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Filtered Historical Simulation - which does not rely on ellipticity, is also studied. Asymptotic
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1 Introduction

A large strand of the recent literature on quantitative risk management has been concerned with risk

aggregation (see for instance Embrechts and Puccetti (2010) and the references therein). For a vector

of one-period profit-and-loss random variables y = (y1, . . . , ym)′, risk aggregation concerns the risk

implied by an aggregate financial position defined as a real-valued function of y. For instance,

under the terms of Basel II, banks often measure the risk of a vector y of financial positions by the

Value-at-Risk (VaR) of a′y = a1y1+ · · ·+amym where the ai’s define the composition of a portfolio.

Exact calculation of the risk associated with an aggregate position can represent a difficult task, as

it requires knowledge of the joint distribution of the components of y.

It is even more difficult, in a dynamic framework, to evaluate the conditional risk of a portfolio

of assets or returns. The current regulatory framework for banking supervision (Basel II and Basel

III), allows large international banks to develop internal models for the calculation of risk capital.

The so-called advanced approaches are based on conditional distributions, that is, conditional on

the past, rather than marginal ones. The superiority of dynamic approaches over static methods

based on marginal distributions has been demonstrated empirically, for instance in Kuester, Mittnik

and Paolella (2006). The dynamics is not only present in the returns, yt instead of y, but also in the

weights of the portfolio, at−1 instead of a. Such weights can be both time-varying and stochastic:

the notation at−1 highlights the fact that investors may rebalance their portfolios at time t using,

in particular, the information contained in the historical prices.

To evaluate the conditional VaR of a portfolio, whose returns are defined by rt = a′
t−1yt, this

paper focuses on multivariate semi-parametric approaches. Multivariate approaches are based on

a time series model for the vector yt, instead of a univariate model for rt. As emphasized by

Rombouts and Verbeek (2009), the advantage of multivariate approaches is to "take into account

the dynamic interrelationships between the portfolio components, while the model underlying the

VaR calculations is independent of the portfolio composition". Indeed, the multivariate approach

is particularly relevant if the VaR has to be computed for a large number of portfolio compositions

at−1. Moreover, semi-parametric methods allow for more flexibility than fully parametric methods

relying on a complete specification of the conditional distribution of yt.

To our knowledge, the asymptotic properties of VaR estimators in a dynamic multivariate semi-

parametric framework are unknown. It seems however important to evaluate the accuracy of risk

estimators. Estimation risk refers to the uncertainty implied by statistical procedures in the im-
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plementation of risk measures. Uncertainty affects the estimation of risk measures, as well as the

backtesting procedures used to assess the validity of risk measures. The new regulatory frameworks

require that financial institutions take estimation risk into account (see e.g. Farkas, Fringuellotti

and Tunaru (2016) and the references therein). The econometric literature devoted to the estima-

tion risk in dynamic models is scant.
1

Christoffersen and Gonçalves (2005), and Spierdijk (2014)

used resampling techniques to account for parameter estimation uncertainty in univariate dynamic

models. Escanciano and Olmo (2010, 2011) proposed corrections of the standard backtesting proce-

dures in presence of estimation risk (and also of model risk). Gouriéroux and Zakoïan (2013) showed

that estimation induces an asymptotic bias in the coverage probabilities and proposed a corrected

VaR. Francq and Zakoïan (2015) introduced the notion of risk parameter and derived asymptotic

confidence intervals for the conditional VaR of univariate returns.

The first aim of this paper is to study the asymptotic properties of two multivariate semi-

parametric approaches for estimating the conditional VaR of a portfolio of risk factors (returns).

One approach for estimating conditional VaR’s requires sphericity of the innovations distribution.

An alternative approach, known as the Filtered Historical Simulation (FHS) method in the literature

(see Barone-Adesi, Giannopoulos and Vosper (1999), Mancini and Trojani (2011) and the references

therein), is assumption-free on the innovations distribution. The second aim is to provide methods

based on the asymptotic theory or resampling schemes for constructing confidence intervals for

the conditional VaR of portfolios. Such confidence intervals are in particular useful to visualize

simultaneously the the estimation and financial risks. As far as we know, our paper is the first one

to study the asymptotic accuracy of conditional VaR estimators in a semi-parametric multivariate

framework.

The rest of this paper is organized as follows. Section 2 presents the general framework. Section 3

is devoted to the asymptotic properties of the estimators of the conditional VaR under the sphericity

assumption. This assumption also allows us to extend the concept of risk parameter to multivariate

semi-parametric models. Section 4 gives the asymptotic properties of the FHS method, which relaxes

the sphericity assumption. A numerical illustration and an empirical study based on stock returns

are proposed in Section 5. Section 6 concludes. Complementary results and proofs are collected in

the Appendix.

1
For i.i.d. data, the literature is more voluminous, see Farkas, Fringuellotti and Tunaru (2016) for a recent

reference.
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2 Model and conditional VaR

Let pt = (p1t, . . . , pmt)
′ denote the vector of prices of m assets at time t. Let yt = (y1t, . . . , ymt)

′ be

the corresponding vector of log-returns, with yit = log(pit/pi,t−1) for i = 1, . . . ,m.

Consider a portfolio of the m assets, whose return is given by

rt =

m∑

i=1

ai,t−1yit = a
′
t−1yt, (2.1)

where at−1 = (a1,t−1, . . . , am,t−1)
′ is the vector of portfolio weights for the m assets. Such weights

are assumed to be stochastic and measurable with respect to some information set It−1 containing

the past prices (and possibly other variables).

The conditional VaR of the portfolio’s return process (rt) at risk level α ∈ (0, 1), denoted by

VaR
(α)
t−1(rt), is defined by

Pt−1

[
rt < −VaR

(α)
t−1(rt)

]
= α, (2.2)

where Pt−1 denotes the historical distribution conditional on It−1.
2

More generally, we denote by

VaR
(α)
t−1(zt) the conditional VaR of zt given It−1, and by VaR(α)(z) the marginal VaR of a stationary

process (zt).

Consider a general multivariate model for the vector of log-returns

yt = mt(θ0) + ǫt, ǫt = Σt(θ0)ηt, (2.3)

where (ηt) is a sequence of independent and identically distributed (iid) R
m-valued variables with

zero mean and identity covariance matrix; the m ×m non-singular matrix Σt(θ0) and the m × 1

vector mt(θ0) are specified as functions depending on the infinite past of yt and parameterized by

a d-dimensional parameter θ0:

mt(θ0) = m(yt−1,yt−2, . . . ,θ0), Σt(θ0) = Σ(yt−1,yt−2, . . . ,θ0). (2.4)

For the sake of generality, we do not consider a particular specification for the conditional mean mt

and the conditional variance Ht(θ0) := Σt(θ0)Σ
′
t(θ0),

3
but we assume

2
In this formula, we assumed for simplicity that the conditional cdf of rt is continuous and strictly increasing.

3
The most widely used specifications of Multivariate GARCH (MGARCH) models are discussed in Bauwens,

Laurent and Rombouts (2006), Silvennoinen and Teräsvirta (2009), Francq and Zakoïan (2010, Chapter 11), Bauwens,

Hafner and Laurent (2012), Tsay (2014, Chapter 7). Model (2.3)-(2.4) also includes multivariate extensions of the

double-autoregressive models studied by Ling (2004).
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A1: (yt) is a strictly stationary solution of Model (2.3)-(2.4), and ηt is independent from It−1.

This assumption will be made explicit for particular classes of MGARCH models satisfying Model

(2.3)-(2.4).

Under (2.3)-(2.4), the portfolio’s return defined in (2.1) satisfies

rt = a
′
t−1mt(θ0) + a

′
t−1Σt(θ0)ηt, (2.5)

from which it follows that the portfolio’s conditional VaR at level α is given by
4

VaR
(α)
t−1(rt) = −a

′
t−1mt(θ0) + VaR

(α)
t−1

(
a
′
t−1Σt(θ0)ηt

)
. (2.6)

The VaR formula can be simplified if the errors ηt have a spherical distribution, that is, Pηt and ηt

have the same distribution for any orthogonal matrix P . Ellipticity of the conditional distribution

of yt is equivalent to

A2: for any non-random vector λ ∈ R
m, λ′ηt

d
= ‖λ‖η1t,

where ‖ · ‖ denotes the euclidian norm on R
m, ηit denotes the i-th component of ηt, and

d
= stands

for the equality in distribution.
5

Remark 2.1 (Restrictiveness of the sphericity assumption) Assumption A2 entails that

though not independent (except in the Gaussian case), the components of ηt have the same sym-

metric distribution. This assumption is commonly used in finance and econometrics (see for in-

stance Sentana (2003), Fiorentini and Sentana (2016)). The importance of the class of spherical -

and more generally elliptical - distributions to risk management is discussed in Bradley and Taqqu

(2002). Examples of spherical distribution are the Gaussian N (0, Im) distribution, and the standard

multivariate Student distribution (see McNeil, Frey and Embrechts (2005) for details on spherical

distributions). In fact, most parametric approaches for VaR estimation assume a spherical Gaussian

or Student error distribution, which is very restrictive in terms of kurtosis (for the Gaussian distri-

bution) and more generally on the tails of the distribution. By contrast, Assumption A2 does not

constrain (apart from symmetry) the size of the tails. It should also be noted that, while A2 entails

4
The presence of the sign "−" in this formula comes from the fact that the VaR is defined in terms of returns

instead of loss variables.
5
Note that, in A2, the Euclidian norm cannot be replaced by any other norm N(·) under the assumption of unit

covariance matrix for ηt. Indeed, if λ′ηt
d
= N(λ)η1t, we have Var(λ′ηt) = λ′λ = N(λ)2Var(η1t) = N(λ)2.
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that the components of ηt have the same symmetric distributions, this does not hold in general

neither for the marginal nor for the conditional distribution of yt. In particular, this assumption is

compatible with the usual leverage effect observed on financial returns.

