v that part of £(5,,,) that is spanned by @(60,70)(10 )
TY'LX

2. The difference between the deviations of d and AR(f,) from their bounding x*(k — 1)

distributed random variables:

Sz (' + V') — (U, + ') — h +e. (37)

*
Smax

16



Since s* is smaller than or equal to s2 _, this error is largely non-negative and becomes

max’

negligible when s* and s2__ get large.

max

Since s* has a non-central x? distribution with k& degrees of freedom independent of ¢, v and
n, and a similar argument applies to s, 1, ¥y and 7, the combined effect of the components
in (37) is small, since every element is at most of the order of magnitude of one and a decreasing

function of s* and s2 . The same argument applies to (36) as well.

2

Corollary 2. The estimation error for estimating s, by 52 is bounded and decreasing with

min

the strength of identification of ~.
The derivative of CLR(f3,) given s with respect to s :

_ _ _ 1|_ v24s0—n'n
! =0 CLR(BO” Smin SO) 2 bt V (V2 +so—n'n)2+4v2n'y <9, (38)
which is constructed in Lemma 2 in the Appendix, is such that CLR(f,) is not sensitive to

the value of s2, . Thus small errors in the estimation of s2;, just lead to a small change in the

n
conditional critical values given 52, with little effect on the size of the subset LR test under
Hy. Corollary 2 and (38) imply that the estimation error in §2; has just a minor effect on the
size of the subset LR test under Hy. We next provide a more detailed discussion of the effect
of the estimation error in 52, on the size of the subset LR test.

Under H*, the conditioning statistic s2,,, is independent of £(f3,,7,) while the components
of the estimation error ¢ in (36) and (37) are not. We therefore analyze the properties of the

estimation error in 2. and its effect when using 52 for the approximation of the conditional

min

distribution of the subset LR statistic (23). One part of the estimation error results from the
deviation of the distribution of the subset AR statistic from its bounding x?(k — 1) distribu-
tion. We therefore assess the two fold effect that this deviation has: one directly on the subset

LR statistic through the subset AR statistic and one on the approximate conditional distrib-

32

~in on the

ution through its effect on 2, . We analyze the effect of the estimation error in §

approximate conditional distribution of the subset LR statistic for four different cases:

1. Strong identification of v and (3 : Both 8 and ~ are well identified, so 2, is large
and s* (> s
are at their upperbounds stated in Theorem 4 so the conditional distribution of the subset LR
statistic corresponds with that of CLR(/3,). Since both s* and s>

error is:

is large as well. This implies that both components of the subset LR statistic

mln)

- ax are large, the estimation

g= Yothy —V'v. (39)

17



The proof of Theorem 8 shows the expressions of the covariance between 1), and v which, since

both s, and s2__ are large, can not be large. The estimation error is therefore O,(1). The

min max

derivative of the approximate conditional distribution of the subset LR statistic with respect
2 2

to s2. goes to zero when s2. gets large. Hence, since s is large, the estimation error in 52
has no effect on the accuracy of the approximation of the conditional distribution of the subset
LR statistic.

2. Strong identification of v, weak identification of [ : Since [ is weakly identified
2

s . is small but s* is large because 7 is strongly identified and so is therefore s2 . Since both
s* and s2__ are large, both components of the subset LR statistic are at their upperbounds

stated in Theorem 4 which implies that the conditional distribution of the subset LR statistic
2

min

equals that of CLR(3,). Also since s* and s are large, the estimation error in §

hax 18 just

g= Vyhy — Vv (40)

Because s2. is small and s* is large, Theorem 3 shows that cos() is close to one while sin(f)
is close to zero. This implies that v is approximately equal to 1, so g is small. The estimation
error does therefore not lead to size distortions when using the approximation of the conditional
distribution of the subset LR statistic.

3. Weak identification of v, strong identification of [ : v is weakly identifed so s

2
max

2 .
min
and s* are small while s2__ is large since 3 is strongly identified. Since s

at its upperbound ,,,. The difference between the conditional distribution of the subset LR

is large, [t 18

statistic and the conditional bounding distribution of CLR(/3,) then solely results from the

difference between the upper bound on the distribution of the subset AR statistic, AR,,, and
2

its conditional distribution. When using conditional critical values from CLR(S,) given sZ,,
2 2

for the subset LR test, it is conservative. We, however, use 57, instead of sZ, with estimation
erTor g :

S02

02+ (mw ) 0(80,70)'©(Bo ) (M)

g= Yy —Vv+ (M'n+v'v) +e, (41)

2

which, since it increases the estimate of the conditioning statistic 57 ., reduces the conditional

critical values. The last part of (41) results from the subset AR statistic. Since the conditional
2

critical values of CLR(,) given s;. make the subset LR statistic test conservative for this
setting, the decrease of the conditional critical values does not lead to over-rejections. This holds
since the reduction of the subset AR statistic compared to its bounding x?(k — 1) distribution

2 instead of s2. . The

min min*

exceeds the decrease of the conditional distribution of CLR(,) given §

latter results since the derivative of the conditional distribution of CLR(3,) given s2,, with

min

18



2

respect to s;,, exceeds minus one. Hence, usage of the conditional critical values of CLR(f,)

2

given s-. make the subset LR test conservative for this setting.

Weak identification of v and strong identification of 5 covers the parameter setting for
which Guggenberger et al. (2012) show that the subset score statistic from Kleibergen (2002)
for testing Hy is size distorted. This size distortion occurs for values of Ily, and IIx which are
such that Il = a x I1x with [Ix relatively large so 3 is well identified and « a small scalar so

v is weakly identified. These settings thus do not lead to size distortion for the subset LR test
2

min*

when using the conditional critical values that result from CLR(j3,) given §
4. Weak identification of v and /3 : Both s2, and s>

min max

are small and so is therefore s*.
The proof of Theorem 6 in the Appendix shows that the error of approximating the subset LR

statistic by CLR(f3,) given s2. is non-negative for this setting. Usage of the conditional critical
2

values that result from CLR(f,) given s, would then make the subset LR test conservative.

2

distributions of d and the subset AR statistic deviate from their x?(k — 1) distributed lower
bounds so the estimation error contains all components of (35). The twofold effect of the

deviation of the bounding distribution of the subset AR statistic from a y*(k — 1) distribution
2

min

instead of 52, the estimation error g is then such that both the bounding

min?

When we use §

is now diminished since its contribution to the estimator of the conditioning statistic 52. is
largely offset by the deviation of the bounding distribution of d from a x?(k — 1) distribution.

Hence,
2

v
UQ""(IWSM )/@(50770)'9(50770)«%“’)

(' + &'0) — S (Pythy + ') + € — h, (42)

*
Smax

is small. Also the other component of ¢ is typically small since 1), and v are highly correlated
2

min

so the subset
2

min

is close to s2

min

when both ~v and 3 are weakly identified. This all implies that §
LR test remains conservative when we use conditional critical values from CLR(f,) given §
instead of CLR(/3,) given s2

min*
Summarizing, we observe no size distortion for any of the above settings when using the

subset LR test to test Hy with conditional critical values from CLR(3,) given §2, . It is inter-
2
min

occur, which result when ~ is
2

min

esting to note that when non-negative estimation errors in s
weakly identified, the subset LR test using critical values from CLR(f,) given s;, is conserv-
ative which offsets any size distortions which might occur because of the larger critical values

that result from CLR(f3,) given 52

min*
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Specification of conditioning statistic is identical to the one with included endoge-

nous variable For the linear IV regression model with one included endogenous variable:

y = Xf+e

(43)
X = Zllx + Vy,
the AR statistic (times k) for testing Hy reads
AR(By) = 5255 — XBo)' Pzly — XBy), (44)
with 6..(3,) = (7150),(2 (7160) and € the (known) reduced form covariance matrix, = | 2 @ X ) :

The LR statistic for testing Hy equals the AR statistic minus its minimal value over 3 :
LR(B,) = AR(S,) — ming AR(). (45)
This minimal value equals the smallest root of the quadratic polynomial:
p—ajp+az =0, (46)
with

af = tr(QUHY : X)Pz(Y : X)) = AR(B,) + s*
a5 = s*[AR(B,) — LM(8,)]

LM(8,) = m(}/ - Xﬁ(]),PZfIX(,BO)(y — XBy)
5% = ﬁX(50),2/21:[){(50)/&)()(‘5(50)

e(so) = (22)72/[X = (v = Xop 2| = (222 0027 (7) [(2) 2 ()

(47)

A & x:(Bo)? B0\ =1 (Bo\] "
and UXX.E(BU) :wXX_m = |:(10) Q (10)} s O—Xa(ﬁo) :wa—waﬁO. Under Ho, the
LR statistic has a conditional distribution given the realized value of s which is identical to
(23) with s2

min

equal to s? and n'n a x*(k — 1) distributed random variable, see Moreira (2003).

The statistic af in (47) does not depend on . For a given value of AR(/3,), we can therefore
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straightforwardly recover s? from a? :

2= tr(Q Y I X)Pz(Y : X)) — AR(S,)
= smallest characteristic root of (Q71(Y : X)Pz(Y : X))+ (48)
second smallest characteristic root of (271(Y : X)) Pz(Y i X)) — AR(8,),

which shows that the specification of the conditioning statistic for the conditional distribution
of the conditional likelihood ratio statistic for the linear IV regression model with one included

endogenous variable is identical to §2; in (33).

min

4 Simulation experiment

To show the adequacy of usage of conditional critical values that result from CLR(f,) given
2

52 for testing Hy using LR(5,), we conduct a simulation experiment. Before we do so, we
first state some invariance properties which allow us to obtain general results by just using a

small number of nuisance parameters.

Theorem 9. Under Hy, the subset LR statistic only depends on the sufficient statistics
&(Bo, 7o) and O(By,7y) which are defined under H* and independently normal distributed with
1

means resp. zero and (Z'Z)z (My, IIx)X 2. and identity covariance matrices.
Proof. see the Appendix. m

_1

Theorem 9 shows that under Hy, (Z/Z)z (I, © 11 x)Zy . is the only parameter of the IV
regression model that affects the subset LR statistic. The number of (nuisance) parameters
where the subset LR statistic depends on is therefore equal to km. We further reduce this

number.

Theorem 10. Under H, the dependence of the distribution of the subset LR statistic on the

parameters of the linear IV regression model is fully captured by the %m(m + 1) parameters of

the matrix concentration parameter:
Sy 2 (M P ly)'Z'Z(y f 1x)S,2. = RAAR, (49)

with R an orthonormal m X m matriz and N'A a diagonal m x m matriz that contains the

characteristic roots.
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Proof. see the Appendix. m

In our simulation experiment we use two included endogenous variables so m = 2. We also

use the specifications for R and A’A :
R (o) osrsam wa= (31 0). (50)

With these three parameters: 7, A\; and Ay, we can generate any value of the matrix con-
centration parameter and therefore also every distribution of the subset LR statistic. In our
simulation experiment, we compute the rejection frequencies of testing Hg using the subset AR

and LR statistics for a range of values of 7, A1, Ao and k. This range is chosen such that:
0<7<2m 0< A <100, 0< )\ <100, (51)

and we use values of k£ from two to one hundred. For every parameter, we use fifty different

values on an equidistant grid and five thousand simulations to compute the rejection frequency.

