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Abstract

We show that Moreira�s (2003) conditional critical value function for the likelihood

ratio statistic that tests the structural parameter in the iid linear instrumental variables

regression model with one included endogenous variable provides a bounding distribution

for the subset likelihood ratio statistic that tests one structural parameter in an iid linear

instrumental variables regression model with several included endogenous variables. The

only adjustment concerns the usual degrees of freedom correction for subset tests of the

involved �2 distributed random variables. The conditional critical value function makes

the subset likelihood ratio test size correct under weak identi�cation of the structural

parameters and e¢ cient under strong identi�cation. When the hypothesized value of

the parameter of interest is distant from the true one, the subset Anderson-Rubin and

likelihood ratio statistics are invariant with respect to the parameter of interest and equal

statistics that test the identi�cation of all structural parameters. The value of the statistic

testing a distant value of any of the structural parameters is therefore the same. All results

extend to tests on the parameters of the included exogenous variables.

1 Introduction

For the homoscedastic linear instrumental variables (IV) regression model with one included

endogenous variable, size correct procedures exist to conduct tests on its structural parameter,

see e:g: Anderson and Rubin (1949), Kleibergen (2002) and Moreira (2003). Andrews et al.

�Econometrics and Statistics Section, Amsterdam School of Economics, University of Amsterdam,
Roetersstraat 11, 1018WB Amsterdam, The Netherlands. Email: f.r.kleibergen@uva.nl.
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(2006) show that the (conditional) likelihood ratio statistic is optimal amongst size correct

procedures that test a point null hypothesis against a two sided alternative. E¢ cient tests of

hypotheses speci�ed on one structural parameter in a linear IV regression model with several

included endogenous variables which are size correct under weak instruments are, however, still

lacking. There are statistics for testing hypotheses on subsets of the parameters that are size

correct and near-optimal under weak instruments for the untested structural parameters but

which are not e¢ cient under strong instruments, like, for example, the subset Anderson-Rubin

(AR) statistic, see Guggenberger et al. (2012) and Guggenberger et al. (2017). There are also

statistics that are e¢ cient under strong instruments but which are not size correct under weak

instruments, like, for example, the t-statistic. Neither one of these statistics leads to con�dence

sets for all structural parameters, including those on the included exogenous parameters, which

are valid under weak instruments and have minimum length under strong instruments. We

construct a conditional critical value function for the subset likelihood ratio (LR) statistic

which makes it size correct under weak instruments and e¢ cient under strong instruments.

Thus it allows for the construction of optimal con�dence sets that remain valid under weak

instruments.

The conditional critical value function for the subset LR statistic that we construct is iden-

tical to the conditional critical value function of the LR statistic for the homoscedastic linear IV

regression model with one included endogenous variable from Moreira (2003). That conditional

critical value function depends on a conditioning statistic and two independent �2 distributed

random variables. Instead of the common speci�cation of the conditioning statistic as in Mor-

eira (2003), it can also be speci�ed as the di¤erence between the sum of the two (smallest) roots

of the characteristic polynomial associated with the linear IV regression model and the value

of the AR statistic at the hypothesized value of the structural parameter. This speci�cation

of the conditioning statistic generalizes to the conditioning statistic of the conditional critical

value function of the subset LR statistic which conducts tests on one structural parameter when

there are several included endogenous variables. Alongside the conditioning statistic, the con-

ditional critical value function of the subset LR statistic also has the usual degrees of freedom

adjustment of one of the involved �2 distributed random variables when conducting tests on

subsets of parameters.

When testing a value of the structural parameter that is distant from the true one, the subset

AR and LR statistics no longer depend on the structural parameter that is tested. Hence, for

large values of the hypothesized parameter, the value of the subset AR and LR statistics are

the same for all structural parameters. At these values, the subset AR and LR statistics are
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identical to statistics that test the hypothesis of a reduced rank value of the reduced form

parameter matrix. The rank condition for identi�cation is for the reduced form parameter

matrix to have a full rank value so at distant values of the hypothesized structural parameter,

the subset AR and LR statistics become identical to tests of the identi�cation of all structural

parameters.

For the homoscedastic linear IV regression model with one included endogenous variable,

Andrews et al. (2006) show that the LR statistic is optimal. They construct the power enve-

lope for testing a point null hypothesis on the structural parameter against a two-sided point

alternative. The rejection frequencies of the LR statistic using the conditional critical value

function are on the power envelope so the LR statistic is optimal. Under point hypotheses on

the structural parameter, the linear IV regression model with one included endogenous vari-

able is equivalent to a linear regression model so the power envelope can be constructed using

the Neyman-Pearson Lemma. When the null hypothesis concerns the structural parameter of

one included endogenous variable of several, the linear IV regression model no longer simpli-

�es to a linear regression model under the null hypothesis. We can then no longer use the

Neyman-Pearson Lemma to construct the power envelope. Alternatively we could determine

the maximal rejection frequency under least favorable alternative hypotheses. Least favorable

alternatives result when the structural parameters of the remaining included endogenous vari-

ables are not identi�ed. Given the behavior of the subset AR and LR statistics at distant values

of the hypothesized parameter, the maximal rejection frequency under least favorable alterna-

tives equals the size of tests for the identi�cation of the (non-identi�ed) structural parameters

of the remaining endogenous variables. It therefore does not provide a useful characterization

of e¢ ciency of size correct subset tests in the linear IV regression model either. When all non-

hypothesized structural parameters are well identi�ed, testing a hypothesis on the remaining

structural parameter using the subset LR statistic is equivalent to testing the structural para-

meter in a linear IV regression model with only one included endogenous variables using the

LR statistic. Since the LR statistic is optimal in that setting, the subset LR statistic is optimal

when all non-hypothesized structural parameters are well identi�ed and size correct in general.

The optimality results for testing the structural parameter in the homoscedastic linear

IV regression model with one included endogenous variable have been extended in di¤erent

directions. Andrews (2015), Montiel Olea (2015) and Moreira and Moreira (2013) extend it

to general covariance structures while Montiel Olea (2015) and Chernozhukov et al. (2009)

analyze the admissibility of such tests. Neither one of these extensions, however, analyzes tests

on subsets of the structural parameters.
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The homoscedastic linear IV regression model is a fundamental model in econometrics. It

provides a stylized setting for analyzing inference issues which makes it straightforward to

communicate the results. As such there is an extensive literature on it. This paper provides

a further contribution by solving an important open problem: how to optimally construct

con�dence sets which remain valid when instruments are weak for all structural parameters.

The linear IV regression model with iid errors can be extended by allowing, for example,

for autocorrelation and/or heteroscedasticity. These extensions are empirically relevant and

when the structural parameters are well identi�ed, inference methods extend straightforwardly.

Kleibergen (2005) shows that the same reasoning applies to the weak instrument robust tests

on the full structural parameter vector. The extensions to tests on subsets of the parameters

are, however, far less straightforward. They can be obtained for the homoscedastic linear IV

regression model because of the algebraic structure it provides, see also Guggenberger et al.

(2012). This structure is lost when the errors are autocorrelated and/or heteroscedastic. We

then basically have to resort to explicitly analyzing the rejection frequency of the subset tests

over all possible values of the nuisance parameters as, for example, in Andrews and Chen (2012).

Unless you resort to projection based tests, weak instruments robust tests on subsets of the

parameters for the linear IV regression model with a more general error structure is therefore

conceptually very di¤erent from a setting with iid errors. It is thus important to determine the

extent to which it is analytically possible to analyze the distribution of tests on subsets of the

parameters while allowing for weak identi�cation. Since the estimators that are used for the

non-hypothesized structural parameters are inconsistent in such settings, it is from the outset

unclear if any such analytical results can be obtained.

The paper is organized as follows. The second section states the subset AR and LR statistics.

In the third section, we discuss the bound on the conditional critical value function of the subset

LR statistic. The fourth section discusses a simulation experiment which shows that the subset

LR statistic with conditional critical values is size correct. The �fth section provides extensions

to more than two included endogenous variables. The sixth section covers the behavior of the

subset AR and LR statistics at distant values of the hypothesized parameter. The seventh

section deals with the usual iid homoscedastic setting to which all results straightforwardly

extend. Finally, the eighth section concludes.

We use the following notation throughout the paper: vec(A) stands for the (column) vec-

torization of the k � n matrix A; vec(A) = (a01 : : : a
0
n)
0 for A = (a1 : : : an); PA = A(A0A)�1A0 is

a projection on the columns of the full rank matrix A and MA = IN � PA is a projection on

the space orthogonal to A: Convergence in probability is denoted by �!
p
�and convergence in
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distribution by �!
d
�.

2 Subset statistics in the linear IV regression model

We consider the linear IV regression model

y = X� +W + "

X = Z�X + VX

W = Z�W + VW ;

(1)

with y and W N � 1 and N �mw dimensional matrices that contain endogenous variables, X

a N �mx dimensional matrix of exogenous or endogenous variables,1 Z a N � k dimensional

matrix of instruments and m = mx + mw: The speci�cation of X is such that we allow for

tests on the parameters of the included exogenous variables. The N � 1; N �mw and N �mx

dimensional matrices "; VW and VX contain the disturbances. The unknown parameters are

contained in the mx � 1; mw � 1; k �mx and k �mw dimensional matrices �; ; �X and �W .

The model stated in equation (1) is used to simplify the exposition. An extension of the model

that is more relevant for practical purposes arises when we add a number of so-called included

(control) exogenous variables, whose parameters we are not interested in, to all equations in

(1). The results that we obtain do not alter from such an extension when we replace the

expressions of the variables that are currently in (1) in the speci�cations of the subset statistics

by the residuals that result from a regression of them on these additional included exogenous

variables. When we want to test a hypothesis on the parameters of the included exogenous

variables, we just include them as elements of X:

To further simplify the exposition, we start out as in, for example, Andrews et al. (2006),

assuming that the rows of u = "+VW+VX�; VW and VX ; which we indicate by ui; V 0
W;i; and V

0
X;i;

so u = (u1 : : : uN)0; VW = (VW;1 : : : VW;N)
0; VX = (VX;1 : : : VX;N)

0; are i.i.d. normal distributed

with mean zero and known covariance matrix 
: We also assume that the instruments in

Z = (Z1 : : : ZN)
0 are pre-determined. These random variables are therefore uncorrelated with

the instruments Zi so:

E(Zi("i
... V 0

X;i

... V 0
W;i)) = 0; i = 1; : : : ; N: (2)

1When X consists of exogenous variables, it is part of the matrix of instruments as well so VX is in that case
equal to zero.
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We extend this in Section 7 to the usual i.i.d. homoscedastic setting.

We are interested in testing the subset null hypothesis

H0 : � = �0 against H1 : � 6= �0: (3)

In Guggenberger et al. (2012), the subset AR statistic for testing H0 is analyzed. We focus

on the subset LR statistic. The distributions of these statistics for testing the joint hypothesis

H� : � = �0 and  = 0; (4)

are robust to weak instruments, see e:g: Anderson and Rubin (1949), Moreira (2003) and

Kleibergen (2007). The expressions of their subset counterparts result when we replace the

hypothesized value of ; 0; in the expression of these statistics to test the joint hypothesis by

the limited information maximum likelihood (LIML) estimator under H0; which we indicate by

~(�0):
2 We note beforehand that our results only hold when we use the LIML estimator and

do not apply when we use the two stage least squares estimator. Since the subset LR statistic

involves the subset AR statistic, we state both their expressions.

De�nition 1: 1. The subset AR statistic (times k) to test H 0 : � = �0 reads

AR(�0) = min2Rmw
(y�X�0�W)0PZ(y�X�0�W)
(1 : ��00 : �0)
(1 : ��00 : �0)0

= 1
�̂""(�0)

(y �X�0 �W ~(�0))
0PZ(y �X�0 �W ~(�0))

= �min;

(5)

with ~(�0) the LIML(K) estimator,

�̂""(�0) =

 
1

�~(�0)

!0

(�0)

 
1

�~(�0)

!
; 
(�0) =

0B@ 1 0

��0 0

0 Imw

1CA
0




0B@ 1 0

��0 0

0 Imw

1CA
(6)

and �min equals the smallest root of the characteristic polynomial�����
(�0)� (Y �X�0
... W )0PZ(Y �X�0

... W )

���� = 0: (7)

2Since we treat the reduced form covariance matrix as known, the LIML estimator is identical to the LIMLK
estimator, see e:g: Anderson et: al: (1983).
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2. The subset LR statistic to test H 0 reads

LR(�0) = �min � �min; (8)

with

�min = min�2Rmx ; 2Rmw
(y�X��W)0PZ(y�X��W)
(1 : ��0 : �0)
(1 : ��0 : �0)0 ; (9)

which equals the smallest root of the characteristic polynomial�����
� (y ... X ... W )0PZ(y
... X

... W )

���� = 0: (10)

Under H0 and when �W has a full rank value, the subset AR statistic has a �2(k �mW )

limiting distribution. This distribution provides an upper bound on the limiting distribution

of the subset AR statistic for all values of �W ; see Guggenberger et al. (2012). Alongside

the bound on the limiting distribution of the subset AR statistic, Guggenberger et al. (2012)

also show that the score or Lagrange multiplier statistic to test H0 is size distorted. While the

subset AR statistic is size correct under weak instruments, it is less powerful than optimal tests

of H0 under strong instruments, like, for example, the t-statistic. It is therefore important to

have statistics that test H0 which are size-correct under weak instruments and are as powerful

as the t-statistic under strong instruments. The subset LR statistic is such a statistic.

3 Subset LR statistic

The weak instrument robust statistics proposed in the literature to test H� are based upon inde-

pendently distributed su¢ cient statistics. These can be constructed under the joint hypothesis

H� but not under the subset hypothesis H0: To obtain a weak instrument robust inference

procedure for testing H0 using the subset LR statistic, we therefore proceed in three steps:

1. We characterize the conditional distribution of the subset LR statistic under the joint

hypothesis H� (4) which depends on 1
2
m(m+ 1) conditioning statistics de�ned under H�:

2. We construct a bound on the conditional distribution of the subset LR statistic under

the joint hypothesis H� that depends on only mx conditioning statistics which are de�ned

under H�.

3. We provide an estimator for the conditioning statistics which can be computed under H0
and show that its leads to a conditional bounding distribution for the subset LR statistic.
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3.1 Subset LR statistic under H�:

The subset LR statistic consists of two components, i:e: the subset AR statistic and the smallest

root �min (10). Theorems 1 and 2 state them as functions of the independent su¢ cient statistics

de�ned under H�: For reasons of brevity, we initially focus only on the case of one structural

parameter that is tested and one which is left unrestricted somx = mw = 1:We later extend this

to more unrestricted structural parameters. Theorem 1 �rst states the independent su¢ cient

statistics de�ned under H� and thereafter expresses the subset AR statistic as a function of

them. Theorem 2 states the smallest characteristic root �min as a function of the independent

su¢ cient statistics.

Theorem 1. Under H � : � = �0;  = 0; the independent su¢ cient statistics:

�(�0; 0) = (Z 0Z)�
1
2Z 0(y �W0 �X�0)�

� 1
2

""

�(�0; 0) = (Z 0Z)�
1
2Z 0

�
(W

... X)� (y �W0 �X�0)
�"V
�""

�
�
� 1
2

V V:";
(11)

which are N(0; Ik) and N((Z 0Z)
1
2 (�W

... �X)�
� 1
2

V V:"; Imk) distributed random variables with

� =

�
�""
�V "

...
�"V
�V V

�
=

0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA
0




0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA ; (12)

�"" : 1 � 1; �V " = �0"V : m � 1; �V V : m �m and �V V:" = �V V � �V "�"V =�""; can be used to

specify the distribution of the subset AR statistic that tests H 0 : � = �0 as

AR(�0) = ming2Rmw
1

1+g0g

�
�(�0; 0)��(�0; 0)

�
Imw
0

�
g
�0 �

�(�0; 0)��(�0; 0)
�
Imw
0

�
g
�

= 1
2

�
'2 + �2 + �0� + s� �

q
('2 + �2 + �0� + s�)2 � 4(�2 + �0�)s�

�
(13)
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where

' =
��

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

��� 1
2 �Imw

0

�0
�(�0; 0)

0�(�0; 0) � N(0; Imw)

� =
h�

0
ImX

�0
[�(�0; 0)

0�(�0; 0)]
�1 � 0

ImX

�i� 1
2�

0
ImX

�0
[�(�0; 0)

0�(�0; 0)]
�1�(�0; 0)

0�(�0; 0) � N(0; ImX )

� = �(�0; 0)
0
?�(�0; 0) � N(0; Ik�m)

s� =
�
Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�
(14)

with '; � and � independently distributed, �(�0; 0)? is a k�(k�m) dimensional orthonormal
matrix which is orthogonal to �(�0; 0) : �(�0; 0)

0
?�(�0; 0) � 0 and �(�0; 0)0?�(�0; 0)? �

Ik�m; �"" : 1� 1; �V " = �0"V : m� 1; �V V : m�m and �V V:" = �V V � �V "�"V =�"":

Proof. see the Appendix and Moreira (2003).