Under the sphericity assumption A2 we have

VaR
(α)
t−1(rt) = −a

′
t−1mt(θ0) +

∥∥a′t−1Σt(θ0)
∥∥VaR(α) (η) , (2.7)

where VaR(α) (η) is the (marginal) VaR of η1t.

Remark 2.2 (Usefulness of sphericity for the VaR) By contrast with formula (2.6), the in-

terest of (2.7) is to rely the VaR of any portfolio to the first two conditional moments of the portfolio’s

return rt, and to a simple characteristic of the innovations distribution. Under the sphericity as-

sumption, the VaR is indeed a function of three ingredients: the mean-volatility parameter, the

quantile of the errors and the portfolio’s composition. In other words,

VaR
(α)
t−1(rt) = F (θ0,VaR(α) (η) ;a′t−1), (2.8)

where the first two components have to be estimated, while the third one is chosen by the risk

manager. Such a decomposition does not hold in (2.6), which requires estimating a conditional

quantile for any choice of the portfolio’s composition (see Section 4). As we will see in Section 3.2,

for most time series models (2.8) can even be reduced to a formula of the form

VaR
(α)
t−1(rt) = F ∗(θ(α)

0 ;a′t−1), (2.9)

with a new parameter θ
(α)
0 of the same dimension as θ0, henceforth called conditional VaR param-

eter. These simplifications, (2.8) and (2.9), of the general VaR formula (2.6) have obvious interest

for risk management, in particular when several portfolios based on the same risk factors have to

be managed simultaneously.

3 VaR estimation under conditional ellipticity

Formula (2.7) is well-known in the literature dealing with theoretical properties of VaR (see for

instance McNeil et al., 2005), but its econometric implications have been surprisingly overlooked.

We now consider the statistical implementation of this formula.
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Under the sphericity assumption A2, a natural strategy for estimating the conditional VaR of

a portfolio is to estimate θ0 by some consistent estimator θ̂n in a first step, to extract the residuals

and to estimate VaR(α) (η) in a second step. For the first step, we will consider a general estimator

satisfying regularity conditions. For the second step, the sphericity assumption will allow us to

interpret VaR(α) (η) as the (1 − 2α)-quantile ξ1−2α of the absolute residuals, and to estimate this

quantile by an empirical quantile using all the components of the first-step residuals.

Let Θ denote the parameter space, and assume θ0 ∈ Θ. Let θ̂n denote an estimator of

parameter θ0, obtained from observations y1, . . . ,yn and initial values ỹ0, ỹ−1, . . . . The vec-

tor of residuals is defined by η̂t = Σ̃
−1
t (θ̂n){yt − m̃t(θ̂n)}) = (η̂1t, . . . , η̂mt)

′, where m̃t(θ) =

m(yt−1, . . . ,y1, ỹ0, ỹ−1, . . . ,θ), Σ̃t(θ) = Σ(yt−1, . . . ,y1, ỹ0, ỹ−1, . . . ,θ), for t ≥ 1 and θ ∈ Θ.

For α ∈ (0, 1), let qα(S) denote the α-quantile of a finite set S ⊂ R. In view of (2.7), under the

conditional ellipticity/sphericity assumption, an estimator of the conditional VaR at level α is

V̂aR
(α)

S,t−1(rt) = −a
′
t−1m̃t(θ̂n) + ‖a′t−1Σ̃t(θ̂n)‖ξn,1−2α, (3.1)

where ξn,1−2α = q1−2α ({|η̂it|, 1 ≤ i ≤ m, 1 ≤ t ≤ n}). The latter estimator takes advantage of the

fact that the components of ηt are identically distributed under A2.

3.1 Asymptotic joint distribution of θ̂n and a quantile of absolute returns

We start by introducing the assumptions that are employed to establish the asymptotic distribution

of (θ̂′
n, ξn,1−2α).

We now assume that the estimator θ̂n admits a Bahadur representation. Write a
c
= b for a = b+c.

A3: We have θ̂n → θ0, a.s. Moreover, the following expansion holds

√
n
(
θ̂n − θ0

)
oP (1)
=

1√
n

n∑

t=1

∆t−1V (ηt), (3.2)

where V (·) is a measurable function, V : Rm 7→ R
K for some positive integer K, and ∆t−1

is a d×K matrix, measurable with respect to the sigma-field generated by {ηu, u < t}. The

variables ∆t and V (ηt) belong to L2 with EV (ηt) = 0, var{V (ηt)} = Υ is nonsingular and

E∆t = Λ is full row rank.

Assumption A3 holds for a variety of MGARCH models and estimators
6

(see Appendix A for

6
In the univariate setting, the asymptotic theory of estimation for GARCH parameters has been extensively
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examples). The next assumption imposes smoothness of the functions m and Σ with respect to the

parameter.

A4: For any sequence (xi), the functions θ 7→ m(x1,x2, . . . ;θ) and θ 7→ Σ(x1,x2, . . . ;θ) are

continuously differentiable over Θ.

The next theorem establishes the asymptotic normality of (θ̂′
n, ξn,1−2α). Let

Ψ = E(∆tΥ∆
′
t), Ω

′ = E

[{
vec
(
Σ

−1
t

)}′
{

∂

∂θ′vec (Σt)

}]
, Wα = Cov(V (ηt), Nt),

γα = var(Nt), with Nt =
∑m

j=1

(
1{|ηjt|<ξ1−2α} − 1 + 2α

)
, and, denoting by f the density of |η1t|,

Ξθξ =
−1
m

{
ξ1−2αΨΩ+ 1

f(ξ1−2α)
ΛWα

}
, ζ1−2α = 1

m2

{
ξ21−2αΩ

′
ΨΩ+ 2ξ1−2α

f(ξ1−2α)
Ω

′
ΛWα + γα

f2(ξ1−2α)

}
.

Theorem 3.1 Assume that A2-A4 hold. Let α ∈ (0, 0.5). Suppose that |η1t| admits a density f

which is continuous and strictly positive in a neighborhood of ξ1−2α. Then

√
n


 θ̂n − θ0

ξn,1−2α − ξ1−2α


 L→ N


0,Ξ :=


 Ψ Ξθξ

Ξ
′
θξ ζ1−2α




 . (3.3)

Details on how to estimate the asymptotic covariance matrix Ξ can be found in Appendix 3.4.

3.2 Conditional VaR parameter

The notion of VaR parameter, introduced for univariate GARCH models by Francq and Zakoïan

(2015), allows to summarize the conditional risk, that is the joint effects of the volatility coefficients

and the tails of the innovation process, in a single vector of coefficients. Its extension to the

multivariate framework requires the following assumption.

A5: There exists a continuously differentiable function G : Rd 7→ R
d such that for any θ ∈ Θ,

any K > 0, and any sequence (xi)i on R
m,

m(x1,x2, . . . ;θ) = m(x1,x2, . . . ;θ
∗), and

KΣ(x1,x2, . . . ;θ) = Σ(x1,x2, . . . ;θ
∗), where θ∗ = G(θ,K).

studied, in particular for the QMLE by Berkes, Horváth and Kokoszka (2003) and for the LAD (Least Absolute

Deviation) estimator by Ling (2005). In the multivariate setting, the asymptotic properties of the QMLE or alternative

estimators were established, for particular classes, by Comte and Lieberman (2003), Boswijk and van der Weide (2011),

Francq and Zakoian (2012), Pedersen and Rahbek (2014), Francq, Horváth and Zakoian (2015), Francq and Zakoian

(2016) among others.

8



In other words, a change of the scale in the components of η can be compensated by a change of

the parameter. This assumption is obviously satisfied for all commonly used parametric forms of

Σt(θ).
7

Under sphericity and the stability by scale assumption A5, the conditional VaR can be

expressed in function of the expected returns vector and a reparameterized volatility matrix. Let

α < 1/2, so that VaR(α) (η) > 0 under A2. It follows from A5 that a formula of the form (2.9)

holds, namely

VaR
(α)
t−1(rt) = −a

′
t−1mt(θ

(α)
0 ) + ‖a′t−1Σt(θ

(α)
0 )‖ (3.4)

where

θ
(α)
0 = G

{
θ0,VaR(α) (η)

}
. (3.5)

The new parameter θ
(α)
0 is referred to as the conditional VaR parameter, for a given risk level. It

does not depend on the portfolio composition. An estimator of the conditional VaR parameter can

be defined as

θ̂(α)
n = G

{
θ̂n, V̂aR

(α)

n (η)

}

with obvious notations. The asymptotic properties of θ̂
(α)
n are a direct consequence of Theorem 3.1.

