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Abstract

This paper examines a dynamic stochastic economy with a benevolent govern-
ment that cannot commit its future policies. We consider sequential sustainable
equilibria (SSE) as in Phelan and Stacchetti (2001) and investigate whether the
time consistency problem of capital income tax is quantitatively important. We
numerically solve for the set of equilibrium payoffs using a variant of Phelan and
Stacchetti’s method. For a realistically calibrated economy, we find the welfare
cost of no commitment is very small. Measured by consumption equivalent varia-
tion, the best time-consistent outcome has slightly lower welfare (0.22%) than the
Ramsey allocation. In the sequential equilibrium that yields the highest payoff
to the government, the capital income tax rate is close to zero on average and
pro-cyclical, while the labor income tax is counter-cyclical. We also find that
the best sustainable equilibrium outcome may achieve substantially higher social
welfare than the Markov-perfect equilibrium as considered by Klein, Krusell and
Rios-Rull (2008).
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1 Introduction

This paper studies the optimal tax policy in environments without a commitment
technology that can bind the actions of future governments. We describe the economy
as a dynamic game between a benevolent government and a continuum of representative
private agents. We extend the analysis of Phelan and Stacchetti (2001) to a stochastic
setting. We also provide an efficient numerical implementation of their algorithm by
incorporating the key observation that the boundaries of the equilibrium payoff set can
be recursively characterized. This observation simplifies the computation and permits
a variety of experiments. Numerical simulations indicate that the outcome in the best
sequential sustainable equilibrium (SSE) is not far away from the Ramsey allocation for
the set of parameter values calibrated to the U.S. economy. The optimal capital income
tax rate is close to zero on average and the welfare cost of no commitment is 0.22% in
consumption equivalent. This small welfare effect can be partially explained by the fact
that the government is not able to issue debt in the model.1 Without the help of debt
issuance, a Ramsey government cannot reduce the distortion of capital income tax by
setting a large initial tax and a zero rate thereafter.2 It can only utilize the long run
zero tax rate on capital. We also find that the best sustainable equilibrium outcome
may achieve substantially higher social welfare than the Markov perfect equilibrium.
This result contrasts sharply with Klein, Krusell and Rios-Rull (2008). This is due
to the fact that we look at the entire set of sustainable equilibria, which contains the
Markov perfect equilibrium. We show that all equilibrium sequences are Markovian.3

In particular, we find that the worst SSE is a Markov perfect equilibrium.
There is a well-established literature that explores the properties of optimal taxation

in the case when the government has access to a commitment technology. A celebrated
result of Chamley (1986) and Judd (1985) showed that capital income should not
be taxed in a deterministic steady state. Their results have been extended to the
stochastic growth model [see Zhu (1992), Chari et al. (1994, 1995)] and to models with
balanced government budget constraints [see Stockman (2000)]. The intuition for a
zero capital tax comes from the fact that a capital tax is equivalent to an increasing
tax on consumption goods in future periods, which violates the Atkinson and Stiglitz’s

1This modeling choice is made for computational reasons.
2Chari et al. (1993) found that the high initial tax rate on capital income contributes to most of

the welfare gain of switching from an ad hoc policy mimicking U.S. tax pattern to Ramsey.
3Chang (1998) first discovered this property in a monetary model without commitment.
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(1976) result on uniform taxation.
One of the main assumptions underlying the above results is that a government

can commit to a sequence of tax policies. However, it is generally recognized that
the government usually does not have access to a perfect commitment technology.4

In this case, as the seminal paper of Kydland and Prescott (1977) pointed out, a
benevolent government would choose to deviate from the prescribed sequence of taxes.
To illustrate the point, suppose that the policymakers have chosen a Ramsey policy
for today and for the future, which prescribes a heavy tax rate on initial capital stock
and a light tax rate on future capital to stimulate investment. However policymakers
may choose to renege on the original plan when the future arrives. The reason is that
once capital is accumulated it is sunk, and taxing capital is no longer distortionary.
The government would choose higher capital taxes, since the investment decision has
already been made, and a light tax rate on labor income to encourage work effort.
In equilibrium, the government’s temptation to deviate to a higher capital tax and
lower labor tax in the first period is deterred by a lower continuation value for the
government.5 When the discount factor is low, the former effect dominates, and the
government cannot resist the temptation. On the other hand, as the continuation
value for the government may decrease with the value of discount factor, it makes
the deviation more painful and deter the government’s temptation to raise the capital
tax. The private agents anticipate this incentive to renege and rationally choose lower
levels of investment when there is no commitment device to tie the hands of future
policymakers. The missing commitment technology makes the Ramsey policy time
inconsistent. It is also inappropriate to find the optimal policy using optimal control
theory, which requires that the private agent’s expectation about future government
actions are time invariant.

To study the optimal policies without commitment, Phelan and Stacchetti (2001)
build on Abreu, Pearce and Stacchetti (1990) and develop methods to characterize and
solve for the set of sustainable equilibrium payoffs.6 Chang (1998) develops a similar
method to study the properties of time consistent monetary policies. In this paper,
we extend these methods to a stochastic setting. We also provide an alternative nu-

4Romer and Romer (2010) identify that there are 104 legislated tax changes between 1947 and
2006 in the U.S.

5This lower continuation value arises as a consequence of the household’s belief about higher future
tax rate, which discourages investment and reduces output.

6Chari and Kehoe (1990) suggest to model the policy problem as a game between the government
and and a continuum of economic agents. They also introduce the concept of sustainable equilibrium.
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merical implementation of the theoretical algorithm. The key observation is that we
can recursively characterize the boundary of the equilibrium payoff set. This obser-
vation dramatically simplifies the computation, and allows us to conduct a variety of
numerical exercises. In this respect, this paper complements earlier contributions in
the literature by providing an efficient numerical treatment of APS method.

We emphasize that our results are quantitative. A substantial amount of work has
been done in order to find the ways to overcome time consistency problems [see Lucas
and Stokey (1983), Persson, Persson, and Svensson (1987), Chari and Kehoe (1990)].
However, it remains open question how severe the time consistency problem is. This
paper fills the gap in the literature by quantitatively investigating the welfare cost of
no commitment.

We provide analysis for two sets of economies. The first set of economies is cali-
brated to match the main features of the postwar U.S. economy. In the model economy,
a stochastic shock to production technology mimics the TFP process. The represen-
tative infinitely lived households maximize life time expected utility by choosing a
sequence of consumption, leisure and investment taking prices and tax sequence as
given. Firms maximize profits using a neoclassical production technology. The gov-
ernment finances the consumption of public goods through labor and capital income
taxes. The commitment technology is not available in the sense that the government
sets the tax policy period by period. The results of our analysis can be summarized as
follows. For a set of realistically calibrated parameter values, the Ramsey allocation
cannot be supported by the credibility mechanism. However, the tax rate on capital
income is close to zero on average. We also find that the welfare effect of commitment
is in the order of 0.22% in consumption equivalence. Numerical simulations indicate
that the optimal capital income tax is pro-cyclical while labor tax is counter-cyclical.
The government cannot use capital income tax as a shock absorber as the Ramsey gov-
ernment does, since the unexpected change in capital tax rate will distort the private
agent’s belief about future policies.

The second set is designed to compare the best equilibrium under no commit-
ment with the Markov perfect equilibrium. To facilitate the comparison with Klein,
Krusell and Rios-Rull (2008), we abstract from uncertainty and consider the same set
of economies as in their analysis. It has been found that by limiting the government’s
strategy to a differentiable one, as in Markov perfect equilibrium, the overall welfare
may be reduced by 5.6% in consumption equivalence.