Theorem 2. Under H � : � = �0;  = 0; the smallest characteristic root �min (10) equals

�min = minb2Rmx ; g2Rmw
1

1+b0b+g0g

�
�(�0; 0)��(�0; 0)

�
b
g

��0 �
�(�0; 0)��(�0; 0)

�
b
g

��
;

(15)

and is identical to the smallest root of the characteristic polynomial:������Im+1 �
 
 0 + �0�  0S

 S S2

!����� = 0 (16)

with S2 = diag(s2max; s
2
min); s

2
max � s2min; a diagonal matrix that contains the two eigenvalues of

�(�0; 0)
0�(�0; 0) in descending order and

 = (�(�0; 0)
0�(�0; 0))

� 1
2�(�0; 0)

0�(�0; 0); (17)

so  and � are m and k � m dimensional independent standard normal distributed random

vectors.

Proof. see the Appendix and Kleibergen (2007).

The closed form expression for the distribution of the subset AR statistic in Theorem 1

results since it is the smallest root of a second order polynomial. The smallest root in Theorem

2 results from a third order polynomial so we only provide it in an implicit manner. Theorems 1

and 2 state the distributions of the subset AR statistic and the smallest root �min as functions

of the independent su¢ cient statistics �(�0; 0) and �(�0; 0) (11) which are de�ned under
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H�.3 Since �(�0; 0) and �(�0; 0) are independent, we use the conditional distributions of

the subset AR statistic and the smallest root �min given the realized value of (a function of)

�(�0; 0) : �̂(�0; 0); see Moreira (2003). Theorems 1 and 2 show that these further simplify

so we can use the conditional distributions of the subset AR statistic given the realized value

of s�; ŝ�; and the conditional distribution of �min given the realized values of s
2
min and s

2
max :

ŝ2min; ŝ
2
max: This makes the total number of conditioning statistics equal to three. Theorem 3

shows that these three conditioning statistics are an invertible function of �̂(�0; 0)
0�̂(�0; 0):

Theorem 3 also shows how, given �̂(�0; 0)
0�̂(�0; 0); we can construct ('; �) from  ; which is

a standard normal distributed random vector, and vice versa. Since both  and � are standard

normal distributed random vectors, they constitute the random components in the conditional

distribution of the subset LR statistic under H� given the realized value �̂(�0; 0)
0�̂(�0; 0):

Theorem 3. Under H � : � = �0;  = 0; the conditional distribution of the subset LR statistic

that tests H 0 : � = �0 given the realized value of �(�0; 0)
0�(�0; 0); �̂(�0; 0)

0�̂(�0; 0); can

be speci�ed as

LR(�0) =
1
2

�
'2 + �2 + �0� + ŝ� �

q
('2 + �2 + �0� + ŝ�)2 � 4(�2 + �0�)ŝ�

�
� �min; (18)

where �min results from (16) using the realized value of S. The relationship between ('; �; ŝ�)
used in Theorem 1 and ( ; ŝ2min; ŝ

2
max) from Theorem 2 is characterized by

ŝ� =
�
Imw
0

�0
�̂(�0; 0)

0�̂(�0; 0)
�
Imw
0

�
=
�
Imw
0

�0VS2V 0�Imw
0

�
=
h
cos(�̂)

i2
ŝ2max +

h
sin(�̂)

i2
ŝ2min 

'

�

!
=

0B@
��

Imw
0

�0VS2V 0�Imw
0

��� 1
2 �Imw

0

�0VS h�
0

ImX

�0VS�2V 0� 0
ImX

�i� 1
2 � 0

ImX

�0VS�1 
1CA =

0BB@
cos(�̂)ŝmax 1�sin(�̂)ŝmin 2q
[cos(�̂)]

2
ŝ2max+[sin(�̂)]

2
ŝ2min

sin(�̂)
ŝmax

 1+
cos(�̂)
ŝmin

 2r
(sin(�̂))2

ŝ2max
+
(cos(�̂))2

ŝ2
min

1CCA,

 = SV 0
�
Imw
0

� ��
Imw
0

�0VS2V 0�Imw
0

��� 1
2
'+ S�1V 0

�
0

ImX

� h�
0

ImX

�0VS�2V 0� 0
ImX

�i� 1
2
�

=
� ŝmax cos(�̂)
�ŝmin sin(�̂)

�
'=

rh
cos(�̂)

i2
ŝ2max +

h
sin(�̂)

i2
ŝ2min +

�sin(�̂)=ŝmax
cos(�̂)=ŝmin

�
�=
q

(sin(�̂))2

ŝ2max
+ (cos(�̂))2

ŝ2min

(19)

with V =
�
cos(�̂)

sin(�̂)

... � sin(�̂)
cos(�̂)

�
; 0 � � � 2� : the matrix of orthonormal eigenvectors of �̂(�0; 0)0�̂(�0; 0):

3see Moreira (2003) and Andrews et: al: (2006) for a proof that �(�0; 0) and �(�0; 0) are su¢ cient statistics
for the parameters under H� which they remain to be under H0:
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Proof. It results from the singular value decomposition,

�̂(�0; 0) = USV 0;

with U and V k �m and m�m dimensional orthonormal matrices, i.e. U 0U = Im, V 0V = Im;

and the diagonal m�m matrix S containing the m non-negative singular values (ŝ1 : : : ŝm) in

decreasing order on the main diagonal, that  = U 0�(�0; 0): The remaining part results from
using the singular value decomposition for the expressions in Theorems 1 and 2.

The conditional distribution of the subset LR statistics is a function of three conditioning

statistics none of which is de�ned under H0. To obtain a workable bound of it, we �rst reduce

the number of conditioning statistics for which we thereafter provide estimators which are

de�ned under H0:

3.2 Bound on subset LR statistic with one conditioning statistic.

The conditional distribution of the subset LR statistic depends in an implicit manner on its

conditioning statistics. This makes it hard to show that it is a monotone function of any (or

several) of them which would make it straightforward to obtain a bound on it. In order to

construct such a bound, we therefore start out to show that the two elements that comprise

the subset LR statistic are monotone functions of (some of) their conditioning statistics.

Theorem 4. The conditional distributions of the subset AR statistic and �min given (ŝ
�; ŝ2min;

ŝ2max) are respectively non-decreasing functions of ŝ
� and ŝ2max:

Proof. see the Appendix.

Theorem 4 implies that the conditional distributions of the subset AR statistic and �min
are bounded by their (conditional) distributions that result for the smallest and largest feasible

values of the realized value of their conditioning statistics ŝ� and ŝ2max resp.. Given the realized

value of s2min; ŝ
2
min; both ŝ

� and ŝ2max can be in�nite while their lower bounds are equal to ŝ
2
min:
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Theorem 5. Given the realized value of s2min : ŝ
2
min; the conditional distribution of the subset

AR statistic is bounded according to

ARlowjs� = ŝ2min) = ARjs� = ŝ2min)

= 1
2

�
'2 + �2 + �0� + ŝ2min �

q
('2 + �2 + �0� + ŝ2min)

2 � 4(�2 + �0�)ŝ2min

�
� AR(�0)js� = ŝ�) �

�2 + �0� = ARup = ARjs� =1) � �2(k �mw)

(20)

and the conditional distribution of �min is bounded according to

�lowjs2min = ŝ2min) = �minjs2min = ŝ2min; s
2
max = ŝ2min)

= 1
2

�
 21 +  22 + �0� + ŝ2min �

q�
 21 +  22 + �0� + ŝ2min

�2 � 4�0�ŝ2min�
� �minjs2min = ŝ2min; s

2
max = ŝ2max) �

1
2

�
 21 + �0� + ŝ2min �

q�
 21 + �0� + ŝ2min

�2 � 4�0�ŝ2min�
= �minjs2min = ŝ2min; s

2
max =1) = �upjs2min = ŝ2min):

(21)

Proof. see the Appendix.

Since ŝ2min � ŝ� � ŝ2max
4; the bounds on the conditional distribution of the subset AR

statistic are rather wide but they are sharp for large values of ŝ2min: Both the lower and upper

bound of the conditional distribution of �min are non-decreasing functions of ŝ
2
min and are equal

when ŝ2min equals zero and for large values of ŝ
2
min in which case they both equal �

0�: It implies

that they are tight which can be further veri�ed by conducting a mean-value expansion of the

lower bound. The bounds are tight since the conditional distribution of �min given (s
2
min = ŝ2min;

s2max = ŝ2max) primarily depends on ŝ
2
min and much less so on ŝ

2
max (as one would expect from

the smallest characteristic root).

The conditional distribution of the subset LR statistic stated in Theorem 3 depends on

three conditioning statistics which are all de�ned under H�: The three conditioning statis-

tics result from the three di¤erent elements of the estimator of the concentration matrix

�̂(�0; 0)
0�̂(�0; 0): This estimator provides an independent estimate of the identi�cation strength

of the two parameters restricted under H�: Under H0; there is only one restricted parameter

so its identi�cation strength can be represented by one conditioning statistic. The smallest

characteristic root of �̂(�0; 0)
0�̂(�0; 0) is re�ected by ŝ

2
min: Since it re�ects the minimal iden-

4Since ŝ� =
�
Imw
0

�0
�̂(�0; 0)

0�̂(�0; 0)
�
Imw
0

�
; ŝ� is bounded by the smallest and largest characteristic roots

of �̂(�0; 0)
0�̂(�0; 0) so ŝ

2
min � ŝ� � ŝ2max:
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ti�cation strength of any combination of the parameters in H�, we use it as the conditioning

statistic in a bounding function of the conditional distribution of the subset LR statistic given

�̂(�0; 0)
0�̂(�0; 0): The bounding function then results as the di¤erence between the upper

bounding functions of the subset AR statistic and �min stated in Theorem 5. It is obtained by

noting that

ŝ2max =
1

[cos(�̂)]
2

�
ŝ� �

h
sin(�̂)

i2
ŝ2min

�
; (22)

so when ŝ� goes o¤ to in�nity, cos(�̂) 6= 0; ŝ2max goes o¤ to in�nity as well. Other settings of
the di¤erent conditioning statistics do not result in an upper bound. For example, consider

sin(�̂) = 1; ŝ� = ŝ2min so ŝ
2
max = ŝ2min; which results from applying l�Hôpital�s rule to (22). Since

the subset AR statistic, which constitutes the �rst component of the subset LR statistic in (18),

is an increasing function of ŝ�; we obtain a lower bound on the subset AR statistic given ŝ2min
so the resulting setting for the subset LR statistic is more akin to a lower bound than an upper

bound.

De�nition 2. We denote the conditional distribution of the subset LR statistic given (ŝ�;

ŝ2min; ŝ
2
max) that results from Theorem 3 when cos( �̂) 6= 0; ŝ� and ŝ2max go o¤ to in�nity, so

 1 = ' and  2 = �; by CLR(�0) :
5

CLR(�0)js2min = ŝ2min) = lim(ŝ�; ŝ2max)!1 LR(�0)

= 1
2

�
�2 + �0� � ŝ2min +

q
(�2 + �0� + ŝ2min)

2 � 4�0�ŝ2min
�
:

(23)

We use CLR(�0) de�ned in (23) as a conditional bound given ŝ2min for the conditional

distribution of LR(�0) given (ŝ
2
min; ŝ

2
max; ŝ

�): It equals the di¤erence between the upper bounds

on AR(�0) and �min stated in Theorem 4 with  1 equal to �: The di¤erence between the upper

bounds of two statistics not necessarily provides an upper bound on the di¤erence between

the two statistics. Here it does since the upper bound on the subset AR statistic has a lot

of slackness when �min is close to its lower bound. To prove this, we specify the conditional

distribution of the subset LR statistic as

LR(�0) = CLR(�0)�D(�0); (24)

5The expression of CLR(�0) is identical to that of Moreira�s (2003) conditional likelihood ratio statistic
which explains the acronym.
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with
D(�0) = ARup �AR(�0) + �min�

1
2

�
�2 + �0� + ŝ2min �

q
(�2 + �0� + ŝ2min)

2 � 4�0�ŝ2min
�
:

(25)

and analyze the properties of the conditional approximation error D(�0) given ŝ
2
min over the

range of values of ŝ2max and ŝ
� (�̂): We note that only negative values of D(�0) can lead to size

distortions so we only focus on worst case settings of the conditioning statistics (�s�; ŝ2min; ŝ
2
max)

that lead to such negative values.

Theorem 6. Under H �; the conditional distribution of CLR(�0) given s2min = ŝ2min provides

an upper bound for the conditional distribution of LR(�0) given (s
2
min = ŝ2min; s

2
max = ŝ2max;

s� = ŝ�) since the approximation error D(�0) is non-negative for all values of (ŝ
2
min; s

2
max; ŝ

�):

Proof. see the Appendix.

Theorem 6 is proven using approximations to the di¤erent components of D(�0): These

approximations are analyzed over the range of values (ŝ2min; s
2
max; ŝ

�) can take. For none of

these do we �nd that D(�0) is negative.

Corollary 1. Under H �; the rejection frequency of a (1-�) � 100% signi�cance test of H 0

using the subset LR test with conditional critical values from CLR(�0) given ŝ2min is less than

or equal to �� 100%.
While the conditional critical value function makes the subset LR test of H0 size correct,

it is infeasible since the conditioning statistic ŝ2min is de�ned under H
�: We next construct a

feasible estimator for ŝ2min under H0 which is such that the resulting conditional critical value

function makes the subset LR statistic a size correct test of H0:

3.3 Conditioning statistic under H0

To motivate our estimator of ŝ2min under H0; we start out from the characteristic polynomial in

(16) which is when, mw = mx = 1; a third order polynomial:

(�� �max)(�� �2)(�� �min) = �3 � a1�
2 + a2�� a3 = 0; (26)

14



with, resulting from Theorem 2:

a1 =  0 + �0� + s2min + s2max = tr(
�1(Y
... X

... W )0PZ(Y
... X

... W )) = �min + �2 + �max

a2 = �0�(s2min + s2max) + s2mins
2
max +  21s

2
max +  22s

2
min

a3 = �0�s2mins
2
max = �min�2�max;

(27)

and where �min � �2 � �max are the three roots of the characteristic polynomial in (26). We

next factor out the largest root �max to specify the third order polynomial as the product of a

�rst and second order polynomial:

�3 � a1�
2 + a2�� a3 = (�� �max)(�

2 � b1�+ b2) = 0; (28)

with
b1 =  0 + �0� + s2min + s2max � �max

b2 = �0�s2mins
2
max=�max:

(29)

We obtain our estimator for the conditioning statistic ŝ2min from the second order polynomial.

In order to so, we use that �max provides an estimator of s
2
max +  21:

Theorem 7. Under H �; the largest root �max is such that

�max = s2max +  21 +
 21
s�max

( 22 + �0�) + h; (30)

with s�max = s2max +  21 and h = O(max(s�4max( 
2
2 + �0�)2; s�2mins

�4
max)) � 0; where O(a) indicates

that the respective element is proportional to a:

Proof. see the Appendix.