Corollary 3.1 (CAN of the VaR-parameter estimator) Under the assumptions of Theorem

3.1,
√
n
(
θ̂
(α)
n − θ

(α)
0

)
L→ N

(
0,Ξ∗ := ĠΞĠ′

)
where Ġ =

[
∂G(θ,ξ)
∂(θ′,ξ)

]
(θ0,ξ1−2α)

.

Remark 3.1 (Usefulness of the conditional VaR parameter) Quantifying the estimation

risk is in general a difficult task, due to the stochastic nature of the conditional risk. However,

when the VaR takes the form (2.9), the asymptotic distribution of θ̂
(α)
n provides a quantification

of the estimation risk. It can be used to compare the relative asymptotic efficiencies of estimators.

Suppose, for instance, that estimators θ̂
(i)
n , i = 1, . . . ,m, satisfying (3.2) are available and let Ξ

(i)

denote the corresponding asymptotic covariance matrices in (3.3). Then, we can say that, as far as

the estimation of the conditional VaR at level α is concerned, the i-th estimator is asymptotically

more efficient than the j-th iff

Ġ(Ξ(j) −Ξ
(i))Ġ′ is a positive semidefinite matrix.

7
For instance, in the case of the VAR(1) model yt = φyt−1 + ǫt with a BEKK-GARCH(1,1) model (3.7) for ǫt,

and θ = (vec(φ)′, vec(A)′, vec(B)′, vec(C)′)′, we find θ∗ = (vec(φ)′,Kvec(A)′, vec(B)′,K2vec(C)′)′.
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Figure 1: True 1%-VaR (full black line), estimated 1%-VaR (full blue line) and estimated 95%-confidence interval

(dotted blue line), on a simulation of a fixed portfolio of a bivariate BEKK.

3.3 Asymptotic confidence intervals for the VaR’s of portfolios

Let Ξ̂ denote a consistent estimator of Ξ. Let α0 ∈ (0, 1). In view of (3.1), by the delta method,

an approximate (1− α0)% confidence interval (CI) for VaRt(α) has bounds given by

V̂aR
(α)

S,t−1(rt)±
1√
n
Φ−1(1− α0/2)

{
δ′t−1Ξ̂δt−1

}1/2
, (3.6)

where Φ−1(u) denotes the u-quantile of the standard Gaussian distribution, u ∈ (0, 1), and

δ′t−1 =

[
a
′
t−1

∂m̃(θ̂n)

∂θ′ +
(at−1 ⊗ at−1)

′

2‖a′t−1Σ̃t(θ̂n)‖
∂vecH̃t(θ̂n)

∂θ′ ‖a′t−1Σ̃t(θ̂n)‖
]
,

with H̃t(·) = Σ̃t(·)Σ̃′
t(·). Drawing such CIs allows to take into account the estimation risk inherent

to the evaluation of the VaR of the portfolio. Note that the level α0 of risk estimation is independent

from the market risk level α.

An illustration is displayed in Figure 1, for the simulation of a bivariate BEKK model (see

Appendix 3.4). The model parameters were estimated on 700 observations. The figure provides the

true and estimated conditional 1%-VaRs, for t > 700, as well a CIs at 95% for the true conditional

VaR, of a portfolio with fixed composition. This graph allows to visualize simultaneously the market

risk (through the magnitude of the VaR) and the estimation risk (through the width of the CIs).
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3.4 Estimating the asymptotic covariance matrix Ξ

In Theorem 3.1, most quantities involved in the asymptotic covariance matrix Ξ can be estimated

by empirical means, replacing θ0 by the estimate θ̂n and the ηt’s by the corresponding residuals.

We focus on the estimation of Ω, which is the most delicate problem due to the presence of the

derivatives of Σt.

If a recursive linear relationship between Σt and its past-values existed, then the derivatives

could be computed recursively (as the derivatives of the σt or σ2
t in standard univariate GARCH

models). Unfortunately, the standard multivariate volatility models do not allow to derive such a

recursive relationship. Let us distinguish two general class of models, depending on the type of

stochastic recursive equation (SRE) involved in the dynamics.

3.4.1 Linear SRE on Ht

A typical example is the BEKK model of Engle and Kroner (1995). As in Pedersen and Rahbek

(2014), we focus on the BEKK-GARCH(1,1) model, in which Σt(θ0) is the symmetric square root

of Ht, given by

ǫt = H
1/2
t ηt, Ht = C0 +A0ǫt−1ǫ

′
t−1A

′
0 +B0Ht−1B

′
0 (3.7)

where A0,B0 and C0 are real m×m matrices, with C0 positive definite, such that Ht is a positive

definite matrix. For some m × m matrices A,B and C > 0, let θ = (vec(A)′, vec(B)′, vec(C)′)′.

The derivatives of vec(Ht) can be computed as follows, omitting θ for ease of notation. From

vec(Ht) = vec(C) + (A⊗A)vec(ǫtǫ
′
t) + (B ⊗B)vec(Ht−1), it follows that, for j = 1, . . . , 3d,

∂vec(Ht)

∂θj
=

∂vec(C)

∂θj
+

∂(A⊗A)

∂θj
vec(ǫtǫ

′
t)

+
∂(B ⊗B)

∂θj
vec(Ht−1) + (B ⊗B)

∂vec(Ht−1)

∂θj
.

For any m × n matrix M , let the dm × n matrix ∂M =
(
∂M ′

∂θ1
, . . . , ∂M

′

∂θd

)′
. Let Xt =

(vec′(Ht), {∂vec(Ht)}′)′. We have, in block matrix notation,

Xt =


 B ⊗B 0

∂(B ⊗B) Id ⊗ (B ⊗B)


Xt−1 + et, (3.8)

where

et =


 vec(C)

∂vec(C)


+


 A⊗A

∂(A⊗A)


 vec(ǫtǫ

′
t).
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Equation (3.8) allows to compute recursively the matrix Ht and its derivatives, provided that some

initial values are chosen.

It remains to compute the derivatives of Σt = H
1/2
t . Without generality loss, this matrix can

be assumed to be symmetric and positive definite. We note that Σt
∂Σt
∂θi

+ ∂Σt
∂θi

Σt =
∂Ht
∂θi

. Thus

(Im ⊗Σt +Σt ⊗ Im) vec

(
∂Σt

∂θi

)
= vec

(
∂Ht

∂θi

)
, (3.9)

which allows to compute the derivative of Σt provided Im ⊗Σt +Σt ⊗ Im is non-singular. In fact

Im ⊗Σt +Σt ⊗ Im = (Im ⊗Σt)(Im2 +Σt ⊗Σ
−1
t ).

The eigenvalues of Σ−1
t and Σt being positive, the eigenvalues of the latter parenthesis are larger

than 1. The invertibility of Im ⊗Σt +Σt ⊗ Im follows and we have

vec

(
∂Σt

∂θi

)
= (Im ⊗Σt +Σt ⊗ Im)−1 vec

(
∂Ht

∂θi

)
.

3.4.2 Linear SRE’s on the individual volatilities and the conditional correlation matrix

Consider parameterizations of the form Σt(θ) = Dt(θ)R
1/2
t (θ) where Dt(θ) is the diagonal matrix

of the individual volatilities (at θ0), and R
1/2
t (θ) denotes the symmetric positive definite square-

root of the conditional correlation matrix Rt(θ) (that is {R1/2
t (θ)}2 = Rt(θ)). For all commonly

used models, the derivatives of the individual volatilities (or their squares) can be straightforwardly

computed, using the SRE on the vector of individual volatilities. The matrix ∂
∂θi

Dt(θ) follows, for

any component θi of θ. Turning to the derivatives of R
1/2
t (θ), we note that, similar to (3.9),

vec

(
∂R

1/2
t

∂θi

)
=
(
Im ⊗R

1/2
t +R

1/2
t ⊗ Im

)−1
vec

(
∂Rt

∂θi

)
.

Usual DCC models provide a SRE on the conditional correlation matrix Rt, from which the deriva-

tives of R
1/2
t can be computed using the previous equality. Consider the cDCC model (see Appendix

C). We have Rt = Q
∗−1/2
t QtQ

∗−1/2
t , and

Qt = (1− α− β)S + αQ
∗1/2
t−1 D−1

t−1ǫt−1ǫ
′
t−1D

−1
t−1Q

∗1/2
t−1 + βQt−1,

where S is a correlation matrix. The diagonal terms of Qt are given by

qii,t = (1− α− β) +

(
α
ǫ2i,t−1

σ2
i,t−1

+ β

)
qii,t−1,

12



from which the derivatives of Q∗
t can be recursively computed. The derivatives of Q

∗1/2
t follow from

(3.9), which in the diagonal case reduces to
∂Q

∗1/2
t

∂θi
= 1

2Q
∗−1/2
t

∂Q∗

t
∂θi

. Now we turn to the non diagonal

terms. We have, for i 6= j,

qij,t = (1− α− β)Sij + α
√
qii,t−1

ǫi,t−1

σi,t−1

√
qjj,t−1

ǫj,t−1

σj,t−1
+ βqij,t−1,

from which the derivatives of qij,t follow recursively. The conclusion follows.

3.5 CI’s based on a conditional resampling scheme

For certain estimation methods/models the asymptotic distribution of the estimator θ̂n may not

be available. Even when it is, as shown in the previous section, the asymptotic variance Ξ may be

difficult to compute. An alternative, which we will now illustrate, is a bootstrap procedure. We will

use the well-known result that, under the sphericity assumption, ‖ηt‖ and ηt/‖ηt‖ are independent,

the latter random variable being uniformly distributed over the unit sphere Sm−1.

