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The value of assets under management in the hedge fund industry increased from $50 billion

in 1990 to an all time high around $1.9 trillion in October 2007. Since then, the hedge

fund sector has witnessed a gradual outflow of funds under management that substantially

accelerated as of September 2008. By December 2008, the total assets under management

reported by Hedge Fund Research Inc. plummeted to about 0.7 trillion, amounting to a drop

of more than 60% from its all-time peak. Over the same period, the HFRI Fund Weighted

Composite Index, which comprises a large cross-section of hedge funds, lost around 20% of

its value. Still, this is considerably lower than the 40% drop in the value of the S&P 500

Index.

The exponential growth up to 2007 was essentially due to the fact that hedge funds

entail relatively high expected returns with relatively low volatility. In addition, the (un-

conditional) correlation between the returns on hedge funds and on traditional asset classes

(or risk factors) is also weak. Most hedge funds claim that this results from their ability to

carrying uncorrelated incremental returns (or alpha) among different asset classes.

This leads to the important question of whether hedge funds offer diversification benefits.

Unconditional correlation-based analysis, which captures the amount of linear association

between returns, can only partially address this question. Hedge funds typically engage

in derivatives trading, short selling, and positions on illiquid assets, resulting in returns

with serial correlation, negative skewness, excess kurtosis, and other option-like (nonlinear)

features (e.g., Fung and Hsieh, 2001; Mitchell and Pulvino, 2001; Amin and Kat, 2003; Dor,

Jagannathan, and Meier, 2003; Getmansky, Lo, and Makarov, 2004; Agarwal, Bakshi, and

Huij, 2009; Diez de los Rios and Garcia, 2009).

There is also evidence that hedge fund trading strategies yield payoffs that are concave

to some of the usual benchmarks. This means that the correlation between hedge fund

returns and broad market returns is likely to rise in periods of financial distress (Edwards

and Caglayan, 2001; Agarwal and Naik, 2004).1 As a matter of fact, the correlation between

the returns on HFRI Fund Weighted Composite Index and the S&P 500 monthly returns

has been about twice as high in down markets (70%) than in up markets (34.5%) during

the 1990-2008 period.
1 Ribeiro and Veronesi (2002) develop a rational expectations equilibrium model in which news becomes

more informative about the true state of the economy in bad times and hence cross-market correlations
increase. See also Buraschi, Porchia, and Trojani (2010) for optimal portfolio choice under time-varying
stochastic correlation, as well as Buraschi, Kosowski, and Trojani (2009) for evidence of hedge funds’ exposure
to correlation risk.
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To evaluate whether hedge funds deliver diversification benefits, there needs to be more

than a simple evaluation of how their returns correlate with traditional asset classes (or the

usual risk factors). One must also gauge how hedge fund returns co-vary with broad market

returns in extreme situations. Therefore, we examine whether tail risk measures the risk

exposure of hedge funds during a market downturn. In this way, we assess diversification

gains when markets experience large and negative returns.

Focusing on tail risk is convenient for two reasons. First, it accommodates investors’

preferences concerning higher-order moments such as, for example, skewness and kurtosis

(Scott and Horvath, 1980; Pratt and Zeckhauser, 1987). This is important since, as Agarwal,

Bakshi, and Huij (2009) show, hedge funds have substantial exposure to higher-moment

risks. The corresponding premia are indeed economically significant, playing an important

role in explaining hedge fund returns. The exposures to these factors should be taken into

account when evaluating hedge fund performance. Second, it does not impose a symmetric

dependence structure in the tails in line with the evidence that negative returns are typically

much more dependent than positive returns (Das and Uppal, 2004; Patton, 2004; Garcia

and Tsafack, 2008).

The attention we pay to tail dependence, rather than to the usual beta measures, is

well in line with the growing interest in tail risk (see, among others, Longin and Solnik,

2001; Ang, Chen, and Xing, 2006; Patton, 2006; Boyson, Stahel, and Stultz, 2010). Tail

risk is particularly relevant to hedge funds as the nonlinear nature of their payoffs is such

that returns could well exhibit strong tail correlation with more traditional asset classes,

breaking down any diversification gain in periods of financial distress.

This paper proposes a copula-based framework to assess the dynamic nonlinear risks in

the hedge fund industry. We examine daily data from September 2004 to May 2008. This is

in stark contrast with most papers in the hedge fund literature, whose reliance on monthly

data within a relatively larger time span reflects well their interest in performance evaluation

(e.g., average returns and alphas). We consider hedge fund returns at the daily frequency

because sample size matters much more than time span for estimating risk exposures (e.g.,

betas and tail dependence), especially if they are dynamic.2

We characterize the dependence structure between asset returns using a copula approach.
2 Li and Kazemi (2007) and Boyson, Stahel, and Stultz (2010) are among the few exceptions using daily

data (see the latter and Li, Markov, and Wermers, 2007, for a comparison of the data features of hedge fund
returns at the daily and monthly frequencies).
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This is convenient because it allows us to model the joint distribution of asset returns in

two steps. We first fit models for the individual return series and then combine them into a

coherent multivariate distribution by means of a symmetrized Joe-Clayton copula function,

which models both lower and upper tail dependence. We let the copula parameters governing

the tail dependence structure between hedge funds and broad-market returns vary over time

according to the degree of market uncertainty. To proxy for the latter, we employ a single

index that pools the information given by the term spread, the swap spread, the VIX index,

and the volatility risk premium. We include the term spread for it contains information

about the future real economic activity (e.g., Harvey, 1988; Estrella and Hardouvelis, 1991),

as well as about future investment opportunities (Petkova, 2006). The swap spread, also

known as TED spread, is a measure of credit risk that Brunnermeir (2009) advocates as a

useful basis for gauging the severity of a liquidity crisis. Whaley (2000) argues that the VIX

index is a barometer to the market’s perception of risk and, accordingly, partially determines

the amount of liquidity available in the market. Finally, the volatility risk premium relates to

investors’ risk aversion on top of providing a link with macroeconomic uncertainty (Corradi,

Distaso, and Mele, 2008; Drechsler and Yaron, 2008; Bollerslev, Gibson, and Zhou, 2009).

It is also relevant here given that hedge funds normally have significant exposure to variance

risk (Bondarenko, 2004).

Our approach is similar to that in Adrian and Brunnermeier (2009) and Billio, Get-

mansky, and Pelizzon (2009) in that we evaluate the degree of co-dependence conditional

on the state of the market. The focus of our investigation is, however, different. While

we aim to highlight how hedge funds vary their tail risk exposures over time according

to market uncertainty, Billio, Getmansky, and Pelizzon (2009) restrict attention to time-

varying linear measures of risk by assuming a factor structure in which loadings depend

on Markov-switching volatility regimes. As per Adrian and Brunnermeier (2009), they es-

timate conditional tail correlations using quantile regressions so as to study risk spillovers

among financial institutions and, in particular, the role that hedge funds play in systemic

crises. Despite the different goal of their analysis, Adrian and Brunnermeier take a similar

approach to ours by positing that tail correlations depend on the short-term interest rate,

the credit spread, the liquidity spread, the term spread, and the VIX index. The problem

of restricting attention to tail correlations is that they are a function of the dependence
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structure, as well as of the marginal distributions. This restriction does not allow one to

uncover whether the time-varying nature of conditional tail correlations is due to variations

in the dependence structure or in the conditional marginals (e.g., conditional heteroskedas-

ticity). In contrast, we focus on conditional tail dependence, whose invariance to changes

in the marginal distributions makes it much easier to interpret.