Theorem 7 shows that �max is an estimator of s
2
max+ 

2
1 which gets more precise when s

2
max

increases. We use it to purge s2max +  21 from the expression of b1 :

b1 = d+ s2min; (31)

with

d =
�
1�  21

s�max

�
( 22 + �0�)� h: (32)

Since h is non-negative, the statistic d in (32) is bounded from above by a �2(k�1) distributed
random variable. Theorem 4 shows that under H�; the subset AR statistic is also bounded from

above by a �2(k � 1) distributed random variable. We therefore use the subset AR statistic

15



as an estimator for d in (32) to obtain the estimator for the conditioning statistic ŝ2min that is

feasible under H0:

~s2min = b1 �AR(�0)
= tr(
�1(Y

... X
... W )0PZ(Y

... X
... W ))� �max �AR(�0)

= smallest characteristic root of (
�1(Y
... X

... W )0PZ(Y
... X

... W ))+

second smallest characteristic root of (
�1(Y
... X

... W )0PZ(Y
... X

... W ))�AR(�0):
(33)

We use ~s2min as the conditioning statistic for the conditional bounding distribution CLR(�0)

given that s2min = ~s
2
min (23). The conditioning statistic ~s

2
min in (33) estimates s

2
min with error so

it is important to determine the properties of its estimation error.

Theorem 8. Under H �; the estimator of the conditioning statistic ~s2min can be speci�ed as:

~s2min = s2min + g; (34)

with

g =  02 2 � � 0� + '2

'2+s� (�
0� + � 0�)�  21

s�max
( 02 2 + �0�)� h+ e; (35)

and where e = O(

 
'�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

!2
):

Proof. see the Appendix.

The common element in the (upper) bounding distributions of the statistic d and the subset

AR statistic is the �2(k � 2) distributed random variable �0�: It implies that the di¤erence

between these two statistics, which constitutes the estimation error in ~s2min; consists of:

1. The di¤erence between two possibly correlated �2(1) distributed random variables:

 02 2 � � 0�; (36)

with  2 that part of �(�0; 0) that is spanned by the eigenvectors of the smallest singular

value of �(�0; 0) and � that part of �(�0; 0) that is spanned by �(�0; 0)
�

0
ImX

�
:

2. The di¤erence between the deviations of d and AR(�0) from their bounding �2(k � 1)
distributed random variables:

'2

'2+s� (�
0� + � 0�)�  21

s�max
( 02 2 + �0�)� h+ e: (37)
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Since s� is smaller than or equal to s2max; this error is largely non-negative and becomes

negligible when s� and s2max get large.

Since s� has a non-central �2 distribution with k degrees of freedom independent of '; � and

�; and a similar argument applies to s2max;  1;  2 and �; the combined e¤ect of the components

in (37) is small, since every element is at most of the order of magnitude of one and a decreasing

function of s� and s2max: The same argument applies to (36) as well.

Corollary 2. The estimation error for estimating s2min by ~s
2
min is bounded and decreasing with

the strength of identi�cation of .

The derivative of CLR(�0) given s
2
min with respect to s

2
min :

�1 < @
@s0
CLR(�0)js2min = s0) =

1
2

�
�1 + �2+s0��0�p

(�2+s0��0�)2+4�2�0�

�
< 0; (38)

which is constructed in Lemma 2 in the Appendix; is such that CLR(�0) is not sensitive to

the value of s2min: Thus small errors in the estimation of s
2
min just lead to a small change in the

conditional critical values given ~s2min with little e¤ect on the size of the subset LR test under

H0: Corollary 2 and (38) imply that the estimation error in ~s2min has just a minor e¤ect on the

size of the subset LR test under H0: We next provide a more detailed discussion of the e¤ect

of the estimation error in ~s2min on the size of the subset LR test.

Under H�; the conditioning statistic s2min is independent of �(�0; 0) while the components

of the estimation error g in (36) and (37) are not. We therefore analyze the properties of the

estimation error in ~s2min and its e¤ect when using ~s
2
min for the approximation of the conditional

distribution of the subset LR statistic (23). One part of the estimation error results from the

deviation of the distribution of the subset AR statistic from its bounding �2(k � 1) distribu-
tion. We therefore assess the two fold e¤ect that this deviation has: one directly on the subset

LR statistic through the subset AR statistic and one on the approximate conditional distrib-

ution through its e¤ect on ~s2min: We analyze the e¤ect of the estimation error in ~s
2
min on the

approximate conditional distribution of the subset LR statistic for four di¤erent cases:

1. Strong identi�cation of  and � : Both � and  are well identi�ed, so s2min is large

and s� (� s2min) is large as well. This implies that both components of the subset LR statistic

are at their upperbounds stated in Theorem 4 so the conditional distribution of the subset LR

statistic corresponds with that of CLR(�0): Since both s
� and s2max are large, the estimation

error is:

g =  02 2 � � 0�: (39)
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The proof of Theorem 8 shows the expressions of the covariance between  2 and � which, since

both s2min and s
2
max are large, can not be large. The estimation error is therefore Op(1): The

derivative of the approximate conditional distribution of the subset LR statistic with respect

to s2min goes to zero when s
2
min gets large. Hence, since s

2
min is large, the estimation error in ~s

2
min

has no e¤ect on the accuracy of the approximation of the conditional distribution of the subset

LR statistic.

2. Strong identi�cation of ; weak identi�cation of � : Since � is weakly identi�ed
s2min is small but s

� is large because  is strongly identi�ed and so is therefore s2max: Since both

s� and s2max are large, both components of the subset LR statistic are at their upperbounds

stated in Theorem 4 which implies that the conditional distribution of the subset LR statistic

equals that of CLR(�0): Also since s
� and s2max are large, the estimation error in ~s

2
min is just

g =  02 2 � � 0�: (40)

Because s2min is small and s
� is large, Theorem 3 shows that cos(�) is close to one while sin(�)

is close to zero. This implies that � is approximately equal to  2 so g is small. The estimation

error does therefore not lead to size distortions when using the approximation of the conditional

distribution of the subset LR statistic.

3. Weak identi�cation of ; strong identi�cation of � :  is weakly identifed so s2min
and s� are small while s2max is large since � is strongly identi�ed. Since s

2
max is large, �min is

at its upperbound �up: The di¤erence between the conditional distribution of the subset LR

statistic and the conditional bounding distribution of CLR(�0) then solely results from the

di¤erence between the upper bound on the distribution of the subset AR statistic, ARup, and

its conditional distribution. When using conditional critical values from CLR(�0) given s
2
min

for the subset LR test, it is conservative. We, however, use ~s2min instead of s
2
min with estimation

error g :
g =  02 2 � � 0� + '2

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
(�0� + � 0�) + e; (41)

which, since it increases the estimate of the conditioning statistic ~s2min; reduces the conditional

critical values. The last part of (41) results from the subset AR statistic. Since the conditional

critical values of CLR(�0) given s
2
min make the subset LR statistic test conservative for this

setting, the decrease of the conditional critical values does not lead to over-rejections. This holds

since the reduction of the subset AR statistic compared to its bounding �2(k � 1) distribution
exceeds the decrease of the conditional distribution of CLR(�0) given ~s

2
min instead of s

2
min: The

latter results since the derivative of the conditional distribution of CLR(�0) given s
2
min with
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respect to s2min exceeds minus one. Hence, usage of the conditional critical values of CLR(�0)

given ~s2min make the subset LR test conservative for this setting.

Weak identi�cation of  and strong identi�cation of � covers the parameter setting for

which Guggenberger et al. (2012) show that the subset score statistic from Kleibergen (2002)

for testing H0 is size distorted. This size distortion occurs for values of �W and �X which are

such that �W = ���X with �X relatively large so � is well identi�ed and � a small scalar so
 is weakly identi�ed. These settings thus do not lead to size distortion for the subset LR test

when using the conditional critical values that result from CLR(�0) given ~s
2
min:

4. Weak identi�cation of  and � : Both s2min and s
2
max are small and so is therefore s

�:

The proof of Theorem 6 in the Appendix shows that the error of approximating the subset LR

statistic by CLR(�0) given s
2
min is non-negative for this setting. Usage of the conditional critical

values that result from CLR(�0) given s
2
min would then make the subset LR test conservative.

When we use ~s2min instead of s
2
min; the estimation error g is then such that both the bounding

distributions of d and the subset AR statistic deviate from their �2(k � 1) distributed lower
bounds so the estimation error contains all components of (35). The twofold e¤ect of the

deviation of the bounding distribution of the subset AR statistic from a �2(k� 1) distribution
is now diminished since its contribution to the estimator of the conditioning statistic ~s2min is

largely o¤set by the deviation of the bounding distribution of d from a �2(k � 1) distribution.
Hence,

v2

v2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
(�0� + '0')�  21

s�max
( 02 2 + �0�) + e� h; (42)

is small. Also the other component of g is typically small since  2 and � are highly correlated

when both  and � are weakly identi�ed. This all implies that ~s2min is close to s
2
min so the subset

LR test remains conservative when we use conditional critical values from CLR(�0) given ~s
2
min

instead of CLR(�0) given s
2
min:

Summarizing, we observe no size distortion for any of the above settings when using the

subset LR test to test H0 with conditional critical values from CLR(�0) given ~s
2
min: It is inter-

esting to note that when non-negative estimation errors in ~s2min occur, which result when  is

weakly identi�ed, the subset LR test using critical values from CLR(�0) given s
2
min is conserv-

ative which o¤sets any size distortions which might occur because of the larger critical values

that result from CLR(�0) given ~s
2
min:
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Speci�cation of conditioning statistic is identical to the one with included endoge-
nous variable For the linear IV regression model with one included endogenous variable:

y = X� + "

X = Z�X + VX ;
(43)

the AR statistic (times k) for testing H0 reads

AR(�0) =
1

�̂""(�0)
(y �X�0)

0PZ(y �X�0); (44)

with �̂""(�0) =
�
1
��0

�0


�
1
��0

�
and
 the (known) reduced form covariance matrix, 
 =

�
!Y Y
!XY

... !Y X
!XX

�
:

The LR statistic for testing H0 equals the AR statistic minus its minimal value over � :

LR(�0) = AR(�0)�min� AR(�): (45)

This minimal value equals the smallest root of the quadratic polynomial:

�2 � a�1�+ a�2 = 0; (46)

with

a�1 = tr(
�1(Y
... X)0PZ(Y

... X)) = AR(�0) + s2

a�2 = s2 [AR(�0)� LM(�0)]
LM(�0) =

1
�̂""(�0)

(Y �X�0)
0PZ ~�X(�0)(y �X�0)

s2 = ~�X(�0)
0Z 0Z ~�X(�0)=�̂XX:"(�0)

~�X(�0) = (Z 0Z)�1Z 0
h
X � (y �X�0)

�̂X"(�0)
�̂""(�0)

i
= (Z 0Z)�1Z 0(y

... X)
�1
�
�0
1

� h�
�0
1

�0

�1

�
�0
1

�i�1
(47)

and �̂XX:"(�0) = !XX � �̂X"(�0)
2

�̂""(�0)
=
h�

�0
1

�0

�1

�
�0
1

�i�1
; �̂X"(�0) = !XY � !XX�0: Under H0; the

LR statistic has a conditional distribution given the realized value of s2 which is identical to

(23) with s2min equal to s
2 and �0� a �2(k� 1) distributed random variable, see Moreira (2003).

The statistic a�1 in (47) does not depend on �0: For a given value of AR(�0); we can therefore
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straightforwardly recover s2 from a�1 :

s2 = tr(
�1(Y
... X)0PZ(Y

... X))�AR(�0)
= smallest characteristic root of (
�1(Y

... X)0PZ(Y
... X))+

second smallest characteristic root of (
�1(Y
... X)0PZ(Y

... X))�AR(�0);

(48)

which shows that the speci�cation of the conditioning statistic for the conditional distribution

of the conditional likelihood ratio statistic for the linear IV regression model with one included

endogenous variable is identical to ~s2min in (33).

4 Simulation experiment

To show the adequacy of usage of conditional critical values that result from CLR(�0) given

~s2min for testing H0 using LR(�0); we conduct a simulation experiment. Before we do so, we

�rst state some invariance properties which allow us to obtain general results by just using a

small number of nuisance parameters.

Theorem 9. Under H0; the subset LR statistic only depends on the su¢ cient statistics

�(�0; 0) and �(�0; 0) which are de�ned under H
� and independently normal distributed with

means resp. zero and (Z 0Z)
1
2 (�W

... �X)�
� 1
2

V V:" and identity covariance matrices.

Proof. see the Appendix.

Theorem 9 shows that under H0; (Z 0Z)
1
2 (�W

... �X)�
� 1
2

V V:" is the only parameter of the IV

regression model that a¤ects the subset LR statistic. The number of (nuisance) parameters

where the subset LR statistic depends on is therefore equal to km: We further reduce this

number.

Theorem 10. Under H 0; the dependence of the distribution of the subset LR statistic on the

parameters of the linear IV regression model is fully captured by the 1
2
m(m+ 1) parameters of

the matrix concentration parameter:

�
� 1
2
0

V V:"(�W
... �X)0Z 0Z(�W

... �X)�
� 1
2

V V:" = R�0�R0; (49)

with R an orthonormal m � m matrix and �0� a diagonal m � m matrix that contains the

characteristic roots.
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Proof. see the Appendix.

In our simulation experiment we use two included endogenous variables so m = 2: We also

use the speci�cations for R and �0� :

R =

�
cos(�)
sin(�)

... � sin(�)
cos(�)

�
; 0 � � � 2�; �0� =

�
�1
0

... 0
�2

�
: (50)

With these three parameters: � ; �1 and �2; we can generate any value of the matrix con-

centration parameter and therefore also every distribution of the subset LR statistic. In our

simulation experiment, we compute the rejection frequencies of testing H0 using the subset AR

and LR statistics for a range of values of � ; �1; �2 and k: This range is chosen such that:

0 � � < 2�; 0 � �1 � 100; 0 � �2 � 100; (51)

and we use values of k from two to one hundred. For every parameter, we use �fty di¤erent

values on an equidistant grid and �ve thousand simulations to compute the rejection frequency.

Maximal rejection frequency over the number of instruments. Figure 1 shows the

maximal rejection frequency of testing H0 at the 95% signi�cance level using the subset AR and

LR statistics over the di¤erent values of (� ; �1; �2) as a function of the number of instruments.

We use the �2 critical value function for the subset AR statistic and the conditional critical

values of CLR(�0) given ~s
2
min for the subset LR statistic. Figure 1 shows that both statistics

are size correct for all numbers of instruments.
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Figure 1. Maximal rejection frequencies of subset AR (dashed) and subset LR (solid)

statistics when testing the 95% signi�cance level for di¤erent numbers of instruments.
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Maximal rejection frequencies as function of the characteristic roots of the ma-
trix concentration parameter To further illustrate the size properties of the subset AR

and LR tests, we compute the maximal rejection frequencies over � as a function of (�1; �2) for

k = 5; 10; 20; 50 and 100: These are shown in Panels 1-5. All panels are in line with Figure 5

and show no size distortion of either the subset AR or subset LR tests. The panels show that

both tests are conservative at small values of both �1 and �2:
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Panel 1. Maximal rejection frequency over � for di¤erent values of (�1; �2) for k = 5:
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Figure 1.1. subset AR statistic Figure 1.2. subset LR statistic

Panel 2. Maximal rejection frequency over � for di¤erent values of (�1; �2) for k = 10:
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Figure 2.1. subset AR statistic Figure 2.2. subset LR statistic
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Panel 3. Maximal rejection frequency over � for di¤erent values of (�1; �2) for k = 20:
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Figure 3.1: subset AR statistic Figure 3.2. subset LR statistic

Panel 4. Maximal rejection frequency over � for di¤erent values of (�1; �2) for k = 50:
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Figure 4.1. subset AR statistic Figure 4.2. subset LR statistic
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Panel 5. Maximal rejection frequency over � for di¤erent values of (�1; �2) for k = 100:
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Figure 5.1. subset AR statistic Figure 5.2. subset LR statistic

To show the previously referred to size distortion of the subset score statistic, Panels 6 and

7 show the rejection frequency of the subset LM statistic for testing H0: These �gures again

show the maximal rejection frequency over � as a function of (�1; �2): They clearly show the

increasing size distortion when k gets larger which occurs for settings where �W = ��X with

�X sizeable and � small so �W is small and tangent to �X : The implied value of � is therefore

of reduced rank so either �1 or �2 is equal to zero.
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Panel 6. Maximal rejection frequency over � as function of (�1; �2) for subset LM statistic
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Figure 6.1. k = 10 Figure 6.2. k = 20

Panel 7. Maximal rejection frequency over � as function of (�1; �2) for subset LM statistic
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Figure 6.3. k = 50 Figure 6.4. k = 100

5 More included endogenous variables

Theorems 1, 2, 4 and 5 extend to more non-hypothesized structural parameters, i:e: settings

where mW exceeds one. Theorem 3 can be generalized as well to show the relationship be-
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tween the conditioning statistic of the subset AR statistic under H� and the singular values of

�(�0; 0)
0�(�0; 0) for values ofm larger than two. Combining these results, Corollary 1, which

states that CLR(�0) given ŝ
2
min provides a bound on the conditional distribution of the subset

LR statistic, extends to values of m larger than two. Theorem 6 states the maximal error of

this bound by running through the di¤erent settings of the conditioning statistics. Since the

number of conditioning statistics is larger, we refrain from extending Theorem 6 to settings of

m larger than two.