Maximal rejection frequency over the number of instruments. Figure 1 shows the
maximal rejection frequency of testing Hy at the 95% significance level using the subset AR and
LR statistics over the different values of (7, A1, \2) as a function of the number of instruments.
We use the 2 critical value function for the subset AR statistic and the conditional critical
values of CLR(f3,) given 52, for the subset LR statistic. Figure 1 shows that both statistics

are size correct for all numbers of instruments.
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Figure 1. Maximal rejection frequencies of subset AR (dashed) and subset LR (solid)

statistics when testing the 95% significance level for different numbers of instruments.

Ajedion frequency
o o o o o o o o
© © = o > 2 ® ©

I
o

o

Maximal rejection frequencies as function of the characteristic roots of the ma-
trix concentration parameter To further illustrate the size properties of the subset AR
and LR tests, we compute the maximal rejection frequencies over 7 as a function of (A1, Ay) for
k =5, 10, 20, 50 and 100. These are shown in Panels 1-5. All panels are in line with Figure 5
and show no size distortion of either the subset AR or subset LR tests. The panels show that

both tests are conservative at small values of both A; and \s.
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Panel 2. Maximal rejection frequency over 7 for different values of (A;, A2) for k& = 10.

SR

"\/\‘?/‘ ‘vAVqJ
p%\
«;f

——s

\o ,‘0

.n
S c“v
‘

o0
A\ = 'A\ /(‘):

=
S oINS
IA»

= A
"“i} SRR wf»’ XX ‘\ "'

20
LREBESAA ‘\

“
‘:’ 8 ’o,l)

100

Figure 2.1. subset AR statistic

24

Rejection frequency

0.05

o
o
R

=4
o
@

o
o
N

001

ST

SOESELSEES .«" R

SEESAETTENS
==

e =

.“.‘;,. =
e e
e =m0
SR STE OISR SEase
ST T :.' “'0:0"‘»:0
SeeT R e
«‘ e
'0 = :'3:«;‘2.::;:;::.:;; Sstes
,vv'\ s “‘;;.g‘
P A‘ v,“, ST
2

= «':
SR s ":‘.:2‘39“

‘o‘<‘u

o.-'“',"‘

‘ ?
,,«,, \» :,'2"‘» \t
4 \o"“ "’
v'» 7N
R ":‘v‘ 2N
" hvel

’v

subset LR statistic

Figure 2.2.

100



Panel 3. Maximal rejection frequency over 6 for different values of (A1, A2) for k = 20.
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Panel 5. Maximal rejection frequency over 7 for different values of (A;, A\2) for & = 100.
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To show the previously referred to size distortion of the subset score statistic, Panels 6 and

7 show the rejection frequency of the subset LM statistic for testing Hy. These figures again

show the maximal rejection frequency over 7 as a function of (A1, A2). They clearly show the

increasing size distortion when k gets larger which occurs for settings where Il = allx with

[Ty sizeable and « small so Il is small and tangent to I1x. The implied value of II is therefore

of reduced rank so either A\; or \; is equal to zero.
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Panel 6. Maximal rejection frequency over 7 as function of (Ay, \2) for subset LM statistic

Figure 6.1. £ =10 Figure 6.2. k =20

Panel 7. Maximal rejection frequency over 7 as function of (Ay, \2) for subset LM statistic

Figure 6.3. k =50 Figure 6.4. k£ = 100

5 More included endogenous variables

Theorems 1, 2, 4 and 5 extend to more non-hypothesized structural parameters, i.e. settings

where myy exceeds one. Theorem 3 can be generalized as well to show the relationship be-

27



tween the conditioning statistic of the subset AR statistic under H* and the singular values of
OBy, 70)'©(By, o) for values of m larger than two. Combining these results, Corollary 1, which
states that CLR(3,) given §2, provides a bound on the conditional distribution of the subset
LR statistic, extends to values of m larger than two. Theorem 6 states the maximal error of
this bound by running through the different settings of the conditioning statistics. Since the
number of conditioning statistics is larger, we refrain from extending Theorem 6 to settings of
m larger than two.

For the estimator of the conditioning statistic, Theorem 7 is extended in the Appendix
to cover the sum of the largest m — 1 characteristic roots of (10) when m exceeds two while
the bound on the subset AR statistic is extended in Lemma 1 in the Appendix. Hence, the

estimator of the conditioning statistic

52. = smallest characteristic root (Q7 (Y : X i W) Pz(Y : X : W))+
second smallest characteristic root (Q71(Y : X : W) Pz(Y : X : W)) — AR(B,),
(52)
applies to tests of Hy : 5 = /3, for any number of additional included endogenous variable and

so does the bound on the conditional distribution of the subset LR statistic stated in Corollary
1.

Range of values of the estimator of the conditioning statistic. The estimator of the

conditioning statistic in (52) is a function of the subset AR statistic. Before we determine some
2

properties of 52. | we therefore first analyze the behavior of the realized value of the joint AR

statistic that tests H* : 8 = 3, 7 = 7, as a function of o = (3} : vp)'-

Theorem 11. The realized value of the joint AR statistic that tests H* : o = v, with o = ('
)

ARy-(a) = o5y — Xa) Ps(y — Xa),

oee ()

is a function of « that has a minimum, mazimum and (m — 1) saddle points. The values of
the AR statistic at these stationarity points are equal to resp. the smallest, largest and, if m

exceeds one, the second up to m-th root of the characteristic polynomial (10).
Proof. see the Appendix. m

Theorem 11 implies that in a linear IV regression model with one included endogenous
variable, the AR statistic has one minimum and one maximum while in linear IV models with

more included endogenous variables, the AR statistic also has (m — 1) saddle points. Saddle
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points are stationary points at which the Hessian is positive definite in a number of directions
and negative definite in the remaining directions. The saddle point with the lowest value of the
joint AR statistic therefore results from maximizing in one direction and minimizing in all other
(m — 1) directions. The subset AR statistic that tests Hy results from minimizing the joint AR
statistic over v at 8 = [3,. The maximal value of the subset AR statistic is therefore smaller
than or equal to the smallest value of the joint AR statistic over the different saddle points
since it results from constrained optimization (because of the ordering of the variables where
you optimize over). When m = 1, the optimization is unconstrained, since no minimization
is involved, so the maximal value of the subset AR statistic is equal to the second smallest

characteristic root which is in that case also the largest characteristic root.

Corollary 3. The mazimal value of the subset AR statistic is less than or equal to the second

smallest characteristic root of (10):
maxg AR(3) < second smallest root (Q71(Y : X : W) Pz(Y : X : W)). (53)

Corollary 4. The minimal value of the conditioning statistic is larger than or equal to the
smallest characteristic root of (10):

min

ming 52, > smallest root (U1 (Y I X I W) Py (Y I X W)). (54)

Corollary 4 shows that the behavior of the conditioning statistic as a function of § for larger

values of m is similar to that when m = 1.

6 Testing at distant values

An important application of subset tests is to construct confidence sets. Confidence sets result
from specifying a grid of values of 3, and computing the subset statistic for each value of j3,
on the grid.® The (1 — a) x 100% confidence set then consists of all values of 3, on the grid
for which the subset test is less than its 100 x a% critical value. These confidence sets show
that the subset LR statistic that tests Hy : 5 = 3, at a value of 3, that is distant from the true
one is identical to the subset LR statistic that tests H, : v = 7, at a value of 7, that is distant

6The confidence sets that result from the subset tests can not (yet) be constructed using the efficient proce-
dures developed by Dufour and Taamouti (2003) for the AR statistic and Mikusheva (2007) for the LR statistic
since these apply to tests on all structural parameters.
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from the true one and the same holds true for the subset AR statistic.

Theorem 12. When m, = 1, Assumption 1 holds and for tests of Hy : = 3, for values of

By that are distant from the true value:

a. The subset AR statistic AR((,) equals the smallest eigenvalue of Q;(%{/(X W) Py(X :

1
17, 2 . _ WXX | WXWw

b. The subset LR statistic equals
LR’(BO) = Vmin = Hmin> (55)

1 ) . 1
With Vi, the smallest eigenvalue of QX?/[’,(X WY Pz(X - W)Qy3, and puy, the smallest
eigenvalue of (10).

c. The conditioning statistic 8. equals
§2. = smallest characteristic root (Q7 (Y : X : W)'Pz(Y : X : W))+

second smallest characteristic root (Q1(Y : X : W)'Pz(Y : X : W))— (56)
smallest characteristic root (Qyy (X P W) Pz (X : W)).

Proof. see the Appendix. m

Theorem 12 shows that the expressions of the subset AR and LR statistics at values of 3,
that are distant from the true value do not depend on 3. Hence, the same value of the statistics
result when we use them to test for a distant value of any element of +. The weak identifica-
tion of one structural parameter therefore carries over to all the other structural parameters.
Hence, when the power for testing one of the structural parameters is low because of its weak
identification, it is low for all other structural parameters as well.

The smallest eigenvalue of Q;(I%AI,(X W) Py(X W)Q;(%V is identical to Anderson’s (1951)
canonical correlation reduced rank statistic which is the likelihood ratio statistic under ho-
moscedastic normal disturbances that tests the hypothesis H, : rank(ITy : IIx) = my, +m, — 1,
see Anderson (1951). Thus Theorem 12 shows that the subset AR statistic is equal to a re-
duced rank statistic that tests for a reduced rank value of (ITyy : IIx) at values of 3, that are
distant from the true one. Since the identification condition for 5 and ~ is that (I : IIx) has
a full rank value, the subset AR statistic at distant values of 3, is identical to a test for the

identification of 5 and 7.
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7 Weak instrument setting

For ease of exposition, we have assumed sofar that the instruments are pre-determined and
and V' are jointly normal distributed with mean zero and a known value of the (reduced form)
covariance matrix (2. Our results extend straightforwardly to i.i.d. errors, instruments that are
(possibly) random and an unknown covariance matrix €2. The analogues of the subset AR and
LR statistics in Definition 1 for an unknown value of ) are obtained by replacing () in these

expressions by the estimator:

Q= (y i X W) Mgy s X P W), (57)

which is a consistent estimator of €2 under the outlined conditions, QO — Q.
P

We next specify the parameter space for the null data generating processes.