We consider the following resampling scheme, given observations y1, . . . ,yn and initial values:

1. Compute θ̂n = θ̂n(y1, . . . ,yn), the residuals η̃t, and the estimator V̂aR
(α)

S,t−1(rt) =: V̂aR
(α)

(rt).

2. Generate independent vectors s∗u, u = 1, . . . , n, that are uniformly distributed over Sm−1.

independently, generate vectors η̃∗
u
, that are uniformly distributed on (η̃01, . . . , η̃0n) where

η̃0u = S
−1/2
u (η̃u − η̃), Su is the sample covariance matrix of the residuals η̃u and η̃ is their

sample mean. Compute η∗
u = ‖η̃∗

u
‖s∗u and let y∗

u = m̃∗
u(θ̂n) + Σ̃

∗
u(θ̂n)η

∗
u, where Σ̃

∗
u is defined

as Σ̃u but with simulated data instead of observations.

3. Compute θ̂
(α)
n = θ̂n(y

∗
1 , . . . ,y

∗
n), the resampling residuals η̃∗

u = Σ̃
−1
u (θ̂

(α)
n ){y∗

u − m̃u(θ̂
(α)
n )})

and the estimator

V̂aR
∗(α)

(rt) = −a
′
t−1m̃t(θ̂

(α)
n ) + ‖a′t−1Σ̃t(θ̂

(α)
n )‖ξ∗n,1−2α, (3.10)

where ξ∗n,1−2α = q1−2α ({|η̂∗iu|, 1 ≤ i ≤ m, 1 ≤ u ≤ n}).

4. Repeat B times Steps 1-3, resulting in V̂aR
∗(α)
1 (rt), . . . V̂aR

∗(α)
B (rt), say.

Note that in Step 3, the conditional moments Σ̃t(·) and m̃t(·) are built using the real data (not the

bootstraped ones). Using the pivot method (see e.g. Davison and Hinkley (1997)), we get a CI for

the conditional VaR at the confidence level 1− α0 as
[
V̂aR

(α)
(rt)−

{
V̂aR

∗(α)
(1−α0/2)(rt)− V̂aR

(α)
(rt)

}
, V̂aR

(α)
(rt)−

{
V̂aR

∗(α)
(α0/2)(rt)− V̂aR

(α)
(rt)

}]
,

13
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Figure 2: Confidence Intervals based on asymptotic results vs bootstrap.

with standard notation for the order statistic. An illustration is displayed in Figure 2, for the same

setting as for Figure 1. As can be seen, the CI’s obtained by the bootstrap approach are similar

to those obtained using the asymptotic results. For more complex models, or for estimators for

which the asymptotic distribution is unknown or cannot be estimated, the latter CI’s would be

impossible to derive, while the bootstrap approach described above could be implemented without

further difficulties. The validity of this procedure is however an open issue.

4 VaR estimation without the sphericity assumption

Rombouts and Verbeek (2009) proposed a semi-parametric method for evaluating the VaR of port-

folios, which relies on: i) estimating θ0, ii) using a Kernel estimator of the (multivariate) density of

ηt, iii) evaluating by numerical integration the conditional VaR of a portfolio. While this approach

seems attractive from a practical point of view, its asymptotic properties are unknown. Deriving

asymptotic confidence intervals for the VaR, which is the aim of this paper, would probably be

extremely difficult with this method.

In this section, we study an alternative semi-parametric method which is amenable to asymptotic

properties. This approach, called FHS, relies on

i) interpreting the conditional VaR at time t as the α-quantile of a linear combination (depending

on t) of the components of the innovations;

14



ii) replacing the innovations by the GARCH residuals and computing the empirical α-quantile of

the estimated linear combination.

The conditional VaR of the portfolio return is

VaR
(α)
t−1(rt) = VaR

(α)
t−1

{
bt(θ0) + c′t(θ0)ηt

}

where bt(θ) = a
′
t−1mt(θ) and c′t(θ) = a

′
t−1Σt(θ). The conditional VaR at time t can thus be

interpreted as the sum of the conditional mean and a quantile of a time-varying linear combination

of the components of the iid noise. It can be estimated by

V̂aR
(α)

FHS,t−1(rt) = −qα

({
bt(θ̂n) + c′t(θ̂n)η̂s, 1 ≤ s ≤ n

})
. (4.1)

Remark 4.1 (On the name FHS) In (4.1), all residuals are used to estimate the VaR. Alterna-

tively, the conditional VaR could be estimated by randomly drawing N residuals among the η̂s’s,

for some specified number N (hence the term "simulation" in FHS).

Remark 4.2 (Higher horizons) The approach can be extended to higher horizons. For N in-

dependent draws of the η̂s’s, N scenarios y
(1)
t , . . . ,y

(N)
t for yt are obtained. For each value y

(i)
t ,

another set of N independent draws of the η̂s’s, produces N scenarios y
(i,1)
t+1 , . . . ,y

(i,N)
t+1 for yt+1. Pro-

ceeding recursively, at horizon H we get NH scenarios y
(i1,...,iH)
t+H−1 for yt+H−1, where ij ∈ {1, . . . , N}.

Such scenarios allow to update the sequence of weights as, for s = t, . . . , t+H − 1. We deduce NH

scenarios r
(i1,...,iH)
t+H−1 for rt+H−1. The VaR of the portfolio at horizon H conditional on the available

information at time t− 1 can thus be estimated by

V̂aR
(H,α)

FHS,t−1(rt+H−1) = −qα

({
r
(i1,...,iH+1)
t+H−1 , ij ∈ {1, . . . , N}

})
. (4.2)

Let c : Θθ 7→ R
m and b : Θθ 7→ R denote continuously differentiable vector-valued functions. Let

ξα(θ) denote the theoretical α-quantile of b(θ) + c′(θ)ηt(θ), where ηt(θ) = Σ
−1
t (θ){yt −mt(θ)}.

Let ξn,α(θ) = qα ({b(θ) + c′(θ)ηt(θ), 1 ≤ t ≤ n}). Let Aα = Cov(V (ηt),1{b(θ0)+c′(θ0)ηt<ξα(θ0)}),

ω′ =

[
c′(θ0)E(Ct)−

∂b

∂θ′ (θ0) d′
α

{
(c′(θ0)⊗ Im)E(Ω∗

t )−
∂c

∂θ′ (θ0)

}]
,
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where dα = E(ηt | b(θ0) + c′(θ0)ηt = ξα(θ0)) and

Ω
∗
t =




Im ⊗ e′1
...

Im ⊗ e′m


 (Im ⊗Σ

−1
t )

∂

∂θ′ {vec(Σt)} ,

Ct =

{
Im ⊗ vec′

(
∂mt

∂θ′

)}



Id ⊗Σ
−1
t e1

...

Id ⊗Σ
−1
t em


 .

The following result establishes the asymptotic distribution of ξn,α(θ̂n).

Theorem 4.1 Assume that A1, A3 hold. Suppose that the variable c′(θ0)ηt admits a density fc

which is continuous and strictly positive in a neighborhood of x0 = ξα(θ0)− b(θ0). Then

√
n{ξn,α(θ̂n)− ξα(θ0)} L→ N

(
0, σ2 := ω′

Ψω + 2ω′
ΛAα +

α(1 − α)

f2
c (x0)

)
.

This theorem can be used to derive CIs for the conditional VaR at time t of the portfolio return, with

b(θ) = a
′
t−1mt(θ) and c′(θ) = a

′
t−1Σt(θ). A Nadaraya-Watson estimator of dα is, with standard

notation,

d̂α,t =

∑n
s=1 η̂sKh

(
b(θ̂n) + c′(θ̂n)η̂s − ξn,α(θ̂n)

)

∑n
s=1Kh

(
b(θ̂n) + c′(θ̂n)η̂s − ξn,α(θ̂n)

) .

A consistent estimator σ̂2
t−1 of σ2 can be obtained by replacing the other theoretical quantities

introduced before the theorem by their empirical counterparts, and by using the approach described

in Appendix 3.4 to compute the derivatives of Σt and mt for particular models. An approximate

(1− α0)% CI for VaR
(α)
t−1(rt) is thus given by

V̂aR
(α)

FHS,t−1(rt)±
1√
n
Φ−1(1− α0/2)σ̂t−1. (4.3)

At higher horizons, deriving asymptotic CI’s for the VaR in (4.2) seems a formidable task. Al-

ternatively, the bootstrap procedure described in Section 3.5 could be extended to non-elliptical

distributions and to higher horizons, but this is beyond the scope of this paper.

Remark 4.3 (Data driven portfolio’s composition) For certain portfolios, the composition

may depend on θ̂n. We then write at−1(θ̂n) instead of at−1. Take the example of the Minimum
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Variance Portfolio (MVP) considered in Section 5.1 below. If Theorem 4.1 is applied with b(θ) = 0

and

c′(θ) = a
′
t−1(θ)Σt(θ) where a

′
t−1(θ) = e′Σ−2

t (θ)/e′Σ−2
t (θ)e, (4.4)

then ξα(θ0) corresponds to the conditional VaR of the theoretical MVP. If Theorem 4.1 is applied

with b(θ) = 0 and

c′(θ) = a
′
t−1(θ̂n)Σt(θ) where a

′
t−1(θ̂n) = e′Σ−2

t (θ̂n)/e
′
Σ

−2
t (θ̂n)e, (4.5)

then ξα(θ0) corresponds to the conditional VaR of the estimated MVP. Note that the asymptotic

variance σ2 depends on the derivatives of c (which are different in (4.4) and (4.5)) via the vector ω.