Our preliminary descriptive analysis reveals that most hedge fund style indices generate

expected returns at par with equity and bond returns, though with much lower volatility.

All hedge fund returns exhibit substantial negative skewness and excess kurtosis. The

market-neutral style index is the least asymmetric, though by far the most leptokurtic.

Serial correlation is also typically much larger for hedge-fund returns than for any broad-

market return, in line with price smoothing and liquidity effects (Getmansky, Lo, and

Makarov, 2004). We also find significant unconditional correlation between returns on the

S&P 500 Index and on some equity-based styles (e.g., equity hedge, event driven, and market

directional). The correlation between hedge fund returns and commodity index returns is

at most moderate, with the highest values at around 0.30. In contrast, the correlations

with bond and currency markets are typically negative, up to -0.29. As for tail risk, we

uncover strong lower-tail dependence among styles and, to a lesser extent, with the S&P500

Index. There are only three hedge fund styles that feature neither correlation nor lower-

tail dependence with any other style or asset class, namely convertible arbitrage, distresses

securities, and equity market neutral. Finally, we find some weak evidence of upper-tail

dependence only among a few hedge fund styles.

We then ask whether the picture remains the same if we condition tail dependence

with equity returns upon market uncertainty. We find that the overall panorama actually

changes drastically, illustrating well the pitfalls of restricting attention to unconditional

measures.3 The only hedge fund style indices for which we cannot really reject tail neutrality,

regardless of whether conditional or unconditional, are the convertible arbitrage and equity

market-neutral styles. All other hedge fund styles feature time-varying conditional lower-

tail equity risk driven by market uncertainty even if they exhibit little unconditional tail

dependence. In particular, the lower-tail dependence between most hedge fund styles and

the S&P500 Index typically decreases with market uncertainty, ensuring at first glance some
3 Fernandes, Medeiros, and Saffi (2008) unveil similar evidence for linear measures of dependence in the

hedge fund industry by letting both alphas and betas to depend on market uncertainty (see also Bollen and
Whaley, 2009; Patton and Ramadorai, 2010).
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diversification gains even within periods of falling stock markets.

The merger arbitrage and relative value arbitrage style indices are the exceptions, with

tail equity risk exposure increasing with market uncertainty. This is not surprising given

that these styles normally employ spread trading strategies that often translate into low

volatility bets. On the one hand, market uncertainty typically increases in periods of falling

equity markets. On the other hand, spread trading usually entails negative returns when

volatility is high. Altogether, this means that the likelihood of a joint lower tail event

increases as well, thus explaining why we find that their tail equity risk exposure increases.

Despite their relative importance in the hedge fund sector,4 the increasing tail risk expo-

sure of the merger arbitrage and relative value arbitrage styles do not seem to compromise

the overall trend in the industry. Every broad index seems to exhibit a lower-tail dependence

with equity markets that subsides with market uncertainty. This reduces the fear that hedge

funds might play a major role in episodes of financial contagion (Chan, Getmansky, Haas,

and Lo, 2006), and hence we carry out a simple correlation analysis to better understand

systemic risk issues. Hedge funds reduce their tail exposure to equity risk in times of market

uncertainty because of either uncertainty timing or forced liquidations. We should expect

a positive correlation between changes in lower-tail dependence and stock market returns if

the former, whereas a positive correlation between hedge fund returns and changes in tail

risk if the latter, due to the heavy losses that characterize fire sales. The evidence supports

only the latter, indicating that hedge funds’ tail risk reduces in times of market uncertainty

partly because of forced liquidations. Further analysis using a sample from June 2008 to

May 2010, however, shows that, by the time the liquidity dry-up climaxes, the hedge fund

industry does not have significant exposure to tail equity risk anymore.

The outcome is very different for other traditional asset classes, as well as for upper-tail

dependence. First, hedge funds do not seem to have, on average, any tail risk exposure

to bond and currency markets. Second, the only style for which we find some evidence of

significant lower-tail dependence with commodity markets is the macro style. In particular,

the tail risk exposure of macro hedge funds to commodity prices increases with market un-

certainty. This is consistent with Edwards and Caglayan’s (2001) evidence that commodity

trading advisors, as well as hedge funds within the macro style, normally entail higher re-
4 Historically, according to the HFR reports, these styles would together manage about 15% of the assets

in the industry (or circa 11% if including funds of funds). Their relative significance is difficult to pin down,
though, as it also depends on leverage ratios.
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turns in bear stock markets, thereby providing substantial protection to downside risk in

the equity markets. Third, there is very little, if any, conditional upper tail dependence

between hedge fund and broad market returns.

Our findings are very robust to variations in the copula specification. In particular, the

quantitative results are very similar if we restrict attention to the lower tail by employing

either a Clayton or a rotated Gumbel copula (see, e.g., Patton, 2004). Proxying market

uncertainty with options-implied variance and variance risk premium (rather than their

volatility counterparts) produces similar results, as well. If one includes both volatility and

variance in a polynomial-type specification for the tail dependence parameter, then only

the volatility terms remain significant. In addition, incorporating other measure of credit

spread into the single index that determines the time-varying nature of the tail parameter

yields insignificant coefficients that do not affect qualitatively the outcome.

This is the first study to tackle conditional tail dependence in the hedge fund sector.

There are a few papers, however, discussing unconditional tail dependence. Geman and

Kharoubi (2003) find significant lower-tail dependence between returns on hedge fund, mu-

tual fund, bond and equity market indices. In line with our results, the market-neutral

style proves an exception in that it is the only one to satisfy tail neutrality. Bacmann and

Gawron (2004) find similar results and, in addition, document substantial lower-tail depen-

dence among the different hedge fund styles; however, their findings are quite sensitive to

the sample period. In particular, tail dependence becomes insignificant if one excludes the

Russian crisis in August 1998 from the sample. They interpret the sensitivity with respect

to the Russian crisis as evidence supporting a link between tail dependence and market

liquidity. This is in line with our evidence of time-varying tail risk driven by market uncer-

tainty given that the amount of liquidity in the market decreases with uncertainty. Brown

and Spitzer (2006) carry out a similar tail risk analysis using style portfolios of individual

hedge funds. They show that style portfolios display significant lower-tail dependence with

equity markets even if one eliminates periods of financial distress such as, for example, the

LTCM episode. This contrasts with Patton (2009), who fails to reject tail neutrality for

most individual hedge-fund returns. A possible explanation for these conflicting results re-

side in the fact that tests based on individual hedge-fund data are presumably less powerful

due to the shorter and noisier samples.
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Boyson, Stahel, and Stultz (2010) take a very different avenue, focusing on a regression-

based approach to model contagion between asset classes. In particular, they estimate the

probability of a hedge fund style index to display a performance at the lower 10% tail as

a function of the number of other hedge-fund styles with similar poor performances. They

find strong contagion across style index returns, especially in times of low market liquidity.