Assumption 1. The parameter space ¥ under H is such that:

U= {¢ = {¢17 2702} : ,lvbl = (77 HWv HX)a Y€ me7 HW € kamwa HX € kamzv
wQ =F: E(‘|E|’2+6) < M7 for ﬂ S {5%‘/1'7 Ziu Zi€i7 Zi‘/i,7€i‘/i}7
E(Zi;) =0, E(ZV!) =0, E((vec(Z;(g; : VI))(vec(Zl(g; : VI))) =

7

1 00 1 00
(E((ei - V) (e : V) @ B(Z:Z})) = (@ Q), E=| =, 1 0 | Qf =B, 1 0 [,
v 01 v 01

(58)
for some § >0, M < oo, Q = E(Z;Z!) positive definite and Q € RUmHIXm+1) positive definite

symmetric.

Assumption 2 is a common parameter space assumption, see e.g. Andrews and Cheng
(2012), Andrews and Guggenberger (2009) and Guggenberger et al. (2012).
To determine the asymptotic size of the subset LR test, we analyze parameter sequences in

U which lead to the specification of the model for a sample of N i.i.d. observations as

Yn = Xnﬁ + Wn'yn +én
Xn - ZnHX,n + VX,n (59)
Wn == ZnHW,n + VW,n7

with y, :n X1, X;, inxXmy, Wy inXmy, Z, inXk, e, :nx1, Vx,inXmg, Vi, 1 X my,
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Bimg X 1,7, i my X 1, x 0 kX myg, Iy, © kX my,. The rows of (g, : Vo, : Viy © Z,,) are
i.i.d. distributed with distribution F},. The mean of the rows of (g, : Vx,, : Vi ¢ Z,) equals

zero and their covariance matrix is
Z — Oce,n E OcV,n .
n OVe,n EVV,TL (60)

These sequences are assumed to allow for a singular value decomposition, see e.g. Golub and
Van Loan (1989), of the normalized reduced form parameter matrix.

Assumption 2. The singular value decomposition of ©(n) = (2. Z,)"2 (., : Hx,n)Z;%,/jn
that results from a sequence A\, = (v,,, Hwn, Ux ., F) of null data generating processes in W

has a singular value decomposition:
O(n) = (Z,2,) 2 (y,, i Ux,)Sp/2, = H,T,R, € R, (61)

where H, and R, are k X k and m X m dimensional orthonormal matrices and T,, a k X n
rectangular matriz with the m singular values (in decreasing order) on the main diagonal, with
a well defined limit.

Theorem 13 states that the subset LR test is size correct for weak instrument settings.

Theorem 13. Under Assumptions 1 and 2, the asymptotic size of the subset LR test of H

with significance level o :

ASySZLR@ = limsup,, ., supycg Pra [LRw(ﬁo) > CLRl—OZ(60|SI2nin = §I2mn,n)] ) (62)
where LR, (83,) is the subset LR statistic for a sample of size n and CLRy_ o (By|s%, = 524,) 18
the (1 — a) x 100% quantile of the conditional distribution of CLR(3,) given that s%. = §2. .

s equal to o for 0 < o < 1.
Proof. see the Appendix. m

Equality of the rejection frequency of the subset LR test and the significance level occurs
when  is well identified. When « becomes less well identified, the subset LR test, identical to

the subset AR test, becomes conservative.
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8 Conclusions

Inference using the LR statistic to test a hypothesis on one structural parameter in the ho-
moscedastic linear IV regression model extends straightforwardly from one included endogenous
variable to several. The first and foremost extension is that of the conditional critical value
function. The conditional critical value function of the LR statistic in the linear IV regression
model with one included endogenous variable from Moreira (2003) extends with the usual de-
grees of freedom adjustments of the involved x? distributed random variables to the subset LR
statistic that tests a hypothesis on the structural parameter of one of several included endoge-
nous variables in a linear IV regression model with multiple included endogenous variables.
The expression of the conditioning statistic involved in the conditional critical value function
also remains unaltered. This specification of the conditional critical value function and its con-
ditioning statistic makes the LR statistic for testing hypotheses on one structural parameter
size correct.

A second important property of the conditional critical value function is optimality of the
resulting subset LR test under strong identification of all untested structural parameters. When
all untested structural parameters are well identified, the subset LR test becomes identical to
the LR test in the linear IV regression model with one included endogenous variable for which
Andrews et al. (2006) show that the LR test is optimal under weak and strong identification
of the hypothesized structural parameter. Establishing optimality while allowing for any kind
of identification strength for the untested parameters is complicated since the usual optimality
criteria are often no longer sensible. In Guggenberger et al. (2017), conditional critical values
for the subset AR statistic are constructed which make it nearly optimal under weak instruments

for the untested structural parameters but not so under strong instruments.
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Appendix

Lemma 1. a. The distribution of the subset AR statistic (5) for testing Hy : B = 5, is

bounded according to

!
M
£PBo70) Mo 5 o)

1 [ () ©(Bory € Bono) ()]
=n'n+ Vv~ 3k —my).

(Inéw)ﬁ(ﬁoﬁo)

AR (By) < < 5(60770)/M@(50,70)(I776w)€(60770)

(63)

b. When m,, = 1, we can specify the subset AR statistic as

2

AR ~ / 2 1 — 7 £ - 64
(60) (77 " v ) % |: 802-1-([778“’) @(50770)'9(50770)<Inéw):| ‘ ( )

with

w2+ (") ©(B.70) ©(Bovo) () | w2 +(Tmw ) ©(Bo:10) ©(Borvo) (M)

f(ﬁoﬁo)lM@(Bo 70)(171811;)5(50’70) 45(50770)'1\/[@(60 70)(17751,})5(50770) -
1-— 7 Y + / : ’
o275 ) ©(B010)0B010) ("5 (w24 (M) OB 70)@(Borve) (e )

! 2 !
o 9 ( v€(BosY0) M@(ﬁo,m)(hgw)f(ﬁoﬁo) ) (I,Ew) @(507’70)/9(50’70)(17?)w)

(65)

SO

2

v€(Boyv0) M Imay £(Bo»70)

e=0 G0 (Tr) > 0. (66)
U2+( WS“’) 9(507’70)/9(@0:’70)( 7761”)

Proof. a. To obtain the approximation of the subset AR statistic, AR(f,), we use that it

equals the smallest root of the characteristic polynomial:
‘AQ(B(Q —(y—XBo : W) Py — XB, : W)' = 0.

We first pre- and post multiply the matrices in the characteristic polynomial by

1 : 0
—Yo ImW
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to obtain

() oo (450 ) = (B ) [rmnt o (5]
PZ an<”}/0 Imw) + (8 Vw) <'y10 hfW)} <%YO I”?W)'

—7o0 ImW —Yo ImW

1
_1 —1 -5
Z—% _ 0-552 ¢ T Oee U£V¥211)112).E
W= : -
0 S

with Zywe = Sww — owe0 1oy, so we can specify the characteristic polynomial as well as:

!/ 1
where Yy = ( Lo ) Q(B,) ( t 0 ) . We now specify 32 as

1
,5/

/
INED Y0 LR y B [5 A VW] Py [5 A VW] IS

D=

=0«

V11 — {5(60,%) : @(ﬁo,m))(f’gw)}/ {f(ﬁo,%) : @(60,%)(1"5“’)] ‘ =0

Wich:(gZ : ;;‘;),Withagezl><1,0V5:U;V:m><1and2vv:m><m,

1
—32
Z*%' _ e .0
VVe — 27% 5 51 C 3 ,
TEXX. (e W)FXWeStWwwe XX.(e: W)

Swwe = Sww—0w:020ew, Exwe = BxWw—0x:0-. Ocw, YXX.(e:W) = EXX—(
We note that £(5,,7,) and O(8,,v,) are independently distributed since

1 1 / 1 1
2 _ OV 2 2 _ OV 2
< 0—88 Oce EVV‘S ) Z ( 0—&5 Oce EVVE )
1 1
2 2
0 EVV.E 0 2VV.s

is block diagonal. Returning to the characteristic polynomial, it reads

ZX ) S (X

Mot = [€(5070) @(60,%)(1’8“’)}/ 6070 @(ﬁmo)(l’gw)H —oe

>\I — 5(50770),5(50770) : f(ﬁo,Vo)le(ﬁo,yo)(I"&/w} _ 0
e (") ©(Bov0)'€(Bov0) * (") ©(Bo70)'@(Bo70) ("5 ) '
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: €(B0:70)'€(Bo0) : £(Bov0)’ @(50770)( w)
We SpGley ((Imw) ©(Boy10)"€(Bov0) (Imw) (507’70)'@(50”70)( ) as follows

£(Bo10)' €(Borvo) : £(Bovo)’ 9(50770)( ) _
(Imw) ©(Bo70)"€(Bosvo) (Imw> ©(Bo:70)’ @(507’70)( n(;w)
-1
— : €(Borvo) (50770)(Imw> [(Imw) ©(Bo:70)’ 9(50770)( mw)]
0 ' Iy,
5(60770)/1\4@([7, 70) Imy, é.(60’70) : 0
O'Z)O ( 0 ) . (Imw) (60770) e 60770 (Imw)
(1 : €(Boyv0) (50:’70)(“”“’)[(]7”1”) ©(Bo:70)’ @(50770)(1"””)] '
(V. Iy,
_1
_ (1 v {(Imw) ©(Bo0) @(507%))( )] E)
0 - Iy
'E(ﬁoﬂo)lMew ~0) Iy, 5(50770) : 0
0“60( 0 ) : (I,,éw) @(6()#0),6(60770)(1”61”)

1 .0
_1 :
{(Imw) 6(607’70) @(60770)< )] EU Imw) ’

with ¥ = [(Imw) (607 70) (507 /70) (ng)] N (Imw) (ﬁm 70) 5(607 70) 7 N<07 Imw) and inde-
pendent of {(5,7,)’ M@(ﬂo,'yo)(lwéw)€<607 7o) and ( nf)w) ©(B0:70)'© (B0, 70) (]"6‘”)7 which are inde-

pendent of one another as well, so the characteristic polynomial becomes:

0

I My

_1 ,

. 0 1 . -0
: , _1 =0.
(") ©(Bosv0)'© (@m(])(’"o‘W)) <[(“’3w)@(ﬁo,%)'ewow(’"aw)} %o fw)'

We can construct a bound on the smallest root of the above polynomial by noting that the

smallest root coincides with

1
1 (1 )/ 1 ‘P/[(Ing)w),@(50770),@(50770)(17767“”)] ’ §(Bo,70)'M (50,70)(“@)5(60”0) :
) e 0 '

min,. [—( fc)/ & 0" [
Lo 0 , 1 L0 ( 1 )
. ( T%w) 9('80’70)/9(50’70)< n(liw) [(Imw> ©(Bo,v0) @(507%))( )] 790 " |

If we use a value of ¢ equal to

5:[(1"“”) ©(80:70)'© (ﬁo,%)(%”)]_%so
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and substitute it into the above expression, we obtain an expression that is always larger than
or equal to the smallest root, i.e. the subset AR statistic, since this is the minimal value with

respect to ¢, see Guggenberger et al. (2012),

? /M m ’
£(Bo:v0) @(Bowo)(l Ow)f(ﬂo Yo) S — _
1+<,0'[(Inéw),@(50770)/@(50770)(1%’”)] 2 1+<P'[(1"6“’)/@(507’70)/@@07’70)(1”6“’)] "2

<n'n+v'v e~ Pk —my).