For the estimator of the conditioning statistic, Theorem 7 is extended in the Appendix

to cover the sum of the largest m � 1 characteristic roots of (10) when m exceeds two while

the bound on the subset AR statistic is extended in Lemma 1 in the Appendix. Hence, the

estimator of the conditioning statistic

~s2min = smallest characteristic root (
�1(Y
... X

... W )0PZ(Y
... X

... W ))+

second smallest characteristic root (
�1(Y
... X

... W )0PZ(Y
... X

... W ))�AR(�0);
(52)

applies to tests of H0 : � = �0 for any number of additional included endogenous variable and

so does the bound on the conditional distribution of the subset LR statistic stated in Corollary

1.

Range of values of the estimator of the conditioning statistic. The estimator of the

conditioning statistic in (52) is a function of the subset AR statistic. Before we determine some

properties of ~s2min; we therefore �rst analyze the behavior of the realized value of the joint AR

statistic that tests H� : � = �0;  = 0 as a function of � = (�
0
0

... 00)
0:

Theorem 11. The realized value of the joint AR statistic that tests H � : � = �0; with � = (�
0

... 0)0 :

ARH�(�) = 1
�""(�)

(y � ~X�)0PZ(y � ~X�);

is a function of � that has a minimum, maximum and (m � 1) saddle points. The values of
the AR statistic at these stationarity points are equal to resp. the smallest, largest and, if m

exceeds one, the second up to m-th root of the characteristic polynomial (10).

Proof. see the Appendix.

Theorem 11 implies that in a linear IV regression model with one included endogenous

variable, the AR statistic has one minimum and one maximum while in linear IV models with

more included endogenous variables, the AR statistic also has (m � 1) saddle points. Saddle
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points are stationary points at which the Hessian is positive de�nite in a number of directions

and negative de�nite in the remaining directions. The saddle point with the lowest value of the

joint AR statistic therefore results from maximizing in one direction and minimizing in all other

(m� 1) directions. The subset AR statistic that tests H0 results from minimizing the joint AR
statistic over  at � = �0: The maximal value of the subset AR statistic is therefore smaller

than or equal to the smallest value of the joint AR statistic over the di¤erent saddle points

since it results from constrained optimization (because of the ordering of the variables where

you optimize over). When m = 1; the optimization is unconstrained, since no minimization

is involved, so the maximal value of the subset AR statistic is equal to the second smallest

characteristic root which is in that case also the largest characteristic root.

Corollary 3. The maximal value of the subset AR statistic is less than or equal to the second

smallest characteristic root of (10):

max� AR(�) � second smallest root (
�1(Y
... X

... W )0PZ(Y
... X

... W )): (53)

Corollary 4. The minimal value of the conditioning statistic is larger than or equal to the

smallest characteristic root of (10):

min� ~s
2
min � smallest root (
�1(Y

... X
... W )0PZ(Y

... X
... W )): (54)

Corollary 4 shows that the behavior of the conditioning statistic as a function of � for larger

values of m is similar to that when m = 1:

6 Testing at distant values

An important application of subset tests is to construct con�dence sets. Con�dence sets result

from specifying a grid of values of �0 and computing the subset statistic for each value of �0
on the grid.6 The (1 � �) � 100% con�dence set then consists of all values of �0 on the grid

for which the subset test is less than its 100 � �% critical value. These con�dence sets show

that the subset LR statistic that tests H0 : � = �0 at a value of �0 that is distant from the true

one is identical to the subset LR statistic that tests H :  = 0 at a value of 0 that is distant

6The con�dence sets that result from the subset tests can not (yet) be constructed using the e¢ cient proce-
dures developed by Dufour and Taamouti (2003) for the AR statistic and Mikusheva (2007) for the LR statistic
since these apply to tests on all structural parameters.

29



from the true one and the same holds true for the subset AR statistic.

Theorem 12. When mx = 1; Assumption 1 holds and for tests of H 0 : � = �0 for values of

�0 that are distant from the true value:

a. The subset AR statistic AR(�0) equals the smallest eigenvalue of 

� 1
2
0

XW (X
... W )0PZ(X

...

W )

� 1
2

XW ; with 
XW =

�
!XX
!WX

... !XW
!WW

�
:

b. The subset LR statistic equals

LR(�0) = �min � �min; (55)

with �min the smallest eigenvalue of 

� 1
2
0

XW (X
... W )0PZ(X

... W )

� 1
2

XW and �min the smallest

eigenvalue of (10).

c. The conditioning statistic ŝ2min equals

ŝ2min = smallest characteristic root (
�1(Y
... X

... W )0PZ(Y
... X

... W ))+

second smallest characteristic root (
�1(Y
... X

... W )0PZ(Y
... X

... W ))�
smallest characteristic root (
�1XW (X

... W )0PZ(X
... W )):

(56)

Proof. see the Appendix.

Theorem 12 shows that the expressions of the subset AR and LR statistics at values of �0
that are distant from the true value do not depend on �: Hence, the same value of the statistics

result when we use them to test for a distant value of any element of : The weak identi�ca-

tion of one structural parameter therefore carries over to all the other structural parameters.

Hence, when the power for testing one of the structural parameters is low because of its weak

identi�cation, it is low for all other structural parameters as well.

The smallest eigenvalue of 

� 1
2
0

XW (X
... W )0PZ(X

... W )

� 1
2

XW is identical to Anderson�s (1951)

canonical correlation reduced rank statistic which is the likelihood ratio statistic under ho-

moscedastic normal disturbances that tests the hypothesis Hr : rank(�W
... �X) = mw+mx�1;

see Anderson (1951). Thus Theorem 12 shows that the subset AR statistic is equal to a re-

duced rank statistic that tests for a reduced rank value of (�W
... �X) at values of �0 that are

distant from the true one. Since the identi�cation condition for � and  is that (�W
... �X) has

a full rank value, the subset AR statistic at distant values of �0 is identical to a test for the

identi�cation of � and :
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7 Weak instrument setting

For ease of exposition, we have assumed sofar that the instruments are pre-determined and u

and V are jointly normal distributed with mean zero and a known value of the (reduced form)

covariance matrix 
. Our results extend straightforwardly to i.i.d. errors, instruments that are

(possibly) random and an unknown covariance matrix 
: The analogues of the subset AR and

LR statistics in De�nition 1 for an unknown value of 
 are obtained by replacing 
 in these

expressions by the estimator:


̂ = 1
N�k (y

... X
... W )0MZ(y

... X
... W ); (57)

which is a consistent estimator of 
 under the outlined conditions, 
̂!
p

:

We next specify the parameter space for the null data generating processes.

Assumption 1. The parameter space 	 under H 0 is such that:

	 = f = f 1;  2g :  1 = (; �W ; �X);  2 Rmw ; �W 2 Rk�mw ; �X 2 Rk�mx ;
 2 = F : E(jjTijj2+�) < M; for Ti 2 f"i; Vi; Zi; Zi"i; ZiV 0

i ; "iVig;
E(Zi"i) = 0; E(ZiV

0
i ) = 0; E((vec(Zi("i

... V 0
i ))(vec(Z

0
i("i

... V 0
i ))

0) =

(E(("i
... V 0

i )
0("i

... V 0
i ))
 E(ZiZ

0
i)) = (�
Q); � =

0B@ 1 0 0

��0 1 0

 0 1

1CA
0




0B@ 1 0 0

��0 1 0

 0 1

1CA
9>>=>>; ;

(58)

for some � > 0; M <1; Q = E(ZiZ
0
i) positive de�nite and 
 2 R(m+1)�(m+1) positive de�nite

symmetric.

Assumption 2 is a common parameter space assumption, see e.g. Andrews and Cheng

(2012), Andrews and Guggenberger (2009) and Guggenberger et al. (2012).

To determine the asymptotic size of the subset LR test, we analyze parameter sequences in

	 which lead to the speci�cation of the model for a sample of N i.i.d. observations as

yn = Xn� +Wnn + "n

Xn = Zn�X;n + VX;n

Wn = Zn�W;n + VW;n;

(59)

with yn : n� 1; Xn : n�mx; Wn : n�mw; Zn : n� k; "n : n� 1; VX;n : n�mx; VW;n : n�mw;
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� : mx � 1; n : mw � 1; �X;n : k �mx; �W;n : k �mw: The rows of ("n
... VX;n

... VW;n
... Zn) are

i.i.d. distributed with distribution Fn: The mean of the rows of ("n
... VX;n

... VW;n
... Zn) equals

zero and their covariance matrix is

�n =

�
�"";n
�V ";n

... �"V;n
�V V;n

�
: (60)

These sequences are assumed to allow for a singular value decomposition, see e:g: Golub and

Van Loan (1989), of the normalized reduced form parameter matrix.

Assumption 2. The singular value decomposition of �(n) = (Z 0nZn)
� 1
2 (�W;n

... �X;n)�
�1=2
V V:";n

that results from a sequence �n = (n; �W;n; �X;n; Fn) of null data generating processes in 	

has a singular value decomposition:

�(n) = (Z 0nZn)
� 1
2 (�W;n

... �X;n)�
�1=2
V V:";n = HnTnR

0
n 2 Rk�m; (61)

where Hn and Rn are k � k and m � m dimensional orthonormal matrices and Tn a k � n

rectangular matrix with the m singular values (in decreasing order) on the main diagonal, with

a well de�ned limit.

Theorem 13 states that the subset LR test is size correct for weak instrument settings.

Theorem 13. Under Assumptions 1 and 2, the asymptotic size of the subset LR test of H 0

with signi�cance level � :

AsySzLR,� = lim supn!1 sup�2	 Pr�
�
LRn(�0) > CLR1��(�0js2min = ~s2min;n)

�
; (62)

where LRn(�0) is the subset LR statistic for a sample of size n and CLR1��(�0js2min = ~s2min) is
the (1� �)� 100% quantile of the conditional distribution of CLR(�0) given that s

2
min = ~s

2
min;

is equal to � for 0 < � < 1:

Proof. see the Appendix.

Equality of the rejection frequency of the subset LR test and the signi�cance level occurs

when  is well identi�ed. When  becomes less well identi�ed, the subset LR test, identical to

the subset AR test, becomes conservative.
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8 Conclusions

Inference using the LR statistic to test a hypothesis on one structural parameter in the ho-

moscedastic linear IV regression model extends straightforwardly from one included endogenous

variable to several. The �rst and foremost extension is that of the conditional critical value

function. The conditional critical value function of the LR statistic in the linear IV regression

model with one included endogenous variable from Moreira (2003) extends with the usual de-

grees of freedom adjustments of the involved �2 distributed random variables to the subset LR

statistic that tests a hypothesis on the structural parameter of one of several included endoge-

nous variables in a linear IV regression model with multiple included endogenous variables.

The expression of the conditioning statistic involved in the conditional critical value function

also remains unaltered. This speci�cation of the conditional critical value function and its con-

ditioning statistic makes the LR statistic for testing hypotheses on one structural parameter

size correct.

A second important property of the conditional critical value function is optimality of the

resulting subset LR test under strong identi�cation of all untested structural parameters. When

all untested structural parameters are well identi�ed, the subset LR test becomes identical to

the LR test in the linear IV regression model with one included endogenous variable for which

Andrews et al. (2006) show that the LR test is optimal under weak and strong identi�cation

of the hypothesized structural parameter. Establishing optimality while allowing for any kind

of identi�cation strength for the untested parameters is complicated since the usual optimality

criteria are often no longer sensible. In Guggenberger et al. (2017), conditional critical values

for the subset AR statistic are constructed which make it nearly optimal under weak instruments

for the untested structural parameters but not so under strong instruments.
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Appendix

Lemma 1. a. The distribution of the subset AR statistic (5) for testing H 0 : � = �0 is

bounded according to

AR (�0) �
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'
� �(�0; 0)

0M�(�0;0)(Imw0 )
�(�0; 0)

= �0� + � 0� � �2(k �mw):

(63)

b. When mw = 1; we can specify the subset AR statistic as

AR(�0) � (�0� + �2)�
�
1� '2

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

�
� e (64)

with

e = 2

 
v�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

v2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

!2
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
v2+(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )(
1�

�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)

v2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
+

4�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)�

v2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
�2
)�1

;

(65)

so

e = O

0@ v�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)

v2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

!21A � 0: (66)

Proof. a. To obtain the approximation of the subset AR statistic, AR(�0); we use that it
equals the smallest root of the characteristic polynomial:�����
(�0)� (y �X�0

... W )0PZ(y �X�0
... W )

���� = 0:

We �rst pre- and post multiply the matrices in the characteristic polynomial by�
1
�0

... 0
ImW

�
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to obtain������ 1
�0

... 0
ImW

�0

(�0)

�
1
�0

... 0
ImW

�
�
�

1
�0

... 0
ImW

�0 �
Z�W (0

... Imw) + ("
... VW )

�
1
0

... 0
ImW

��0
PZ

�
Z�W (0

... Imw) + ("
... VW )

�
1
0

... 0
ImW

���
1
�0

... 0
ImW

����� = 0,������W � �" ... Z�W + VW

�0
PZ

�
"
... Z�W + VW

����� = 0:

where �W =

�
1
�0

... 0
ImW

�0

(�0)

�
1
�0

... 0
ImW

�
: We now specify �

� 1
2

W as

�
� 1
2

W =

 
�
� 1
2

""

0

...
���1"" �"W�

� 1
2

ww:"

�
� 1
2

ww:"

!

with �WW:" = �WW � �W"�
�1
"" �"W ; so we can specify the characteristic polynomial as well as:������� 1

2
0

W �W�
� 1
2

W � ��
1
2
0

W

�
"
... Z�W + VW

�0
PZ

�
"
... Z�W + VW

�
�
� 1
2

W

���� = 0,�����ImW+1 � ��(�0; 0) ... �(�0; 0)�Imw0 ��0 ��(�0; 0) ... �(�0; 0)�Imw0 ������ = 0

with � =
�

�""
�V "

... �"V
�V V

�
; with �"" : 1� 1; �V " = �0"V : m� 1 and �V V : m�m;

�
� 1
2
0

V V:" =

 
�
� 1
2

WW:"

���
1
2

XX:(" : W )
�XW:"�

�1
WW:"

...
0

�
� 1
2

XX:(" : W )

!
;

�WW:" = �WW��W"�
�1
"" �"W ; �XW:" = �XW��X"��1"" �"W ; �XX:(" : W ) = �XX�

�
�"X
�WX

�0
��1W

�
�"X
�WX

�
:

We note that �(�0; 0) and �(�0; 0) are independently distributed since 
�
� 1
2

"" ��"V
�""
�
� 1
2

V V:"

0 �
� 1
2

V V:"

!0
�

 
�
� 1
2

"" ��"V
�""
�
� 1
2

V V:"

0 �
� 1
2

V V:"

!

is block diagonal. Returning to the characteristic polynomial, it reads�����ImW+1 � ��(�0; 0) ... �(�0; 0)�Imw0 ��0 ��(�0; 0) ... �(�0; 0)�Imw0 ������ = 0,�����ImW+1 � � �(�0;0)
0�(�0;0)

(Imw0 )
0
�(�0;0)

0�(�0;0)

...
�(�0;0)

0�(�0;0)(Imw0 )
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )

����� = 0:
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We specify
�

�(�0;0)
0�(�0;0)

(Imw0 )
0
�(�0;0)

0�(�0;0)

...
�(�0;0)

0�(�0;0)(Imw0 )
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )

�
as follows

�
�(�0;0)

0�(�0;0)

(Imw0 )
0
�(�0;0)

0�(�0;0)

...
�(�0;0)

0�(�0;0)(Imw0 )
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )

�
=

=

�
1
0

... �(�0;0)
0�(�0;0)(Imw0 )

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

Imw

�
�
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

0

... 0

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

�
�
1
0

... �(�0;0)
0�(�0;0)(Imw0 )

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

Imw

�0
=

 
1
0

... v
0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2

Imw

!
�
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

0

... 0

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

�
�

1h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2 v

... 0
Imw

�
;

with ' =
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i� 1
2 �Imw

0

�0
�(�0; 0)

0�(�0; 0) !
d
N(0; Imw) and inde-

pendent of �(�0; 0)
0M�(�0;0)(Imw0 )

�(�0; 0) and
�
Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�
; which are inde-

pendent of one another as well, so the characteristic polynomial becomes:������ImW+1 �
 
1
0

... '
0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2

Imw

!�
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

0

...