It seems less interesting to evaluate the statistical risk of the theoretical MVP through (4.4) than

that of the estimated MVP through (4.5), since this is the portfolio that is actually used in practice.

5 Numerical illustrations

The first part of the section presents a Monte-Carlo experiment that investigates the empirical

coverage properties of the confidence intervals proposed in Section 3.3. Real data examples are

presented in the second part.
8

5.1 Coverage probability of the VaR confidence intervals

Consider a general multivariate model (2.3) with m(·) = 0. The portfolio with the smallest variance,

that we call hereafter Markowitz’s MVP, is defined by

r∗t = ǫ′ta
∗
t−1, a∗

t−1 =
Σ

−2
t (θ0)e

e′Σ−2
t (θ0)e

. (5.1)

The theoretical conditional VaR of this portfolio is obtained by computing the opposite of the

α-quantile of a∗′
t−1Σt(θ0)η1, which is simply given by

VaR
(α)
t−1 (r

∗
t ) =

∥∥∥a∗′
t−1Σt(θ0)

∥∥∥F−1
|η1|(1− 2α) =

1√
e′Σ−2

t (θ0)e
F−1
|η1|(1− 2α) (5.2)

in the case where the distribution of η1 is spherical, with an invertible cumulative distribution

function Fη1 , and α ∈ (0, 1/2).

8
The code and data used in the paper, as well as additional numerical illustrations, are available from the authors

upon request, or on their web pages.

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/VaRPortfolio.html
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Table 1: Coverage properties of the (1 − α0)% CI for the α% VaR: relative frequencies (in %) of
VaR in the estimated CI’s over the 1,000 replications.

n = 1, 000 n = 2, 000
α 1% 5% 1% 5%
1− α0 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
Design S 89.1 92.7 97.4 90.6 94.0 97.4 90.5 95.5 98.4 91.6 94.9 98.7
Design NS 8.6 10.5 15.2 20.9 25.4 34.2 6 7.4 9.7 12.8 16.6 23.5

We simulated N = 1, 000 independent trajectories of length n + 1 of a BEKK-GARCH(1,1)

model (3.7), with m = 2 components and the volatility parameters vech(Ω0) = (0.001, 0, 0.001)′ ,

vec(A0) = (0.1, 0.1, 0.1, 0.1)′ , diag(B0) = (0.9, 0.95)′ . In Design S, ηt is distributed as a normalized

Student with 9 degrees of freedom; in Design NS, ηt is distributed as the asymmetric Asymmetric

Exponential Power Distribution (AEPD) with parameters α = 0.5, p1 = 1 and p2 = 2. The class of

AEPD was introduced by Zhu and Zinde-Walsh (2009) and allows for skewness with different decay

rates of density in the left and right tails. On each simulation, the first n observations were used

to obtain the QMLE θ̂n of θ0, and to compute ξn,1−2α = q1−2α {|η̂it|, i = 1, . . . ,m, t = 1, . . . , n}.
We then checked if the theoretical value-at-risk VaR

(α)
n

(
r∗n+1

)
of the Markowitz MVP (5.1) at time

t = n + 1 belonged to the confidence interval defined by (3.6) (with t − 1 replaced by n and rt

replaced by r∗n+1). For nominal coverage probabilities of 90%, 95% and 99%, respectively, the

empirical coverage probabilities over the N = 1, 000 replications should belong to the intervals

[87.5%, 92.4%], [93.1%, 96.7%] and [98.1%, 99.7%], respectively, with probability 99%.

Table 1 shows that, in the spherical case, the empirical coverage probabilities are very close to

their nominal values, at least when n = 2, 000. As expected, the empirical coverage probabilities

provided by the spherical method are no more valid when the DGP has a non spherical innovation.

This is due to the fact that the VaR’s (and thus their CI’s) are not consistently estimated when the

innovations are asymmetrically distributed.

5.2 Portfolios of stocks

We considered the daily returns of 5 major NASDAQ companies : Apple, Coca-cola, Exxon Mobil,

Intel and JPMorgan, from January 4, 2000 to June 13, 2017. The total number of observations is

n = 4389. The data have been cleaned up to take into account stock splits.

We first estimated a BEKK model on the 5 stock returns over the whole sample except the last
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Figure 3: Returns of the portfolio (dark line) for the period 18/06/2015 to 13/06/2017, estimated 1%-VaR and

95%-confidence interval (full and dotted blue lines), based on the estimation of a BEKK model for the stocks.

500 returns. We considered an equally-weighted crystalized portfolio (µi = 1 for i = 1, . . . , 5) and

the VaR estimator based on the sphericity assumption. Figure 3, displaying the last 500 returns of

the portfolio, shows that three returns are below the lower bound of the 95%-CI of the 1%-VaR. For

such returns, there is strong evidence of violation of the theoretical VaR. For several other returns

belonging to the CI, violation can be suspected.

A standard approach for evaluating VaR models is to use backtesting. Instead of the BEKK,

we estimated the more popular DCC-GARCH(1,1) model on the first n1 = 3000 observations and

computed the residuals η̂u, u = 1, . . . , n1. Instead of crystalized portfolios, we considered MVPs.

Figure 4 displays the returns of the estimated Markowitz MVP

r̂∗t =
e′Σ̃−2

t (θ̂n1)ǫt

e′Σ̃−2
t (θ̂n1)e

, t = n1 + 1, . . . , n

together with V̂aR
(1%)

S,t−1(r
∗
t ) (left panel) and V̂aR

(1%)

FHS,t−1(r
∗
t ) (right panel), as defined by

V̂aR
(α)

S,t−1(r
∗
t ) =

ξn1,1−2α√
e′Σ̃−2

t (θ̂n1)e
,

V̂aR
(α)

FHS,t−1(r
∗
t ) = −qα

({
e′Σ̃−1

t (θ̂n1)η̂u

e′Σ̃−2
t (θ̂n1)e

, u = 1, . . . , n1

})
.

The most striking output is that the two methods give virtually indistinguishable estimated VaRs for

the Markowitz portfolio. Applying the sphericity test recently proposed by Francq, Jimenez Gamero
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and Meintanis (2015), we found that the sphericity hypothesis cannot be rejected at any reasonable

level.
9

Table 2 provides the p-values of three backtests (see Christoffersen (2003) for details) on

the last n − n1 = 1389 observations: the unconditional coverage (UC) test that the probability

of violation is equal to the nominal level α, the independence (IND) test that the violations are

independent, and the conditional coverage (CC) test. The VaR estimation procedures clearly pass

the backtests, except in one or two cases. In view of the sphericity test and these backtests, the

spherical and FHS approaches are equivalent on these data.
10
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Figure 4: Returns of estimated optimal portfolios of 5 stocks and their estimated VaR’s.

6 Conclusion

This paper develops a unified theory for the inference of conditional VaRs of dynamic portfolios.

The dynamics of the underlying vector process of returns is governed by a quite general stationary

9
Applying the KS(2) test of Section 6 with L = 8, and B = 100 bootstrap replications, we obtained an empirical

p-value equal to 0.57.
10

The aforementioned backtests do not account for the impact of the estimation errors. In a fully parametric

dynamic framework, Pei (2010) studied the effect of estimation on backtests. Developing similar tests in our semi-

parametric framework is beyond the scope of the present paper.
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Table 2: p-values of three backtests for MVP and minimal VaR portfolios

Method Portfolio α % of Viol UC IND CC

Spherical MVP 1% 17
1389 = 1.22% 0.418 0.202 0.319

FHS MVP 1% 16
1389 = 1.15% 0.579 0.175 0.342

FHS Minimal 1%-VaR 1% 13
1389 = 0.94% 0.808 0.108 0.267

Spherical MVP 5% 67
1389 = 4.82% 0.762 0.053 0.147

FHS MVP 5% 79
1389 = 5.69% 0.249 0.044 0.068

FHS Minimal 5%-VaR 5% 68
1389 = 4.90% 0.858 0.020 0.067

multivariate GARCH-type model. The portfolio is based on a combination of individual returns

which can be time-varying. We showed that the sphericity assumption on the innovations distri-

bution allows i) to define the concept of VaR parameter for which we provided an asymptotically

Gaussian estimator; ii) to quantify the estimation risk via asymptotic CI’s on the VaR parameter.

Without the sphericity assumption, asymptotic results were also derived for the FHS estimator. For

both approaches, with or without the sphericity assumption, we showed how to build asymptotic CIs

for the conditional VaR and thus to visualize on the same graph both market and estimation risks.

As far as the comparison between the two approaches is concerned, our results and experiments not

reported here allow us to draw the following lessons, by distinguishing two different problems:

i) Estimating the conditional VaR by the spherical method is simpler and more accurate

when sphericity holds. On the other hand, it may yield inconsistent VaR estimators when

sphericity is in failure. The FHS method performs well in both cases and outperforms the first

approach in the absence of sphericity.

ii) Evaluating the asymptotic accuracy of the conditional VaR estimators can be achieved

using Theorems 3.1 and 4.1. Implementation of the latter asymptotic results is more involved

but is worthwhile when sphericity is doubtful. An alternative bootstrap procedure can also be

used when the asymptotic distribution is not available or is untractable. Conclusions drawn

from our experiments are that the asymptotic and bootstrap approaches give similar results

when both are available, the latter being obviously much more time consuming.