AR(By) <

This shows that the subset AR statistic is less than or equal to a x*(k — m,,) distributed
random variable. The upper bound on the distribution of the subset AR statistic coincides
with its distribution when ©(3,,~,) (1”61”) is large so it is a sharp upper bound.

b. We assess the approximation error when using the upper bound for AR(3,) when m,, = 1.

In order to do so, we use that
AR(B,) = min, f(c),

with
and

Iy

1
A— (1 (p'[(Irréw)/6(,60,70)’6(60,70)(1"61“)] 7) (5(507’)’0)/]\4@(607%)(1”810)5(507’70)
0

D (I ‘e 9@ Imay Imay )/ 1 I -3 E10 (—1) :
( 0 ) (60)’70) (607’70)( 0 ) [( 776“’) @(BO,’}/O)IQ(BO,’}/O)( 77611))} %) maw c

The subset AR statistic evaluates f(c) at ¢ while our approximation does so at ¢. To assess the

magnitude of the approximation error, we conduct a first order Taylor approximation:

. . . N~ . . of .
for which we obtain the expression of (¢ —¢) from a first order Taylor approximation of (%£|;) =
0:

so upon combining;:
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The expressions for the first and second order derivative of f(c) read:

or _ o [C)A(%) (A
oc CoC) )
2p _ o | (A (A (

CoC) )«
('A% (C )N ()ac) (&
N ( >) )

so using that (_lé)lA(_Ol) = 0, (_15)1/1(_15) = 5(507VO)IM@(BO,%)(Imw)g(ﬁOa70) (—lc)l(—lc> -
1

(—01)/‘4(—01) = (Imw) (50a%) O(80,70) ("), we obtain that

f(ﬁo»’Yo)’M@( e £(Borvo) -1
%k = =2 o 0(75) 2 [(Imw) O(Bo,70) (50/70)(1%1")] 2
(1"1“%7'[( “) ©(B0:70)'©(Bo; 70)( m“’)] ‘P)
f. 2 (Irgw) (Bo70) ©(Bos ’70)(Imw> $(Bo,0)"™M, (’30’70)(1mw) SGo70)
Wb - I I -1 -1 2+
(w (") ©(B0:70)© (Bosv0) ("3 )] so) (1+ (") ©(Bo70)©(Bosv0) (") | so)
A 5(50,70)’M9(50770)(1"5w)5(,80,70) (pl[(f w) 0(B0,70) ©(Bo Vo (I w)]
- 2
(1 [("5m) ©orroY OB 70) (") ) (1 (") ©Bor0 €00 ()] )
— 9 ¢(Borvo)’ 9(5&70)([7'5”)5@0770) (Inéw)l®(507’70)19(50:70)(1”8w) .
= —1 /
1+¢/ [(Imw> (50770)'@(50170)(17%”)] (2 §(80:70) M®(Bo,wo)<l7ﬁw)£(60’%)
1 ¢ [(IWS“’)IG(BO ’)’0)/9(507’70)(1731“)] _190
Im Ima,\] 1 +4 -1 \?
14+’ [( “’)9(50 70) ©(Bos ’Yo)( w)] 2 (l+go [(Imw) O(Bo,70)’ (BO,WO)(I”S“’)] <p)
Hence,
<82f| )‘1 (af‘ )2 B £(BO’““’)lMe(Bmo)(I"g)w)5(60’%) ¢ (") ©(80:70)'©(Bosv0) (" )]_1¢
dcz e acle) — _ m , -1
’ i (w (0 0000t (732)] o) 1 () ey etuan ()] e
(I”S ) (Bo70)'©(Bos 70)( "6“’) 1 +
=T
£(Bo70)M, vo)(lm“’) Boa) 1+¢! [(Im“’) (507’70)'9(50770)(17%”)] ®
-1

il [(I%w )16(50’70)/@(507’70)(1%w )] _199
1

4 — 3
<1+90 (") ©(B0:70) @ (Borv0) (") ‘f’)
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and

2

R(Bo) & &8s 70) Mo, () § (P Y0) {1 ~e+(p)e o0y '©(Bo10)("gv)

9 #*€(Bo-0)' M@(Bo 70 )(Imw)é(ﬁo”m) (Im“’) ©(Bo,70) @(ﬂoﬁo)(lm“’)
(e +("v ) @010/ 0 B0.r0) (")) | #*+("5) ©(Bo.10) ©(B0s70) (")

5(50:’70)/]\4@(%’70)(1%1”)5(50770) 45(507’70)/]\49(50”0)(17%10)5(50’70) -t
- 7 + 7
‘PQJF(I”S“’) @(507’70)/@(50770)(1”61”) <<p2+<1"5“’) @(BO,'yO)’@(BO,'yO)(I"éw ))2

Imay
where we used that - L —— = 2( Im) ©(Bo70) ©Bo70) ("5 ) . It shows
144! [( mw) (50,70)'9(50,”Y0)< "(l)w)] ¥ ® +( Ow) ©(Bo-70)"0( 50’70)( )
‘Pﬁ(ﬁoﬁo) ( )f(ﬁoﬁo) 2
that the error of approximatin ¢)b ¢) is of the order of
pprox g f(¢) by f(¢) ¢2+(’ﬂ3w) (50%) e(ﬁmo)( )

2
€(Borvo) M e E(Bo,
or O(<¢(O%) o0 (75) 070)) ). m

o2+ (") ©(8.70)'©(Borv0) (")

Lemma 2. The derivative of the approximate conditional distribution of the subset LR sta-
tistic given s2, =1 (23) with respect to r is strictly larger than minus one and strictly smaller

than zero.

Proof.

a1 2 / 2 _ mYy — 1| _ vi—n'ntr
or 2 (V +n'n—r+ \/(V +n'n+r)? =4y 77) 2 { 1+ @2 —n'nr)2 +4v2yy

since (V2 +n'n +1r)> —4rg'n = (V* —g'n +1)* + wPy'n > (v — n'n +1r)?, the derivative lies

between minus one and zero:

—1<il-1 il /R .
bk [ " \/(Vz—ﬁ”?+7")2+41/277’?7] <0

The strict lowerbound on the derivative results since it is an increasing function of s, :

oA S R v2—n'ntr _ 1 1— (2 —n'ntr)?
or 2 \/(V2—7II77+7‘)2+4V277'77 2\/(V2+77/77+7”)2—4T77'77 ((W2+n'n+r)2—4ry'n)

1 1— (V2 —n'n+r)? >0
/W24 n+r)2 =4y [ W2=n'n+r)2+4v2n'n | =
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so its smallest value is attained at »r = 0. When r = 0,

1| g P | 1| v | 1] ﬁm]__ 2o
2[ H\/W} 2[ H (v2+n'n)2}2[ Lt omm| = 1 oam > L

Proof of Theorem 1. The subset AR statistic equals the smallest root of (7). We first pre

1 0

and post multiply the characteristic polynomial by ( ) , which since

—%0 Imw

1
03|,
—o [mW

does not change the value of the determinant:

/\Q(ﬁo)—(Y—X@OEW),PZ(Y—XﬁOEI/If)‘:O o
( Lo )/[Aﬂ(ﬁo)—<Y—X605W>/PZ(Y—X605W)]< Lo )‘:0 o

_70 Imw _70 Imw

!/
/‘EWW_<Y_W%_X503W) PZ<Y—W70—X,305W)‘:0.

We conduct a Choleski decomposition of YXyy = < U“’/EE : Eavf‘/“ﬂ// > , with oee 0 1 X 1, oyype =
we wVvYw

oLy, tmx Land Yyw, @ my X my,

_1
2—%/ . Oce 0
ww = -3 3 )
EVWVW.EUVWEUES EVWVW €
with Xy vive = Zvipvy — O'Vwea'a_alo'ng, and use it to further transform the characteristic

polynomial:

/

’)‘EWW_(Y_W’YO_Xﬁosw) Pz(Y—W’yO—XBOEW)':O &
!/
‘MEWQV'V [wa— (Y—W%—Xﬁo : W) Py <Y—W%—X60 : W)} Sy

(60 @wmw'gw))' —0,

/

‘u]mH = (wmo) : @(60,%>(I"5W)>
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with 1
E(Bo, o) = (2'2)32'(y — Wryy — X Bo) /0,

O(Bo,0) = (22) 2 2" [(W LX) — (g — Wy — Xﬁo)%} sh

- X e . by € . .
and Yyye = Yyy — OVEJEEIOEV - (E‘\//V):\‘//VVZs ’ 2‘\//2/\‘//;(5) ) Z:Vm/\/x.e = ZJ/Vwa.s Cmwy X My,
YV Vye = Ly vye | Mx Xmy. Since my = 1, we can now specify the characteristic polynomial
as I
A = &(Bos70)'€(Bos 7o) 5(507’70)'@(@),70)( "(l)w) e
(Imw) ©(B0:70)"€(Bo: 7o) A—s*
A — — — *3
©'p ’i’/ nn s e
ps*2 A —s*
N = Ny +vv+nn+s)+ (' +vv)s* =0,
with
1
! 2
QOZ [(I%w) @(60770) 50770 (]"w)] (Imw) 50770) 5(50,’}/0) ~ N(O,Imw>
! -1
V= [(IT,? ) [©(B0:70)'©(Bo: 70)] (In? )}
!

(1,,?5 [©(Bo,70)"©(Bo, 'Yo)] O(B0,70)'§(Bos Vo)
n= @( 0770)&5(5& 70) ~ N(Ov [k*m)
s = (") (80, 70)'© (B, 70) ()

so the smallest root is characterized by

S|P+ + st — \/((,02 + V2 + s%)? — 42 + 1'n)s*

Proof of Theorem 2. To obtain the conditional distribution of the roots of the characteristic

1 0 0
polynomial in (10), we pre and postmultiply it by | -8, In., 0 , which since
—7o 0 Imw
1 0 0
_50 [mx = 17
_’YO 0 ImW
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does not change the value of the determinant:

/
MQ—(YEWEX)PZ(YEWEX)‘:O -
10 0\ , 10 0
By Imi O [MQ—<YSW5X)PZ(Y§W5X)] By In. 0 ||=0 &
% 0 Iy Yo 0 I,
/
ME—(Y—W%—XBOEWEX) PZ<Y—W70—XBOEW5X>‘_O.