4



This paper is closely related to Fernandez-Villaverde and Tsyvinski (2001). In an
incomplete working paper, they try to solve a similar model by using the method of
Phelan and Stacchetti (2001). While they follow the approximation strategy proposed
by Judd, Yeltekin and Conklin (2000) and Sleet and Yeltekin (2003), we adapt a
recent numerical algorithm developed by Feng et al. (2011). Their algorithm exhibits
good convergence properties. They also establish accuracy properties for the simulated
moments.

Our paper is related to Klein and Rios-Rull (2003), Klein, Krusell and Rios-Rull
(2008). They study the properties of Markov perfect equilibrium for the same class of
economies like ours. The strategies that support the Markov perfect equilibrium are
simple to describe. The drawback of their approach is that they limit the tax policies
to differentiable strategies. It is not clear how much is lost by looking at this subset of
equilibria. Furthermore we show that the worst SSE is Markov perfect. We also find
some similarities between the worst SSE and the Markov perfect equilibrium outcome
as Klein and Rios-Rull (2003) found in a similar setting.

Our analysis is also related to Benhabib and Rusticchini (1997) and Marcet and
Marimon (1994). They provide an alternative method to solve policy games with-
out commitment. They use the techniques of optimal control in which they explicitly
impose additional constraints on the standard optimal tax problem such that a gov-
ernment does not deviate from the prescribed sequence of taxes. Similar to Chari
and Kehoe (1990), their methods requires that the worst punishment to the deviating
government can be easily determined.

The paper proceeds as follows. Section 2 is devoted to explaining the economic
environment. Section 3 discusses how we can describe the problem as a dynamic game
between the government and households. The equilibrium concept will be discussed in
this section. Section 4 outlines some details how to characterize the set of sustainable
equilibria and find the set by a recursive procedure. Section 5 explains the numerical
implementation of this procedure. Sections 4 and 5 are rather technical and the reader
can skip them without any loss of the economic intuition. The economy is calibrated
to match certain features of the U.S. economy in section 6. Section 7 presents our
findings and section 8 concludes. Some proofs and further computational details are
documented in the appendix.
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2 Economic Environment

The economy is populated by a measure one of representative, infinitely lived house-
holds and a competitively behaving firm. The primitive characteristics of the economy
are defined by a stationary Markov chain. Time and uncertainty are represented by a
countably infinite tree Σ. Each node of the tree, σ ∈ Σ, is a finite history of shocks
σ = st = (s0, s1, . . . , st) for a given initial shock s0. The process of shocks (st) is
assumed to be a Markov chain with finite support S. The probability of each of these
histories is given by π(st). With this probability we can define conditional probabilities
of future events given a particular history st that we denote by π (st+1|st).

2.1 The firm

In each time period t = 0, 1, 2, . . . , the firm produces the final good, y(st), using
capital, k (st−1) and labor, l (st) through a neoclassical production function:

y
(
st
)

= A (st)F
(
k
(
st−1

)
, l
(
st
))

(1)

Note that the current technology A is a function of current period shock.
The competitive firm sets the rental rates for its inputs equal to their marginal

productivities.
r
(
st
)

= A(st)Fk
(
k
(
st−1

)
, l
(
st
))

(2)

w
(
st
)

= A(st)Fl
(
k
(
st−1

)
, l
(
st
))

(3)

The final good can be used for private consumption c (st), public consumption g (st),
and as an investment good i (st). The law of motion for capital k (st) is given by:

k
(
st
)

= i
(
st
)

+ (1− δ)k
(
st−1

)
(4)

where δ is the depreciation rate on capital and where we impose i (st) ≥ 0.

2.2 Household

The representative household derives utility from a sequence of consumption and
leisure by a time-separable utility function:∑∞

t=0

∑
st
βtπ(st)u(c(st), 1− l(st)) (5)
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where β ∈ (0, 1) is the discount factor, l(st) ∈ [0, 1] is the labor supply and the period
utility function u is strictly concave, differentiable and satisfies an Inada condition.

The households choose a sequence of consumption and labor supply {c(st), l(st)}
to maximize their life-time expected utility as defined by equation (5) subject to the
budget constraint

c(st) + i(st) = (1− τl(st))w(st)l(st) + (1− τk(st))
(
r(st)− δ

)
k(st−1) (6)

k (s0) > 0 (7)

where τk (st) is a proportional tax on capital gain and τl (s
t) a proportional tax on

labor income, which are set by the current government as explained in the following
subsection. k (s0) is the initial endowment of capital of households.

2.3 Government

The government is benevolent in the sense that it seeks to maximize social welfare:∑∞

t=0

∑
st
βtπ(st)

[
u(c(st), 1− l(st)) +G(g(st))

]
(8)

where G is a function of the public consumption g(st), which is financed through taxes
on labor income and capital gain.7 A commitment technology is not available in the
economy. Hence the government can only set tax rates on capital and labor incomes
for the current period. In each period, the government can vary its decisions depending
on the history of government policies up to the point at which the decision is made.
The government consumption g(st) is determined so as to balance the budget:

g(st) = τl(s
t)w(st)l(st) + τk(s

t)
[
r(st)− δ

]
k(st−1) (9)

We restrict the choice of tax rate from which the government can choose to the interval
T = {[τ , τ̄ ] |0 < τ < τ̄ < 1}.8

7It is equivalent to add the last term in the household’s utility function, since each household
takes the public spending as exogenously given. Our choice is meant to facilitate the analysis below.

8We need impose an upper bound on the tax rate to show the equivalence of the recursive and
sequential problem for the households. The lower bound on the tax rate is used to bound the initial
value correspondence.
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2.4 Competitive equilibrium

Although we are concerned with the case where the government cannot commit to
an arbitrarily specified tax policy, along the equilibrium path, the households act as
if the government had established such a policy. As argued by Phelan and Stacchetti
(2001), the anonymity of each individual implies that their individual actions do not
affect the actions of the government or other individuals and, in turn, they behave
competitively. Therefore it is convenient to characterize the competitive equilibrium
of the dynamic economy in which a tax policy is arbitrarily specified. We say that a
tax policy τ = {(τk(st), τl(st))}∞t=0 is feasible if (τk(s

t), τl(s
t)) ∈ [τ , τ̄ ]2 for all t ≥ 0.

Definition 1 Let Υ {k0, s0, τ} be the economy starting with initial capital k0 and shock
s0, and the tax policy is given by τ . A competitive equilibrium for Υ {k0, s0, τ} is
a sequence of allocation (l(st), c(st), k(st)) and prices (r(st), w(st)) such that (1) given
prices and tax rates, consumers solve their problem; (2) input prices equate the marginal
productivities; (3) the government satisfies its budget constraint period by period, and
(4) markets clear.

In equilibrium, the behavior of the household is governed by the following first order
conditions:

uc(s
t)− βE

{[
1 +

(
1− τk(st+1)

) (
r(st+1)− δ

)]
uc(s

t+1)
}

= 0 (10)

ul(s
t)−

(
1− τl(st)

)
w(st)uc(s

t) = 0 (11)

where uc, ul denote to the marginal utility with respect to consumption and leisure,
and E is the expectation operator that yields the expected future value of a variable
given the history of shock st. Equation (10) is the inter-temporal optimality condition
where we take expectation over all possible realization of the shocks that can follow the
current state. Equation (11) is the static optimality relation that equates the marginal
utility from consumption with marginal utility from leisure.