They also report mixed evidence of contagion running from hedge funds to more traditional

asset classes. Poor performance in the hedge fund sector has little effect on the probability

of a poor performance in the bond and equity markets, though there is a substantial impact

in currency markets, which is probably due to the unwinding of carry trades.

The paper is organized as follows. Section 1 describes the copula approach we used to

model tail dependence as a function of market uncertainty. This is our primary method-

ological contribution to the literature in that, by modeling tail dependence conditional on

market uncertainty, we are able to track how tail risk evolves over time in the hedge fund

sector (even if the unconditional tail dependence is close to zero). Section 2 describes the

main features of hedge fund style index data, paying special attention to how they seem to

co-move with more traditional asset classes. Section 3 reports the main results concerning

the conditional tail dependence between hedge funds and more traditional asset markets.

Section 4 concludes by offering some final remarks, whereas the Appendix provides some

technical details.

1 Conditional Copula and Tail Dependence

The conditional copula set-up is as follows. Let Xt and Yt denote continuous asset returns

with conditional distributions F (X)
t and F

(Y )
t given the information set spanned by:

Zt ≡ [W ′
t, Xt−1, Yt−1,W

′
t−1, . . . , Xt−k, Yt−k,W

′
t−k]

′,

which contains past information on Yt, Xt, and some exogenous risk factors, W t, affecting

asset returns. In order to isolate the estimation of the tail-dependence parameter from the

estimation of the marginal distributions (Joe, 1997), we use a copula decomposition of the

conditional joint distribution of hedge fund and broad market returns. To avoid an excessive

number of parameters, we employ bivariate copula functions to model lower-tail dependence

between each hedge fund style index with each broad market return in a pairwise fashion.

This is well in line with the literature studying asymmetric dependence across markets (e.g.,
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Ang and Chen, 2002; Ané and Kharoubi, 2003; Jondeau and Rockinger, 2003; Hong, Tu,

and Zhou, 2007; Okimoto, 2008; Markwat, Kole, and van Dijk, 2009; Kang, In, Kim, and

Kim, 2010).

In what follows, we make use of Patton’s (2006) extension of the Sklar’s theorem to a

conditional setting (see Appendix A for details). He shows that one may decompose the

conditional joint distribution of (Xt, Yt) into:

F
(X,Y )
t = Ct

(
F

(X)
t , F

(Y )
t

)
, (1)

where Ct is the unique conditional copula function. The latter is a bivariate distribution

function with uniform marginals over the unit interval, which forms the conditional joint

distribution by coupling the conditional univariate distributions. It essentially captures the

dependence structure between Xt and Yt given Zt.

Assuming the twice-differentiability of the conditional joint distribution and of the con-

ditional copula function, as well as the differentiability of the conditional marginal dis-

tributions, yields the equivalent decomposition for the conditional joint density function:

f (X,Y )(x, y | zt) = f (X)(x | zt) f (Y )(y | zt) c(uX , uY | zt), (2)

where uX ≡ F (X)(x | zt) and uY ≡ F (Y )(y | zt). Equation (2) is readily available for empiri-

cal work. Taking logs of both sides of (2), it follows that the conditional joint log-likelihood

function is equal to the sum of the conditional marginal log-likelihoods and the conditional

copula log-likelihood. Further, assuming that the parameters in the copula and marginal

densities are variation free, it follows from (2) that one may separate the maximization of

the joint likelihood into two steps. We first estimate the marginals that provide the best fit

to the univariate return series, and then model the dependence structure by virtue of the

copula function.

1.1 Marginal distributions

We model the first and second conditional moments of the returns using individual MA(22)-

GARCH(1,1) processes:

ri,t = µi + ei,t +
10∑
j=1

ζi,j ei,t−j , with ei,t = hi,t ηi,t (3)
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h2
i,t = ωi + αi e

2
i,t−1 + βi h

2
i,t−1, (4)

where ηi,t is a white noise with mean zero and unit variance for i ∈ {X,Y }. The moving

average specification is convenient for it typically controls reasonably well for illiquidity

and performance smoothing in hedge fund returns (Getmansky, 2004; Getmansky, Lo, and

Makarov, 2004; Patton, 2009).

We make no distributional assumptions on ηi,t, and therefore estimate the parameters

in (3) and (4) using quasi-maximum likelihood (QML) methods. We then transform the

standardized residuals into uniform variates through the empirical cumulative distribution

function (see Appendix B for more details).

1.2 Tail dependence structure

To characterize the conditional joint distribution, one needs to specify the dependence

structure. Chen and Fan (2006a) show that, even under copula misspecification, it is possible

to estimate a particular form of dependence. This mitigates the consequences of choosing the

“wrong” functional form for the copula function. For instance, if the interest lies exclusively

on tail risk, it suffices to specify a copula function that captures tail dependence even if

ignoring the bulk of the data. We thus restrict attention to the symmetrized Joe-Clayton

copula, as in Patton (2006).5

Assuming a time-varying parameter for the symmetrized Joe-Clayton specification yields

the following copula function:

CSJC(u, v; θLt , θ
U
t ) =

1
2
[
CJC(u, v; θLt , θ

U
t ) + CJC(1− u, 1− v; θUt , θ

L
t ) + u+ v − 1

]
, (5)

where the Joe-Clayton copula is given by:

CJC(u, v; θLt , θ
U
t ) = 1−

{
1−

[(
1− (1− u)θ

U
t

)−θL
t

+
(

1− (1− v)θ
U
t

)−θL
t − 1

]−1/θL
t

}1/θU
t

,

with θLt ≡ θL(zt) and θUt ≡ θU (zt). The symmetrized Joe-Clayton copula entails lower-

and upper-tail dependence coefficients, given by λLt ≡ limu→0
CSJC(u,u;θL

t ,θ
U
t )

u = 2−1/θL
t and

λUt ≡ limu→∞
CSJC(u,u|;θL

t ,θ
U
t )

u = 2− 21/λU
t , respectively.

5 Interestingly, variations in the upper-tail dependence may affect the estimation of the conditional
lower-tail dependence and vice-versa. This means that we cannot ignore the former even if our interest lies
primarily on the lower-tail dependence. This is why we employ the symmetrized Joe-Clayton copula rather
than focusing on the lower tail dependence by means of either the Clayton or the rotated Gumbel copulae.
We thank Andrew Patton for calling our attention to this point.
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It now remains to specify how the conditional tail dependence parameters evolve over

time. We assume that λLt and λUt are functions of market uncertainty, which we proxy

using a single index that combines the term spread, the swap spread, the VIX index, and the

volatility risk premium. The term spread stands for a leading indicator of recessions (Harvey,

1988; Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Adrian and Estrella, 2008)

and thus reflects the uncertainty in the real economy. In addition, Petkova (2006) shows

that term spread innovations also help describe future investment opportunities. The swap

spread gauges credit risk and counterpart risk by means of the difference between the interest

rates on interbank loans and on short-term U.S. government debt (Brunnermeir, 2009). The

VIX index is a model-free measure of the options-implied volatility of the S&P 500 Index.