We conduct a Choleski decomposition of ¥ = (;’fj ga‘;) ,with o : 1 x 1, 0y, =0L, :mx1

1
_1, Ussg . 0
Y2 = -1 I | ,
—Ny V. OVeTee Zyye

with Yyv. = Yvy — avgas_alagv, and use it to further transform the characteristic polynomial:

and Xyy :m X m,

/
’uZ—(Y—WWO—X605W5X> PZ<Y—W70—X50§W§X)‘:0 &

1

/
‘Mz—é' [Z—(Y—W%—XBOEWEX) PZ(Y—W%—X/)’OEWSX)]z—z =0 &

!/

flnia — (5(60,%) : @(ﬁo,%)) <€(ﬁo,%) : @(50,%))‘ = 0.

A singular value decomposition (SVD) of ©(5,,7,) vields, see e.g. Golub and van Loan

(1989),
O(Bo, 7o) = Usvy'.

The k x m and m x m dimensional matrices U and V are orthonormal, i.e. U'U = I,,, V'V = I,,,.
The m x m matrix S is diagonal and contains the m non-negative singular values (s; ... s,,) in

decreasing order on the diagonal. The number of non-zero singular values determines the rank
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of a matrix. The SVD leads to the specification of the characteristic polynomial,

it = (€80 70) @wo,%))' (660070 00 )|

— I . £(Bo,70)'€(Bos Vo) 5(50,70)7/{3]/
= |Hdm+1 o oo
VSU'E(By, 7o) VSV
_ (10 §(Bo>70)'€(Bosv0)  €(Bo,v0)US 10
o 'LLIm_H 17 41 9 ,
0V SU'E(Bo, 7o) S 0o Vv
= (pulpir — §(Bos 7o) Mu&(Bos vo) + £(Bos Yo) Fué(Bo, vo0)  €(Bor70)US
" SUE(By. o) s
P (LR A
m—+1 ¢S’ 82
|, (esY (v
= |Hdm+1 N0 N 0 ,

where we have used that V'V = I,,, and ¢ = Z/l’f(ﬁo, ’70) = (@(507 ’70)/@(507 70))_%@(507 70)/5(507 70)7

n=U&(Bo, Vo) = ©(Bos 7o) 1 £(Bo, Vo), such that, since U U = 0 and U U, = I;—p,, Y(5,) and
77(60) are independent and Qp(ﬂO) ~ N(Ov ]m)v 7](60) ~ N<Oa ]k—m)

Proof of Theorem 4. The derivative of the subset AR statistic with respect to s* reads:

9 AR(B) = L|1— o ) e > 0.
a5 AR(5) 2 V(@2 —nm—v24s )2 ra(ntv)e? | T

We do not have an closed form expression for the smallest root of (16) so we show that its

2

“ ax 1S non-negative using the Implicit Function Theorem. When

derivative with respect to s

m, = m,, = 1, we can specify (16) as

f(:u7 S?nin? S?nax) = (/J’ - ¢,¢ - 77/77) (H - Srznin)(u - S?nax) - ¢%S?nin(:u - S?nax) - w%sgna)((:u - 812nin)

where s2. and s?__ are resp. the smallest and largest elements of S?. The derivative of p;,

min max

the smallest root of (16), with respect to s2, then reads’

8Mrnin — _ af/asgnax
8sl2nax - 8f/al'bmin

2

min

2

max’

"Unless, u exactly equals s which is a probability zero event, the derivative

% is well defined. Hence, it exists almost surely.

max

which again equals s

43



with

as%{ax - _(lumin - Ww - 77I77) (Mmin - mm) + ¢ mln - leg(lu’min - S?nin)

= _(:umin - w% - 77/77) (:umin - mm) + w Stin
% - (:umin - wlw - 77,77) (lumin - 12nin) + (lumin - W@b - 77,77) (ILLmil’l - Silax)+
(:umin - mln)(lumm - max) w Smin — w Smax-

of
Os2

max

The derivative

is a second order polynomial in  whose smallest root is equal to

Hoor =3 (ﬁ 00+ St — \/ (3 + 1+ s35,) " — 4?7'7783mn> < min(n'n, shin) < Shhax:

9stnax

as follows:

We specify the original third order polynomial using 8582f

S 82 ) = (11— ) | (10— w b =y + Y (0 — $2) — U]
= (M - 812‘nax) <Li# - 1) (lu - S?nin)i| .

This specification shows that when s2__ goes to infinity, the smallest root of f(u,s2; ,s%..)

max

equals the smallest root of the second order polynomial 97 We can also use this specification
to show that when 2 2 =0:
f(u7 812nin7 81211ax) = _¢2N( mln) > O?

The third order polynomial equation f(u,s2;,,s2..) = 0 has three real

max

since [Lac’)f < §2
Smax

roots and f(u, s?

n
2

m1n ’ max

) goes off to minus infinity when p goes to minus infinity. Hence, the

of itiva.
derivative . at ft,,, 1S positive:

min

0,
% |/‘L:Aumin > O

This implies that p,, is less than or equal than the smallest root of 2f =0, p _of since

85max
fu, 82,82, is larger than or equal to zero at this value. Consequently, since [t s less

than or equal to the smallest and largest root of agf = 0, factorizing agf using its smallest

and largest root yields:
a min
max‘.u'mln—():> 85 >O

max

2

max

Hence, the smallest of root of f(u,s2;,,s%..) = 0 is a non-decreasing function of s2_.
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Proof of Theorem 5. When s* = s2

min’

AR(By) = 5 | + V2 1 — shy, + \/(902 02 b+ skt — 402 )t

while when s* goes to infinity:
AR(By) — vi+n.

The smallest root of (16) results from the characteristic polynomial:

f(:u7 Stin> max) (M 1/1 ¢ n 77)( rmn)(/lj - S?nax) - %anin(u - Smax) - ;S?nax<lu - Smln) =0.

When s2_ = this polynomial can be specified as

m1n7

f(,u, Smin> ?nm) = (/JJ mln) [(/JJ Qﬂ "‘ﬁ n 77)( max) - Smin — w mln] = 07

so the smallest root results from the polynomial

(=" =) (= stgn) — Vst =

and equals

Liow = 3 (@W + '+ sk, — VWU +gn+ 532 — 48?1111177’77) :

When s2 _ goes to infinity, we use that the third order polynomial can be specified as

max

F (1 52 $2n) = (1= ) | (1= 00 = /) (1 = sB0) — V2, — v (u— 2,)| =0,

which implies that when s2,__ goes to infinity, the smallest root results from:

(1 =" = ') (1 = $a) — w Stin + U (n—ski)] =0
(1 — ¢1 —n'n)(p— 312mn> - %Sgnin =0.

so it equals

Pup = 5 (1/1? T+ 2 — (03 82,)7 4s?ninn’n> :
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Proof of Theorem 6. The specification of D(3,) reads:

D(ﬁo) = ARup - AR(ﬁo) F Mmin — % V2 + n'n+ 812nin - \/(V2 +n'n + 31211111)2 - 477/7751211111

2

min

We analyze the conditional behavior of D(f3,) for a given realized value of s
2

max

over a range
). Alternatively, since s* = (cos())?s2;, + (sin(0))?s2,., we could also
2 2

max min*

of values of (s*, s

analyze the behavior of D(f,) over the different values of (6, s: .. ) for a given value of s

Our approximations are based on the bounds on the subset AR statistic and p,,;, for a realized

value of s2. stated in Theorem 5.

Only negative values of D(3,) can lead to size distortions. Since the conditional distribution
of AR(f,) is an increasing function of s*, Theorem 5 shows that the smallest discrepancy

between AR,, and AR(8,) occurs when s* = s2_ . For determining the worst case setting
2

2 ), We therefore only need to analyze values for

2

max

of D(f3,) over the range of values of (s*, s
2

max*

which s* = s We use three different settings for s : large, intermediate and small with

an identical value of s*.

s?2 = s*large: For large values of s

max

Y, =v and ¥, = p s0

2 = g*

max )

2 x> Mmin 18 well approximated by s,,,. Since s

fanin = Hup = 3 {Vz + 0N+ S — \/ (12 + 0+ s2%5,)" — 47)’?78%4

D(By) = ARup — AR(Bo) + fhmin — 3 {VQ + 00+ S — \/ (V2 + 1+ s2%5,)" — 4?7’778%4
= ARy, — AR(f,)
= 2 +nn—3 {902 +V '+ st - \/(902 2+ st) — AR+ n’n)S*}
= 0,

since s* is large. The approximate bounding distribution provides a sharp upper bound so

usage of conditional critical values that result from CLR(3,) given s2;, for LR(8,) leads to

min

rejection frequencies that equal the size when s2 = s* is large.
2 ok 2 2 _ 2 : -
Stax=5" = s;i.. When s7 . = sZ.., bmin 18 the smallest root from a second order polynomial

46



and reads

N =

2
Hiow = 5 |V + 00+ sk — \/ (W' +n'n+ sh)” — 477’778?114

N =

P+ +nn+ st — \/ (P2 + 2+ + s2,)° — 477’77831111] :

Hence, we can express D(f3,) as

D(By) = v*+n'n—3 [wz + VP + st — \/(902 + 12+ s2)" — A2 + n’n)S?ninl +

3 | PV s — \/ (92 + 2 41+ s2,)" — 477’778?11111] -

3 |2+ sk — \/ (V2 41 + 525)" — 477’7781%111]

= 2+ -3 {902 + 20+ sp, — \/(902 — V2 =+ s*) AR+ 77’77)902} +

N

O+ 12+ sk, — \/(g02 F v+ s2)t A + 902)77’77] -

N[ —=

v '+ Shn — \/ (V2 = + s2)" + 4V277’77} :

N =

We conduct Taylor approximations of the square root components in the above expressions

around zero and "infinite" values of s2. . We start out with the approximations for small

min*
2

values of s;;, for which we use that

5 2(v2+n'n)s2
VIR 02 4+ 520, — 402+ ) G 0P a0+ Sy — b
5 2n'ns2
VIR 0200+ 520" = 405, R G0 T+ S — i
2

2 4 2 )2 Ime2 . oy 2 4 2 2015 i
\/(l/ + nmn + Smin) - 477 NSmin ~V + mn + Smin V2+77,77+Sr2nin )

The resulting expression for the approximation error then becomes:

2 2
— / Smin 2.2 Smin
D(BO) = nn |:1 - V2+nln+82min:| + V¥ Shin |:1 T P24 tnnts2 > 0.

min
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For large values of s2; , we use the approximations:

\/(¢2 — 12—+ 52t AR )R At = v = sy, + e,
\/(@2 + 02—+ sB)t FAn(9? + 7)Aot =y sk, + e
21/2 /

\/(l/2 — N+ s2) AW RV =+ skt

so the expression for D(f3,) becomes:

2. 1 . 1 2, 1 . 1
D(BD) = vmn |:V2777/77+812nin ‘f’2+”2*77l77+512nini| + @ nn |:S027V2777/n+512nin Py +
2./
I — )

@2_’/2_7],77—’—5]211“‘ -

The approximation error D(f3,) is thus non-negative for both settings.

