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Abstract

Consider a generic semiparametric model de�ned by an in�nite number of moment conditions,

including a �nite dimensional parameter of interest and possibly including moment-speci�c nonpara-

metric nuisance parameters. Within this setting, we propose tests for restrictions on the parameter

of interest based on optimal functionals of the sample analog of the moments. The optimal func-

tional takes the form of a Radom-Nikodym derivative or Likelihood Ratio in a nonparametric setting.

This paper investigates the semiparametric e¢ ciency and implementation of feasible versions of such

directional tests. The paper provides four main contributions. First, it proves the semiparametric

e¢ ciency of the proposed tests. Second, it proposes and justi�es feasible implementations of such

directional tests based on a novel nonparametric estimator of the e¢ cient score. Third, it establishes

important and fruitful connections with the literature on generalized methods of moments. Finally,

it applies the new methods to a semiparametric linear quantile regression model with a continuum of

quantiles. Optimal inferences in this model were not available because classical e¢ ciency arguments

are di¢ cult to apply. In contrast, our methods deliver relatively simple optimal inferences. Useful

by-products of our analysis are optimal con�dence sets by inverting our test statistic and a new

algorithm for computing the e¢ ciency bound for regular estimation of the parameter of interest.
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1 Introduction

Consider a generic semiparametric model de�ned by an in�nite number of moment conditions, each

moment depending on a �nite dimensional parameter of interest and possibly including moment-speci�c

nonparametric nuisance parameters. Within this setting, suppose we are interesting in testing restric-

tions on the �nite dimensional parameter. Omnibus consistent tests based on continuous functionals of

the sample analog of the moments, say R̂n; have been extensively investigated in the literature, albeit

for particular versions of this model. These consistent omnibus tests do not have optimality properties,

beyond being asymptotically admissible (cf. Bierens and Ploberger, 1997), and they are often di¢ cult

to interpret (see Escanciano, 2009). Here, we investigate directional tests, rather than omnibus tests,

corresponding to optimal functionals of R̂n; or equivalently, optimal tests under an average power

function criteria. The optimal functional is shown to be the Radom-Nikodym derivative of the limit-

ing distribution of R̂n under local alternatives with respect to the distribution under the null. This

nonparametric Likelihood Ratio (LR) principle has been already applied to several important semi-

parametric settings, but the semiparametric e¢ ciency of the resulting inferences in these settings, or in

more general settings like ours, remains unknown. This paper proves the semiparametric e¢ ciency of

the procedure in a generic framework, proposes and justi�es feasible (and easy to implement) versions

of such optimal directional tests and makes fruitful connections with existing econometric methods.

Semiparametric e¢ cient inference is discussed extensively in the econometrics and statistics liter-

atures, see Newey (1990) for an excellent review, and Bickel, Klaasen, Ritov, and Wellner (1993) for

a comprehensive treatment. The bulk of the literature focuses on the estimation theory using the

concepts of parametric submodels and tangent spaces. The main insight was given by Stein (1956),

and involves an in�nite number of applications of the basic Neyman-Pearson lemma and considering

a worst case scenario. In this paper we take a di¤erent approach based on functional versions of the

Neyman-Pearson lemma. This approach was �rst suggested by Grenander (1950), and it provides a

better �t with the extensive nonparametric testing literature based on moment restrictions (i.e. func-

tionals of R̂n). Applying this principle to the setting described above requires the following steps:

(i) �rst, prove that R̂n converges weakly, in a functional sense, to some limit process under the null

hypothesis of interest as well as under local alternatives; (ii) then, compute a feasible version of the LR

test, i.e. the Radom-Nikodym derivative, via the Functional Neyman-Pearson lemma for the limiting

problem. The Functional Neyman-Pearson Test (FNPT) or optimal directional test is then given by

the LR evaluated at R̂n, and corresponds to the optimal functional of R̂n; say ��(R̂n). Some examples

below illustrate the procedure.

As mentioned earlier, this directional testing approach has already been applied to several semipara-

metric models in econometrics and statistics. Sowell (1996) proposed a FNPT for parameter instability

in a Generalized Method of Moments (GMM) setting; see also Elliot and Müller (2009). Stute (1997),

Stute, Thies and Zhu (1998), Boning and Sowell (1999), Bischo¤ and Miller (2000), and Escanciano

(2009) applied the FNPT to test the correct speci�cation of regression models. Extensions to condi-

tional distributions are given in Delgado and Stute (2008), and to tests for correct speci�cation of the

covariance structure of a linear process in Delgado, Hidalgo and Velasco (2005). Akritas and John-