As such, it essentially provides the ex ante risk-neutral expectation of the future volatility.

See Jiang and Tian (2005) for the information context of the VIX index as a predictor of

future realized volatility.

The volatility risk premium (VOLPREMIUM) not only relates to the coefficient of rela-

tive risk aversion but also co-moves with several macroeconomic variables, reflecting a pro-

nounced counter-cyclical dynamics (Corradi, Distaso, and Mele, 2008; Bollerslev, Gibson,

and Zhou, 2009). Drechsler and Yaron (2008) establish a link between variance risk pre-

mium and macroeconomic uncertainty within a long-run risk model. Apart from matching

the main features of asset returns, their calibration exercise is able to reproduce a level of re-

turn predictability for the variance risk premium similar to the one we observe in the data.

In addition, within Bollerslev, Tauchen, and Zhou’s (2009) stylized general-equilibrium

model, the variance risk premium not only explains a significant portion of aggregate stock

market returns (with high premia predicting low future returns and vice-versa), but also

entails more predictive power than the usual suspects, such as the price-dividend ratio,

default spread, and consumption-wealth ratio. Finally, volatility premia are particularly

relevant for hedge funds given that they typically feature substantial exposure to variance

risk (Bondarenko, 2004).

We model the time-varying nature of the tail dependence by:

λjt ≡ λj(zt) = Λ(θj0 + θj1 VIXt−1 + θj2 VOLPREMIUMt−1 + θj3 TERMt−1 + θj4 SWAPt−1), (6)

where the logistic function Λ(·) ensures that the tail dependence coefficients lie in the unit

interval, i.e., 0 < λjt < 1, for j ∈ {L,U}. To avoid convergence problems with the logistic
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function, we standardize the covariates by subtracting their mean and further dividing by

their standard deviation.

We estimate the copula parameters by QML. It turns out that the estimation of the

MA-GARCH model does not affect the asymptotic distribution of the QML estimator of

the copula parameters. Unfortunately, the same does not apply to the estimation of the

marginal cumulative distribution function by means of the empirical distribution (see discus-

sion in Chen and Fan, 2006a,b). To circumvent this issue, we compute asymptotically-valid

standard errors by bootstrapping the standardized residuals (see Appendix B for more de-

tails about the bootstrap procedure). Finally, the Monte Carlo results in Appendix C also

show that the asymptotic distribution of the QML estimator offers a very good approx-

imation to its finite-sample counterpart, even if the dynamic copula is driven by highly

persistent covariates.

To check how well the symmetrized Joe-Clayton copula model fits the data, we employ

the joint hit test put forth by Patton (2006). This is similar to Christoffersen’s (1998)

procedure to assess forecast interval accuracy. As in Patton (2006), we examine by means

of hit tests the empirical coverage of our copula-based models in several regions of the joint

distribution support, namely, the lower 10% tail, the interval from the 10th to the 25th

quantile, the interval from the 25th to the 75th quantile, the interval from the 75th to

the 90th quantile, and the upper 10% tail. The empirical coverage tests indicate that our

copula-based models fit well the tails in every instance and hence we report in Section 3.2

only the p-values for the hit test that considers jointly all of the above regions.

2 Data Description

Our data set concerning the hedge-fund industry consists of the daily HFRX indices from

Hedge Fund Research, Inc. The single-strategy HFRX indices are convertible arbitrage

(CA), distressed securities (DS), equity hedge (EH), equity market neutral (EMN), event

driven (ED), macro (M), merger arbitrage (MA), and relative value arbitrage (RVA). To

also represent the broad population of hedge funds, we employ the following HFRX in-

dices: global (GL), equal weighted strategies (EW), absolute return (AR), and market

directional (MD). The GL index aggregates the above strategies into a single index by

virtue of an asset-weighted average based on the distribution of assets in the hedge fund
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industry, whereas every strategy receives equal weight in the EW index. The AR and

MD indices are asset-weighted as the GL index, but they further select constituents that

are likely to entail a performance that is not very sensitive to market conditions and

to add value by betting on the direction of various financial markets, respectively. See

http://www.hedgefundresearch.com for more details.

We employ the S&P 500 Index to measure the movements in equity markets, the Lehman

Global Bond Index (LGBI) for bond markets, the Goldman Sachs Commodity Index (GSCI)

for commodity markets, and the U.S. Dollar Index (USDX) for currency markets. The

latter gauges the trade-weighted value of the U.S. dollar relative to the six major world

currencies: the euro, Japanese yen, Canadian dollar, British pound, Swedish krona, and

Swiss franc. The VIX index is the options-implied volatility of the S&P 500 Index from

the Chicago Board Options Exchange. We calculate the volatility risk premium as the

difference between the realized and implied volatilities of the S&P500 Index and compute

the realized volatility using 5-minute returns on the S&P 500 futures index. Finally, we

measure the term spread by the difference between the yields of the 30-year and 3-month

U.S. Treasuries, whereas the swap rate is the difference between the 3-month T-bill and the

3-month LIBOR rates.

Our sample runs from September 2004 to May 2008, yielding a total of 926 daily ob-

servations. Table 1 reveals that bond and equity returns are on average about 2.5%, even

though volatility is twofold for the S&P500 Index. The negative average return of the

USDX index reflects the weakening of the U.S. dollar, whereas the high average GSCI re-

turn mirrors the recent commodity boom. In addition, its standard deviation confirms

the traditional view that commodity prices are among the most volatile assets (Kroner,

Kneafsey, and Claessens, 1995; Pyndyck, 2004; Blattman, Hwang, and Williamson, 2007).

As for higher-order moments, only the S&P 500 Index exhibits substantial excess kurtosis,

whereas skewness is material for both equity and bond markets. In particular, skewness

is negative for the S&P 500 Index and positive for the Lehman Global Bond Index. The

former emulates the well-known leverage effect, while the latter is typical of bonds with low

default risk. Finally, stock market returns and squared returns display significantly higher

autocorrelation than their counterparts in the bond, commodity, and currency markets.

In line with the stylized facts of the hedge fund literature, we find that most styles
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entail average returns that are comparable with equity and bond expected returns, though

with much lower volatility. In addition, all hedge fund returns exhibit substantial negative

skewness and excess kurtosis, confirming the literature’s concern with (fat) tail risk. It is

interesting to observe that EMN is the least asymmetric, while by far the most leptokurtic.