... 0

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

��
1h

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2 '

... 0
Imw

����� = 0:

We can construct a bound on the smallest root of the above polynomial by noting that the

smallest root coincides with

minc

"
1

( 1�c)
0
( 1�c)

�
1
�c
�0 1

0

... '
0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2

Imw

!�
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

0

...

... 0

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

��
1h

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2 '

... 0
Imw

��
1
�c
��
:

If we use a value of c equal to

~c =
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i� 1
2
'
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and substitute it into the above expression, we obtain an expression that is always larger than

or equal to the smallest root, i:e: the subset AR statistic, since this is the minimal value with

respect to c; see Guggenberger et al. (2012),

AR(�0) �
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'
= �0�+�0�

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

� �0� + � 0� � �2(k �mw):

This shows that the subset AR statistic is less than or equal to a �2(k � mw) distributed

random variable. The upper bound on the distribution of the subset AR statistic coincides

with its distribution when �(�0; 0)
�
Imw
0

�
is large so it is a sharp upper bound.

b. We assess the approximation error when using the upper bound for AR(�0) when mw = 1:

In order to do so, we use that

AR(�0) = minc f(c);

with

f(c) =
( 1�c)

0
A( 1�c)

( 1�c)
0
( 1�c)

;

and

A =

 
1
0

... '
0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2

Imw

!�
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

0

...

... 0

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

��
1h

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
i� 1

2 '

... 0
Imw

��
1
�c
��
:

:

The subset AR statistic evaluates f(c) at ĉ while our approximation does so at ~c: To assess the

magnitude of the approximation error, we conduct a �rst order Taylor approximation:

f(ĉ) � f (~c) +
�
@f
@c
j~c
�
(ĉ� ~c);

for which we obtain the expression of (ĉ�~c) from a �rst order Taylor approximation of
�
@f
@c
jĉ
�
=

0 :
0 =

�
@f
@c
jĉ
�
�

�
@f
@c
j~c
�
+
�
@2f
@c2
j~c
�
(ĉ� ~c),

ĉ� ~c � �
�
@2f
@c2
j~c
��1 �

@f
@c
j~c
�

so upon combining:

f(ĉ) � f (~c)�
�
@2f
@c2
j~c
��1 �

@f
@c
j~c
�2
:
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The expressions for the �rst and second order derivative of f(c) read:

@f
@c
= 2

�
( 1�c)

0
A( 0�1)

( 1�c)
0
( 1�c)

� (
1
�c)

0
A( 1�c)

( 1�c)
0
( 1�c)

( 1�c)
0
( 0�1)

( 1�c)
0
( 1�c)

�
@2f
@c2
= 2

�
( 0�1)

0
A( 0�1)

( 1�c)
0
( 1�c)

� (
1
�c)

0
A( 0�1)

( 1�c)
0
( 1�c)

( 1�c)
0
( 0�1)

( 1�c)
0
( 1�c)

� 2(
1
�c)

0
A( 0�1)

( 1�c)
0
( 1�c)

( 1�c)
0
( 0�1)

( 1�c)
0
( 1�c)

+

4
( 1�c)

0
A( 1�c)

( 1�c)
0
( 1�c)

�
( 1�c)

0
( 0�1)

( 1�c)
0
( 1�c)

�2
� (

1
�c)

0
A( 1�c)

( 1�c)
0
( 1�c)

( 0�1)
0
( 0�1)

( 1�c)
0
( 1�c)

#
;

so using that
�
1
�~c
�0
A
�
0
�1
�
= 0;

�
1
�~c
�0
A
�
1
�~c
�
= �(�0; 0)

0M�(�0;0)(Imw0 )
�(�0; 0);

�
1
�~c
�0� 1

�~c
�
=

1 + '0
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i�1
';
�
1
�~c
�0� 0

�1
�
=
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i� 1
2
';�

0
�1
�0
A
�
0
�1
�
=
�
Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�
; we obtain that

@f
@c
j~c = �2

�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)�

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i� 1
2
'

@2f
@c2
j~c = 2

24 (Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )�
1+'0

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

� � �(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)�

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2+

4
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)�
1+'0

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

� '0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'�
1+'0

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2
35

= 2
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

"
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)
�

1

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'
+ 4

'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'�
1+'0

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2
35 :

Hence,

�
@2f
@c2
j~c
��1 �

@f
@c
j~c
�2
= 2

�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)�

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2 '0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'"
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)
� 1

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'
+

4
'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'�
1+'0

h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'

�2
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and

AR(�0) � �(�0; 0)
0M�(�0;0)(Imw0 )

�(�0; 0)�
�
1� '2

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
�

2

 
'2�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)�
'2+(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
�2
!

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
'2+(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )(
1�

�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
+

4�(�0;0)
0M

�(�0;0)(Imw0 )
�(�0;0)�

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
�2
)�135 ;

where we used that 1

1+'0
h
(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
i�1

'
=

(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
'2+(Imw0 )

0
�(�0;0)

0�(�0;0)(Imw0 )
: It shows

that the error of approximating f(ĉ) by f(~c) is of the order of

 
'�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

!2

or O(

 
'�(�0;0)

0M
�(�0;0)(Imw0 )

�(�0;0)

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )

!2
):

Lemma 2. The derivative of the approximate conditional distribution of the subset LR sta-

tistic given s2min = r (23) with respect to r is strictly larger than minus one and strictly smaller

than zero.

Proof.

@
@r
1
2

�
�2 + �0� � r +

p
(�2 + �0� + r)2 � 4r�0�

�
= 1

2

�
�1 + �2��0�+rp

(�2��0�+r)2+4�2�0�

�
since (�2 + �0� + r)2 � 4r�0� = (�2 � �0� + r)2 + 4�2�0� � (�2 � �0� + r)2; the derivative lies

between minus one and zero:

�1 < 1
2

�
�1 + �2��0�+rp

(�2��0�+r)2+4�2�0�

�
< 0:

The strict lowerbound on the derivative results since it is an increasing function of s2 :

@
@r
1
2

�
�1 + �2��0�+rp

(�2��0�+r)2+4�2�0�

�
= 1

2
p
(�2+�0�+r)2�4r�0�

h
1� (�2��0�+r)2

((�2+�0�+r)2�4r�0�)

i
= 1p

(�2+�0�+r)2�4r�0�

h
1� (�2��0�+r)2

(�2��0�+r)2+4�2�0�

i
� 0
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so its smallest value is attained at r = 0: When r = 0;

1
2

�
�1 + �2��0�p

(�2+�0�)2

�
= 1

2

�
�1 + �2��0�p

(�2+�0�)2

�
= 1

2

h
�1 + �2��0�

�2+�0�

i
= �1 + �2

�2+�0� > �1:

Proof of Theorem 1. The subset AR statistic equals the smallest root of (7). We �rst pre

and post multiply the characteristic polynomial by

 
1 0

�0 ImW

!
; which since

�����
 

1 0

�0 ImW

!����� = 1;
does not change the value of the determinant:�����
(�0)� �Y �X�0

... W
�0
PZ

�
Y �X�0

... W
����� = 0 ,�����

 
1 0

�0 ImW

!0
[�
(�0)�

�
Y �X�0

... W
�0
PZ

�
Y �X�0

... W
�
]

 
1 0

�0 ImW

!����� = 0 ,������WW �
�
Y �W0 �X�0

... W
�0
PZ

�
Y �W0 �X�0

... W
����� = 0:

We conduct a Choleski decomposition of �WW =

�
�""
�VW "

... �"VW
�VWVW

�
; with �"" : 1 � 1; �VW " =

�0"VW : m� 1 and �VWVW : mW �mW ;

�
� 1
2
0

WW =

 
�
� 1
2

""

���
1
2

VWVW :"�VW "�
�1
""

...
0

�
� 1
2

VWVW :"

!
;

with �VWVW :" = �VWVW � �VW "�
�1
"" �"VW ; and use it to further transform the characteristic

polynomial: ������WW �
�
Y �W0 �X�0

... W
�0
PZ

�
Y �W0 �X�0

... W
����� = 0 ,������� 1

2
0

WW

�
�WW �

�
Y �W0 �X�0

... W
�0
PZ

�
Y �W0 �X�0

... W
��
�
� 1
2

WW

���� = 0 ,�����Im+1 � ��(�0; 0) ... �(�0; 0)�ImW0 ��0��(�0; 0) ... �(�0; 0)�ImW0 ������ = 0;
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with
�(�0; 0) = (Z

0Z)�
1
2Z 0(y �W0 �X�0)=�

1
2
"";

�(�0; 0) = (Z
0Z)�

1
2Z 0

�
(W

... X)� (y �W0 �X�0)
�"V
�""

�
�
� 1
2

V V:"

and �V V:" = �V V � �V "�
�1
"" �"V =

�
�VWVW :"

�VXVW :"

... �VWVX:"

�VXVX:"

�
; �VWVX :" = �0VXVW :" : mW � mX ;

�VWVX :" = �
0
VXVX :"

: mX�mX : SincemW = 1; we can now specify the characteristic polynomial

as �����
 

�� �(�0; 0)
0�(�0; 0) �(�0; 0)

0�(�0; 0)
�
ImW
0

��
ImW
0

�0
�(�0; 0)

0�(�0; 0) �� s�

!����� = 0,�����
 
�� '0'� � 0� � �0� 's�

1
2

's�
1
2 �� s�

!����� = 0,

�2 � �('0'+ � 0� + �0� + s�) + (�0� + � 0�)s� = 0;

with

' =
h�

Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�i� 1
2 �Imw

0

�0
�(�0; 0)

0�(�0; 0) � N(0; Imw)

� =
h�

0
ImX

�0
[�(�0; 0)

0�(�0; 0)]
�1 � 0

ImX

�i� 1
2�

0
ImX

�0
[�(�0; 0)

0�(�0; 0)]
�1�(�0; 0)

0�(�0; 0)

� = �(�0; 0)
0
?�(�0; 0) � N(0; Ik�m)

s� =
�
Imw
0

�0
�(�0; 0)

0�(�0; 0)
�
Imw
0

�
so the smallest root is characterized by

1
2

�
'2 + �2 + �0� + s� �

q
('2 + �2 + �0� + s�)2 � 4(�2 + �0�)s�

�
:

Proof of Theorem 2. To obtain the conditional distribution of the roots of the characteristic

polynomial in (10), we pre and postmultiply it by

0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA ; which since

�������
0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA
������� = 1;
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does not change the value of the determinant:�����
� �Y ... W
... X
�0
PZ

�
Y
... W

... X
����� = 0 ,��������

0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA
0

[�
�
�
Y
... W

... X
�0
PZ

�
Y
... W

... X
�
]

0B@ 1 0 0

��0 ImX 0

�0 0 ImW

1CA
�������� = 0 ,

������� �Y �W0 �X�0
... W

... X
�0
PZ

�
Y �W0 �X�0

... W
... X
����� = 0:

We conduct a Choleski decomposition of � =
�
�""
�V "

�"V
�V V

�
; with �"" : 1 � 1; �V " = �0"V : m � 1

and �V V : m�m;

��
1
2
0 =

 
�
� 1
2

""

���
1
2

V V:"�V "�
�1
""

...
0

�
� 1
2

V V:"

!
;

with �V V:" = �V V � �V "�
�1
"" �"V ; and use it to further transform the characteristic polynomial:������� �Y �W0 �X�0

... W
... X
�0
PZ

�
Y �W0 �X�0

... W
... X
����� = 0 ,������� 1

2
0
�
��

�
Y �W0 �X�0

... W
... X
�0
PZ

�
Y �W0 �X�0

... W
... X
��
��

1
2

���� = 0 ,�����Im+1 � ��(�0; 0) ... �(�0; 0)�0��(�0; 0) ... �(�0; 0)����� = 0:
A singular value decomposition (SVD) of �(�0; 0) yields, see e:g: Golub and van Loan

(1989),

�(�0; 0) = USV 0:

The k�m andm�m dimensional matrices U and V are orthonormal, i.e. U 0U = Im, V 0V = Im:

The m�m matrix S is diagonal and contains the m non-negative singular values (s1 : : : sm) in

decreasing order on the diagonal. The number of non-zero singular values determines the rank
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of a matrix. The SVD leads to the speci�cation of the characteristic polynomial,�����Im+1 � ��(�0; 0) ... �(�0; 0)�0��(�0; 0) ... �(�0; 0)�����
=

������Im+1 �
 
�(�0; 0)

0�(�0; 0) �(�0; 0)
0USV 0

VS 0U 0�(�0; 0) VS2V 0

!�����
=

������Im+1 �
 
1 0

0 V

! 
�(�0; 0)

0�(�0; 0) �(�0; 0)
0US

S 0U 0�(�0; 0) S2

! 
1 0

0 V 0

!�����
=

������Im+1 �
 
�(�0; 0)

0MU�(�0; 0) + �(�0; 0)
0PU�(�0; 0) �(�0; 0)

0US
S 0U 0�(�0; 0) S2

!�����
=

������Im+1 �
 
 0 + �0�  0S
 S 0 S2

!�����
=

������Im+1 �
 
 S
� 0

!0 
 S
� 0

!����� ;
where we have used that V 0V = Im and  = U 0�(�0; 0) = (�(�0; 0)0�(�0; 0))�

1
2�(�0; 0)

0�(�0; 0);

� = U 0?�(�0; 0) = �(�0; 0)0?�(�0; 0); such that, since U 0?U = 0 and U 0?U? = Ik�m;  (�0) and

�(�0) are independent and  (�0) � N(0; Im); �(�0) � N(0; Ik�m):

Proof of Theorem 4. The derivative of the subset AR statistic with respect to s� reads:

@
@s�AR(�0) =

1
2

�
1� '2��0���2+s�p

('2��0���2+s�)2+4(�0�+�2)'2

�
� 0:

We do not have an closed form expression for the smallest root of (16) so we show that its

derivative with respect to s2max is non-negative using the Implicit Function Theorem. When

mx = mw = 1; we can specify (16) as

f(�; s2min; s
2
max) = (��  0 � �0�)(�� s2min)(�� s2max)�  21s

2
min(�� s2max)�  22s

2
max(�� s2min) = 0;

where s2min and s
2
max are resp. the smallest and largest elements of S2: The derivative of �min;

the smallest root of (16), with respect to s2max then reads
7

@�min
@s2max

= �@f=@s2max
@f=@�min

7Unless, � exactly equals s2min which again equals s
2
max; which is a probability zero event, the derivative

@�min
@s2max

is well de�ned. Hence, it exists almost surely.
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with

@f
@s2max

= �(�min �  0 � �0�)(�min � s2min) +  21s
2
min �  22(�min � s2min)

= �(�min �  21 � �0�)(�min � s2min) +  21s
2
min

@f
@�min

= (�min �  0 � �0�)(�min � s2min) + (�min �  0 � �0�)(�min � s2max)+

(�min � s2min)(�min � s2max)�  21s
2
min �  22s

2
max:

The derivative @f
@s2max

is a second order polynomial in � whose smallest root is equal to

� @f

@s2max

= 1
2

�
 21 + �0� + s2min �

q�
 21 + �0� + s2min

�2 � 4�0�s2min� � min(�0�; s2min) < s2max:

We specify the original third order polynomial using @f
@s2max

as follows:

f(�; s2min; s
2
max) = (�� s2max)

h
(��  0 � �0� +  22

s2max
s2max��

)(�� s2min)�  21s
2
min

i
= (�� s2max)

h
� @f
@s2max

+  22

�
s2max

s2max��
� 1
�
(�� s2min)

i
:

This speci�cation shows that when s2max goes to in�nity, the smallest root of f(�; s
2
min; s