2



son (1982) and Luschgy (1991), among others, consider applications to stationary and non-stationary

di¤usion processes, respectively. Recently, Watson and Müller (2008) construct a �nite-dimensional

approximation of a FNPT for testing low-frequency variability in persistent time series. Müller (2011)

considers applications to unit root testing, weak instruments and parameter instability, among many

others. Song (2010) suggests applications of the FNPT to a general class of semiparametric conditional

moment models. However, despite the extensive list of applications of this principle, the semiparametric

e¢ ciency of the resulting tests remains unknown. This paper proves that the FNPT is asymptotically

e¢ cient in a large class of regular semiparametric models under Local Asymptotic Normality (LAN),

where e¢ ciency is de�ned in a �classical� sense, as formalized in Choi, Hall and Schick (1996). See

also Section 3 for a brief review of e¢ cient semiparametric tests.

Our results on e¢ ciency complement alternative e¢ ciency results recently obtained by Müller

(2011). He has shown that the FNPT is also optimal in a class of tests that control asymptotic

size for all data generating processes under which R̂n satis�es a weak convergence requirement; see

Section 3 for a more formal discussion. This e¢ ciency concept can be potentially di¤erent from the

classical semiparametric e¢ ciency concept in Choi et al. (1996), and it provides a sense of robustness

of the FNPT. An appealing property of Müller�s e¢ ciency concept is that it applies to regular and

non-regular settings, whereas extensions of the classical semiparametric e¢ ciency theory to non-regular

problems are generally di¢ cult. Hence, our results complement rather than substitute Müller�s (2011)

results, and together they imply a broad sense of optimality of the FNPT. The wide applicability and

optimality properties of the FNPT suggest that it should be a useful and powerful testing procedure

in econometrics.

To prove the semiparametric e¢ ciency of the FNPT we �rst obtain a generic asymptotic represen-

tation of this test as a score-type process (i.e. as a quadratic form of a sample mean). We characterize

the score function in terms of certain covariance operator and shift function. Then, we prove that the

resulting score coincides with the so-called semiparametric e¢ cient score in the semiparametric model

de�ned by the moment restrictions, thereby establishing the semiparametric e¢ ciency of the proce-

dure. Feasible implementations of the FNPT generally require the estimation of the spectrum of some

unknown covariance operator, which hampers the general applicability of the method.1 Our second

main contribution is the development of implementations of the FNPT that do not require knowledge

of the spectrum, thereby widening the scope of applications of these methods. We combine our char-

acterization of the score function with well-known results from ill-posed problems to construct a novel

nonparametric estimator of the e¢ cient score. The proposed feasible FNPT is a classical LM test with

the estimated score, and it is quite simple to compute. To illustrate the bene�ts of our implementation,

we consider an example in quantile regression with a continuum of quantiles. In this example, standard

methods to e¢ ciency are either not feasible or require rather complicated arguments.

Our e¢ ciency results are related to the recent literature on e¢ cient estimation of semiparametric

1 Interestingly enough, in many non-regular settings there is a closed form expression for the FNPT, so estimation of

the spectrum is not necessary; see e.g. the examples in Müller (2011). However, in most regular problems this is not

generally the case, and we believe this has considerably hampered the practical application of this nonparametric LR

approach (cf. Stute, 1997).
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models by GMM estimators employing an in�nite number of moments, see e.g. Ai and Chen (2003),

Newey (1988, 2004) and Carrasco and Florens (2000, 2008). Our paper di¤ers from these works in

several aspects. First, the GMM literature has been focused on estimation, with rather few results

on testing available. Carrasco and Florens (2000) discussed tests based on the optimal GMM in

parametric moments, but their tests were omnibus rather than directional. The bulk of our paper

deals with the testing problem, but our results have direct implications on computation of e¢ ciency

bounds, computation of optimal con�dence sets and the construction of one-step e¢ cient estimators,

as shown below. Second, we use a LR approach in a nonparametric sense, as in Grenander (1950),

or more recently Müller (2011). The LR approach has some additional bene�ts, such as allowing the

researcher to compute, otherwise complicated, probabilities under the local alternatives via Lecam�s

third Lemma. See, for instance, the local power analysis carried out in Escanciano (2009). Nevertheless,

we show below that our LR approach is closely related to a Lagrange Multiplier (LM) test based on

a modi�ed optimal GMM objective function. The modi�cation is needed to account for the presence

and impact of nuisance parameters.2 To the best of our knowledge, the connection between GMM

and our LR approach is new and leads to mutual bene�ts for these two approaches. For instance, it

implies that some modi�cations of GMM-based tests will share the optimality properties of our LR

test, including Müller�s (2011) optimality in non-regular problems. This connection also opens the

door for new implementations of the GMM-based tests and estimators, which are not available in the

general semiparametric setting discussed here.