The practical implications of our results concern the derivation of reserves for financial positions.

By neglecting the estimation risk, practitioners may erroneously believe that the risk is controlled at

a given level. The problem is even more important in highly volatile periods, for which the accuracy
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of risk estimators tends to lower. Our results could clearly be extended to other risk measures, but

we leave these extensions for future research.

Appendix: Complementary results

A Illustrations of the Bahadur representation A3

A.1 For the Gaussian QML

Let us illustrate (3.2) in Assumption A3 when m(·) = 0 and the criterion used to estimate θ0 is

the Gaussian QML. We have

θ̂n = arg min
θ∈Θ

n−1
n∑

t=1

ℓ̃t(θ) (A.1)

where

ℓ̃t(θ) = ǫ′tH̃
−1
t (θ)ǫt + log |H̃t(θ)|, H̃t(θ) = Σ̃t(θ)Σ̃

′
t(θ)

and

Σ̃t(θ0) = Σ(ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ,θ0),

where ǫ̃−i, for i ≥ 0, denote arbitrary initial values. Under appropriate assumptions not discussed

here, we have the following expansion

√
n
(
θ̂n − θ0

)
oP (1)
= J−1 1√

n

n∑

t=1

∂ℓt(θ0)

∂θ
,

where

J = E

(
−∂2ℓt(θ0)

∂θ∂θ′

)
and ℓt(θ) = ǫ′tH

−1
t (θ)ǫt + log |Ht(θ)|,

with

Ht(θ) = Σt(θ)Σ
′
t(θ), Σt(θ0) = Σ(ǫt−1, . . . , ).

Moreover, for j = 1, . . . , d, we have, using the equality Tr(A′B) = vec′(A)vec(B),

∂ℓt(θ0)

∂θj
= Tr

{
(Σ−1

t (θ0))
′(Im − ηtη

′
t)Σ

−1
t (θ0)

∂Ht(θ0)

∂θj

}

= vec′
{
∂Ht(θ0)

∂θj

}
vec
{
(Σ−1

t (θ0))
′(Im − ηtη

′
t)Σ

−1
t (θ0)

}

= vec′
{
∂Ht(θ0)

∂θj

}{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′
vec
{
Im − ηtη

′
t

}
.
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It follows that

∂ℓt(θ0)

∂θ
=

∂vec′Ht(θ0)

∂θ

{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′
vec
{
Im − ηtη

′
t

}
.

Hence (3.2) holds with

∆t−1 = −J−1 ∂vec′Ht(θ0)

∂θ

{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′

and

V (ηt) = vec
{
Im − ηtη

′
t

}
.

A.2 For the EbE estimator of generalized CCC models

Francq and Zakoian (2016) studied the asymptotic properties of the so-called Equation-by-Equation

(EbE) estimation method. In this approach, instead of estimating a m-multivariate volatility model,

m univariate GARCH-type models are estimated EbE in the first step, and a correlation matrix is

estimated in the second step. Let m(·) = 0, and assume

Σt(θ0) = DtR
1/2

where Dt = diag(σ1t, . . . , σmt) and R = (Rij) is a constant correlation matrix. Suppose that that

σ2
kt is parameterized by some parameter ζ

(k)
0 , so that





ǫkt = σktη
∗
kt,

σkt = σk(ǫt−1, ǫt−2, . . . ; ζ
(k)
0 ),

(A.2)

where σk is a positive function and η∗kt is the k-th component of R1/2ηt (see Francq and Zakoian

(2016) for precise assumptions). Each volatility being allowed to depend on the past of all compo-

nents of ǫt, the model can be called generalized CCC. The parameter θ = θ := (ζ ′,ρ′)′ here consists

in the volatility parameters ζ = (ζ(1)
′

, . . . , ζ(m)′)′ and the correlation parameters

ρ = (R21, . . . , Rm1, R32, . . . , Rm2, . . . , Rm,m−1)
′.

The components of ζ are estimated in a first step by the QML method applied to each volatility

equation, while the correlation matrix is estimated by the sample autocorrelation. Equation (B.2)

in Francq and Zakoian (2016) shows that (3.2) in Assumption A3 holds for the EbE estimator of

the generalized CCC model.
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A.3 For the VTE of the CCC model

Consider the CCC-GARCH(p, q) model





ǫt = H
1/2
t ηt,

Ht = DtR0Dt, D2
t = diag(ht),

ht − h0 =
∑q

i=1A0i

(
ǫt−i − h0

)
+
∑p

j=1B0j

(
ht−j − h0

)
,

(A.3)

where ǫt =
(
ǫ21t, · · · , ǫ2mt

)′
and R0 is a correlation matrix. The matrices A0i and B0j are matrices

of size m×m with positive coefficients and h0 is a vector of dimension m such that
{
Im −

r∑

i=1

(A0i +B0i)

}
h0

has strictly positive coefficients (with r = max{p, q}). The parameter vector is denoted θ = (h′,γ ′)′,

with

γ = (α′
1, . . . ,α

′
q,β

′
1, . . . ,β

′
p,ρ

′)′,

where

ρ′ = (ρ21, . . . , ρm1, ρ32, . . . , ρm2, . . . , ρm,m−1) ∈ R
m(m−1)/2

αi = vecAi ∈ R
m2

, i = 1, . . . , q,

and

βj = vecBj ∈ R
m2

, j = 1, . . . , p.

Using initial values, for any γ belonging to some compact set Θγ , the H̃t’s are recursively defined,

for t ≥ 1, by




H̃t = D̃tRD̃t, D̃t = {diag(h̃t)}1/2,

h̃t = h̃t(θ) = h+
∑q

i=1Ai

(
ǫt−i − h

)
+
∑p

j=1Bj

(
h̃t−j − h

)
.

The VTE of the parameter h0 is defined by the empirical mean

ĥn =
1

n

n∑

t=1

ǫt.

The VTE of the parameter γ0 is then defined by γ̂n = arg minγ∈Θγ
L̃n(γ), where

L̃n(γ) = n−1
n∑

t=1

ℓ̃t,n
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and

ℓ̃t,n = ℓ̃t(ĥn,γ), ℓ̃t = ℓ̃t(h,γ) = ǫ′tH̃
−1
t ǫt + log |H̃t|.

Letting θ̂n = (ĥ′
n, γ̂

′
n)

′, the VTE of θ0, Francq, Horváth and Zakoïan (2015) showed that

√
n
(
θ̂n − θ0

)
= LnXn (A.4)

where Ln converges in probability to some positive-definite matrix L,

Xn :=




√
n
(
ĥn − h0

)

1√
n

∑n
t=1

∂
∂γ ℓ̃t(θ0)


 =




C√
n

∑n
t=1(U

2
t − Im)ht

1√
n

∑n
t=1 Φt−1Vt


+ oP (1),

where C is a non-random matrix, Φt−1 is a matrix which is measurable with respect to the past,

and

Ut = diag(R
1/2
0 ηt), Vt = vec(Im −R

−1/2
0 ηtη

′
tR

1/2
0 ).

It can be noted that

(U2
t − Im)ht = D2

t η
∗
t
,

where

η∗
t
=
(
η∗21t − 1, · · · , η∗2mt − 1

)′

and

η∗
t = (η∗1t, · · · , η∗mt)

′ = R
1/2
0 ηt.

Note that Eη∗
t
= 0.

Thus, (3.2) in Assumption A3 holds for the VTE of the CCC model with, in particular,

V (ηt) =
(
η∗′
t
,V ′

t

)′
.

B Proofs

B.1 Proof of Theorem 3.1

Note that

ξn,1−2α = argmin
z∈R

1

n

n∑

t=1

m∑

k=1

ρ1−2α(|η̂kt| − z),

where ρ1−2α(u) = u(1− 2α− 1{u≤0}). Thus

√
n(ξn,1−2α − ξ1−2α) = argmin

z∈R
Qn(z)
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where

Qn(z) =

m∑

k=1

n∑

t=1

{
ρ1−2α

(
|η̂kt| − ξ1−2α − z√

n

)
− ρ1−2α(|ηkt| − ξ1−2α)

}
.

Let ek denote the k-th column of the m × m identity matrix Im. Let Σt = Σt(θ0). Let ηt(θ) =

Σ
−1
t (θ){yt −mt(θ)} = (η1t(θ), . . . , ηmt(θ))

′. We have, for j = 1, . . . , d,

∂ηkt
∂θj

(θ0) = −e′kΣ
−1
t

∂mt

∂θj
− e′kΣ

−1
t

∂Σt

∂θj
Σ

−1
t {yt −mt(θ0)}

= −e′kΣ
−1
t

∂mt

∂θj
+ Tr

{
−ηte

′
kΣ

−1
t

∂Σt

∂θj

}

= −e′kΣ
−1
t

∂mt

∂θj
−

m∑

ℓ=1

ηℓte
′
kΣ

−1
t

{
∂

∂θj
Σ·ℓ,t

}
,

where Σ·ℓ,t is the ℓ-th column of Σt. Let

Ω
∗
kt = (Im ⊗ e′kΣ

−1
t )

∂

∂θ′ {vec(Σt)} , Ckt = vec

{
e′kΣ

−1
t

∂mt

∂θ′

}
, M ′

kt = C ′
kt + η′

tΩ
∗
kt.