We can reformulate the household’s problem recursively following the strategy sug-
gested by Kydland and Prescott (1980) [see Marcet and Marimon (1994), Phelan and
Stacchetti (2001) and Feng et al. (2011) for recent applications]. We define a new
variable:

m(st) := uc(s
t)
[
1 +

(
1− τk(st)

) (
r(st)− δ

)]
(12)

which is the shadow value of investment.
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For any st, k (st), {m (st+1)} and an arbitrary specified tax policy τ , the household
solves the following problem:

max
c(st),k(st)

u
(
c(st), l(st)

)
+ βE

{
m(st+1)k(st)

}
(13)

subject to the budget constraint and law of motion of capital as described in equations
(6) and (4). The recursive problem is equivalent to the sequence problem as defined in
section 2.2 when the transversality condition

lim
t→∞

∞∑
t=0

∑
st

βtπ(st)m(st+1)k(st) = 0 (14)

is satisfied. This is shown in the following proposition.

Proposition 1 The recursive and the sequence problem for the household are equiva-
lent.

Proof.
See the Appendix.

From now on we denote x and x+ as the current and future value of the variable x.
Now we can summarize the competitive equilibrium conditions for a given tax policy
τ as follows.

Definition 2 Let ΥS {k, s, (τk, τl) , {m+}} be the static (one-period) economy where
each household has an initial capital stock k, the current state is s, the anticipated
shadow value of investment is given by the vector {m+} and the government im-
poses tax (τk, τl) for current period. {c, l, k+, r, w, g} is a competitive equilibrium for
ΥS {k, s, (τk, τl) , {m+}} and denoted by {c, l, k+, r, w, g} ∈CES {k, s, (τk, τl) , {m+}} if
and only if the following conditions are satisfied: (1) input prices equates the marginal
productivities; (2) the government satisfies its budget constraint; (3) market clears; and
(4) uc(s) = βE {m+}, ul(s) = (1− τl)w(s)uc(s).

The following Lemma allows us to think of the original economy as a sequence of
static economy with endogenously changing state variables and exogenous stochastic
shocks.
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Lemma 3 Given a feasible tax policy τ = {(τk,t, τl,t)}∞t=0, an initial capital stock k0

and shock s0, suppose that the sequence {c(st), l(st), k(st), r(st), w(st), g(st)}∞t=0 is such
that for each t,

{
c(st), l(st), k(st), r(st), w(st), g(st)

}
∈ CES

{
k(st), st, (τk,t, τl,t) ,

{
m(st+1)

}}
,

where
m(st+1) := uc(s

t+1)
[
1 + (1− τk,t+1)

(
r(st+1)− δ

)]
,

Then {c(st), l(st), k(st), r(st), w(st), g(st)}∞t=0 constitutes a competitive equilibrium for
Υ {k0, s0, τ}.

As it will get clear soon, the introduction of m and the equivalence result above
will help us characterize the game, as we describe in the following section, recursively.

3 The Dynamic Game

In this section we first describe the game associated with our environment. We
then explain the equilibrium concept adapted in this study.

3.1 The game

The timing protocol is as follows.9 At the beginning of every period t, the shock st is
revealed, and the government sets the tax rates for the current period {τk(st), τl(st)} ∈
[τ , τ̄ ]2. Then the households simultaneously choose their labor input l (st). Given the
aggregate capital, which is chosen in the previous period, and labor input, the market
determines prices for the capital and labor. Finally, each household independently
allocates the after-tax income between consumption and investment for production in
the following period. The government uses the totality of tax revenue to finance the
consumption of public good.

We use Γ (k0, s0) to denote the dynamic game between the government and the
households when all the households are endowed with initial capital of k0 and shock
of s0. We denote the public history of the game by ζt = (ζ0, ζ1, . . . , ζt), where
ζt = (st, τk(s

t), τl(s
t)), that is, the history of shocks and government policies. In this

9Figure 2 in appendix provides a graphical representation of the timing.
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paper we study symmetric strategy profiles as in Phelan and Stacchetti (2001), where
all households choose the same actions along the equilibrium path. A symmetric strat-
egy profile for Γ (k0, s0) is a pair of strategies σ = (σC , σG). The strategy for the
government σG is a measurable function that maps the publicly observed history ζt−1

and current shock st into tax rates for period t, namely (τk(s
t), τl(s

t)) = σG (ζt−1, st).
The strategy for the household σC specifies lt, ct and kt+1 as a function of history ζt,
that is, (lt, ct, kt+1) = σC (ζt). We denote the set of all symmetric strategy profiles
for Γ (k0, s0) by

∑
(k0, s0) =

∑
C (k0, s0) ×

∑
G (k0, s0), where

∑
C (k0, s0) represents

the set of strategies for the households and
∑

G (k0, s0) the set of strategies for the
government.

3.2 Sustainable equilibrium

The solution concept we use in this study is sustainable equilibrium originated by
Chari and Kehoe (2001). To facilitate the definition of sustainable equilibrium, we
define the value of a strategy σ (for the government):

ΦG(k0, s0, σ) := h = (1− β)
∞∑
t=0

βtE [u(ct, 1− lt) +G(gt)] .

As we argued in section 2.4, the household is able to make its optimal choices
when they have correctly anticipated the value of {m+}, from which the household can
formulate the current and future prices for labor, capital and consumption.10 Therefore
we define the value of m as the “payoff” to the household:

ΦC(k0, s0, σ) := m = uc(ct, 1− lt)
[
1 + (1− τk,t)

(
r(st)− δ

)]
.

We define a sustainable equilibrium as follows:

Definition 4 A symmetric strategy profile σ of the game Γ (k0, s0) is a sustainable
equilibrium if for any t ≥ 0 and history ζt: (1) ΦG (kt, st, σ|ζt−1) ≥ ΦG (kt, st, (σ|ζt−1, γ))

for any strategy γ ∈
∑

G(kt, st), where kt ∈ σC (ht−1); (2) {ct, lt, kt+1, rt, wt, gt}∞t=0

is a competitive equilibrium for Υ {k0, s0, τ} where τ := {τk,t, τl,t}∞t=0, (τk,t, τl,t) ∈
σG (ζt−1, st), and (ct, lt, kt+1) ∈ σG (ζt).

The first condition says that the continuation payoff for the government follow-

10{m+} denotes the vector of m+ under different shocks s+. It has summarized what the other
households will do in all future periods and contingencies.
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ing strategy σ is higher than the payoff from any deviation to a different strategy.
The second condition requires that the households always respond to the government
strategy with decisions that imply a competitive equilibrium since this is the situation
compatible with feasibility and optimality.

4 Self-Generation

In this section, we apply the Abreu, Pearce and Stacchetti’s (1990) method to
our dynamic game. We follow closely the work of Phelan and Stacchetti (2001) and
we only explain in detail the differences between their application and ours. The key
observation is that the continuation value (for both the government and the household)
from the next period on can summarize all relevant information about the future, which
is enough for them to choose the optimal strategies for the current period.

We define an equilibrium value correspondence V(k, s) that maps the value of the
states (k, s) into the set of possible payoffs associated with a strategy profile σ that
constitutes a sustainable equilibrium. That is,

V(k, s) := {(m,h) |σ is a sustainable equilibrium for Γ (k0, s0)} .

In order to recursively characterize the equilibrium value correspondence V(k, s),
we need an operator B, which maps the space A of all value correspondence into itself,
where an arbitrary value correspondence is defined as W(k, s) : R+×S→ R2. For
given values of (k, s), the correspondence is a set of (m,h) generated by a sustainable
equilibrium strategy profile, where m is the shadow value of investment and h is the
government’s payoff. Before we proceed with operator B, we first explain the concepts
of consistency and admissibility with respect to W. These will be used to define the
operator.