2 =S" > s2. . Since u,,;, exceeds i, we obtain the lower bound for D(f,) :

Smax min*

D(By) = ARup — AR(Bo) + fmin — 5 V2 + 00 + Shin — \/ (V2 + ' + 525, — disi,

> ARy — AR(Bo) + i — 3 |V + 11 + Shin — \/ (V2 + ' + s25,)° — di'nst,

We again use the two sets of approximations stated above and we first do so for small values

* 2 .
of s* and sz,

V2 'n)s*
\/(902 + 124+ 5% — A2+ n)st R @+ VR 4yt st — 2
\/(s02 V2t s2) — At R QR+ VR sk, — %
5 2 / 82-
\/ (V0 + )" — ANt A VNN Sh = g

Combining, we obtain

*

! _ S 2 1 _ 1
D(Bo) = n'n [1 P ns® T Smin {@2+u2+n’n+sfmn V20 nts5, H +

201 - s
1% |:]- <p2+y2+n/,r]+s*j|
s

2
/ 2 W2+ 4'n | 2 min
('n +v%) [902+1/2+77’n+s* T sz, v n+s2,,
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so a sufficient condition for D(,) to be non-negative is that

502+V2+77,77 2 @
v ntst = @24u4nn+sl
1 1
T PR T e[ <
2 2 / 2 / 2 2
/(@ +vi+n'n) < (0t sq) /@ &

*

S

IN

(2 + ) (1+ 250) + 25052

This upperbound does, however, not use that it is based on a lower bound for p;, so when

s* = (V2 +1'n) (1 + VQ;QIU) prng2 2 — g 5 g2 5o the lower bound isn’t binding

®
and p,;, exceeds the lower bound. To assess the magnitude of the difference between p,,;, and

0w, We analyze the characteristic polynomial using s* = s2 = s2. +h:

(/JJ - Smln) [(MQ - M(Z//¢ + 77,77 + SIQnin) + n,nsfnin] -
h [ = (T +0'n) + spn'n] = 0.

The above expression of the characteristic polynomial consists of the difference between two
polynomials. The smallest root of the first of these two polynomials is the lower bound of the
smallest root of the characteristic polynomial while the smallest root of the second polynomial
is the upper bound of the smallest root of the characteristic polynomial. When h = 0, the first
polynomial thus provides the smallest root of the characteristic polynomial while when h goes
to infinity, the second polynomial provides the smallest root. For a non-zero value of h, the

smallest root of the characteristic polynomial is thus a weighted combination of the two smallest

2
roots of the different polynomials with weights roughly equal to Iu‘u min_ Sm‘ﬁlh and . — — s
When we use this for D(3,), we obtain
' 2 i Vw1 |Fnin =S5 @* Shin
D(Bo) 2 (1 +v°) | comimmumesttn| ~ 1 M sEac + PPt ooy T
so a sufficient condition for D(5,) to be non-negative is that
©?+r24n'n |Hmin = S| ©?
P 2 Hmin = Sgin|+h P2 H1V2 0 0+5500, <
1 > 1 o
I+s* /(@ 4v24n'm) = 1+(h@?+(|bmin—Sginl H0) 200+ 5511) /(9 Banin =S 5u10])
s*/(9? + V2 + 1) < (0 + ([ Hmin — Sinl + )V + 00 + 8510) /(€| Hinin: — Siuinl) <
Smin T < (1470 + 1)/ |timin — s2in ) (7 + 10 + s55) (L+ (2 + 1) [9%) - &
2
SZan Hh S 82+ A+ )i | (1 (02 + /) /%) + =

(L4 h(2® + 1)/ min — St ) (> +0'0) (1 + (* + 1) /0?)
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2
which always holds since m Zmin,_ = 1. Hence, for small values of s* and s2. |

negative.

For larger values of s* and s2. | we use the approximations:

min’

D(5,) is non-

VR =2 =i+ ) + 402 )t m P =0 st A
\/(902 + 12—+ 2,)° + An(p? 4 v?) Rt VR s,
V02 =0 2+ 2~ =i+ s + e

to specify D(3,) as

D(8,)

v

~ 2 1] 2 2 x 2 2 * 22 +1'n) @
~ =L PR st = P Fln = -

1| 2 2 / 2 2 _ 2t |

2 SO + v + 77 77 + Smin SO V + /’7 77 Inln S024_1,2_,,7/77_;'_3]{2]{]m

1 2 / 2 4,2 Ion o2 . 2v2n'n

2 |V TN+ Sin — VT 10N — Shin V2nntsZ
N ) (> +vH)n’ 4 '

P2 —vZ—n'n+ts* p24v2—y’ n+smm v2—n'n+s2

/ 2 2 VQ V2 +
= nn P2—12—n'n+s* <P2+V2—77'77+8ﬁ1m + y2_17,77+51?nin 22—y 77+Smm
V22

‘10271/2777/7]4’8* .

AR,y — AR(By) + tow — 3 {VZ 0N+ S — % (12 + '+ s2,)" — 477’7783]04

|+

Since both s* and s2, are reasonably large, all the elements in the above expression are small.

When we further incorporate, as we did directly above that we can specify p,., as a weighted

combination of t,,, and p,,, we obtain

N |Hmin =52 1,2 / 2 2 / 2 )2 1o o2
D(Bo) = ARup — AR(Bo) + 22t gy = 3 (V7 01+ S — A/ (V2 + 0+ s55) " — sy,
_ 2 / 1] .2 2 / * 2 2 / * 2(v2+1'n)p?
~ =L PR st R = s -]+
1 |Pmin=5%in] 2 2 / 2 2P _
2 ‘:“'minfsfninprh ¥ + vt + nn + Smin <10 U + 7] 7 — Shin p2+v2—n’ T]Jrsmm
1 ‘:U‘mln mln‘ 2 / 2 2 / 2 2'/ 77 n
= Ve + + s — vt + —g. — L0
2 [pmin—s mm\+h U nz min T min 7;2777/77+512nin
—_ (l/2+7] 77) ‘lu’mll’) Smln‘ (90 +V ) |lu’l’l’linismin| V2nln
O2=2—n'nts*  |ppin—S2n | +h ;02+V2 n n+smm |tomin =520 [ +h 52—n’n+s?ﬂin
— ,’7/,',] 502 _ ‘/’Lmln Smln‘ 2 ‘ru’mln Smln‘ V2 _ 1/2
9‘272;”2_77,774'5* I:u'min mmH»h Lp2+l/2 n+5?nin ‘:u‘min mln‘+h V277)’77+S$nin g02+1j2777ln+sfnin .
Ve
(’0271/27”/,’74»3* .

Except for the first difference in the above expression, all parts are non-negative.
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further decompose the first using,

1 _ |tu’min7's;2nin| 1 — 1
=2t th i —ShinHh @22 =+t (Hmin— S| TR (92 =02 —0'n+s7) (@2 Hv2 —n'ntsk ;)

H#min - S%ninl [2V2 - h] + h(902 +v? — n'n + 512nin)]

— 1 2 2 2 2
T (o =520 [ FR) (@220 nts%) (P22 —n/nts2,. ) [h(smin - |:umin - Smin|) + 2|/'Lmin - Smin|y +
h(p? +v* —n'n)] > 0,

since $2. > |l — 52|, We obtain that D(3,) > 0.

min =

Proof of Theorem 7. Using the SVD from the proof of Theorem 2, we can specify

(wo,w f @(ﬁomo)> UMW SV + (Ui 0)

SO

(660070 @wo,%))' (600t 005070))
_ VRSV 4 ( "(l)” 8 ) ,

with S* = diag(s}...s"), st =s2 +¢2, i =1,...,m; S* = (S%ax : 302) S = Shax + VT,

S; = diag(ss...s%), V¥ = 5% 2(¢p  SV'). We note that V* is not orthonormal but all of its
/

rows have length one. The quadratic form of ({(60,70) : @(60,70)) (5(60,70) : @(60,70))

el . _
with respect to v] = (Vlfl )Smaz, V* = (v 1 V3), is now such that

ot (€l6070) @(ﬁo,w)/ (6030300t 0030, 70) ) ot

'n 0

Y

0

m 0
= St VISV + 7 "077 . ) v

2
= Stax + U1 + 5 (Ui, + 1)
> Spax T U1
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with ¢ = (3 194, 9y : 1x 1. As a consequence, Since flyy, > v’ (6(50,%) : @(60,%)) (5<6o,vo> X

we can specify the largest root p,,,. as

2
:umax = Sr2nax + ,lvb% + %(@ZJIQ@DZ + 77/77) + h’7

with A > 0.
To assess the magnitude of h, we specify the function g(d) :

with

B = v*s*v*'+<"” 0).
0 0

. X 1
We use d = —v3; /vj; with vf = (2;) = (Vlfi‘ax)‘g;&’% SO (_ld) = (Vlsmix/wl)'

The largest root p,,,, can be specified as:

= maxyg(d).

/’Lm&X

To assess the approximation error of using our lower bound for the largest root, we conduct a

first order Taylor approximation:

9(d) = g(d)+ (Fla) @-d)
0=(Gtla) = (Gla) + (ila) (4~
~ ( 1
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The first and second order derivatives are such that

g - o[ LhP) Ly Gty
¢ (Za) (Ca) (Ca) (G0 (L) (L)
%9 _ 9 (—?m) B( ?m) . 2(—?m),B(—1d> (1) ,(*?m) _
e 2L T CIC

BN R

(o) Cma) — CoyCi) (sl
S N A I 5 ¥ B (G R
e G Gl )

L) G <:d>]

We now use that (Vls ! /wl)

BCH = (385 ) Guloed + (170) Gul)

_ PPt smax 1M
VS h+s2ax V1 /11

(5,)B(L) = —(VS'+ shu Vi /i)
(L9,) ()= —Viswa/th
(-1(2)(—162), R (Vlsm;x/ﬂd)(vlsll/wl) _ (Vlfrllax)(vlffr]ﬁax)
(20 (%) L8200 /91 N 2t
© oy Ca)Ca) | 0 : 0
W . SV) [erl - ,ld” 7 ,ld” = ¢2(1_2w7%2) : Sminvi_%
stmax t¥7 stmax+¥7
W SVI) (j‘i)/(ji)l — wwiﬂ " Z}m:xvi o!
ER(ER R St <
(—(I)m)IM(_ld) V*S*V*/M(_ld) _?m = | V28min — Ul% SminVs — ?ﬁgﬁii}}? Ui)
(_?m)/M(_l(Z)V*S*V*,P( J) ¢1¢23max Qﬁlzlljjir?pa%xvi

) (%3)

(-1,)

0= (o i
(_?m)/P }J)V*S*V*/P(_ld) (_ ) = Ulvisiax(l-i-( 2¢11/12 )2)
(-1,.)