As expected, autocorrelation is also much stronger for hedge fund returns than for any

broad market returns, due to performance smoothing and illiquidity exposure (Getmansky,

Lo, and Makarov, 2004). With the exception of the DS style index, squared returns are also

very persistent in the hedge fund sector. Altogether, these results justify the MA-GARCH

specification for hedge fund returns.

We next turn to the co-movements between hedge-fund returns and broad-market re-

turns. Table 2 unveils significant unconditional correlation between the S&P 500 Index and

some of the equity-based styles (e.g., EH and ED). Correlation with the commodity index is

always positive, with the highest values corresponding to the macro style (about 0.36) and

to the overall industry (around 0.30 for the GL, EW, AR, and MD indices). In contrast,

correlations with bond and currency markets are typically negative, ranging from 0.11 to

-0.29. Finally, there is also significant positive correlation among hedge fund styles, as in

Boyson, Stahel, and Stultz (2010).

Table 3 complements the above results by running Poon, Rockinger, and Tawn’s (2004)

test of tail dependence. There is strong (unconditional) lower-tail dependence among styles

and, to a lesser extent, with the S&P 500 Index. CA, DS, and EMN are the only styles

featuring neither correlation nor lower-tail dependence with any other style or asset class.

As for upper-tail dependence, it appears significant mainly among hedge-fund styles. There

is significant upper-tail dependence with the S&P500 Index only for a few styles, while we

find none with bond, commodity, and foreign exchange markets.

3 Conditional Tail Risk in the Hedge Fund Industry

Our empirical analysis is in two steps. We first filter the different index returns by means

of univariate MA-GARCH models, and then investigate whether market uncertainty drives

the tail dependence among their standardized residuals using the symmetrized Joe-Clayton

copula. In contrast to Boyson, Stahel, and Stultz (2010), we focus on the conditional tail

dependence between hedge fund styles and broad market returns.
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3.1 Filtering index returns

To allow for illiquidity exposure and performance smoothing over the month, we start with a

MA(22) structure for the hedge fund styles and then eliminate insignificant MA coefficients

using a standard general-to-specific model selection procedure. It is worth mentioning that

filtering hedge fund returns by means of a full MA(22) specification does not change our

qualitative results.

Table 4 reports the QML estimates for the different MA-GARCH(1,1) models. The first

striking feature concerns the length of the MA structure for the different index returns.

While the only broad market return to require a MA structure is the S&P 500 Index (and

of first order), most hedge fund styles exhibit a much more persistent behavior, calling for a

richer MA structure. It is not surprising that the serial correlation (as measured by the sum

of the MA coefficients) is relatively stronger for hedge-fund returns. Getmansky, Lo, and

Makarov (2004) show that hedge funds typically display higher levels of autocorrelation

due to the combination of illiquidity exposure and performance smoothing. In addition,

cyclical serial correlation may also arise from certain schemes for allocating gains and profits

between the investor’s account, management account, and provision account (Darolles and

Gourieroux, 2009).

We account for performance smoothing and illiquidity concerns using the two measures

proposed by Getmansky, Lo, and Makarov (2004). The first is the normalized MA(0)

coefficient ζ̄0 = 1/
∑22

j=0 ζj , where ζj is the MA(j) coefficient and ζ0 = 1. It gauges the

fraction of the “true” daily return that the reported return reflects. The second is the

smoothing index
∑22

j=0 ζ̄
2
j , with ζ̄j = ζj/

∑22
j=0 ζj , which measures overall illiquidity and

performance smoothing. As expected, the smoothing index is lowest for the DS style at

0.330, reflecting that distressed securities are typically less liquid. This is consistent with

the high degree of persistence that we observe in the DS returns (i.e., MA coefficients sum to

0.824), along with a normalized MA(0) coefficient of ζ̄0 = 1/1.824 = 0.549. The latter means

that the reported return for the DS style reflects only about 55% of the true daily return.

In addition, the smoothing index is also substantially different from one for every industry

index, as well as for the CA, M, and RVA styles, suggesting some exposure to liquidity

risk and/or performance smoothing. In contrast, we find very little evidence of smoothing

within the EH, EMN, and MA styles. These findings complement well Getmansky, Lo,
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and Makarov’s (2004) smoothing analysis using hedge fund style indices from the TASS

database. 6

As for the conditional variance, we observe that hedge-fund and broad-market returns

exhibit very persistent behavior in the second moment, though still satisfying geometric

ergodicity (α̂ + β̂ ≈ 1, with 0.026 ≤ α̂ ≤ 0.213 and 0.749 ≤ β̂ ≤ 0.970). As we fail to find

any evidence of residual heteroskedasticity at the 5% level of significance, we conclude that

the GARCH(1,1) specification suffices to describe the time-varying volatility of the different

index returns.

Table 5 reports the results of Poon, Rockinger, and Tawn’s (2004) test of unconditional

tail dependence between pairs of MA-GARCH standardized residuals. We find even less

evidence of unconditional tail dependence after controlling for serial correlation and con-

ditional heteroskedasticity. For instance, M and MA join CA, DS, and EMN among the

styles displaying no unconditional tail dependence with any other style or asset class. As

before, most of the tail dependence is among styles, especially with respect to the broad

hedge-fund indices (i.e., GL, EW, AR, and MD), rather than across asset classes. As for

the traditional asset classes, we find only a few hedge fund styles exhibiting tail risk expo-

sure to equity markets. In particular, we fail to reject the null of unconditional lower-tail

dependence with the S&P 500 Index at the 5% significance level for the RVA style and for

the EW index. At the 1% significance level, we start failing to reject lower-tail dependence

for the asset-weighted global index and for the EH and M styles.

3.2 Joint distributions

For every pair of hedge fund style/index and broad market standardized residuals, we

estimate the symmetrized Joe-Clayton copula function with time-varying parameters driven

by market uncertainty.

Tables 6 and 7 report the conditional copula parameter estimates for every hedge fund

aggregate index and style, respectively. It is striking how the picture changes dramatically

once we condition on market uncertainty, in that most hedge fund styles now seem to exhibit

exposure to equity tail risk. Lower-tail dependence with the S&P 500 Index decreases

in a significant manner with market uncertainty in the hedge fund industry, seemingly

mitigating the likelihood of a diversification breakdown at times of falling stock markets.
6 See http://www.hedgeworld.com/download/tracked/lipper tass brochure.pdf for more details.
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We further address this issue in Section 3.4 to understand whether there is enough evidence

to contradict the perception that hedge funds heavily contribute to financial contagion and

hence to systemic risk.

Despite little evidence of unconditional tail dependence, the DS style displays conditional

exposure to equity risk, which changes mainly with the volatility premium and with the term

and swap spreads. While it increases with the former, the lower-tail dependence decreases

with the latter. This is the only case in which tail dependence declines with the swap spread.