The rest of the paper is organized as follows: Section 2 introduces notation, the semiparametric

model, the testing problem and the FNPT. It then provides an asymptotic representation of the FNPT

as a score-type test. Section 3 establishes the semiparametric e¢ ciency of the procedure and connections

with the GMM literature. Section 4 investigates the implementation of the FNPT. We �rst discuss

the case of known spectrum, with the leading example of the so-called martingale-transform-based

tests. We then consider implementations that do not require knowledge or estimation of the unknown

spectrum. The new estimator for the e¢ cient score is introduced here. Section 5 contains an application

to a linear quantile regression model, which illustrates the utility of our results. Other examples such

as partially identi�ed models have a similar structure, and they are brie�y mentioned in this section

using as an illustration the application in Altonji, Elder and Taber (2005), who study the e¤ect of

attending a Catholic school on educational attainment. Section 7 concludes with some �nal remarks.

Appendix A provides some preliminary results as well as su¢ cient conditions for a uniform expansion

that can be used to establish our main assumptions. Mathematical proofs of our results are gathered

in Appendix B.

2Carrasco and Florens (2000, 2008) do not consider nuisance parameters and in Newey (2004) it is assumed that

they do not a¤ect the asymptotic variance of estimates; see Newey (2004, p. 1879). In this paper we allow for nuisance

parameters to have an impact on the asymptotic variance, and that possibility complicates to a large extent our theory.
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2 Setting and the FNPT

2.1 Notation

This section contains notation that will be used throughout the paper. Henceforth, A0 and jAj denote
the transposition and the Euclidean norm jAj := (tr(A0A))1=2 for a matrix A; respectively. The

symbol := denotes de�nitional relation. Let � be a set and let �(�) be a positive measure on �; with
support identical to �: Let L2(�) � L2(�; �) be the Hilbert space of all real-valued functions such

that
R
� jf(x)j

2 �(dx) < 1: If � is a probability measure P with a cumulative distribution function

(cdf) F; we also denote L2(F ) := L2(�) and kfk22;P :=
R
f2dP: As usual, equality of functions is

understood almost surely with respect to �:With some abuse of notation, for a p-dimensional function

f; we write f 2 L2(�) if all its components belong to L2(�): In L2(�) we de�ne the inner product

hf; gi :=
R
� f(x)g(x)�(dx): As usual, L2(�) is endowed with the natural Borel �-�eld induced by the

norm k�k := h�; �i1=2. Let =) denote weak convergence in the Hilbert space L2(�); see e.g. Chapter 1.8

in van der Vaart and Wellner (1996). For a linear operator K : L2(�1)! L2(�2); denote the subspaces

Im(K) := ff 2 L2(�2) : 9s 2 L2(�1);Ks = fg and ker(K) := ff 2 L2(�1) : Kf = 0g: Finally, for a
subspace V � L2(�); V

? and V denote, respectively, its orthogonal complement and closure in L2(�):

We will extensively use basic results from operator theory and Hilbert spaces. The reader is referred

to Carrasco, Florens and Renault (2006) for an excellent review of these results.

2.2 Semiparametric Model and Testing Problem

We describe now the model and our general testing problem, introducing the null hypothesis of interest

and some further notation. Assume we observe a sample of size n � 1; fZigni=1; of independent and
identically distributed (iid) random vectors in Rd; distributed as Z, and satisfying the set of moment
conditions

E[ (Z; x; �; �0(Z; x))] = 0 for all x 2 �; (1)

where � 2 �� � Rp is a �nite dimensional parameter of interest, and �0(�; x) 2 ��x (of arbitrary
dimension) is an unknown nuisance parameter for each x 2 �. Without loss of generality (w.l.g),

we take  to be real-valued. Although not explicit in the notation we allow for �0(�; x) to depend
on �; i.e. �0(�; x) � �0(�; x; �). Set �0 := (�0; �0) 2 � := �� � ��, where �0 is �xed and known
and �� denotes the parameter space for �0. Let F denote the cdf of Z; with probability measure P:

Unless otherwise stated, all expectations are with respect to F: The level of generality in (1) allows us to

handle simultaneously standard models such as semiparametric conditional moment restrictions as well

as less standard situations in which nuisance parameters change with the moment, as in semiparametric

quantile regressions or partially identi�ed semiparametric models.3 The following example helps to �x

ideas.
3For potential applications of our results to partially identi�ed semiparametric models see Scharfstein, Rotnitzky and

Robins (1999), Song, Kosorok and Fine (2009), Chen, Tamer and Torgovitsky (2010), Chernozhukov, Rigobon and Stoker