A Taylor expansion of ηkt(θ) around θ0 thus yields,

η̂kt = ηkt −
d∑

j=1

(
e′kΣ

−1
t

∂mt

∂θj
+

m∑

ℓ=1

ηℓte
′
kΣ

−1
t

{
∂

∂θj
Σ·ℓ,t

})
(θ̂nj − θ0j) + oP (n

−1/2)

= ηkt −M ′
kt(θ̂n − θ0) + oP (n

−1/2). (B.1)

Note that for any sequence (bn) tending to zero and any real number a, we have, for n large enough,

|a− bn| = |a| − ubn where u = 1 if a > 0 or if a = 0 and bn < 0, and u = −1 otherwise. Thus

|η̂kt| =
∣∣∣ηkt −M ′

kt(θ̂n − θ0)
∣∣∣+ oP (n

−1/2) = |ηkt| − uktM
′
kt(θ̂n − θ0) + oP (n

−1/2),

where ukt = ±1, the sign of ukt being equal to that of ηkt when ηkt 6= 0, and to the sign of

−M ′
kt(θ̂n − θ0) when ηkt = 0. Using the identity

ρ1−2α(u− v)− ρ1−2α(u) = −v(1− 2α− 1{u<0}) +
∫ v

0

{
1{u≤s} − 1{u<0}

}
ds

for u 6= 0 (see Equation (A.3) in Koenker and Xiao, 2006), we thus have

Qn(z) =
m∑

k=1

zXn,k + Yn,k + In,k(z) + Jn,k(z),
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where

Xn,k =
1√
n

n∑

t=1

(1{|ηkt|<ξ1−2α} − 1 + 2α),

Yn,k =
1√
n

n∑

t=1

Rt,n,k(1{|ηkt|<ξ1−2α} − 1 + 2α),

In,k(z) =
n∑

t=1

∫ z/
√
n

0
(1{|ηkt|≤ξ1−2α+s} − 1{|ηkt|<ξ1−2α})ds,

Jn,k(z) =

n∑

t=1

∫ (z+Rt,n,k)/
√
n

z/
√
n

(1{|ηkt|≤ξ1−2α+s} − 1{|ηkt|<ξ1−2α})ds,

with Rt,n,k
oP (1)
= uktM

′
kt

√
n(θ̂n − θ0). We have In,k(z) → z2

2 f(ξ1−2α) in probability as n → ∞
(see Appendix B.2). Moreover, by the change of variable u = s − z/

√
n, we have Jn,k(z) =

J
(1)
n,k(z) + J

(2)
n,k(z) where

J
(1)
n,k(z) =

n∑

t=1

∫ Rt,n,k/
√
n

0

(
1{|ηkt|−ξ1−2α−z/

√
n≤u} − 1{|ηkt|−ξ1−2α−z/

√
n<0}

)
du,

J
(2)
n,k(z) =

n∑

t=1

∫ Rt,n,k/
√
n

0

(
1{|ηkt|−ξ1−2α−z/

√
n<0} − 1{|ηkt|−ξ1−2α<0}

)
du.

Let 1
∗
{X∈(a,b)} = 1{X<b} − 1{X<a} for any real numbers a, b and any real random variable X. We

have

J
(2)
n,k(z) =

n∑

t=1

{
uktM

′
kt(θ̂n − θ0) + oP (n

−1/2)
}
1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}

oP (1)
=

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}M

′
kt

)
√
n(θ̂n − θ0).

Note that, for z > 0,

E(ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}) = E(1{ηkt−ξ1−2α∈(0,z/

√
n)})− E(1{−ηkt−ξ1−2α∈(0,z/

√
n)}) = 0,

in view of the symmetry of the distribution of ηkt under the sphericity assumption A2. The same

equality holds for z ≤ 0. Now, for z > 0 and ℓ 6= k,

E(uktηℓt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}) = E(ηℓt1{ηkt−ξ1−2α∈(0,z/

√
n)})− E(ηℓt1{−ηkt−ξ1−2α∈(0,z/

√
n)}) = 0,

because (ηℓt, ηkt) and (ηℓt,−ηkt) have the same distribution under A2. For k = ℓ we have

E(|ηkt|1∗{|ηkt|−ξ1−2α∈(0,z/
√
n)}) = ξ1−2αf(ξ1−2α)

z√
n
+ o(1/

√
n).
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The same equalities hold for z ≤ 0. Thus, we have

E

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}M

′
kt

)
oP (1)
= zξ1−2αf(ξ1−2α)e

′
kE

(
Σ

−1
t

{
∂

∂θ′Σ·k,t

})
.

Similar arguments show that

Var

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}C

′
kt

)

=
1

n

n∑

t=1

E(1∗{|ηkt|−ξ1−2α∈(0,z/
√
n)})E(C ′

ktCkt) = o(1),

Var

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}η

′
tΩ

∗
kt

)

=
1

n

n∑

t=1

Var
(
ukt1

∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}η

′
tΩ

∗
kt

)
= o(1).

It follows that

J
(2)
n,k(z)

oP (1)
= zξ1−2αf(ξ1−2α)e

′
kE

(
Σ

−1
t

{
∂

∂θ′Σ·k,t

})√
n(θ̂n − θ0),

and
m∑

k=1

J
(2)
n,k(z)

oP (1)
= zξ1−2αf(ξ1−2α)

m∑

k=1

e′kE

(
Σ

−1
t

{
∂

∂θ′Σ·k,t

})√
n(θ̂n − θ0).

Moreover,

m∑

k=1

e′kE

(
Σ

−1
t

{
∂

∂θ′Σ·k,t

})
=

m∑

k=1

E

[(
ek ⊗

{
∂

∂θ′Σ·k,t

})′
vec
(
Σ

−1
t

)]′

= E

[
{
vec
(
Σ

−1
t

)}′ m∑

k=1

(
ek ⊗

{
∂

∂θ′Σ·k,t

})]

= E

[{
vec
(
Σ

−1
t

)}′
{

∂

∂θ′ vec (Σt)

}]
= Ω

′.

As in Francq and Zakoian (2015), it can be shown that
∑m

k=1 J
(1)
n,k(z) converges in distribution to a

variable which does not depend on z. Therefore,

m∑

k=1

Jn,k(z)
oP (1)
= zξ1−2αf(ξ1−2α)Ω

′√n(θ̂n − θ0) +A

where A is a random variable which is independent of z. By the arguments given in Francq and

Zakoïan (2015), we can conclude that

√
n(ξn,1−2α − ξ1−2α)

oP (1)
= −ξ1−2α

m
Ω

′√n(θ̂n − θ0)−
1

f(ξ1−2α)

1

m
√
n

n∑

t=1

Nt. (B.2)
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In view of A3 we have

Covas

(
√
n(θ̂n − θ0),

1

m
√
n

n∑

t=1

Nt

)
=

1

m
ΛWα,

and thus,

Varas{
√
n(ξn,1−2α − ξ1−2α)} =

1

m2

{
ξ21−2αΩ

′
ΨΩ+

2ξ1−2α

f(ξ1−2α)
Ω

′
ΛWα +

γα
f2(ξ1−2α)

}
,

Covas

(√
n(θ̂n − θ0),

√
n(ξn,1−2α − ξ1−2α)

)
=

−1

m

{
ξ1−2αΨΩ+

1

f(ξ1−2α)
ΛWα

}
.

The convergence in distribution (3.3) follows by the Central Limit Theorem of Billingsley (1961)

for ergodic, stationary and square integrable martingale differences, applied to the sequence
 ∆t−1V (ηt)

Nt


. ✷

B.2 Proof that In,k(z) → z2

2
f(ξ1−2α) in probability as n → ∞

For ease of notation, we omit the index k. Write ηt instead of ηkt and In(z) instead of In,k(z). Note

that

In(z) =
n∑

t=1

1{|ηt|>ξ1−2α}

∫ z/
√
n

0
1{|ηt|≤ξ1−2α+s}ds

=

n∑

t=1

1{|ηt|>ξ1−2α}1{|ηt|−ξ1−2α≤z/
√
n}

∫ z/
√
n

|ηt|−ξ1−2α

ds

=
n∑

t=1

(
z√
n
−Xt

)
10<Xt<z/

√
n, Xt = |ηt| − ξ1−2α.

Let

Wn,t =

(
z√
n
−Xt

)
10<Xt<z/

√
n − E

{(
z√
n
−Xt

)
10<Xt<z/

√
n

}
.

We have, for any integer p > 0,

E

{(
z√
n
−Xt

)p

10<Xt<z/
√
n

}
=

∫ z/
√
n

0

(
z√
n
− x

)p

f(x+ ξ1−2α)dx

= n−(p+1)/2

∫ z

0
(z − u)p f{(u+ ξ1−2α)/

√
n}du

∼ zp+1

p+ 1
f(ξ1−2α)n

−(p+1)/2, as n → ∞.