I\-1,, PENR
(5.0 M n(;n g)Mm) 5= vt ()
Coaty (00 ) Ry = —oton (32)’
)Py 8 Poy() = “1”3”'”(s§1i13%>2
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(L) = 1+s5./47
(1) B(1) = '+ 2+ 00+ 82 + St/ U]
&)

(2B VUt St SRt Shax /YT
(_lj)/(_d 1+S%‘1ax/¢2
fry w1¢2+¢2w2’¢)2+22w%5max+w%n,n+sl2nax
w x2nax
_ (¢1+Smax)2+¢1(w2¢2+n 77)
o w1+smax
= ¢1+5max+v(%¢z+ﬁ'n)
(*?m)l(*ld_) _ _vlsmax/wl _ _Vlsmaxzpl
(jé),(jg) o 1+Sr2nax/,¢)1 o ¢1+312nax
(o) BOCD) _ _S'tstu /1 $RsmanV1dy 4580 V101 +03VaSminty
(*)'(2) Tts2ax /Y7 V35210
R R (Y0 20 S O R BT
(L)' (' 17 Smax ¢2+82 ax S 2T 2 ' 2 tV3 M
= I + (¢2+32 ax (77Z}l2¢2 +77I77)]m
= @ () Wt + o) (onth + vt
and
1 0y _ ' [ _ ] 0y _
ey L) Misy =Py B My = Poy) (5, =
2
ok (v — 202355 ) (s — 203522 ) | =
!
st (1= 255) + 2y | (ot — 20024225 ) (vasn — 2004220 |

we then obtain for the second order derivative that

srli= ropeey () (Mg = Peg] B My =Py (5)-

2 r 2 2 2
= ot (F85) |1+ () Wt +m)| + vanh(wd + () (Whetn + ')+

2 /
i |:<U2Sm1n 2U ’1,1111/)28max> (UQSmln 2U wld)QSmaX) :| )

max+w1 max+7r/)1 max+'¢}2

where we used that I,, — v1v] = My, = Py, = v2v5. While for the first order derivative, we
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have that

@l@
SIS

maxv + maxv + V: Smln \% 2
;= 2[ Y2smax Vit 11“;:&: URVaSminty w;j;g)l (V7 + 82 + W(%wzﬂm))

== m [ V2 mlnw2 + Vlsmaxwl 1/)2+52 (¢2¢2 + n 77))]

To assess the magnitude of the error of approximating g(d) by g(d), we note that the first order
derivative, 2 5214 is of the order wlff—r;“)z(qth +n'n) (= O(s;3, (Vy1hy +n1'n))) in the direction

of v; while it is of the order WS-:“; (= O(SminSp2,)) in the direction of vy. The second order

, adad' |d, is of the order w}wQ (= O(s32,)) in the direction of v;v] while it is of the

order O(1) in the direction of vyv}. Combining this implies that the error of approximating g(d)
-1
by g(d), (%14) (adad,|~) (514) » is of the order max(O(spa (Vats +1'1)%, SpinSmax))-

derivative

Theorem 7*. When m exceeds two:

Zz 1Hl>21 1 Z_'_wl’

with py > piy > ... > p,., the largest r characteristic roots of (10) and s3 > s2 > ... > s* the

largest eigem)alues of ©(By,70)O(Bo, Vo)
Proof. Using that

(5(50,%> . mw) — UMW SV 4 (Ui 0)

SO

(660070 @wo,%))' (600t 0050:70))

'n 0
— V*S*V*/ + 77 /'7 ,
0 O

with S* = diag(st...s%), st = s2+¢7, i=1,...,m; S* = <801 : %) , Sf = diag(st...s}),
Sy =diag(st,,...s%,), V' = 5*=2 (¢ + SV'). We note that V* is not orthonormal but all of its

/
rows have length one. The trace of the quadratic form of (5(60, Yo) : ©(Bo, 70)) (5(60, Yo) : ©(Bos 7o,

/ x— 1 . .
LYSTTR Y = () ), by i x 1, VE = (VF 1 V;), and scaled by

with respect to Vi = (V1 s
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A= (V¥'Vy) 2, is now such that

vy (€0v0) @(ﬁo,%)), (6000 01530.70) ) V121

m 0
= tr | AVYV'SVIVIA £ AV ( o ) Vi A
'm0
— b [AVIVISTVIVEA] + tr [AVIVSIVIViA] +tr | Ay [T . | via
m 0
— 1 [VIVISTVIVEAA] + tr [AVIVISVIVIA] + tr | AV "0” ) | via

= tr [Vy'ViS;] + tr [AVIVs STV VEA] + tr

Avy ( o ) Vi A
0 0

=t [Sj_%/(wfiu),(vﬁiu)5;_%3ﬂ +tr [AVIV;S VI VA + tr | AV ( 77077 g > VeA

_ W'W NI % R 8/ 9 o 77/770 .

=1{r [(vlglﬁ) (V1g191>] +ir [A Vl VQS V2 VlA] +tr | A Vl ( 0 . VlA

'm0
AV ( T ) ViA
0 0

=S 07+ st [AVYVES VY VEA] + tr

> 22:1 ¢12 + 312-
As a consequence, since Z;l My = tr(AIViH (5(60770) 5 @(50770)) (5(50770) : @(50770)) VTA) :

22:1 H; = 22:1 312 + %2

Proof of Theorem 8. Theorem 7 states a bound on ., while Lemma 1 states a bound on

the subset AR statistic. Upon combining, we then obtain that:

g?nin = S?nin + g,
with
— / ) ©? / N 1/)_% / 'n) — h
g ¢2¢2 vy 902+(I"6w),9(50770)'@(50,70)(17%7”) (77 v V) Smax <w2w2 MK T]) e
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The approximation error g consists of four x2(1) distributed random variables multiplied by
weights which are all basically less than one. The six covariances of these standard normal

random variables that constitute the y?(1) random variables are:

0 /V /Smax
cov(thy, v) = (’mx) ; : large when (ITSX) is spanned by V;

\/((In?x )lvl/smax) 2—l— ((Iﬂgx )/V2/5m1n>2

(IW?X ),VQ/S“‘“‘

G W) = (o)

Imyy ! Smax .
cov(thy, o) = ( i) : large when (") is spanned by V;

O it (5 o) ’
<>
i

\/ Im“’ V1 smax (Im“’ V25min>
cov(v,p) = 0
cov(thy, 1) = 0

large when ( 0 ) is spanned by V,

Imy

cov(hy,v) =

cov(Yy, @) = large when (I"[L)W) is spanned by V,

2

The covariances show the extent in which @(60,70)(”81”) and ©(8y,7,)(,° ) are spanned by
mx

the eigenvectors associated with the largest and smallest eigenvalues of O(5,,v,)'© (S0, Yo)-

Proof of Theorem 9. The first part of the proof of Lemma la shows that the roots of the

polynomial

\mwo) (g XBy WY Py — Xfo W)\ 0

are identical to the roots of the polynomial:

‘meﬂ - {5(50770) : (50,70)(17”“’)}/ {6(60,%) : (507%)(1’"“’)” =0.

Similarly, the proof of Theorem 2 shows that the roots of

!
’uQ—(YEWEX) PZ(YEWEX)‘:()
are identical to the roots of

itss = (&(5070) mm)/ (603070 80020 ) | =0
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Hence, the distribution of the roots involved in the subset LR statistic only depend on the

parameters of the IV regression model through (£(5,, 7o), ©(8y,7)) which are under H* in-
_1

dependently normal distributed with means zero and (Z'Z)z(Ily  II X)Xy, and identity

covariance matrices.

Proof of Theorem 10. We conduct a singular value decomposition of (Z'Z)z (Il * 11 X)Xy,

1

(Z2)}(Iy )55, = FAR,

€

with F and R orthonormal k£ X k and m x m dimensional matrices and A a diagonal k x m

dimensional matrix that has the singular values in decreasing order on the main diagonal. We
specify £(8y, 7o) as
£(Bo,v0) = FC(Bo:v0),

s0 ((Bg, o) ~ N(0, I;) and independent of O(f,,7,). We substitute the expression of £(5,, ;)

into the expressions of the characteristic polynomial:

Myr+1 = |€(B0,70) © ©(Bo, 7o) (I " ] [ (Bo: o) (50770)(17%)” =0
Mppy41 — | FC(By) F FAR (") } [F( (Bo) FAR’(I’gw)” =0<
M = <080 AR ()| ot 4 (50)| o

and similarly

!/

s = [6(5070) mw] €6020) 1005020 | ~0

\meﬂ - e AR’] <) AR 0

so the dependence on the parameters of the linear IV regression model can be characterized
by the m non-zero parameters of A and the $m(m — 1) parameters of the orthonormal m x m

matrix R.

Proof of Theorem 11. We specify the structural equation

y—Xg—Wry=¢
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as

y—Xa=¢
with X = (X : W), a = (8" 1 4/). The derivative of the joint AR statistic

AR(e) = -2 (y — Xa) Pz(y — Xa)

oee(@)

with respect to « is:

1ZAR(0) = 2 ;(a)Z(y— Xa)
with g (a) = (2/2)12'(X = (y— Xa) 252, oec(0) = (1)), 0ox(0) =wyg — a'Sgy,

Qxx : Qxw

o Ly . To construct the second order derivative of the
WX WWw

wyz = (Wyx wyw), gz =

AR statistic, we use the following derivatives:

80/( Xa) = —-X

3(2/ 055(04)_1 = 2055(04)_205)2 ()
vec(o z(a)) = —Xgx
ovee(llg(a)) = | %X @ Tig(a)] +

Six.o(0) @ (2/2) 12y - Ka) L]

where X3¢ _(8)) = X5 — 2ex(@)'0:5(0) = AJ] the derivatives except that of ¢ (a) result in a

oee(a)

straightforward manner. For the derivative of I1¢(«), we use that

Lvec(Ilg(a)) = 2 vec ((Z’Z)—l [Z’f( ~ Z'(y — Xa) sx(a)D

oee()

ee(@) da’
®(2'2)72'(y — Xa) ;5 | [oarvecloox ()] -
o_5() @ (2 2) 7' (y — Xa) [Z0ee(a)™!]
= |2 0 @22)] 2%+ [l (22)1 2y - Xa)] Ses—
2 |o.5(0) @ (2'2) 2y~ Xa)] 0.e(0) 2oux(e)
= |2 e @22)7 | X - (- Xa) =9+

= - [" ex (@) ®(Z’Z)*1] [ivec(z’( Xa))] -

L 0'55(04) Uss(a)
(B - =) & (22720 - Koyl
= | o lig(a)| + [Sxx.l0) 8 (22)12(y - Xa)ig

so the second derivative of the AR statistic testing the full parameter vector reads:
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dada’ ogg(a) oee()