Definition 5 A vector ψ = (τk, τl, c, l, k+, {(m+, h+)}) is consistent with respect to the
value correspondence W at (k, s) if

(c, l, k+, Fk(k, l), Fl(k, l), g) ∈ CES {k, s, (τk, τl) , {m+}} ,
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for i = {k, l}, (m(k, s, ψ), h(k, s, ψ)) ∈W(k, s), and (m+, h+) ∈W(k+, s+), where m
is the shadow value of investment and h is the value of the vector ψ

m(k, s, ψ) := uc(c, n)[1 + (1− τ k)(r − δ)], (15)

h(k, s, ψ) := u (c, n) +G(g) + βEh+. (16)

In words, consistency guarantees that the vector ψ delivers an allocation that is
optimal for the household and satisfies feasibility. It also requires that the promised
continuation values (m+, h+) belong to the same equilibrium value correspondence as
the implied (m,h) do.

Definition 6 The vector ψ is admissible with respect to W if it is consistent with
respect to W at (k, s) and

h (k, s, ψ) ≥ h(k, s, ψ′). (17)

This condition says that the government can not increase its payoff by announcing
any unexpected tax rate τ ′ other than τ . Therefore, admissibility guarantees that the
government does not have any incentive to deviate.

Definition 7 For a value correspondence W, we define

B(W)(k, s) = {(m,h) |ψ is admissible with respect to Wat (k, s)} .

In the following, we adapt the results of Abreu, Pearce and Stacchetti (1990) to our
game. It should be noted that these results are straightforward extensions of those in
Phelan and Stacchetti (2001) for our environment with stochastic shock. Therefore we
only list the main results and refer the readers to their paper for proofs.

1. If W ⊆ B(W) then B(W) ⊆ V.

2. V is compact and the largest value-correspondence W such that W = B(W).

3. B(·) is monotone and preserves compactness.

4. If we define Wn+1 = B(Wn) for all n ≥ 0, and V ⊂W0, then W∞ = V.
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This result 1 has been called as self-generation. From the definition of the sequential
equilibrium value correspondence, it is straightforward to see thatV ⊆ B (V). Together
with result 1, it is fairly easy to reach the second result. Results 3 and 4 will be used
in the next section to approximate the equilibrium value correspondence.

5 Computation of Equilibria and Recovering Strate-

gies

In this section, we first detail the numerical algorithm that is used to compute the
value correspondence. We then explain how to build strategies that support a given
pair of payoffs in that correspondence.

5.1 Alternative operator

Computing the mapping B amounts to find a set B(W), the set of pairs of (m,h)

that can be “enforced” today:

B(W)(k, s) = {(m,h)|∃(τk, τl), (c, l, k+, g, w, r) and (m+, h+) ∈W(k+, s+), for all s+ � s}

such that

m = uc · [1 + r(1− τk)] (18)

h = u(c, l) +G(g) + βEh+ (19)

h ≥
[
u (c′, l′) +G(g) + βEh′+ |

(
m
′

+, h
′

+

)]
,∀
(
m
′

+, h
′

+

)
∈W (k+, s+) (20)

uc(c, l)− βE {m+} = 0 (21)

(1− τl)wuc − ul = 0 (22)

τk, τl ∈ [τ , τ̄ ] (23)

The constraints (18, 19) are called “regeneration constraints,” while (20) is an “incen-
tive” constraint. (21, 22) is necessary to ensure that the continuation of a sustainable
plan after any deviation is consistent with a competitive equilibrium.

As pointed out by Chang (1998), computing B(W) given W is complicated in
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particular by the presence of the constraint (20). Chang (1998) suggested an alterna-
tive operator to circumvent this complication in the context of finding time-consistent
monetary policy, while Phelan and Stacchetti (2001) developed a similar operator in a
production economy like ours.

The basic idea of a simpler approach is the following. On the one hand, the govern-
ment does not need to evaluate the consequences of all possible actions, it only needs
to consider the payoff associated with the “best” deviation. On the other hand, and as
in Abreu, Pearce and Stacchetti (1990), if the government chooses to deviate, this is
then followed by the worst available punishment.

In line with Chang (1998), we redefine the operator B : A→ A by replacing (20)
with the following condition,

h ≥ h̃(k, s) (24)

where h̃(k, s) is the worst possible payoff for the government when it announces un-
expected tax rate τ ′. As in Phelan and Stacchetti (2001), we only consider extreme
punishments. Therefore, we define h̃(k, s) as

h̃(k, s) = max
τk,τl

{
min

c,l,k+,(m+,h+)∈W
[u(c, l) +G(g) + βEh+]

}
such that

[c, l, k+, g, w, r] ∈ CES {(k, s, τk, τl, {m+}) for all s+ � s}

Chang (1998) showed that conditions (20) and (24) are equivalent in the sense that
the repeated application of operator B, with either (20) or (24), yields a decreasing
sequence of sets that converges to the same fixed point V. Phelan and Stacchetti
(2001) define their operator using condition (24).

Even though we can simplify the computation by substituting condition (20) with
(24), it is not a trivial matter as we need to operate over set. Phelan and Stacchetti
(2001) adapt the innovative approximation technique developed by Judd, Yeltekin and
Conklin (2003). Instead we apply the numerical method developed by Feng et al.
(2011) to our economy. Their method is able to approximate convex-valued value
correspondence and has good convergence property as stated in Theorem 4.1 in their
paper.

We should emphasize that we compute the upper and lower boundaries of W(k, s),
which are represented by the following functions in line with Phelan and Stacchetti
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(2001)

h̄(k, s,m) := max
h
{h|(m,h) ∈W(k, s)} , (25)

h(k, s,m) := min
h
{h|(m,h) ∈W(k, s)} . (26)

As observed by Phelan and Stacchetti (2001), the lowest value in W(k, s) yields the
value of the worst punishment for the government h̃(k, s) = minm h(k, s,m), which
corresponds to the equilibrium when the government plays the trigger strategy. It
also should be noted that the highest value maxm h̄(k, s,m) in W(k, s) corresponds
to the equilibrium that the government obtains the maximum payoff (playing the best
strategy). We are interested in the boundaries since we learn a lot about the equilibrium
set from looking at extremes and learning about the best and trigger strategies conveys
a lot of information about all the other strategies. To this end, we find an outer
approximation of W: Ŵ(k, s) =

{
(m,h) |h ∈

[
h(k, s,m), h̄(k, s,m)

]}
. The following

proposition will be useful for the computation of the boundaries. Before we proceed,
we need two assumptions.

(A1) There exists at most one set of (c, l, k+) that solves the following equation
system at given (k, s) and {τk, τl,m},

m = uc(c, l)
[
1 + (1− τ k)(r − δ)

]
(27)

ul(c, l) + (1− τl)wuc(c, l) = 0 (28)

[1 + (1− τk)(r − δ)] k + (1− τl)wl − c− k+ = 0 (29)

(A2) W is convex-valued at given {k, s,m}.
Assumption A1 rules out some commonly used utility function. However, the fol-

lowing pair of utility and production functions satisfy this assumption.

u(c, l) =
c1−σ1

1− σ1

+ γl
(1− l)1−σ2

1− σ2

(30)

F (k, l) = Akαl1−α. (31)

It should be noted that the equation system (27-29) will degenerate into a single non-
linear equation in term of l.11 In terms of assumption A2, we use a randomization

11For the preference and production function we used, the above equation system can be converted
into the following equation in terms of l: Akθ = B(1 − δ)lθ +

[
Akθ +B(1− τk)θkθ−1

]
l, where A =
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device similar to Phelan and Stacchetti (2001) to make it applicable. However, the
randomization device that we introduced does not require a synchronization between
the government’s and the household’s moves and beliefs. Instead, it only convexifies
the payoff set of the government at given value of (k, s,m), which we should interpret as
the government plays a mixed strategy. Furthermore, the numerically obtained value
correspondence as shown in Figure 3 suggests that the equilibrium correspondence is
not convex at given (k, s).
Proposition 2 If the equilibrium value correspondence V(k, s) satisfies assumption
(A1, A2), then for all (m,h) ∈ V(k, s),

h̄(k, s,m) = max
τk,τl

u(c, l) +G(g) + βEh̄(k+, s+,m+) (32)

h(k, s,m) = max
τk,τl

u(c, l) +G(g) + βEh(k+, s+,m+) (33)

h̃(k, s) = min
m

h(k, s,m). (34)

Proof.
See the Appendix.