2
max)

equals the smallest root of the second order polynomial @f
@s2max

:We can also use this speci�cation

to show that when @f
@s2max

= 0 :

f(�; s2min; s
2
max) = � 22�(�� s2min) � 0;

since � @f

@s2max

� s2min: The third order polynomial equation f(�; s
2
min; s

2
max) = 0 has three real

roots and f(�; s2min; s
2
max) goes o¤ to minus in�nity when � goes to minus in�nity. Hence, the

derivative @f
@�min

at �min is positive:
@f
@�
j�=�min > 0:

This implies that �min is less than or equal than the smallest root of
@f

@s2max
= 0; � @f

@s2max

; since

f(�; s2min; s
2
max) is larger than or equal to zero at this value. Consequently, since �min is less

than or equal to the smallest and largest root of @f
@s2max

= 0; factorizing @f
@s2max

using its smallest

and largest root yields:
@f

@s2max
j�min � 0)

@�min
@s2max

� 0:

Hence, the smallest of root of f(�; s2min; s
2
max) = 0 is a non-decreasing function of s

2
max:
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Proof of Theorem 5. When s� = s2min;

AR(�0) =
1
2

�
'2 + �2 + �0� � s2min +

q
('2 + �2 + �0� + s2min)

2 � 4(�2 + �0�)s2min

�
;

while when s� goes to in�nity:
AR(�0) !

s�!1
�2 + �0�:

The smallest root of (16) results from the characteristic polynomial:

f(�; s2min; s
2
max) = (��  0 � �0�)(�� s2min)(�� s2max)�  21s

2
min(�� s2max)�  22s

2
max(�� s2min) = 0:

When s2max = s2min; this polynomial can be speci�ed as

f(�; s2min; s
2
min) = (�� s2min)

�
(��  0 � �0�)(�� s2max)�  21s

2
min �  22s

2
min

�
= 0;

so the smallest root results from the polynomial

(��  0 � �0�)(�� s2min)�  0 s2min = 0

and equals

�low =
1
2

�
 0 + �0� + s2min �

p
( 0 + �0� + s2min)

2 � 4s2min�0�
�
:

When s2max goes to in�nity, we use that the third order polynomial can be speci�ed as

f(�; s2min; s
2
min) = (�� s2max)

h
(��  0 � �0�)(�� s2min)�  21s

2
min �  22

s2max
��s2max

(�� s2min)
i
= 0;

which implies that when s2max goes to in�nity, the smallest root results from:�
(��  0 � �0�)(�� s2min)�  21s

2
min +  22(�� s2min)

�
= 0,

(��  21 � �0�)(�� s2min)�  21s
2
min = 0:

so it equals

�up =
1
2

�
 21 + �0� + s2min �

q
( 21 + �0� + s2min)

2 � 4s2min�0�
�
:
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Proof of Theorem 6. The speci�cation of D(�0) reads:

D(�0) = ARup �AR(�0) + �min � 1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�
:

We analyze the conditional behavior of D(�0) for a given realized value of s
2
min over a range

of values of (s�; s2max): Alternatively, since s
� = (cos(�))2s2min + (sin(�))

2s2max; we could also

analyze the behavior of D(�0) over the di¤erent values of (�; s
2
max) for a given value of s

2
min:

Our approximations are based on the bounds on the subset AR statistic and �min for a realized

value of s2min stated in Theorem 5.

Only negative values of D(�0) can lead to size distortions. Since the conditional distribution

of AR(�0) is an increasing function of s
�; Theorem 5 shows that the smallest discrepancy

between ARup and AR(�0) occurs when s
� = s2max. For determining the worst case setting

of D(�0) over the range of values of (s
�; s2max); we therefore only need to analyze values for

which s� = s2max: We use three di¤erent settings for s
2
max : large, intermediate and small with

an identical value of s�:

s2max = s
� large: For large values of s2max; �min is well approximated by �up: Since s

2
max = s�;

 1 = v and  2 = ' so

�min = �up =
1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�

and

D(�0) = ARup �AR(�0) + �min � 1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�

= ARup �AR(�0)

= �2 + �0� � 1
2

�
'2 + �2 + �0� + s� �

q
('2 + �2 + �0� + s�)2 � 4(�2 + �0�)s�

�
= 0;

since s� is large. The approximate bounding distribution provides a sharp upper bound so

usage of conditional critical values that result from CLR(�0) given s
2
min for LR(�0) leads to

rejection frequencies that equal the size when s2max = s� is large.

s2max=s
� = s2min:When s

2
max = s2min; �min is the smallest root from a second order polynomial
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and reads

�low =
1
2

�
 0 + �0� + s2min �

q
( 0 + �0� + s2min)

2 � 4�0�s2min
�

= 1
2

�
'2 + �2 + �0� + s2min �

q
('2 + �2 + �0� + s2min)

2 � 4�0�s2min
�
:

Hence, we can express D(�0) as

D(�0) = �2 + �0� � 1
2

�
'2 + �2 + �0� + s2min �

q
('2 + �2 + �0� + s2min)

2 � 4(�2 + �0�)s2min

�
+

1
2

�
'2 + �2 + �0� + s2min �

q
('2 + �2 + �0� + s2min)

2 � 4�0�s2min
�
�

1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�

= �2 + �0� � 1
2

�
'2 + �2 + �0� + s2min �

q
('2 � �2 � �0� + s�)2 + 4(�2 + �0�)'2

�
+

1
2

�
'2 + �2 + �0� + s2min �

q
('2 + �2 � �0� + s2min)

2
+ 4(�2 + '2)�0�

�
�

1
2

�
�2 + �0� + s2min �

q
(�2 � �0� + s2min)

2
+ 4�2�0�

�
:

We conduct Taylor approximations of the square root components in the above expressions

around zero and "in�nite" values of s2min: We start out with the approximations for small

values of s2min for which we use thatq
('2 + �2 + �0� + s2min)

2 � 4(�2 + �0�)s2min � '2 + �2 + �0� + s2min �
2(�2+�0�)s2min

'2+�2+�0�+s2minq
('2 + �2 + �0� + s2min)

2 � 4�0�s2min � '2 + �2 + �0� + s2min �
2�0�s2min

'2+�2+�0�+s2minq
(�2 + �0� + s2min)

2 � 4�0�s2min � �2 + �0� + s2min �
2�0�s2min

�2+�0�+s2min
:

The resulting expression for the approximation error then becomes:

D(�0) = �0�
h
1� s2min

�2+�0�+s2min

i
+ �2s2min

h
1� s2min

'2+�2+�0�+s2min

i
> 0:
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For large values of s2min; we use the approximations:q
('2 � �2 � �0� + s2min)

2
+ 4(�2 + �0�)'2 � '2 � �2 � �0� + s2min +

2(�2+�0�)'2

'2��2��0�+s2minq
('2 + �2 � �0� + s2min)

2
+ 4�0�('2 + �2) � '2 + �2 � �0� + s2min +

2('2+�2)�0�
'2+�2��0�+s2minq

(�2 � �0� + s2min)
2
+ 4�2�0� � �2 � �0� + s2min +

2�2�0�
�2��0�+s2min

;

so the expression for D(�0) becomes:

D(�0) = �2�0�
h

1
�2��0�+s2min

� 1
'2+�2��0�+s2min

i
+ '2�0�

h
1

'2��2��0�+s2min
� 1

'2+�2��0�+s2min

i
+

�2�0�
'2��2��0�+s2min

� 0:

The approximation error D(�0) is thus non-negative for both settings.

s2max=s
� > s2min: Since �min exceeds �low; we obtain the lower bound for D(�0) :

D(�0) = ARup �AR(�0) + �min � 1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�

� ARup �AR(�0) + �low � 1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�
:

We again use the two sets of approximations stated above and we �rst do so for small values

of s� and s2min:q
('2 + �2 + �0� + s�)2 � 4(�2 + �0�)s� � '2 + �2 + �0� + s� � 2(�2+�0�)s�

'2+�2+�0�+s�q
('2 + �2 + �0� + s2min)

2 � 4�0�s2min � '2 + �2 + �0� + s2min �
2�0�s2min

'2+�2+�0�+s2minq
(�2 + �0� + s2min)

2 � 4�0�s2min � �2 + �0� + s2min �
2�0�s2min

�2+�0�+s2min
:

Combining, we obtain

D(�0) � �0�
h
1� s�

'2+�2+�0�+s� + s2min

n
1

'2+�2+�0�+s2min
� 1

�2+�0�+s2min

oi
+

�2
h
1� s�

'2+�2+�0�+s�

i
= (�0� + �2)

h
'2+�2+�0�

'2+�2+�0�+s�

i
� �0� '2

'2+�2+�0�+s2min

s2min
�2+�0�+s2min
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so a su¢ cient condition for D(�0) to be non-negative is that

'2+�2+�0�
'2+�2+�0�+s� �

'2

'2+�2+�0�+s2min
,

1
1+s�=('2+�2+�0�) �

1
1+(�2+�0�+s2min)='

2 ,
s�=('2 + �2 + �0�) � (�2 + �0� + s2min)='

2 ,
s� � (�2 + �0�)

�
1 + �2+�0�

'2

�
+ �2+�0�

'2
s2min:

This upperbound does, however, not use that it is based on a lower bound for �min so when

s� = (�2 + �0�)
�
1 + �2+�0�

'2

�
+ �2+�0�

'2
s2min; s

2
max = s� > s2min so the lower bound isn�t binding

and �min exceeds the lower bound. To assess the magnitude of the di¤erence between �min and

�low; we analyze the characteristic polynomial using s
� = s2max = s2min + h :

(�� s2min) [(�
2 � �( 0 + �0� + s2min) + �0�s2min]�

h
�
�2 � �( 21 + �0�) + s2min�

0�
�
= 0:

The above expression of the characteristic polynomial consists of the di¤erence between two

polynomials. The smallest root of the �rst of these two polynomials is the lower bound of the

smallest root of the characteristic polynomial while the smallest root of the second polynomial

is the upper bound of the smallest root of the characteristic polynomial. When h = 0; the �rst

polynomial thus provides the smallest root of the characteristic polynomial while when h goes

to in�nity, the second polynomial provides the smallest root. For a non-zero value of h; the

smallest root of the characteristic polynomial is thus a weighted combination of the two smallest

roots of the di¤erent polynomials with weights roughly equal to j�min�s2minj
j�min�s2minj+h

and h
j�min�s2minj+h

:

When we use this for D(�0), we obtain

D(�0) � (�0� + �2)
h

'2+�2+�0�
'2+�2+�0�+s2min+h

i
� �0�

j�min�s2minj
j�min�s2minj+h

'2

'2+�2+�0�+s2min

s2min
�2+�0�+s2min

;

so a su¢ cient condition for D(�0) to be non-negative is that

'2+�2+�0�
'2+�2+�0�+s� �

j�min�s2minj
j�min�s2minj+h

'2

'2+�2+�0�+s2min
,

1
1+s�=('2+�2+�0�) �

1
1+(h'2+(j�min�s2minj+h)(�2+�0�+s2min)=('2j�min�s2minj)

,
s�=('2 + �2 + �0�) � (h'2 + (j�min � s2minj+ h)(�2 + �0� + s2min)=('

2j�min � s2minj) ,
s2min + h � (1 + h('2 + 1)=j�min � s2minj)(�2 + �0� + s2min)(1 + (�

2 + �0�)='2) ,
s2min + h �

h
s2min + h('2 + 1)

s2min
j�min�s2minj

i
(1 + (�2 + �0�)='2)+ ,

(1 + h('2 + 1)=j�min � s2minj)(�2 + �0�)(1 + (�2 + �0�)='2)

49



which always holds since s2min
j�min�s2minj

� 1: Hence, for small values of s� and s2min; D(�0) is non-
negative.

For larger values of s� and s2min; we use the approximations:q
('2 � �2 � �0� + s�)2 + 4(�2 + �0�)'2 � '2 � �2 � �0� + s� + 2(�2+�0�)'2

'2��2��0�+s�q
('2 + �2 � �0� + s2min)

2
+ 4�0�('2 + �2) � '2 + �2 � �0� + s2min +

2('2+�2)�0�
'2+�2��0�+s2minq

(�2 � �0� + s2min)
2
+ 4�2�0� � �2 � �0� + s2min +

2�2�0�
�2��0�+s2min

;

to specify D(�0) as

D(�0) � ARup �AR(�0) + �low � 1
2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
�

� �2 + �0� � 1
2

h
'2 + �2 + �0� + s� � '2 + �2 + �0� � s� � 2(�2+�0�)'2

'2��2��0�+s�

i
+

1
2

h
'2 + �2 + �0� + s2min � '2 � �2 + �0� � s2min �

2('2+�2)�0�
'2+�2��0�+s2min

i
�

1
2

h
�2 + �0� + s2min � �2 + �0� � s2min � 2�2�0�

�2��0�+s2min

i
= (�2+�0�)'2

'2��2��0�+s� �
('2+�2)�0�

'2+�2��0�+s2min
+ �2�0�

�2��0�+s2min
= �0�

h
'2

'2��2��0�+s� �
'2

'2+�2��0�+s2min
+ �2

�2��0�+s2min
� �2

'2+�2��0�+s2min

i
+

�2'2

'2��2��0�+s� :

Since both s� and s2min are reasonably large, all the elements in the above expression are small.

When we further incorporate, as we did directly above that we can specify �min as a weighted

combination of �low and �up; we obtain

D(�0) � ARup �AR(�0) +
j�min�s2minj
j�min�s2minj+h

�
�low � 1

2

�
�2 + �0� + s2min �

q
(�2 + �0� + s2min)

2 � 4�0�s2min
��

� �2 + �0� � 1
2

h
'2 + �2 + �0� + s� � '2 + �2 + �0� � s� � 2(�2+�0�)'2

'2��2��0�+s�

i
+

1
2

j�min�s2minj
j�min�s2minj+h

h
'2 + �2 + �0� + s2min � '2 � �2 + �0� � s2min �

2('2+�2)�0�
'2+�2��0�+s2min

i
�

1
2

j�min�s2minj
j�min�s2minj+h

h
�2 + �0� + s2min � �2 + �0� � s2min � 2�2�0�

�2��0�+s2min

i
= (�2+�0�)'2

'2��2��0�+s� �
j�min�s2minj
j�min�s2minj+h

('2+�2)�0�
'2+�2��0�+s2min

+
j�min�s2minj
j�min�s2minj+h

�2�0�
�2��0�+s2min

= �0�
h

'2

'2��2��0�+s� �
j�min�s2minj
j�min�s2minj+h

'2

'2+�2��0�+s2min
+

j�min�s2minj
j�min�s2minj+h

n
�2

�2��0�+s2min
� �2

'2+�2��0�+s2min

oi
+

�2'2

'2��2��0�+s� :

Except for the �rst di¤erence in the above expression, all parts are non-negative. When we
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further decompose the �rst using,

1
'2��2��0�+s2min+h

� j�min�s2minj
j�min�s2minj+h

1
'2+�2��0�+s2min

= 1
(j�min�s2minj+h)('2��2��0�+s�)('2+�2��0�+s2min)

[j�min � s2minj [2�2 � h] + h('2 + �2 � �0� + s2min)]

= 1
(j�min�s2minj+h)('2��2��0�+s�)('2+�2��0�+s2min)

[h(s2min � j�min � s2minj) + 2j�min � s2minj�2+
h('2 + �2 � �0�)] � 0;

since s2min � j�min � s2minj; we obtain that D(�0) � 0:

Proof of Theorem 7. Using the SVD from the proof of Theorem 2, we can specify�
�(�0; 0)

... �(�0; 0)
�
= U( ... SV 0) + (U?�

... 0)

so �
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
= V�S�V�0 +

 
�0� 0

0 0

!
;

with S� = diag(s�1 : : : s
�
m); s

�
i = s2i +  2i ; i = 1; : : : ;m; S� =

�
s�max
0

... 0
S�2

�
; s�max = s2max +  21;

S�2 = diag(s�2 : : : s
�
m); V�0 = S��

1
2 ( 

... SV 0): We note that V� is not orthonormal but all of its

rows have length one. The quadratic form of
�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
with respect to v�1 =

�
 1

V1smax

�
s
�� 1

2
max ; V� = (v�1

... V�2 ); is now such that

v�01

�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
v�1

= v�01

"
V�S�V�0 +

 
�0� 0

0 0

!#
v�1

= s�max + v�01 V�2S�2V�02 v�1 + v�01

 
�0� 0

0 0

!
v�1

= s2max +  21 +
 21
s�max

( 02 2 + �0�)