The swap spread is an indicator of liquidity risk and so it should have a negative effect on

the tail dependence if positions are short in illiquid stocks. That is precisely the case

of hedge funds within the DS style. We also observe lower-tail dependence unambiguously

decreasing with market uncertainty for the EH and ED styles, mainly through the volatility-

based measures, as well as for the macro style via term spread. In contrast, the exposures

of the MA and RVA styles to equity tail risk mount significantly with the term and swap

spreads, respectively.

On the other hand, there is very little action in the upper tails. We indeed fail to reject

the null hypothesis of constant upper-tail dependence for most hedge fund index returns.

There is only evidence of time-varying upper-tail dependence with equity markets for the

DS style and, to a lesser extent, for the MD index. In particular, they both decrease sharply

with market uncertainty.

Figure 1 plots how the conditional lower-tail dependence with the S&P 500 Index evolves

for hedge fund returns over time. In the first row, we observe that the aggregate indices

behave very similarly, displaying lower-tail dependence that decreases with the volatility-

based measures and with the term spread, but increases with the swap spread. Overall,

lower-tail dependence seems to diminish with market uncertainty due to the dominance of

the VIX and volatility premium effects. The only exception is due to the AR index. It

features little lower-tail dependence, which mainly responds to the term premium.

The second and third rows in Figure 1 reveal a mixed pattern. On the one hand,

most hedge fund styles exhibit a conditional tail dependence that declines with market

uncertainty even if through different channels. In particular, the plots for the DS and M

styles are more similar in shape to that of the AR index, whereas those for the EH and ED

styles resemble more the behavior of the market directional index. This reflects not only
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the effort that hedge funds with DS and M styles put to entail performances that are not

very sensitive to equity market conditions (as here represented by equity volatility), but

also the fact that the EH and ED styles normally do directional bets.

On the other hand, at odds with what happens in the overall industry, the conditional

tail dependence with the S&P 500 Index increases significantly with the term premium and

the swap spread for the MA and RVA styles, respectively. This is not too surprising, given

that spread trading is more likely to entail negative returns in periods of high volatility and

illiquidity, i.e., greater market uncertainty. Because of the negative correlation between the

S&P500 Index returns and its volatility, the MA and RVA tail equity risk exposures are

bound to escalate with market uncertainty.

The picture is very different for the other broad-market returns. Given their slightly

negative correlations with hedge fund returns, we find neither conditional nor unconditional

tail risk exposure to bond and currency markets. Our copula analysis, however, reveals

that the tail risk exposure of macro hedge funds to commodity prices increases with market

uncertainty in both tails. This is consistent with Edwards and Caglayan’s (2001) claim that

commodity trading advisors and macro hedge funds provide protection to downside risk in

the equity markets.

Our results withstand a number of different robustness checks. First, although we only

report in Table 6 the results for the symmetrized Joe-Clayton copula, there is no qualitative

change if one restricts attention to the lower tail by means of either a Clayton or rotated

Gumbel copula. The coefficient estimates are always of the same sign and result in a

similar degree of lower-tail dependence. Second, the hit test that we perform to assess

the empirical coverage in the joint tails indicates that the symmetrized Joe-Clayton copula

is flexible enough to capture the corresponding dependence structure. Third, a recursive

analysis shows that the QML estimates of the copula coefficients are very stable over time,

ensuring that our findings are not spurious due to overfitting or copula misspecification.

Figure 2 illustrates this stability by plotting the recursive QML estimates of the copula

coefficients for the aggregate global index.

Fourth, our empirical findings are also robust to different specifications of the copula

model. Replacing the VIX index and the volatility risk premium with their variance-based

counterparts does not have a qualitative impact on the results. Assuming a polynomial-
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type specification with both volatility and variance terms does not pay off either, in that

only the volatility-based measures of market uncertainty remain significant. Finally, incor-

porating credit spread into the single index that determines the time-varying nature of the

tail parameter yields insignificant coefficients and hence does not affect qualitatively the

outcome.

Altogether, the only hedge fund indices for which we fail to reject tail market neutrality,

regardless of whether conditional or unconditional, are AR, CA, and EMN. In the next

section, we explore their tail neutrality to a deeper extent by breaking down equity returns

into market segments based on value, growth, and market capitalization.

3.3 Tail neutrality

In this section, we replace the S&P 500 Index with the family of Russell stock market

indices to test whether tail neutrality still holds once we control for stock characteristics.

In particular, we estimate the symmetrized Joe-Clayton copula models of conditional tail

dependence for the Russell indices, along with their value and growth sub-indices.

The Russell 3000 broad market index measures the performance of the largest 3,000 U.S.

firms representing about 98% of the investable U.S. equity market, whereas the Russell

Top 200 Index considers only the largest 200 U.S. firms (about 65% of the total market

capitalization). The Russell Midcap Index reflects the performance of the mid-cap segment

of the U.S. equity universe by looking, approximately, at the smallest 800 firms within

Russell 1000 Index (which contains the largest 1,000 firms in the U.S. market). The Russell

2000 Index includes approximately 2,000 of the smallest securities based on a combination

of their market capitalization and current index membership (about 8% of the U.S. market).

Finally, the Russell Microcap Index assesses the performance of the microcap segment (less

than 3% of the total market capitalization) by including the smallest 1,000 securities of

the Russell 2000 Index. The corresponding growth and value sub-indices also rank firms

according to their price-to-book ratios and forecasted growth values.

There is not much evidence of tail dependence with the Russell indices regardless of the

tail we examined. In particular, we find no copula parameter estimate that differs from zero

at the usual levels of significance.7 In fact, we cannot reject the null hypothesis of constant

lower- and upper-tail dependence with the Russell indices for the AR, CA, or EMN styles.
7 We do not report these insignificant estimates for brevity, although they are available from the authors

upon request.
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Informal inspection indeed seems to confirm that they are tail neutral with respect to the

different segments of the equity market.

3.4 Systemic risk

The evidence that hedge funds seem to reduce their tail exposure to equity markets in times

of uncertainty is somewhat at odds with the perception that they contribute to systemic risk.

In principle, due to style convergence and multiple layers of leverage, hedge fund failures

are likely to result in a cascade of margin calls and fire sales that could well destabilize

financial markets in a severe fashion. Forced liquidation of relatively large positions not

only entails heavy losses to creditors and counterparties, but also indirectly affects other

market participants through asset price adjustments and liquidity dry-ups.

We conduct a simple correlation analysis to give some perspective on these systemic

risk issues. The idea is simple. Hedge funds reduce their tail exposure to equity risk

in times of market uncertainty either by voluntarily stepping leverage down or by forced

liquidation. If the former, this sort of uncertainty timing would lead to a positive correlation

between changes in lower-tail dependence and stock market returns. If the latter, we should

expect a positive correlation between hedge fund index returns and changes in the lower-tail

dependence given that fire sales usually entail heavy losses to the hedge fund. As fire sales

normally take more than one day, we also compute correlations over a week.