This result suggests that we can focus on the boundaries of the value correspondence
if our primary interest is about the best and trigger strategies. This will greatly contain
the computational cost. The above observation inspired us to define operator F.12

The following result shows that this operator has good convergence property. The
repeated application of this operator generates a sequence of sets that converges to the
equilibrium value correspondence V.

Theorem 8 Assume the equilibrium value correspondence V satisfies (A1, A2). Let
Ŵ0 be a convex-valued correspondence such that Ŵ0 ⊃ V. Let Ŵn = F(Ŵn−1). Then
limn→∞ Ŵn = V.

Proof.
See the Appendix.

m(1−τl)(1−θ), B = (1−β)(1−αp)(1−αc). When {k, s,m, τk, τl} are given, the right hand side of the
equation is monotone increasing in l ∈ [0, 1]. Therefore, there exists at most one solution l∗ ∈ [0, 1].

12 The definition of operator F and its numerical implementation can be found in the appendix.
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5.2 Recovering strategy

In this section, we outline how to find the strategy that corresponds to a given
pair of payoffs belongs to the equilibrium value correspondence. Note that for better
exposition, we abstract from uncertainty and we will focus on the strategy that yields
the highest payoff for the government. This procedure can be generalized to find
strategies supporting any point belongs to the equilibrium set.

1. t = 0, k0 is given, we find the highest possible value of h0 = sup {h|(m0, h0) ∈W∗(k0)}
and its corresponding m0. Then we find the government’s tax policy that can
support (m0, h0). More specifically, we find (τk,0, τl,0) such that

u(c0, l0) +G(g0) + βh1 = h0 (35)

where h1 = h̄(k1,m1), m1 = uc(c0,l0)
β

and we can find the values of (c0, l0, k1) by
solving the following equation system

m0 − uc(c0, l0) · [1 + r0(1− τk,0)] = 0 (36)

ul(c0, l0)− (1− τl,0)w0 · uc(c0, l0) = 0 (37)

(1− τl,0)w0l0 + (1− τk,0)r0k0 + (1− δ)k0 − (c0 + k1) = 0. (38)

when the values of (τk,0, τl,0,m0) are given. Therefore the above problem is well-
defined in terms of (τk,0, τl,0,m0, h0).

2. t = 1, k1, m1, h1 are given by the solution in step 1. Now we find the government
policies (τk,1, τl,1) such that

u(c1, l1) +G(g1) + βh2 = h1 (39)

in the same spirit of step 1.

3. We repeat step 2 for t→ T .

It should be noted that the construction above reveals that any sustainable out-
come has essentially a Markovian structure in the sense that, k(st+1), τk(s

t), τl(s
t) and
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m(st), h(st) only depend on history ζt−1 through m(st−1), h(st−1). More important, we
found that the worst SSE has the following property.

Proposition 3 For the game Γ (k0, s0), the strategy profile
{(τk(st), τl(st)) , (c(st), l(st), k(st+1))}∞t=0 that has an equilibrium payoff for the govern-
ment of h̃(k0, s0) has the following property: there exist measurable functions ϑτk , ϑτl,
ϑk and ϑl such that τk(st) = ϑτk(kt, st), τl(st) = ϑτl(kt, st), k(st+1) = ϑk(kt, st) for all
t ≥ 0.

Proof.
See the Appendix.

This proposition essentially says that the worst SSE is a Markov perfect equilibrium.
Whenever the government announces an unexpected tax policy, the private agent’s be-
lief about the future policies will be distorted. In order to provide enough incentive
for the government to follow the policy recommendation, the households would rather
to undermine their expectation about the future to a point such that their choices will
yields the lowest payoff for the government for any announced unexpected tax changes.
The government understands this and takes it into account before any announcement
of tax rates. The advantage of this expectation is that it provides the strongest incen-
tive for the government to follow the policy recommendation. In this equilibrium, the
strategy profile is not history dependent since the household’s belief has been manipu-
lated to a point that the government’s best response is to play the same strategy over
time.

6 Calibration

To facilitate comparison with the Markov perfect equilibrium as considered in Klein
and Rios-Rull (2003), we adopt this parametrization. The utility function is of the
CRRA form, and technology is Cobb-Douglas:

u(c, l) = (1− β)(1− αp)
[cαc(1− l)1−αc ]

1−σ

1− σ
(40)

F (K,L) = A(s)KαL1−α (41)
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We set σ = 1 to satisfy the assumption A1.13 The preference of the government from
public consumption is given by

G(g) = (1− β)αp ln g (42)

The TFP process is calibrated so as to match the variance and auto-correlation
reported in Prescott (1986). To offer insight in the effect of uncertainty on the cred-
ibility of the trigger-type strategy, we also offer results for the deterministic model
where A(s) = 1 for all s ∈ S. The rest of the parameter values are fixed such that
certain moments in the stationary distribution of the Ramsey allocation match with
the real-world statistics. α is picked to match labor income share of national product,
β to generate a pre-tax interest rate of around 4% [see McGrattan and Prescott (2000)
for a justification of this number based on their measure of the return on capital and
on the risk-free rate of inflation-protected U.S. Treasury bonds]. δ is chosen to match a
capital-output ratio of around 3, αp to get a share of government consumption around
20% and αc to get hours worked to be around 25% of total time. Finally we set an
upper limit on the tax rates, 0.9, and a lower bound of zero to bound the capital stock.
This can be viewed as an institutional constraint. We summarize the calibration values
in Table 1.

Table 1: Parameter values for the baseline economy

Parameter Values
β σ δ α αp αc T

0.96 1 0.08 0.36 0.13 0.30 [0, 0.9]
A ∈ {0.976, 1.024} π11 = π22 = 0.946

7 Quantitative Analysis

In this section, we first present the results for the stochastic economy in section
7.1. This section starts with the description of the economy with full commitment.
This is followed by a quantitative characterization of optimal fiscal policy when there
is no commitment device available in the economy. We then compare the outcomes
of these two economies. We also discuss the property of the worst equilibrium that
supports the best one. Section 7.2 is devoted to understanding what matters to the

13This yields a log utility: u(c, l) = (1− β)(1− αp) [αc log c+ (1− αc) log(1− l)].
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results. In section 7.3, we compare the best sustainable equilibrium with Markov-
perfect equilibrium.

7.1 Optimal taxation over the business cycle

7.1.1 Commitment

Table 2 presents the key finding of the economy with full commitment.14 The main
properties of this economy can be summarized as follows:

1. The capital income tax rate is close to zero on average;

2. The labor income tax rate is very high in the sense that the lion share of tax
revenue comes from the labor income tax;

3. The capital income tax rate is much more volatile than the labor income tax rate;

4. The capital income tax rate is counter-cyclical, while the labor income tax rate
is pro-cyclical.

The properties that we found are in line with the findings for the baseline model and the
economy with only a technology shock described in Chari et al. (1994). The Ramsey
government takes considerations of the distortion of capital taxation. It eliminates
such distortion by setting the long-run capital income tax rate to be zero. In terms of
business cycle property, the optimal labor tax is pro-cyclical while the optimal capital
income tax is counter-cyclical. A pro-cyclical labor income tax helps to smooth the
household’s after-tax wage income. The counter-cyclical capital income tax provides
an efficient means of absorbing shocks to the government’s budget, which vary with
the size of the tax base over the business cycle. The reason for capital income taxation
acting as the shock absorber has been made very clear by Judd (1993). The efficiency
cost of such tax rate change over the business cycle is low because the short-run supply
elasticity of capital is very small.