� s2max +  21;
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with  = ( 1
...  02)

0;  1 : 1�1:As a consequence, since �max � v�01

�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
v�1;

we can specify the largest root �max as

�max = s2max +  21 +
 21
s�max

( 02 2 + �0�) + h;

with h � 0:
To assess the magnitude of h; we specify the function g(d) :

g(d) =
( 1�d)

0
B( 1�d)

( 1�d)
0
( 1�d)

with

B = V�S�V�0 +
 
�0� 0

0 0

!
:

We use ~d = �v�21=v�11 with v�1 =
�
v�11
v�21

�
=
�

 1
V1smax

�
s
�� 1

2
max so

�
1
�d
�
=
�

1
V1smax= 1

�
:

The largest root �max can be speci�ed as:

�max = maxd g(d):

To assess the approximation error of using our lower bound for the largest root, we conduct a

�rst order Taylor approximation:

g(d̂) = g( ~d) +
�
@g
@d
j ~d
�0
(d̂� ~d)

0 =
�
@g
@d
jd̂
�
=

�
@g
@d
j ~d
�
+
�

@2g
@d@d0 j ~d

�
(d̂� ~d)

g(d̂) = g( ~d)�
�
@g
@d
j ~d
�0 � @2g

@d@d0 j ~d
��1 �

@g
@d
j ~d
�
:
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The �rst and second order derivatives are such that

@g
@d
= 2

�
( 0
�Im)

0
B( 1�d)

( 1�d)
0
( 1�d)

� (
0

�Im)
0
( 1�d)

( 1�d)
0
( 1�d)

( 1�d)
0
B( 1�d)

( 1�d)
0
( 1�d)

�
@2g
@d@d0 = 2

�
( 0
�Im)

0
B( 0

�Im)
( 1�d)

0
( 1�d)

� 2(
0

�Im)
0
B( 1�d)

( 1�d)
0
( 1�d)

( 1�d)
0
( 0
�Im)

( 1�d)
0
( 1�d)

�

2
( 0
�Im)

0
( 1�d)

( 1�d)
0
( 1�d)

( 1�d)
0
B( 0

�Im)
( 1�d)

0
( 1�d)

� (
0

�Im)
0
( 0
�Im)

( 1�d)
0
( 1�d)

( 1�d)
0
B( 1�d)

( 1�d)
0
( 1�d)

+

4
( 0
�Im)

0
( 1�d)

( 1�d)
0
( 1�d)

( 1�d)
0
B( 1�d)

( 1�d)
0
( 1�d)

( 1�d)
0
( 0
�Im)

( 1�d)
0
( 1�d)

�
= 1

( 1�d)
0
( 1�d)

�
0

�Im

�0 h
M( 1�d)

� P( 1�d)

i0
B
h
M( 1�d)

� P( 1�d)

i �
0

�Im

�
�

( 0
�Im)

0
( 0
�Im)

( 1�d)
0
( 1�d)

( 1�d)
0
B( 1�d)

( 1�d)
0
( 1�d)

We now use that
�

1
V1smax= 1

�
B
�
1
� ~d
�
=

�
 0 
VS0 

...  
0SV 0
VSV 0

��
1

V1smax= 1

�
+

�
�0�
0

... 0
0

��
1

V1smax= 1

�
=

�
 0 +s2max+�

0�
VS0 +s2maxV1= 1

�
�

0
�Im

�0
B
�
1
� ~d
�
= �(VS 0 + s3maxV1= 1)�

0
�Im

�0� 1
� ~d
�
= �V1smax= 1

( 1� ~d)(
1
� ~d)

0

( 1� ~d)
0
( 1� ~d)

=
( 1
V1smax= 1)(

1
V1s1= 1)

0

1+s2max= 
2
1

=
(  1
V1smax)(

 1
V1smax)

0

s2max+ 
2
1

( 
... SV 0)

�
Im+1 �

( 1� ~d)(
1
� ~d)

0

( 1� ~d)
0
( 1� ~d)

�
=

 
0

 2(1�
 21

s2max+ 
2
1
)

... 0

sminv
0
1�

 2 1s1v
0
1

s2max+ 
2
1

!

( 
... SV 0)(

1
� ~d)(

1
� ~d)

0

( 1� ~d)
0
( 1� ~d)

=

 
 1
 2 

2
1

s2max+ 
2
1

...
smaxv01

 1 2smaxv
0
1

s2max+ 
2
1

!
�

0
�Im

�0
M( 1� ~d)

V�S�V�0M( 1� ~d)
�

0
�Im

�
=

�
v2smin � v1

 2 1smax
s2max+ 

2
1

��
sminv

0
2 �

 2 1smax
s2max+ 

2
1
v01

�
�

0
�Im

�0
M( 1� ~d)

V�S�V�0P( 1� ~d)
�

0
�Im

�
=

�
v2smin � v1

 1 2smax
s2max+ 

2
m

��
 1 2smax
s2max+ 

2
1
v01

�
�

0
�Im

�0
P( 1� ~d)

V�S�V�0P( 1� ~d)
�

0
�Im

�
= v1v

0
1s
2
max(1 + (

 1 2
s2max+ 

2
1
)2)�

0
�Im

�0
M( 1� ~d)

 
�0� 0

0 0

!
M( 1� ~d)

�
0

�Im

�
= v2v

0
2�
0�
�

 2smax
s2max+ 

2
1

�2
�

0
�Im

�0
M( 1� ~d)

 
�0� 0

0 0

!
P( 1� ~d)

�
0

�Im

�
= �v1v01�0�

�
 1smax
s2max+ 

2
1

�2
�

0
�Im

�0
P( 1� ~d)

 
�0� 0

0 0

!
P( 1� ~d)

�
0

�Im

�
= v1v

0
1�
0�
�

 1smax
s2max+ 

2
1

�2

53



�
1
� ~d
�0� 1

� ~d
�
= 1 + s2max= 

2
1�

1
� ~d
�0
B
�
1
� ~d
�
=  0 + s2max + �0� + s2max + s4max= 

2
1

( 1� ~d)
0
B( 1� ~d)

( 1� ~d)
0
( 1� ~d)

=  0 +s2max+�
0�+s2max+s

2
max= 

2
1

1+s2max= 
2
1

=  21 
2
1+ 

2
1 

0
2 2+2 

2
1s
2
max+ 

2
1�
0�+s2max

 21+s
2
max

= ( 21+s
2
max)

2+ 21( 
0
2 2+�

0�)

 21+s
2
max

=  21 + s2max +
 21

 21+s
2
max
( 02 2 + �0�)

( 0
�Im)

0
( 1� ~d)

( 1� ~d)
0
( 1� ~d)

= � V1smax= 1
1+s2max= 

2
1
= �V1smax 1

 21+s
2
max

( 0
�Im)

0
B( 1�d)

( 1�d)
0
( 1�d)

= �VS0 +s2maxV1= 1
1+s2max= 

2
1

= � 21smaxV1 1+s2maxV1 1+ 21V2Smin 2
 21+s

2
max

Since
( 0
�Im)

0
( 0
�Im)

( 1� ~d)
0
( 1� ~d)

( 1� ~d)
0
B( 1� ~d)

( 1� ~d)
0
( 1� ~d)

=
h
 21 + s2max +

 21
 21+s

2
max
( 02 2 + �0�)

i
 21

s2max+ 
2
1
Im

=  21Im +
�

 21
 21+s

2
max

�2
( 02 2 + �0�)Im

= ( 21 +
�

 21
 21+s

2
max

�2
( 02 2 + �0�))(v1v

0
1 + v2v

0
2)

and

1

( 1�d)
0
( 1�d)

�
0

�Im

�0 h
M( 1�d)

� P( 1�d)

i0
B
h
M( 1�d)

� P( 1�d)

i �
0

�Im

�
=

 21
s2max+ 

2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
1

�0
+ v1v

0
1s
2
max

�
=

v1v
0
1 

2
1

�
1�  21

s2max+ 
2
1

�
+  21

s2max+ 
2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
1

�0�
we then obtain for the second order derivative that

@2g
@d@d0 j ~d =

1

( 1� ~d)
0
( 1� ~d)

�
0

�Im

�0 h
M( 1� ~d)

� P( 1� ~d)

i0
B
h
M( 1� ~d)

� P( 1� ~d)

i �
0

�Im

�
�

( 0
�Im)

0
( 0
�Im)

( 1� ~d)
0
( 1� ~d)

( 1� ~d)
0
B( 1� ~d)

( 1� ~d)
0
( 1� ~d)

= v1v
0
1

�
 21

s2max+ 
2
1

� h
�1 +

�
 21

 21+s
2
max

�
( 02 2 + �0�)

i
+ v2v

0
2( 

2
1 +

�
 21

 21+s
2
max

�2
( 02 2 + �0�))+

 21
s2max+ 

2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
1

��
v2smin � 2v1  1 2smaxs2max+ 

2
2

�0�
;

where we used that Im � v1v
0
1 = Mv1v01

= Pv2v02 = v2v
0
2: While for the �rst order derivative, we
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have that

@g
@d
j ~d = 2

h
� 21smaxV1 1+s3maxV1 1+ 21V2Smin 1

 21+s
2
max

+ V1s1 1
 21+s

2
max
( 21 + s2max +

 21
 21+s

2
max
( 02 2 + �0�))

i
= 2

 21+s
2
max

h
� 21V2Smin 2 + V1smax 1

 21
 21+s

2
max
( 02 2 + �0�))

i
:

To assess the magnitude of the error of approximating g(d̂) by g( ~d); we note that the �rst order

derivative, @g
@d
j ~d; is of the order

 21smax
( 21+s

2
max)

2 ( 
0
2 2 + �

0�) (= O(s�3max( 
0
2 2 + �

0�))) in the direction

of v1 while it is of the order smin
 21+s

2
max

(= O(smins
�2
max)) in the direction of v2: The second order

derivative, @2g
@d@d0 j ~d; is of the order

 21
s2max+ 

2
1
(= O(s�2max)) in the direction of v1v

0
1 while it is of the

order O(1) in the direction of v2v02: Combining this implies that the error of approximating g(d̂)

by g( ~d);
�
@g
@d
j ~d
�0 � @2g

@d@d0 j ~d
��1 �

@g
@d
j ~d
�
; is of the order max(O(s�4max( 

0
2 2 + �0�)2; s2mins

�4
max)):

Theorem 7*. When m exceeds two:

Pr
i=1 �i �

Pr
i=1 s

2
i +  2i ;

with �1 � �2 � : : : � �r; the largest r characteristic roots of (10) and s
2
1 � s22 � : : : � s2r the

largest r eigenvalues of �(�0; 0)
0�(�0; 0):

Proof. Using that�
�(�0; 0)

... �(�0; 0)
�
= U( ... SV 0) + (U?�

... 0)

so �
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
= V�S�V�0 +

 
�0� 0

0 0

!
;

with S� = diag(s�1 : : : s
�
m); s

�
i = s2i +  2i ; i = 1; : : : ;m; S� =

�
S�1
0

... 0
S�2

�
; S�1 = diag(s�1 : : : s

�
r);

S�2 = diag(s�r+1 : : : s
�
m); V�0 = S��

1
2 ( 

... SV 0): We note that V� is not orthonormal but all of its

rows have length one. The trace of the quadratic form of
�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
with respect to V�1 =

�
 01
V1S1

�
S
�� 1

2
1 ;  = ( 01

...  02);  1 : r � 1; V� = (V�1
... V�2 ); and scaled by
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A = (V�01 V�1 )�
1
2 ; is now such that

tr(A0V�01
�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
V�1A)

= tr

"
A0V�01 V�S�V�0V�1A+ A0V�01

 
�0� 0

0 0

!
V�1A

#

= tr [A0V�01 V�1S�1V�01 V�1A] + tr [A0V�01 V�2S�2V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#

= tr [V�01 V�1S�1V�01 V�1AA0] + tr [A0V�01 V�2S�V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#

= tr [V�01 V�1S�1 ] + tr [A0V�01 V�2S�V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#

= tr
h
S
�� 1

2
0

1

�
 01

V1smax

�0�  01
V1smax

�
S
�� 1

2
1 S�1

i
+ tr [A0V�01 V�2S�V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#

= tr
h�

 01
V1S1

�0�  01
V1S1

�i
+ tr [A0V�01 V�2S�V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#

=
Pr

i=1  
2
i + s2i + tr [A0V�01 V�2S�V�02 V�1A] + tr

"
A0V�01

 
�0� 0

0 0

!
V�1A

#
�
Pr

i=1  
2
i + s2i :

As a consequence, since
Pr

i=1 �i � tr(A0V�01
�
�(�0; 0)

... �(�0; 0)
�0�

�(�0; 0)
... �(�0; 0)

�
V�1A) :

Pr
i=1 �i �

Pr
i=1 s

2
i +  2i :

Proof of Theorem 8. Theorem 7 states a bound on �max while Lemma 1 states a bound on

the subset AR statistic. Upon combining, we then obtain that:

~s2min = s2min + g;

with

g =  02 2 � � 0� + '2

'2+(Imw0 )
0
�(�0;0)

0�(�0;0)(Imw0 )
(�0� + � 0�)�  21

s�max
( 02 2 + �0�)� h+ e;
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The approximation error g consists of four �2(1) distributed random variables multiplied by

weights which are all basically less than one. The six covariances of these standard normal

random variables that constitute the �2(1) random variables are:

cov( 2; �) =
( 0
ImX
)
0V1=smaxs�

( 0
ImX
)
0V1=smax

�2
+

�
( 0
ImX
)
0V2=smin

�2 : large when
�

0
ImX

�
is spanned by V1

cov( 1; �) =
( 0
ImX
)
0V2=smins�

( 0
ImX
)
0V1=smax

�2
+

�
( 0
ImX
)
0V2=smin

�2 : large when
�

0
ImX

�
is spanned by V2

cov( 2; ') =
(Imw0 )

0V1smaxr�
(Imw0 )

0V1smax
�2
+
�
(Imw0 )

0V2smin
�2 : large when

�
ImW
0

�
is spanned by V1

cov( 1; ') =
(Imw0 )

0V2sminr�
(Imw0 )

0V1smax
�2
+
�
(Imw0 )

0V2smin
�2 : large when

�
ImW
0

�
is spanned by V2

cov(v; ') = 0

cov( 1;  2) = 0

The covariances show the extent in which �(�0; 0)
�
Imw
0

�
and �(�0; 0)

�
0

ImX

�
are spanned by

the eigenvectors associated with the largest and smallest eigenvalues of �(�0; 0)
0�(�0; 0):

Proof of Theorem 9. The �rst part of the proof of Lemma 1a shows that the roots of the

polynomial �����
(�0)� (y �X�0
... W )0PZ(y �X�0

... W )

���� = 0

are identical to the roots of the polynomial:�����ImW+1 � ��(�0; 0) ... �(�0; 0)�Imw0 ��0 ��(�0; 0) ... �(�0; 0)�Imw0 ������ = 0:

Similarly, the proof of Theorem 2 shows that the roots of�����
� �Y ... W
... X
�0
PZ

�
Y
... W

... X
����� = 0

are identical to the roots of�����Im+1 � ��(�0; 0) ... �(�0; 0)�0��(�0; 0) ... �(�0; 0)����� = 0:
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Hence, the distribution of the roots involved in the subset LR statistic only depend on the

parameters of the IV regression model through (�(�0; 0); �(�0; 0)) which are under H
� in-

dependently normal distributed with means zero and (Z 0Z)
1
2 (�W

... �X)�
� 1
2

V V:" and identity

covariance matrices.