Table 8 reveals that daily correlations with stock market returns are either negative

or insignificant, whereas correlations with hedge fund style returns are either positive or

insignificant. The picture changes at the weekly frequency. Correlation with changes in

the lower-tail dependence is mostly positive for equity market returns, although there are a

few exceptions. In particular, weekly correlation with the S&P 500 Index remains negative

only for DS (as expected), while it is insignificant for the M and RVA styles. As before, the

correlation between style returns and changes in the lower-tail dependence is either positive

or insignificant (notably, for the DS, M, MA, and RVA styles). All in all, this suggests that

the reduced exposure to equity tail risk in periods of uncertainty is more consistent with

forced liquidations and fire sales.

The above correlation analysis is unconditional, however. Given that our measure of tail

dependence is conditional on market uncertainty, it makes more sense to examine these cor-

relations over time. Figure 3 plots rolling correlations between the changes in the lower-tail
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dependence with equity/commodity markets and the corresponding broad market returns.

The correlation is mostly negative for the aggregate indices. The only exception is the AR

index, which oscillates around zero and tends to be positive in times of low market uncer-

tainty, while negative in periods of uncertainty. Only for the macro style is the correlation

with equity markets positive most of the times, even if not very sizeable. This suggests there

is little evidence supporting uncertainty timing in which hedge funds reduce their leverage

and tail risk exposure in response to increasing market uncertainty.

Figure 4 displays rolling correlations between hedge fund returns and the changes in

their tail risk exposure to equity/commodity markets. Although the correlations are close

to zero for many styles, it is striking how the correlation becomes significantly positive in

the wake of the credit crisis for the GL, EW, and MD aggregate indices, as well as for the

EH style. In turn, the correlation is almost always significantly positive for the AR style.

This seems to confirm the belief that hedge funds reduce their exposure to tail equity risk

mainly thorough forced liquidations.

As an alternative to rolling correlations, we also compute conditional correlations given

whether the single index that proxies for market uncertainty is either above or below its

unconditional mean. The results are similar, in that we find little evidence of uncertainty

timing, whereas there is some evidence consistent with fire sales as the main driver for the

tail risk reduction. This is consistent with the evidence of dramatic selloffs put forth by

Ben-David, Franzoni, and Moussawi (2010).

Two caveats are in order. First, the correlation analysis provides only indirect evidence

of systemic risk. It is virtually impossible to determine conclusive evidence on systemic

risk without portfolio holdings data. Second, although it concerns hedge fund indices, the

correlation analysis also gives some insights about individual hedge funds because of style

convergence and of how tail dependence aggregates within a style. Style convergence occurs

when hedge funds end up with similar positions/tradings even if for different reasons (Fung

and Hsieh, 2000). This is more likely to happen in times of market uncertainty, such as

falling markets and liquidity dry-ups. This means that we should expect less dispersion

across funds and hence style returns become closer to individual hedge fund returns. The

properties of tail dependence also imply that the tail dependence coefficient of a hedge fund

index is equal to the maximum coefficient of the component hedge fund returns. Altogether,
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this means that our results for hedge fund styles are actually conservative with respect to

individual hedge funds.

3.5 Credit crunch

The original sample for the tail risk analysis does not include the peak of the recent financial

crisis (September 2008). This is unfortunate, both because of the severity of the crisis and

also because it actually represents a a tail event, with many hedge fund failures. Expanding

the tail risk analysis to include the crisis period is not straightforward, however. It is indeed

very difficult to model the conditional marginals of the broad-market returns, as well as of

the hedge fund styles in a congruent manner once we include the crisis period in the sample.

To avoid modeling the credit crunch as a structural break, we consider the sample from June

2008 to May 2010 separately.

Table 9 reports the main descriptive statistics, which differ substantially from the statis-

tics within the non-crisis period. With the exception of the MA style, the mean return is

negative across every hedge fund index and style, as well as for equity and commodity

markets. Overall, the hedge fund sector did not suffer as much as equity markets, although

styles such as CA and DS experienced heavy losses. As expected, the volatility is higher

within the crisis period, though skewness does not change much (apart from the MA style).

Kurtosis is higher as well, with exception to the EMN and M styles. It is interesting how

the EMN style now features the lowest kurtosis (rather than the highest).

Despite the palpable changes in the moments, the main difference is in the autocorre-

lation patterns. The Ljung-Box Q-statistics indicate that, even though autocorrelation in

squared returns diminishes to some extent, serial correlation dramatically increases espe-

cially for the hedge fund returns. The latter makes it very difficult to find a congruent

model for the conditional mean within the class of AR processes. As a result, we carry out

the copula analysis for the crisis sample using a full MA(22)-GARCH(1,1) specification for

every hedge fund index/style.

Copula parameters usually result in statistically insignificant tail dependence.8 All in

all, we find very little evidence of tail dependence within the crisis period.
8 These unreported estimates are of course available upon request.
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4 Conclusion

This study asks whether market uncertainty drives tail risk exposure in the hedge fund

industry. Although Ribeiro and Veronesi’s (2002) rational expectations model posits that

cross-correlations among different markets should rise in bad times due to increases in their

volatility, it is not necessarily the case that tail dependence should vary as well. The

latter is actually invariant to changes in the conditional marginal distributions and hence

time-varying volatility does not play a role. We nonetheless find that most hedge fund

styles feature time-varying tail risk exposure to the S&P 500 Index, which is driven by

market uncertainty even if they exhibit little unconditional tail dependence. In particular,

the lower-tail dependence of the overall hedge-fund industry seems to decrease with market

uncertainty, ensuring some diversification gains even within periods of falling stock markets.

The only exceptions are the MA and RVA styles for which tail risk exposure to the S&P

500 Index increases as market uncertainty builds up.

Also, we cannot reject market tail neutrality for two hedge-fund styles, namely CA and

EMN, as well as for the AR index. This result is robust to decomposing the U.S. equity

market returns according to stock characteristics (e.g., value, growth, and market cap).

Book-to-market ratio does not seem to have any effect, whereas lower-tail dependence for

the AR index seems slightly larger, though still very small, for indices that consider only

mid-cap firms. Finally, we also find very little evidence of tail dependence of hedge funds

with bond and currency markets. As for the commodity markets, we document that the

macro style exhibits more tail risk exposure in periods of high uncertainty. This is not

so surprising given that, in bear markets, macro hedge funds presumably increase their

exposure to emerging markets, whose performance typically depends heavily on commodity

prices.

Our findings cast some doubt on the claims that the hedge fund sector heavily con-

tributes to the systemic risk in the economy. Lower-tail dependence with traditional asset

classes is obviously only an indirect measure and, as such, it is hard to gauge the actual ex-

posures to systemic risk. However, it is important to stress that focusing on tail dependence

rather than on tail correlation provides a better picture given that it explicitly controls

for changes in the first and second moments of the returns. The latter is paramount given

Adrian’s (2007) evidence that the recent increase in the correlation among hedge funds is
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mostly due to lower volatility rather than to higher covariances.