14The model with full commitment has been solved using the primal approach as in Stockman
(2001). The author thanks David Stockman for sharing his codes and clarifying some technical
questions.

21



Table 2: Business cycle properties of the economy with full commitment

Statistics Mean Std.dev. AutoCorr. Corr. w/ GDP Corr. w/ s
Cap. inc. tax 0.002 0.034 0.694 −0.665 −0.748
Lab. inc. tax 0.397 0.002 0.653 0.364 0.409

Output 0.452 0.018 0.935 1.000 0.993
Consumption 0.230 0.008 0.987 0.937 0.890

Hours 0.245 0.003 0.819 0.551 0.635
Capital stock 1.337 0.056 0.992 0.838 0.770

7.1.2 No Commitment

For the economy without commitment, we find the strategies that support the best
equilibrium outcome and report the key statistics in table 3. The main findings are
listed as follows:

1. The capital income tax rate is very low on average;

2. The labor income tax rate is very high;

3. The capital income tax rate is more volatile than the labor income tax rate.
However, the labor income tax rate is more volatile than in the economy with
commitment;

4. The capital income tax rate is slightly pro-cyclical, while the labor income tax
rate is counter-cyclical.

The average tax rates on capital and labor are very similar to those described by
Chari et al. (1994) and Stockman (2001) for the economies with full commitment.
Even though the capital income is distortion free in the short term, the government
considers the fact that a positive tax on capital will alter the household’s belief about
the future policy. Depending on the current tax rate, the household’s beliefs will lead
to certain choices that yield sufficiently low payoff for the government. This effect
deters the government’s incentive to explore the inelastic aspect of capital supply. In
equilibrium, the government sets the average capital tax rate to be 4.7% and reaches
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the highest social welfare. Furthermore, the consensus on the positive capital income
tax and its distortion effect on public beliefs makes is unlikely to use capital tax as a
shock absorber. In fact, the capital tax rate is only slightly positively correlated with
technology shocks, with a correlation coefficient of merely 0.057, compared with −0.748

for the economy with commitment. Instead the government chooses labor income taxes
as a means to absorb shocks to its budget. Consequently the tax rate on labor income
exhibits higher volatility, with a standard deviation of 1.4%, compared with 0.2% in
the Ramsey policy.

Table 3: Business cycle properties of the economy without commitment

Statistics Mean Std.dev AutoCorr. Corr. w/ GDP Corr. w/ s
Cap. inc. tax 0.047 0.054 0.783 0.090 0.057
Lab. inc. tax 0.387 0.014 0.780 -0.043 -0.043

Output 0.455 0.021 0.906 1.000 0.961
Consumption 0.232 0.009 0.923 0.730 0.735

Hours 0.248 0.005 0.526 0.647 0.574
Capital stock 1.331 0.066 0.990 0.794 0.696

These findings are in sharp contrast with the patterns suggested by Klein and
Rios-Rull (2003), who analyze the Markov perfect equilibrium for a similar economy
without commitment. They find that the average capital income tax rate is 65% and
the tax rate on labor income is 12%. Proposition 3 shows that the worst SSE is a
Markov perfect equilibrium. When we compare the worst SSE with what Klein and
Rios-Rull (2003) found, we can see some similarities. We suspect that what they found
corresponds to the worst SSE.15

7.1.3 The implication of no commitment

To further understand why commitment makes a difference, Figure 1 presents the
dynamic adjustment of an economy in which the government switches from full com-
mitment to no commitment. We assume away the stochastic shocks for comparison. In
this experiment, the economy starts from the long-run situation under commitment.
The government loses commitment at period zero. The figure shows the outcome path
and the period length is one year.

15The statistics for the worst SSE are listed in table 4 below.
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Figure 1: Simulated outcome path after the government loses commitment

We can see that the government chooses to impose a very high tax rate on the
capital income and decreases the labor income tax when the commitment is lost. This
happens because the capital income is not distortionary to the current government. The
capital stock starts to fall and the hours worked increases. After the first few periods,
the capital income tax becomes lower and labor income tax increases over time. This
pattern is very close to what Phelan and Stacchetti (2001) found in their numerical
example. However it is different from what Klein and Rios-Rull (2003) reported. They
suggest that the capital income tax rate keeps increasing and the labor income tax rate
decreases monotonically after the government lost commitment.

Next we look at the welfare cost of no commitment. In line with the methodology as
explained by Conesa and Krueger (1999), this paper measures the welfare loss of a par-
ticular tax policy, compared with Ramsey, by computing the consumption equivalent
variation (CEV). We quantify the welfare effect of a given policy by asking how much
consumption has to be increased in each state and date in order to equate expected
utilities in Ramsey allocation while leaving leisure and public expenditure unchanged.
More specifically, we are finding an x such that∑∞

t=0
βE0

[
u((1 + x)ĉt, 1− l̂t) +G(ĝt)

]
=
∑∞

t=0
βE0

[
u(cRt , 1− lRt ) +G(gRt )

]
where

{
ĉt, l̂t, ĝt

}
denotes the equilibrium allocation of the ad hoc tax policy and{

cRt , l
R
t , g

R
t

}
represents the Ramsey allocation. The welfare loss of no commitment

is merely 0.22% in consumption equivalent.
The welfare gains of the full commitment mainly come from zero tax rate on cap-

ital. The gain from the large initial tax on capital income is nearly zero. It seems
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to be a contradiction with Chari, Christiano and Kehoe (1994). However we argue
that our findings are consistent with theirs. In Chari, Christiano and Kehoe (1994),
the government can eliminate the distortion of capital income tax by setting a large
initial tax and a zero rate thereafter. This channel only works through the issue of
government debt. For computational reasons, we assume that the government does not
have access to debt issuance. Consequently, the Ramsey government can only utilize
the long run zero tax rate on capital. Stockman (2001) investigates the effects of a
balanced-budget restriction on the Ramsey allocation. It has been found that there is
a big welfare gain associated with switching from the Ramsey with a fixed debt, which
is similar to the Ramsey government in our study, to the Ramsey with no constraint
on debt issuance. However it is not necessary to conclude that we will observe a bigger
welfare gain than what we found here when the government debt is introduced. This is
because the time consistency problem may go away as the government debt functions
as the central commitment device among governments [see Domínguez (2007)].

7.1.4 The best v.s. worst SSE

We also build up the trigger strategy that supports the best equilibrium outcome.
The properties of the trigger strategy are presented in table 4. We normalize the value
of output, capital stock, hours worked and welfare in the best SSE to be 100.

The trigger strategy presents a significant positive tax rate on capital income and
it assumes about 50% of the tax burden. Capital stock is 20% lower than the Ramsey
allocation while households work 7% more. The output is 3% lower compared to the
Ramsey. In terms of welfare, the households will have 7% lower consumption level in
all contingencies when the government plays the trigger strategy.