29



Thus, by Markov’s inequality, for any ǫ > 0,

P

(∣∣∣∣∣
n∑

t=1

Wn,t

∣∣∣∣∣ > ǫ

)
≤ E (

∑n
t=1 Wn,t)

2

ǫ2

=

∑n
t=1 EW 2

n,t

ǫ2
∼ z3

3ǫ2
f(ξ1−2α)n

−1/2 = o(1), as n → ∞.

It follows that
∑n

t=1 Wn,t → 0, in probability as n → ∞. Thus,

In(z) ∼ nE

{(
z√
n
−Xt

)
10<Xt<z/

√
n

}
∼ z2

2
f(ξ1−2α),

in probability as n → ∞. ✷

B.3 Proof of Corollary 3.1

The asymptotic normality follows from Theorem 3.1 and the following Taylor expansion of G around

(θ0, ξ1−2α)

√
n
(
θ̂∗
n − θ∗

0

)
=

[
∂G(θ, ξ)

∂(θ′, ξ)

]

(θ0,ξ1−2α)




√
n
(
θ̂n − θ0

)

√
n(ξn,1−2α − ξ1−2α)


+ oP (1).

✷

B.4 Proof of Theorem 4.1

Noting that ξn,α(θ̂n) = argminz∈R
1
n

∑n
t=1 ρα{b(θ̂n) + c′(θ̂n)η̂t − z}, we have

√
n{ξn,α(θ̂n)− ξα(θ0)} = argmin

z∈R
On(z)

where

On(z) =

n∑

t=1

{
ρα

(
b(θ̂n) + c′(θ̂n)η̂t − ξα(θ0)−

z√
n

)
− ρα{b(θ0) + c′(θ0)ηt − ξα(θ0)}

}
.

It follows from (B.1) that

η̂t = ηt −Ct(θ̂n − θ0)− (Im ⊗ η′
t)Ω

∗
t (θ̂n − θ0) + oP (n

−1/2).

Noting that c(θ0)
′(Im ⊗ ηt)

′
Ω

∗
t =

∑m
j=1 cj(θ0)η

′
tΩ

∗
jt = η′

t{c′(θ0) ⊗ Im}Ω∗
t , a Taylor expansion

around θ0 thus yields

b(θ̂n) + c′(θ̂n)η̂t − {b(θ0) + c′(θ0)ηt}

=

{
∂b

∂θ′ (θ0)− c′(θ0)Ct

}
(θ̂n − θ0) + η′

t

{
∂c

∂θ′ (θ0)− (c′(θ0)⊗ Im)Ω∗
t

}
(θ̂n − θ0)

=n′
t(θ̂n − θ0) + oP (n

−1/2),
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where n′
t is the row vector

n′
t =

[
∂b

∂θ′ (θ0)− c′(θ0)Ct η′
t

{
∂c

∂θ′ (θ0)− (c′(θ0)⊗ Im)Ω∗
t

}]
:=
[
c′t η′

tFt

]
.

Proceeding as in the proof of Theorem 3.1, we find that

On(z) = zXn + Yn + In(z) + Jn(z), where

Xn =
1√
n

n∑

t=1

(1{b(θ0)+c′(θ0)ηt<ξα(θ0)} − α),

Yn =
1√
n

n∑

t=1

St,n(1{b(θ0)+c′(θ0)ηt<ξα(θ0)} − α),

In(z) =

n∑

t=1

∫ z/
√
n

0
(1{b(θ0)+c′(θ0)ηt≤ξα(θ0)+s} − 1{b(θ0)+c′(θ0)ηt<ξα(θ0)})ds,

Jn(z) =
n∑

t=1

∫ (z+St,n)/
√
n

z/
√
n

(1{b(θ0)+c′(θ0)ηt≤ξα(θ0)+s} − 1{b(θ0)+c′(θ0)ηt<ξα(θ0)})ds,

with St,n
oP (1)
= −n′

t

√
n(θ̂n − θ0). By arguments already used, we have In(z) → z2

2 fc{x0} in proba-

bility as n → ∞, and Jn(z) = J
(1)
n (z)+ J

(2)
n (z) where J

(1)
n (z) converges in distribution to a variable

which does not depend on z and

J (2)
n (z) =

n∑

t=1

∫ St,n/
√
n

0

(
1{−x0+c′(θ0)ηt−z/

√
n<0} − 1{−x0+c′(θ0)ηt<0}

)
du

=
n∑

t=1

{
−n′

t(θ̂n − θ0) + oP (n
−1/2)

}
1
∗
{−x0+c′(θ0)ηt∈(0,z/

√
n)}

oP (1)
=

(
−1√
n

n∑

t=1

1
∗
{−x0+c′(θ0)ηt∈(0,z/

√
n)}n

′
t

)
√
n(θ̂n − θ0).

First suppose for z > 0. We have, Now, in view of the independence between ηt and Ft, we have,

for z > 0,

E
(
η′
t1

∗
{−x0+c′(θ0)ηt∈(0,z/

√
n)}Ft

)

= E

{
η′
tFt | −x0 + c′(θ0)ηt ∈

(
0,

z√
n

)}{
z√
n
fc(x0) + o

(
1√
n

)}

=
z√
n
fc(x0)d

′
αE(Ft) + o

(
1√
n

)
.

Similar computations show that the last equality continues to hold for z < 0. Similarly,

E
(
1
∗
{−x0+c′(θ0)ηt∈(0,z/

√
n)}c

′
t

)
=

z√
n
fc(x0)E(c′t) + o

(
1√
n

)
.
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By arguments already used, it follows that

J (2)
n (z)

oP (1)
= zfc(x0)

[
−E(c′t) − d′

αE(Ft)
]√

n(θ̂n − θ0) = zfc(x0)w
′√n(θ̂n − θ0).

Finally,

On(z) =
z2

2
fc(x0) + z

{
Xn + fc(x0)w

′√n(θ̂n − θ0)
}
+OP (1).

We conclude that, similarly to (B.2),

√
n{ξn,α(θ̂n)− ξα(θ0)}

oP (1)
= −w′√n(θ̂n − θ0)

− 1

fc(x0)

1√
n

n∑

t=1

(1{b(θ0)+c′(θ0)ηt<ξα(θ0)} − α).

The convergence in distribution follows. ✷

C DCC-GARCH dynamic portfolios

In this appendix, we consider the case where the return vector ǫt follows a DCC GARCH model

of the form ǫt = Σt(θ0)ηt with Σt(θ0) = DtR
1/2
t . The diagonal matrix Dt = diag(σ1t, . . . , σmt) is

assumed to satisfy the GARCH(1,1) equation

ht = ω0 +A0ǫt−1 +B0ht−1 (C.1)

where ht =
(
σ2
1t, · · · , σ2

mt

)′
, ǫt =

(
ǫ21t, · · · , ǫ2mt

)′
, A0 and B0 are m × m matrices with positive

coefficients, ω0 is a vector of strictly positive coefficients, and B0 is assumed to be diagonal. Assume

also that the correlation matrix Rt satisfies the cDCC version of Aielli (2013), which is a modification

of the original DCC formulation introduced by Engle (2002). The cDCC model is defined by

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Qt = (1− α0 − β0)S0 + α0Q

∗1/2
t−1 η

∗
t−1η

∗′
t−1Q

∗1/2
t−1 + β0Qt−1,

where α0, β0 ≥ 0, α0 + β0 < 1, S0 is a correlation matrix, Q∗
t is the diagonal matrix with the

same diagonal elements as Qt, and η∗
t = D−1

t ǫt. The unknown parameter θ0 contains the volatility

parameters ω0, A0 and diag(B0), and the conditional correlation parameters α0, β0 and the sub-

diagonal elements of S0.

To estimate θ0, we used a three-step estimation procedure similar to that employed by Aielli

(2013). The individual volatility parameters ω0, A0 and B0 are estimated equation-by-equation,

from the m augmented univariate GARCH models followed by the components of ǫt (see Appendix
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A.2). This step is slightly different from Step 1 in Definition 3.2 of Aielli (2013) because we do

not assume that A0 is diagonal in (C.1), which allows for possible volatility spillovers. The two

other steps are unchanged: α0 and β0 are estimated by maximizing a QML of the EbE residuals

η̂∗
t = D̂−1

t ǫt, and the last parameter S0 is estimated empirically. More precisely, let R̂t = R̂t(α, β)

with

R̂t = Q̂
∗−1/2
t Q̂tQ̂

∗−1/2
t , Q̂t = (1− α− β)Sn + αQ̂

∗1/2
t−1 η̂∗

t−1η̂
∗′
t−1Q̂

∗1/2
t−1 + βQ̂t−1,

Sn = Sn(α, β) =
1

n

n∑

t=1

Q̂
∗1/2
t η̂∗

t η̂
∗′
t Q̂

∗1/2
t , Q̂∗

t = diag(q̂11,t, . . . , q̂mm,t)

and q̂ii,t = (1−α−β)+(αη̂∗2i,t−1 +β)q̂ii,t−1 for i = 1, . . . ,m. The estimators of the DCC parameters

are then defined by

(α̂n, β̂n) = arg min
(α,β)

n∑

t=1

η̂∗′
t−1R̂

−1
t η̂∗

t−1 + log
∣∣∣R̂t

∣∣∣ ,

Ŝn = S∗−1/2
n (α̂n, β̂n)Sn(α̂n, β̂n)S

∗−1/2
n (α̂n, β̂n),

with S∗
n(α̂n, β̂n) = diagSn(α̂n, β̂n) and usual notations.
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