23



Appendix

A Sklar’s Theorem Extension to Conditional Distributions

Patton’s (2006) Theorem 1: Let FXY |Z(·, ·|z) denote the conditional joint distribution of

(X,Y ) givenZ = z, with conditional marginals FX|Z(·|z) ≡ FXY |Z(·,∞|z) and FY |Z(·|z) ≡

FXY |Z(∞, ·|z). If FX|Z(·|z) and FY |Z(·|z) are continuous in x and y for all z ∈ Z, where

Z is the support of Z, there then exists a unique conditional copula C(·, ·|z) such that:

FXY |Z(x, y|z) = C(FX|Z(x|z), FY |Z(y|z)|z) (A.1)

for each z ∈ Z and every (x, y) ∈ R̄2, with R̄ ≡ R ∪ {±∞}. The converse is also true

in that FX|Z(·|z) as defined by (A.1) is a conditional bivariate distribution function with

conditional marginal distributions FX|Z(·|z) and FY |Z(·|z) given a family of conditional

copulae {C(·, ·|z)} measurable in z.

B Details on the Estimation Strategy

It follows from (2) that the conditional joint log-likelihood function is:

`(φX ,φY ,θ) =
T∑
t=1

log f (X)(xt|zt;φX) +
T∑
t=1

log f (Y )(yt|zt;φY ) +
T∑
t=1

log ct(ut, vt;θ). (B.1)

Under the assumption of weak exogeneity, it is possible to estimate the parameters in

(B.1) in two steps. First, we estimate the marginal parameters φX and φY by quasi-

maximum likelihood and then transform the standardized residuals by means of the em-

pirical distribution to obtain uniform variates, namely, ût = 1
T+1

∑T
τ=1 1(η̂X,τ ≤ η̂X,t) and

v̂t = 1
T+1

∑T
τ=1 1(η̂Y,τ ≤ η̂Y,t) for η̂i,t ≡ ηi,t(φ̂i) with i ∈ {X,Y }. Second, we obtain the

QML estimate θ̂ by maximizing with respect to θ the empirical counterpart of the third

term of (B.1), i.e., θ̂ ≡ argmaxθ
∑T

t=1 log ct(ût, v̂t;θ).

It turns out that the estimation of the parameters in the conditional marginal distri-

bution does not have an impact on the limiting distribution of the estimator of the copula

parameters. Unfortunately, the same does not apply to the estimation of the resulting cu-

mulative distribution functions by means of the empirical distribution. Replacing ut and

vt with their empirical counterpart is not without consequences. The estimation errors

that arise while computing ût and v̂t affect the covariance matrix of θ̂ and hence standard

inference on θ is invalid.
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To solve this problem, we use a simple conditional bootstrap procedure. In particular,

we proceed as follows:

1. Transform the cross-dependent vector (ût, v̂t) into independent uniform variates (ũt, ṽt)

on the unit square [0, 1]2 for all t = 1, . . . , T using the probability integral transform

implied by the conditional copula distribution given zt.

2. Draw B bootstrap artificial samples of the form (ũ(b)
t , ṽ

(b)
t ) for all t = 1, . . . , T .

3. Transform them into cross-dependent variates (û(b)
t , v̂

(b)
t ) using the inverse probability

integral transform implied by the conditional copula distribution given zt.

4. Transform the vector (û(b)
t , v̂

(b)
t ) into (η̂(b)

X,t, η̂
(b)
Y,t) using the inverse empirical cumulative

distribution function for all t = 1, . . . , T .

5. Estimate θ̂
(b)

by quasi-maximum likelihood for every bootstrap replication b = 1, . . . , B.

We employ B = 1, 000 artificial bootstrap samples. As B grows to infinity, the sample

covariance matrix of (θ̂
(1)
, . . . , θ̂

(B)
) entails a consistent estimator for the true covariance

matrix of θ̂, allowing us to perform valid asymptotic inference on θ (see, for instance,

Hidalgo and Zaffaroni, 2007). Note that, as the estimation of the MA-GARCH models does

not affect inference, it is not necessary to re-estimate them for each bootstrap sample.

C Finite Sample Behavior of the QML Estimator

Little is known about the finite-sample properties of the QML estimator in dynamic copula

models, especially in the presence of highly persistent covariates. We thus run a small

Monte Carlo experiment to shed more light on this issue. The design of the simulation is

as follows. In each Monte Carlo replication, we draw a sample of size T = 1, 000 from the

conditional symmetrized Joe-Clayton copula given by (5) with:

λjt = Λ(θj0 + θj1 zj,t), j ∈ {L,U},

where zj,t is a zero-mean, unit-variance AR(1) process with Gaussian innovations. We set

the autoregressive parameters to 0.95 at the upper tail (j = U) and to 0.99 at the lower

tail (j = L). The remaining parameters read θL0 = 0.5, θU0 = 0, and θU1 = θL1 = 0.5. This

configuration approximately reflects the degree of tail dependence we observe in the hedge
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fund data. Given that the conditioning variate zj,t is ancillary, we fix the AR(1) process

throughout the 1,000 replications.

Table C.1 reports the bias, standard deviation, and root mean squared error of the

QML estimator, whereas Figure C.1 compares its distribution to the asymptotic Gaussian

distribution. It is apparent that QML entails unbiased estimators. It also turns out that

precision is somewhat higher at the lower tail despite the fact zL,t is more persistent than

zU,t. Finally, even if the dynamic copula is driven by highly persistent AR processes, the

asymptotic Gaussian distribution seems to offer a very good approximation of the QML

estimator in finite samples.

Figure C.1 The density of the QML estimator for a dynamic copula model with time-varying
tail dependence driven by highly persistent AR(1) processes. The results refer to a sample size
of T = 1, 000 observations and hinge on 1,000 Monte Carlo replications.

θL0 θL1 θU0 θU1

true value 0.500 0.000 0.500 0.500

bias -0.006 -0.001 -0.005 0.002

standard deviation 0.083 0.068 0.126 0.120

root mean squared error 0.083 0.068 0.126 0.121

Table C.1 Monte Carlo results based on 1,000 replications about the QML estimator for a
dynamic copula with time-varying parameters driven by highly persistent covariates.
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Figure 1 Lower-tail dependence between hedge fund styles and the S&P 500 Index from
September 2004 to May 2008. For the macro style, we also display the evolution of the lower-
tail dependence coefficient with the Goldman Sachs Commodity Index over time.
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Figure 2 Recursive quasi-maximum likelihood estimates of the symmetrized Joe-Clayton cop-
ula parameters for the S&P 500 Index and HFRX Global Index, with their 95% bootstrap-based
confidence interval.
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Figure 3 Rolling correlation between the S&P 500 Index returns and the changes in the tail
risk exposure to equity markets from September 2004 to May 2008. For the macro style, we
also display the rolling correlation between the Goldman Sachs Commodity Index returns and
the changes in the tail equity risk exposure to commodity markets for the same period.
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Figure 4 Rolling correlation between hedge fund returns and the changes in the tail risk
exposure to equity markets from September 2004 to May 2008. We also display the rolling
correlation between macro style returns and the changes in the tail equity risk exposure to
commodity markets.
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