Table 4: Best and Worst SSE, compared with Ramsey

Statistics Trigger The Best Ramsey
Cap. inc. tax 40.0% 4.7% 0.2%
Lab. inc. tax 17.5% 38.7% 39.7%

Consumption/GDP 61.5% 51.1% 51.0%
Govt. spending/GDP 17.7% 25.4% 25.4%

Output 97.2 100 99.2
Capital stock 81.5 100 101.2
Hours worked 107.3 100 99.0

Welfare 93.1 100 100.2
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7.2 What matters

In equilibrium, the government’s temptation to deviate to a higher capital tax and
lower labor tax in the first period is deterred by a lower continuation value for the
government. In the short term, the supply of capital is inelastic with respect to the
after-tax rate of return. The government can raise extra revenue and improve the
current period social welfare without any substantial efficiency loss. However, this
tax changes will distort the household’s investment decision from the following period,
which yields lower payoffs to the government. When the discount factor β is low, the
former effect dominates, and the government cannot resist the temptation. On the
other hand, as the worst sustainable equilibrium yields lower continuation value for
the government, in turn, make the deviation more painful and deter the government’s
temptation to raise the capital tax. In what follows, we vary the value of discount
factor β to see how the optimal taxation change. We can see that the tax rate on
capital increase as the value of β decreases.

Table 5: What matters?
β τk τl

0.96 4.5% 34.5%
0.86 32.2% 29.8%
0.70 34.5% 27.2%
0.00 92.4% 0.00%

7.3 Relation with Ramsey and Markov perfect

In order to understand the difference between looking at SSE and Markov perfect
equilibrium, we study the same set of economies considered by Klein, Krusell and
Rios-Rull (2008). We look at the steady states of the economy under four different
benevolent governments that we label Pareto, Ramsey, Markov and SSE. Both Pareto
and Ramsey economies have commitment technology, while commitment is not avail-
able in either Markov or SSE economies. In Pareto economy, the government has
access to lump-sum taxation. In the rest three economies, the government is restricted
by a period-by-period balanced-budget constraint and to the use of distortion taxa-
tion. Markov government only uses differentiable strategies and SSE economy find
the best equilibrium outcome through the reputation mechanism. Table 5 reports the
steady-state allocations of these four economies under two different tax regimes.
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Table 6: Simulations of the deterministic economy

Economy Govt. y k/y c/y g/y c/g l τ welfare

τl only

Pareto 1.000 2.959 0.509 0.254 2.005 0.350 − -
Ramsey 0.700 2.959 0.509 0.254 2.005 0.245 0.397 100
Markov 0.719 2.959 0.573 0.190 3.017 0.252 0.297 99.23
Best SSE 0.697 2.959 0.500 0.264 1.895 0.244 0.412 99.81

τk only

Pareto 1.000 2.959 0.509 0.254 2.005 0.350 − −
Ramsey 0.588 1.734 0.712 0.149 4.779 0.278 0.673 100
Markov 0.478 1.149 0.688 0.220 3.123 0.285 0.821 81.04
Best SSE 0.581 1.693 0.710 0.154 4.611 0.279 0.686 96.27

Welfare gain from looking at SSE instead of Markov perfect equilibrium will be
0.5% measured by CEV when there is only labor income tax available. The number
will increase to 15% when the government can only tax capital income.

8 Concluding Remarks

In this paper, we have extended the analysis of Phelan and Stacchetti (2001) into a
stochastic setting. By looking at the best sustainable equilibrium, we have found that
the welfare loss of no commitment, compared with Ramsey allocation, is very small
when we use a set of parameter values compatible with the standard macro literature.
The average tax rate on the capital income is quite close to zero and pro-cyclical, while
the labor income tax assumes most of the tax burden and present counter-cyclical
movement. To support the best outcome, we need a trigger strategy that presents
an average capital income tax rate of 40%, and an average labor income tax rate of
17.5%, which result a welfare loss of 7% in consumption equivalence. This seems to be
plausible.

We also compare the best SSE outcome with Markov-perfect equilibrium. Numer-
ical simulations indicate that the welfare loss can be as large as 5.6% when we limit
ourselves to this subset of the equilibria.

It should be noted that our results hold for the class of economies with certain pref-
erences and a set of parameter values due to the difficulties in proving a key result for
general case. However, we argue that the specification of preferences is compatible with
the existence of a balanced growth path. More important, it satisfies most important
properties related to uniform commodity taxation [see Chari and Kehoe (1999)].

In this paper, we abstract from several important features of the data. First, for
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computational reasons, we maintain the assumption that the government does not have
access to debt issuance. Domínguez (2010) studies the time consistent government debt
while assuming away capital and all uncertainty. She found that an additional limit on
the government’s budget deficit can be used to support better equilibria. It remains
an open question how the introduction of government debt can affect the property of
optimal taxation. To understand what the optimal fiscal policies look like when the
government can issue debt but cannot commit the policy beyond the current period
will help us to understand important policy questions, such as should the government
increase tax rate or lift the debt limit when the economy is on the blink of default. This
is particularly relevant given the current fiscal woes and sovereign debt crisis that many
countries are facing. Second we abstract from any heterogeneity of agents. Different
types of agents may raise interesting political economy issues that deserve careful study.
Third the numerical method developed here face some computational challenges, even
with the help of high-performance, parallel computing. It will certainly improve the
efficiency of the algorithm through a better understanding of the construction of the
equilibrium payoff set [c.f. Abreu and Sannikov (2011)]. We leave these questions for
further research.
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9 Appendix

9.1 Proofs

Proof of Proposition 1:
It is difficult to prove that this proposition holds in general cases. Here we show

that the transversality condition (14) holds for the following pair of preference and
production functions:u(c, l) = c1−σ

1−σ + ν(l), F (k, l) = Akαl1−α, where ν : [0, 1) → R

is a decreasing, concave function, with liml→1 ν(l) = −∞. We also abstract from all
uncertainties to simplify the exposition. If we plug the definition of m(st+1) into the
first order condition in terms of k(st) of the recursive problem, we get the exactly same
equation (10). Next we show that the transversality condition holds.

First, there exist k > 0 and k̄ > 0 such that for all k0 ∈ [k, k̄], and feasible tax policy
τ , each competitive equilibrium of Υ {k0, τ} satisfies kt+1 ∈ [k, k̄] for all t ≥ 0 by apply-
ing an argument similar to Lemma 2 in Phelan and Stacchetti (2001). Second, we show
that there exists m̄ < ∞ such that mt ≤ m̄. Consider the situation where the capital
stock of the economy hit the lower bound k and the government levies maximum tax
rates τ̄ < 1 on capital income and labor income. The Inada condition limc→0 uc(c, l) =

∞ and liml→0 ul(0, l) = 0 imply that the household will be better off by spending a
strictly positive amount of time l > 0 in working so that they can obtain some income to
finance a positive consumption. The household’s income will be (1− τ̄k)(Fk(k, l)−δ)k+

(1−τ̄l)Fl(k, l)l > 0. The first order condition (11) implies that the optimal consumption

will be
[

(1−τ̄l)Fl(k,l)
νl(l)

] 1
σ
> 0, which yields the lower bound for ct. Thereforemt is bounded

by m̄ = [1 + (1− τ̄k)(Fk(k, l)− δ)] c−σ = [1 + (1− τ̄k)(Fk(k, l)− δ)] νl(l)
(1−τ̄l)Fl(k,l)

> 0.
Finally, we have limt→∞ β

tmtkt ≤ limt→∞ β
tm̄k̄ = 0.

P

Proof of Proposition 2:
By definition, h̄(k, s,m) is the maximum value of h at given (k, s,m). Therefore,

h̄(k, s,m) = max
τk,τn

max
m+,h+

u(c, l) +G(g) + βEh(k+, s+m+)

= max
τk,τn

u(c, l) +G(g) + max
τk,τn

max
m+,h+

βEh(k+, s+m+)

= max
τk,τn

u(c, l) +G(g) + βEh̄(k+, , s+m+).