= (= XaYZ © 1) Zvee(ig(a)) + s (1 @ Tg(0)) 2 2y — Xa)+

%

Lo ey — Xa) Paly — Ka) = & [ ATl (0) 2 (y — Ka)

oee()
l:[X(Oc) Z'(y — XOL) Dol [Uesl(a)}
= ﬁ(a)((y—on)’Z@I )Kkmaa,vec(f[;((a)) UEE( )1:1 (a)Z' X+

e (@) Z'(y — Xa) gif((zj))

= (0 X2 LK 25 @ lig(a)] + [Sxx.(0) @ (272) 12y — Xa) -
LTI (a)Z'Z1 ¢ ()

= ogi;(()fm@( — Xay2) || @ Tig(a)| + [Zxxc(0) @ (22)712(y - Xa) ;1| -
ez (@) 2/ 21 (a)

= A Ti(a) 225 () + Tl(a)[";js—g;'@@(y—)?a)'zﬁ)z(a)]ju
5 [Brse@) @ (v - Xay2(z2)7 2y - Xa)]

1 o _1, ~ _1
= AT [y - Xa)Paly - Xa) Iy - Sig.(0) Vil (0)' 2/ 2115 (@) 5 (0)

Cixe(0)F + oy |25 @ (y - Xy 2Tig(a)]
with K}, a commutation matrix (maps vec(A) into vec(A’)). When the first order condition
holds, (y — X&)’ Z'M 4 (&) = 0, with & a value of o where the first order condition holds. The

second order derivative at such values of o then becomes:

2 0ada! o () 8o/ | gee(a)

L2 1 XaYPy(y— Xa) = 2 [;H () Z'(y — X&)

1
1 5/ 1

Ueg(a)EXX.s(&) oee () (y - X&)’PZ(ZJ - X&)IM—
S (8) VTg(0) 7' 215 (6)Sx..(8) ] D (3)

[NIES

There are (m + 1) different values of & where the first order condition holds. These are such
that c(fd) corresponds with one of the (m + 1) eigenvectors of the characteristic polynomial
(so c is the top element of such an eigenvector). When (_1&) is proportional to the eigenvector

of the j-th root of the characteristic polynomial, y;, we can specify:

(@2 iz - %o/ vou@ i (22 @)2)@2‘5(&)—5)'((Z'Zr%z'(y—m/ 7@

(Z/Z)EﬁX(&)EXXs(&)ii) = dia’g(ﬂja My - 7:u’j—17 :uj+17 te 7IU/m+1>a

with 4, ..., ft,,41 the (m + 1) characteristic roots in descending order. Hence, we have three

different cases:
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L. f1j = flypq SO

_2 % ~ ~
%804880/ oggl(a‘) (?/ - XOZ)IPz(y — Xa) =

~\ 1 . ~\ 1
s 252 (0)7 [a T — diag(p, - )] Bz 5..(@)2

which is negative definite since p1; > 1,41, by > [lyq 5O the value of the AR statistic at

& 1s a minimum.

2. p; =y SO
Yoo sy (v = X&) Py (y — Xa) =
@Eﬁ.s(@)%’ (111 — diag(tia, -+ s fiyi)] Sz 5.0(0)7
which is positive definite since ji; > py, ..., iy > p,,,; so the value of the AR statistic at & is

a maximum.

2. 1<j<m+1so
2 oo ~
%8@880/ o—ggl(a) (y T XOK)/Pz(y - XO{) = 1
agal(a) Ef(f(.a(&)gl [Mj]m - diag<lLL17 s 7”]’—17 luj+17 s 7,um+1)] 2)2)25(64)5

which is negative definite in m — j + 1 directions, since pt; > fi;, 1, ., fj > [, 1, and positive
definite in j — 1 directions, since pi; > p;, ..., p;_4 > ji;, so the value of the AR statistic at &

is a saddle point.

Proof of Theorem 12. a. When we test Hy : § = (3, and [, is large compared to the true
/

1 0 1 0
value f3, the different elements of Q(5,) = | -3, 0 Qf -p, 0 can be charac-
0 I, 0 I,
terized by
%(WYY — 28wy x + 5300)()() = Wxx — ﬁ%wyx + B%Owyy
_ﬁLO(WYW - ﬁowXW) = Wxw — ﬁ—lowyw
www = Www,
SO
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wWwx Www

with Qxw = (wXX “x W) . The LIML estimator 7(f3,) is obtained from the smallest root of the

characteristic polynomial:
‘)‘Qwo) — (Y= XBy : W)'Pz(y — X5y W)' =0,

and the smallest root of this polynomial, A\.;,, equals the subset AR statistic to test Hy. The

smallest root does not alter when we respecify the characteristic polynomial as

'meﬂ —Q(By) ' (y — XBy i W) Psly — XBy i W)QUBy) 2| =0.

Using the specification of (f3,), we can specify Q(8,)"2 as

— -1 1
- ( Pom O )ﬂch)(ﬂa%,

D=

28)" D

where O(3;?) indicates that the highest order of the remaining terms is 3;2. Using the above
specification, for large values of 8y, Q(8,) 2 (y — X3, : W) Pz(y — X B, : W)Q(B,) "2 is char-
acterized by

L

QBo)¥(y — X By i WY Paly — XBy i WIQ(By) "8 = Q3 (X § WYP,(X : W)Q3, + O(5; ).

_1
For large values of 3, the AR statistic thus corresponds to the smallest eigenvalue of 2 X%{,(X
1

: W) Pz(X 1 W)Qy3, which is a statistic that tests for a reduced rank value of (ILy : Iy ).

b. Follows directly from a and since the smallest root of (10) does not depend on (.

Proof of Theorem 13. We use the (infeasible) covariance matrix estimator

i_ Gee Gev _ 1 O /Q 1 O Z
“\ove 8w )T\ -8 B g

—Tn —Tn

OVenOeV,n

3 _ ¥ Svebey —
and define Xyy. = Xyy — 2228, Yyy = Syy, — =2

and Xy, ? Zvv.a,n-

For a subsequence ,, of n, let H, T, R, be a singular value decomposition of O(x,) with

© = HTR,
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the limit of ©(k,), so O(k,) — O, H,, — H, T,,, — T and R,, — R. We then also have the

following convergence results for this subsequence:
1 _% Oce,bn %
(Z;/fnZnn)_ZZ/,gn (Yr — WiV — Xy Bo)oecion (g—) e £(Bos7)
(2 202, (W X0 = (0, = W, = X80 {2

7 @(507 7)7

2

~ 1
(UEV_UEV,H ) 2 ~—1 -1 ) 1 —1
"4 Oev (aaa - Uaafm) EVV.&,/{n EVVE,/‘MZVV.E

Oce,kn

with v,, — v and £(5,,v) and vec(©(5,,y)) independent normal k and km dimensional random
vectors with means zero and vec(©) and identity covariance matrices. The limiting random

variable of this subsequence O(f,,7) can be specified as

6(60a ’70) =0 + C(B()a 7)a

with vec(((5y,7)) a standard normal km dimensional random vector independent of £(3,, 7).
We can now specify the limit behaviors of the subset AR statistic and the smallest root fi,,,

the two components of the subset LR statistic, as in Theorems 1 and 2:

AR(f,) = MingeRmow ﬁ (5(50770) — (B0, 70) (178”)9)/
(£(Bo: 7o) — ©(Bo. 7o) (") 9) + 0p(1)

Popin = MiNpeRma | geRmuw m (f(ﬁoﬁo) - (9(50770)(2)),
(5(50770) - @wo,%)(z)) + 0p(1).

Theorem 10 then shows that the limit behavior of the subset LR statistic under Hy and the
subsequence k,, only depends on the %m(m + 1) elements of ©'O.

To determine the size of the subset LR test, we determine the worst case subsequence k,,
such that

ASYSZLR,a = limsup,,_, sup,cy Pra [LRﬂ(ﬁo) > CLRl*a(ﬁ()’S?nin = 512nin,n):|
- llm Supn%oo Prﬁn [LRHAH (/60) > CLRl—O&<6O|SI2mn = §2 )i| )

with LR,,(3,) the subset LR statistic for a sample of size n and CLR;_, (8|83, = 52:,) the
(1 — @) x 100% quantile of the conditional distribution of CLR(3,) given that s2, = 52,..
Theorem 6 runs over the different settings of the conditioning statistic ©(f,,y) to analyze if
the subset LR test over rejects. All these settings originate from the limit value © that results

from a specific subsequence k,,. We next list the different settings for the limit value © with
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respect to the identification strengths of v and S :

1. Strong identification of v and 3 : The limit value © is such that both of its singular
values are large. For subsequences kx,, that lead to such limit values:
limsup,, . Pr,, [LRy, (B9) > CLR1_o(Bo|s2in = Shinx,)] = -
2. Strong identification of v, weak identification of 3 : Since 7 is strongly identified,
(I’"w) o’ @(Imw) is large so the limit value © is such that one of its singular values is large
while the other is small. Theorem 5 shows that both the subset AR statistic and the

smallest root ., are at their upperbounds. Hence, for all subsequences k,, for which
(Im”) o’ @(Im“’) is large, so 7 is well identified:

lim sup,, ., Pry, [LR (Bg) > CLRy_o(Bo|s2,, = fmn’ﬁn)} = q.

3. Weak identification of v, strong identification of [ : Since v is weakly identified,
(Imw) o’ @(I”‘w) is small. Since [ is strongly identified, the limit value © has one small
and one large singular value. Theorem 5 then shows that the subset AR statistic is close
to its lower bound while the smallest root pu,, is at its upperbound. Hence, for such
subsequences K,,:

limsup,, ., Pr,, [LRy, (89) > CLR1_o(Bo| s, = 52 )] <a,

min mm,ﬁn

so the subset LR test is conservative. As mentioned previously, this covers the setting
where Ily,, = cllx, with IIx, large and ¢ small so IIy,, is small as well. The subset LM

test is size distorted for this setting, see Guggenberger et al. (2012).

4. Weak identification of v and [ : The limit value © is such that both of its singular
values are small. Both the subset AR statistic and the smallest root pu,;, are close to
their lower bounds. The conditional critical values do, however, result from the difference

between the upper bounds of these statistics, which is for this realized value of 52 . larger

min?

than the difference between the lower bounds. For subsequences k,, for which both v and

B are weakly identified:

lim SUpP;, 0 Prﬂ [ (50) > CLR’I Ol(60|sm1n - 3mn,ﬁn>] < a,
so the subset LR test is conservative.
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Combining;:

AsySzig o = @,

where strong instrument sequences for W make the asymptotic null rejection probability of the

subset LR statistic equal to the nominal size.
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