Proof of Theorem 10. We conduct a singular value decomposition of (Z 0Z)
1
2 (�W

...�X)�
� 1
2

V V:" :

(Z 0Z)
1
2 (�W

... �X)�
� 1
2

V V:" = F�R0;

with F and R orthonormal k � k and m � m dimensional matrices and � a diagonal k � m

dimensional matrix that has the singular values in decreasing order on the main diagonal. We

specify �(�0; 0) as

�(�0; 0) = F�(�0; 0);

so �(�0; 0) � N(0; Ik) and independent of �(�0; 0): We substitute the expression of �(�0; 0)

into the expressions of the characteristic polynomial:�����ImW+1 � ��(�0; 0) ... �(�0; 0)�Imw0 ��0 ��(�0; 0) ... �(�0; 0)�Imw0 ������ = 0,�����ImW+1 � �F�(�0) ... F�R0�Imw0 ��0 �F�(�0) ... F�R0�Imw0 ������ = 0,�����ImW+1 � ��(�0) ... �R0�Imw0 ��0 ��(�0) ... �R0�Imw0 ������ = 0

and similarly �����ImW+1 � ��(�0; 0) ... �(�0; 0)�0 ��(�0; 0) ... �(�0; 0)����� = 0,�����ImW+1 � ��(�0) ... �R0�0 ��(�0) ... �R0����� = 0

so the dependence on the parameters of the linear IV regression model can be characterized

by the m non-zero parameters of � and the 1
2
m(m� 1) parameters of the orthonormal m�m

matrix R:

Proof of Theorem 11. We specify the structural equation

y �X� �W = "
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as

y � ~X� = "

with ~X = (X
... W ); � = (�0

... 0)0: The derivative of the joint AR statistic

AR(�) = 1
�""(�)

(y � ~X�)0PZ(y � ~X�)

with respect to � is:
1
2
@
@�
AR(�) = 1

�""(�)
~� ~X(�)

0Z 0(y � ~X�)

with ~� ~X(�) = (Z
0Z)�1Z 0( ~X � (y� ~X�)

�" ~X(�)

�""(�)
); �""(�) =

�
1
��
�0


�
1
��
�
; �" ~X(�) = !Y ~X ��0� ~X ~X ;

!Y ~X = (!Y X
... !YW ); � ~X ~X =

�

XX

WX

... 
XW

WW

�
: To construct the second order derivative of the

AR statistic, we use the following derivatives:

@
@�0 (y � ~X�) = � ~X
@
@�0�""(�)

�1 = 2�""(�)
�2�" ~X(�)

@
@�0vec(�" ~X(�)) = �� ~X ~X

@
@�0vec(

~� ~X(�)) =
h
�" ~X(�)

0

�""(�)

 ~� ~X(�)

i
+h

� ~X ~X:"(�)
 (Z 0Z)�1Z 0(y � ~X�) 1
�""(�)

i
where � ~X ~X:"(�0) = � ~X ~X �

�" ~X(�)
0�" ~X(�)

�""(�)
. All the derivatives except that of ~� ~X(�) result in a

straightforward manner. For the derivative of ~� ~X(�); we use that

@
@�0vec(

~� ~X(�)) =
@
@�0vec

�
(Z 0Z)�1

h
Z 0 ~X � Z 0(y �X�)

�" ~X(�)

�""(�)

i�
= �

h
�" ~X(�)

0

�""(�)

 (Z 0Z)�1

i h
@
@�0vec(Z

0(y � ~X�))
i
�h

Im 
 (Z 0Z)�1Z 0(y � ~X�) 1
�""(�)

i �
@
@�0vec(�" ~X(�))

�
�h

�" ~X(�)
0 
 (Z 0Z)�1Z 0(y � ~X�)

i �
@
@�0�""(�)

�1�
=

h
�" ~X(�)

0

�""(�)

 (Z 0Z)�1

i
Z 0 ~X +

h
Im 
 (Z 0Z)�1Z 0(y � ~X�) 1

�""(�)

i
� ~X ~X�

2
h
�" ~X(�)

0 
 (Z 0Z)�1Z 0(y � ~X�)
i
�""(�)

�2�"X(�)

=
h
�"X(�)

0

�""(�)

 (Z 0Z)�1Z 0

h
~X � (y � ~X�)

�" ~X(�)

�""(�)

ii
+h�

� ~X ~X �
�" ~X(�)

0�" ~X(�)

�""(�)

�

 (Z 0Z)�1Z 0(y � ~X�) 1

�""(�)

i
=

h
�" ~X(�)

0

�""(�)

 ~� ~X(�)

i
+
h
� ~X ~X:"(�)
 (Z 0Z)�1Z 0(y � ~X�) 1

�""(�)

i
:

so the second derivative of the AR statistic testing the full parameter vector reads:
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�""(�)

= 1
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((y � ~X�)0Z 
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i
+
h
� ~X ~X:"(�)
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�""(�)
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+
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 (Z 0Z)�1Z 0(y � ~X�) 1

�""(�)

ii
�

1
�""(�)
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0Z 0Z ~� ~X(�)

= � 1
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0Z 0Z ~� ~X(�) +

1
�""(�)

h
�"X(�)

0

�""(�)

 (y � ~X�)0Z 0 ~� ~X(�)

i
+

1
�""(�)

h
� ~X ~X:"(�)
 (y � ~X�)0Z(Z 0Z)�1Z 0(y � ~X�) 1

�""(�)

i
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� ~X ~X:"(�)

1
2
0
h

1
�""(�)

(y � ~X�)0PZ(y � ~X�)IM � � ~X ~X:"(�)
� 1
2
0 ~� ~X(�)

0Z 0Z ~� ~X(�)� ~X ~X:"(�)
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i
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1
2 + 1

�""(�)

h
�" ~X(�)

0

�""(�)

 (y � ~X�)0Z 0 ~� ~X(�)

i
:

with Kkm a commutation matrix (maps vec(A) into vec(A0)). When the �rst order condition

holds, (y � ~X ~�)0Z 0 ~� ~X(~�) = 0; with ~� a value of � where the �rst order condition holds. The

second order derivative at such values of � then becomes:

1
2

@2

@�@�0
1

�""(�)
(y � ~X ~�)0PZ(y �X ~�) = @

@�0

h
1

�""(�)
~� ~X(�)

0Z 0(y �X ~�)
i

= 1
�""(�)

� ~X ~X:"(~�)
1
2
0
h

1
�""(�)

(y � ~X ~�)0PZ(y � ~X ~�)IM�

� ~X ~X:"(~�)
� 1
2
0 ~� ~X(~�)

0Z 0Z ~� ~X(~�)� ~X ~X:"(~�)
� 1
2

i
� ~X ~X:"(~�)

1
2

There are (m + 1) di¤erent values of ~� where the �rst order condition holds. These are such

that c
�
1
�~�
�
corresponds with one of the (m + 1) eigenvectors of the characteristic polynomial

(so c is the top element of such an eigenvector). When
�
1
�~�
�
is proportional to the eigenvector

of the j-th root of the characteristic polynomial, �j; we can specify:�
(Z 0Z)�

1
2Z 0(y � ~X ~�)=

p
�""(~�)

... (Z 0Z)
1
2 ~� ~X(~�)� ~X ~X:"(~�)

� 1
2

�0�
(Z 0Z)�

1
2Z 0(y � ~X ~�)=

p
�""(~�)

...

(Z 0Z)
1
2 ~� ~X(~�)� ~X ~X:"(~�)

� 1
2

�
= diag(�j; �1; : : : ; �j�1; �j+1; : : : ; �m+1);

with �1; : : : ; �m+1 the (m + 1) characteristic roots in descending order. Hence, we have three

di¤erent cases:
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1. �j = �m+1 so

1
2

@2

@�@�0
1

�""(�)
(y � ~X ~�)0PZ(y �X ~�) =

1
�""(�)

� ~X ~X:"(~�)
1
2
0 ��m+1Im � diag(�1; : : : ; �m)�� ~X ~X:"(~�)

1
2

which is negative de�nite since �1 > �m+1; : : : ; �m > �m+1 so the value of the AR statistic at

~� is a minimum.

2. �j = �1 so
1
2

@2

@�@�0
1

�""(�)
(y � ~X ~�)0PZ(y �X ~�) =

1
�""(�)

� ~X ~X:"(~�)
1
2
0 ��1Im � diag(�2; : : : ; �m+1)�� ~X ~X:"(~�)

1
2

which is positive de�nite since �1 > �2; : : : ; �1 > �m+1 so the value of the AR statistic at ~� is

a maximum.

2. 1 < j < m+ 1 so
1
2

@2

@�@�0
1

�""(�)
(y � ~X ~�)0PZ(y �X ~�) =

1
�""(�)

� ~X ~X:"(~�)
1
2
0 ��jIm � diag(�1; : : : ; �j�1; �j+1; : : : ; �m+1)�� ~X ~X:"(~�)

1
2

which is negative de�nite in m� j + 1 directions, since �j > �j+1; : : : ; �j > �m+1; and positive

de�nite in j � 1 directions, since �1 > �j; : : : ; �j�1 > �j; so the value of the AR statistic at ~�

is a saddle point.

Proof of Theorem 12. a. When we test H0 : � = �0 and �0 is large compared to the true

value �; the di¤erent elements of 
(�0) =

0B@ 1 0

��0 0

0 Imw

1CA
0




0B@ 1 0

��0 0

0 Imw

1CA can be charac-

terized by
1
�20
(!Y Y � 2�0!Y X + �20!XX) = !XX � 2

�0
!yX +

1
�20
!yy

� 1
�0
(!YW � �0!XW ) = !XW � 1

�0
!yW

!WW = !WW ;

so 
���10 0

0 ImW

!0

(�0)

 
���10 0

0 ImW

!
= 
XW � 1

�0

 
2!yX !yW

!0yW 0

!
+ 1

�20

 
!yy 0

0 0

!
;
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with 
XW =
�
!XX
!WX

!XW
!WW

�
: The LIML estimator ~(�0) is obtained from the smallest root of the

characteristic polynomial:�����
(�0)� (y �X�0
... W )0PZ(y �X�0

... W )

���� = 0;

and the smallest root of this polynomial, �min; equals the subset AR statistic to test H0: The

smallest root does not alter when we respecify the characteristic polynomial as�����Imw+1 � 
(�0)� 1
2
0(y �X�0

... W )0PZ(y �X�0
... W )
(�0)

� 1
2

���� = 0:

Using the speci�cation of 
(�0); we can specify 
(�0)
� 1
2 as


(�0)
� 1
2 =

 
���10 0

0 ImW

!


� 1
2

XW +O(��20 );

where O(��20 ) indicates that the highest order of the remaining terms is �
�2
0 : Using the above

speci�cation, for large values of �0; 
(�0)
� 1
2
0(y �X�0

... W )0PZ(y �X�0
... W )
(�0)

� 1
2 is char-

acterized by


(�0)
� 1
2
0(y �X�0

... W )0PZ(y �X�0
... W )
(�0)

� 1
2 = 


� 1
2
0

XW (X
... W )0PZ(X

... W )

� 1
2

XW +O(��10 ):

For large values of �0; the AR statistic thus corresponds to the smallest eigenvalue of 

� 1
2
0

XW (X
... W )0PZ(X

... W )

� 1
2

XW which is a statistic that tests for a reduced rank value of (�X
... �W ):

b. Follows directly from a and since the smallest root of (10) does not depend on �0:

Proof of Theorem 13. We use the (infeasible) covariance matrix estimator

�̂ =

�
�̂""
�̂V "

... �̂"V
�̂V V

�
=

 
1 0
��0
�n

Im

!0

̂

 
1 0
��0
�n

Im

!
!
p
�n

and de�ne �̂V V:" = �̂V V � �̂V "�̂"V
�̂""

; �V V:";n = �V V;n � �V ";n�"V;n
�"";n

and �̂V V:" !
p
�V V:";n:

For a subsequence �n of n; let H�nT�nR
0
�n be a singular value decomposition of �(�n) with

� = HTR0;
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the limit of �(�n); so �(�n) ! �; H�n ! H; T�n ! T and R�n ! R: We then also have the

following convergence results for this subsequence:

(Z 0�nZ�n)
� 1
2Z 0�n(y�n �W�n�n �X�n�0)�

� 1
2

"";�n

��"";�n
�̂""

� 1
2 !

d
�(�0; )

(Z 0�nZ�n)
� 1
2Z 0�n

�
(W�n

... X�n)� (y�n �Wn�n �X�0)
n
�"V;�n
�"";�n

+

(�̂"V ��"V;�n )
�"";�n

+ �̂"V (�̂
�1
"" � ��1"";�n)

oi
�
� 1
2

V V:";�n

�
�V V:";�n�̂

�1
V V:"

� 1
2 !

d
�(�0; );

with n !  and �(�0; ) and vec(�(�0; )) independent normal k and km dimensional random

vectors with means zero and vec(�) and identity covariance matrices. The limiting random

variable of this subsequence �(�0; ) can be speci�ed as

�(�0; 0) = � + �(�0; );

with vec(�(�0; )) a standard normal km dimensional random vector independent of �(�0; ):

We can now specify the limit behaviors of the subset AR statistic and the smallest root �min;

the two components of the subset LR statistic, as in Theorems 1 and 2:

AR(�0) = ming2Rmw
1

1+g0g

�
�(�0; 0)��(�0; 0)

�
Imw
0

�
g
�0�

�(�0; 0)��(�0; 0)
�
Imw
0

�
g
�
+ op(1)

�min = minb2Rmx ; g2Rmw
1

1+b0b+g0g

�
�(�0; 0)��(�0; 0)

�
b
g

��0�
�(�0; 0)��(�0; 0)

�
b
g

��
+ op(1):

Theorem 10 then shows that the limit behavior of the subset LR statistic under H0 and the

subsequence �n only depends on the 1
2
m(m+ 1) elements of �0�:

To determine the size of the subset LR test, we determine the worst case subsequence �n
such that

AsySzLR,� = lim supn!1 sup�2	 Pr�
�
LRn(�0) > CLR1��(�0js2min = ~s2min;n)

�
= lim supn!1 Pr�n

�
LR�n(�0) > CLR1��(�0js2min = ~s2min;�n)

�
;

with LRn(�0) the subset LR statistic for a sample of size n and CLR1��(�0js2min = ~s2min) the

(1 � �) � 100% quantile of the conditional distribution of CLR(�0) given that s
2
min = ~s2min:

Theorem 6 runs over the di¤erent settings of the conditioning statistic �(�0; ) to analyze if

the subset LR test over rejects. All these settings originate from the limit value � that results

from a speci�c subsequence �n: We next list the di¤erent settings for the limit value � with
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respect to the identi�cation strengths of  and � :

1. Strong identi�cation of  and � : The limit value � is such that both of its singular

values are large. For subsequences �n that lead to such limit values:

lim supn!1 Pr�n
�
LR�n(�0) > CLR1��(�0js2min = ~s2min;�n)

�
= �:

2. Strong identi�cation of ; weak identi�cation of � : Since  is strongly identi�ed,�
Imw
0

�0
�0�

�
Imw
0

�
is large so the limit value � is such that one of its singular values is large

while the other is small. Theorem 5 shows that both the subset AR statistic and the

smallest root �min are at their upperbounds. Hence, for all subsequences �n for which�
Imw
0

�0
�0�

�
Imw
0

�
is large, so  is well identi�ed:

lim supn!1 Pr�n
�
LR�n(�0) > CLR1��(�0js2min = ~s2min;�n)

�
= �:

3. Weak identi�cation of ; strong identi�cation of � : Since  is weakly identi�ed,�
Imw
0

�0
�0�

�
Imw
0

�
is small. Since � is strongly identi�ed, the limit value � has one small

and one large singular value. Theorem 5 then shows that the subset AR statistic is close

to its lower bound while the smallest root �min is at its upperbound. Hence, for such

subsequences �n:

lim supn!1 Pr�n
�
LR�n(�0) > CLR1��(�0js2min = ~s2min;�n)

�
< �;

so the subset LR test is conservative. As mentioned previously, this covers the setting

where �W;n = c�X;n with �X;n large and c small so �W;n is small as well. The subset LM

test is size distorted for this setting, see Guggenberger et al. (2012).

4. Weak identi�cation of  and � : The limit value � is such that both of its singular

values are small. Both the subset AR statistic and the smallest root �min are close to

their lower bounds. The conditional critical values do, however, result from the di¤erence

between the upper bounds of these statistics, which is for this realized value of ~s2min; larger

than the di¤erence between the lower bounds. For subsequences �n for which both  and

� are weakly identi�ed:

lim supn!1 Pr�n
�
LR�n(�0) > CLR1��(�0js2min = ~s2min;�n)

�
< �;

so the subset LR test is conservative.
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Combining:

AsySzLR,� = �;

where strong instrument sequences forW make the asymptotic null rejection probability of the

subset LR statistic equal to the nominal size.
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