32



where the first equality follows from the definition of h̄(k, s,m), the second equality
follows from the fact that there exists at most one pair of (c, l, k+) consistent with{(
τ k, τn

)
,m
}
at given (k, s). The last equality uses the definition of h̄.

A similar argument applies to h(k, s,m). A few comments go as follow. First,
h(k, s,m) = maxτk,τl minm+,h+ u(c, l) + G(g) + βEh+. Secondly, it should be noted
that the value of u(c, l) + G(g) + βEh(k+, s+,m+) at given {τk, τl} may be smaller
than h̃(k, s), which says that the incentive constraint is not satisfied when the gov-
ernment has the worst continuation value. When this happens, the government need
a higher continuation value so that the incentive constraint is satisfied. However, the
corresponding payoff for the present government cannot be higher than h̃(k, s). This
is because only the minimization operates when {τk, τl} is given. There always exists
h+ ∈

[
h(k+, s+,m+), h̄(k+, s+,m+)

]
to bind the incentive constraint when the worst

continuation value breaks the incentive constraint. Otherwise m should not belong to
the equilibrium set.

h̃(k) is the payoff of the worst, it must be in the lower boundary h(k,m). Because
it is the worst of all, it must be equal to minm h(k,m).

P

Proof of Theorem 8:
First we show that the sequence of

{
Ŵn

}
is decreasing and Ŵn ⊇ Ŵn+1. We claim

that the upper boundary of
{
Ŵn

}
is decreasing. This is because h̄1(k, s,m) is defined

as maxτk,τl u(c, l)+G(g)+βEh̄0(k+, s+,m+) such that ψ = (τk, τl, c, l, k+, g, w, r, {m+, h+})
is admissible with respect to Ŵ0 at (k, s). The admissibility of the vector ψ implies that(
m, h̄1(k, s,m)

)
∈ Ŵ0 (k, s). Therefore h̄1(k, s,m) ≤ max

{
h| (m,h) ∈ Ŵ0 (k, s)

}
=

h̄0(k, s,m). Similarly we have h1(k, s,m) ≥ h0(k, s,m). The same argument holds for
Ŵn (k, s).

Since the sequence is decreasing, it has a limit Ŵ∞. Proposition 2 implies that
F(V) = V. By a simple limit argument we have limn→∞ Ŵ∞ = V.

P

Proof of Proposition 3:
We prove this proposition by construction. For an arbitrary initial condition (k0, s0),

the game Γ (k0, s0) has strategy profile which yields a period zero payoff of h̃(k0, s0)

defined as

h̃(k0, s0) = max
τk,0,τl,0

{
min

c0,l0,k1,(m1,h1)∈W
[u(c0, l0) +G(g0) + βEh1]

}
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such that

[c0, l0, k1, g0, w0, r0] ∈ CES {(k0, s0, τk,0, τl,0, {m1}) for all s1 � s0} .

Therefore, we have the period zero tax rates and households’ choice, namely {τk,0, τl,0, c0, l0, k1}.
By the definition of h̃(k0, s0), h1 = h̃(k1, s1), otherwise we have h̃′(k0, s0) < h̃(k0, s0).
This implies that we can find the period one tax rates and households’ choices as we
did for the initial period. Notice that there exist k > 0 and k̄ > 0 such that for all
k0 ∈ [k, k̄], and feasible tax policy τ , each competitive equilibrium of Υ {k0, τ} satisfies
kt+1 ∈ [k, k̄] for all t ≥ 0. Hence, we can find a time invariant mapping from (k, s) to
{τk, τl, c, l, k+} such that for k ∈ [k, k̄], we have k+ ∈ [k, k̄].

P

9.2 Definition of operator F

Definition 9 For any convex-valued set Ŵ =
{

(m,h)|h ∈
[
h0(k, s,m), h̄0(k, s,m)

]}
,

we define operator F as follows:

F(Ŵ)(k, s) =
{

(m,h)|h ∈
[
h1(k, s,m), h̄1(k, s,m)

]}
where

h̄1(k, s,m) = max
τk,τl

u(c, l) +G(g) + βEh̄0(k+, s+,m+) (43)

h1(k, s,m) = max

{
max
τk,τl

u(c, l) +G(g) + βEh0(k+, s+,m+), h̃(k, s)

}
(44)

h̃(k, s) = max
τk,τl

{
min

c,l,k+{m+}
u(c, l) +G(g) + βEh0(k+, s+,m+)

}
(45)

such that the vector (τk, τl, c, l, k+, g, w, r, {m+, h+}) is admissible with respect to Ŵ at
(k, s). We also define h(k, s,m) = −∞, h̄(k, s,m) = +∞ if there is no such vector
exists.

The equation (44) is slightly different from (33). This outer maximum is used to
take care of the case where the incentive constraint always violates given (k, s). This
may happen when the initial value of h0 is sufficient low.
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9.3 Numerical implementation of operator F

Below we briefly explain our algorithm and we refer to Feng, et. al. (2011) for
details in terms of approximating compact-valued set. The numerical method proceeds
as follows.

Let K× S×M×H denotes the space of all equilibrium state vectors (k, s,m, h).
First we define a grid K̂ = {ki1}Nki1=1. We assume that S is finite and S = {si2}Nsi2=1.
After this discretization, instead of a correspondence W : K×S→M×H we have
Ŵ : K̂× S→M×H. It is equivalent to think about this correspondence as Nk ×Ns

set Ŵ(ki1 , si2), where ki1 ∈ K̂, and si2 ∈ S. Notice, Ŵ approximates W well as Nk

goes to ∞.
Our algorithm start with an initial guess W0(k, s) = {(m,h (k, s,m))} and a per-

determined tolerance ε > 0.

• Step 1-1: given (k, s), pick (m,h) ∈ W0(k, s). We store the pair of (m,h) in
Ω(k, s) if there exists (τk, τl) ∈ T and (m+, h+) ∈W0 (k+, s+) such that

h = u(c, l) +G(g) + βEh+ (46)

uc(c, l)− βEm+ = 0 (47)

where (c, l, k+) are determined as solutions to the following equations

m− uc(c, l) · [1 + (1− τk)r] = 0 (48)

ul(c, l)− (1− τl)w · uc(c, l) = 0 (49)

(1− τl)wl + (1− τk)rk + k − (c+ k+) = 0. (50)

• Step 1-2: given (k, s), and Ω(k, s), denote Ωm := {m|(m,h) ∈ Ω(k, s)}, we define

h̄1(k, s,m) = max
τk,τl

max
(m+,h+)∈W0

u(c, l) +G(g) + βEh̄0(k+, s+,m+) (51)

h1(k, s,m) = max
τk,τl

min
(m+,h+)∈W0

u(c, l) +G(g) + βEh0(k+, s+,m+), h̃0(k, s) (52)
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for all m ∈ Ωm. Otherwise we set

h̄1(k, s,m) = +∞ (53)

h1(k, s,m) = −∞ (54)

and finally,

h̃1(k, s) = min
m∈Ωm

h1(k, s,m). (55)

• Step 2: we defineW1(k, s) =
{

(m,h)|m ∈W1
m(k, s), h ∈

[
h1(k, s,m), h̄1(k, s,m)

]}
.

• Step 3: we set W∗ = W1 if ‖W1 −W0 ‖< ε, otherwise, we set W0 = W1 and
restart from step 1.
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9.4 Figures

Figure 2: Timing of the game between the government and households

0.04 0.08 0.12
−0.94

−0.90

−0.86

−0.82

shadow value of investment

p
ay

o
ff

 o
f 

th
e 

g
o

ve
rn

m
en

t

 

 

high TFP

low TFP

Figure 3: The equilibrium value correspondence at k = 1.32
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