(2010), Arellano, Hansen and Sentana (2011), Bontemps, Magnac and Maurin (2011) and Escanciano and Zhu (2012),

among many others.
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Example 1: Linear Quantile Regression (QR) with a continuum of quantiles. Consider the
in�nite number of moment restrictions

E[f1(Y � �0X1 + �0(�)
0X2)� �g1(X � w)] = 0 for all x = (�; w0)0 2 T � Rdx ; (2)

where T is a generic compact subset of [0; 1]; T � [0; 1]; X = (X 0
1; X

0
2)
0; Z = (Y;X 0)0; dx = d � 1;

and 1(A) denotes the indicator function of the event A: Under some mild smoothness condition, these

moments identify �0X1 + �0(�)
0X2 � X 0�0(�) as the conditional �th quantile of Y given X; for all

� 2 T : This model includes as special case the classical pure location regression model, with X2 � 1
and �0(�) the unknown (unconditional) error quantile function with T � [0; 1]; or semiparametric

extensions where the independence between errors and covariates only occurs in certain parts of the

distribution de�ned by the set of quantiles T : In this model the nuisance parameter �0 varies with x
(speci�cally with �): Although our results are applicable to generalizations or variations of this model,

such as location-scale models with unknown conditional scale, the classical linear quantile regression

model of Koenker and Bassett (1978) or partially linear quantile regressions, we prefer to keep the

exposition simple. We choose the model in (2) for illustrative purposes, because it is a model for which

semiparametric e¢ ciency inference is unknown, beyond the special case of pure location model or the

case of a single quantile T = f�0g; see Komunjer and Vuong (2010) for the latter. As it turns out,
standard e¢ ciency theory is not easily applicable to this model when T includes an in�nite number

of quantiles, whereas our methods provide relatively simple procedures. This model is investigated in

detail in Section 5. We note there that similar structures appear in semiparametric models that are

partially identi�ed. �

We introduce now our testing problem. We aim to �nd an asymptotically optimal test for testing

H0 : � = �0; (3)

against the local (directional) alternatives

Hn : �n = �0 + n
�1=2c�;

for some c� 2 Rp. The nuisance parameter �0 is unknown under both, the null and the alternative,
and we assume that a consistent, but not necessarily e¢ cient, estimator b�n is available, satisfying some
conditions below. For a more formal description of the local alternatives considered see Appendix A.

In the main text we keep a simpler description for simplicity of exposition. Henceforth, to simplify

the notation we drop the dependence of b�n on (Zi; x) and write b�n � b�n(Zi; x); and similarly for �0.
Reciprocally, when we want to emphasize the dependence on x we write �0(x) := (�0; �0(Zi; x)) 2
�x := �� ���x:

2.3 Weak Convergence

Under our setting in (1), and given a random sample fZigni=1 and the hypothesis of interest H0, it is
natural to consider the empirical process with estimated parameters

R̂n(x) :=
1

n

nX
i=1

 (Zi; x; �0; b�n); (4)
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as a �su¢ cient�statistic for the testing problem. Omnibus tests based on continuous functionals of R̂n;

such as classical Kolmogorov-Smirnov tests based on supx2�
���R̂n(x)���, abound in the literature. See e.g.

Bickel, Ritov and Stoker (2006) for a recent proposal in a general semiparametric setting. As we show

below, typical functionals used in omnibus tests are not optimal. In this paper we propose optimal

functionals.

The general discussion here is organized around a few �high-level� assumptions. More primitive

conditions are shown in the Appendix and in the examples below. Our �rst �high-level�assumption

requires the weak convergence of R̂n in (4) in a suitable Hilbert space. Speci�cally, the process R̂n is

viewed here as a random element taking values in L2(�), for a suitable probability measure �(�) on �.
For some discussion on the impact of �(�) on our theory see the examples and Remark 2 below.

Assumption W: Under the local alternatives Hn,

p
nR̂n =) R1 � R01 + c

0
�D; (5)

where D(�) := �@E [m(Z; �; �0(�))] =@� 2 L2(�) and R01 is a Gaussian process with zero mean and

covariance function

C(x; y) := E[m(Z; x; �0(x))m(Z; y; �0(y))]; (x; y) 2 �� �:

In the Appendix A we provide relatively �simple�su¢ cient conditions on the model and data generating

process for Assumption W to hold. It is shown there how the in�uence function m(Z; x; �0) depends

on the moment  (Z; x; �0) and generally on the impact of estimation of nuisance parameters, see

(27). The uniform expansion in Appendix A is of independent interest. Related primitive conditions

can be found in the literature, see e.g. Chen and Fan (1999) and Song (2010) for semiparametric

conditional moment restrictions, and Escanciano and Zhu (2012) in the context of partially identi�ed

semiparametric models. Useful Functional Central Limit Theorems (FCLT) in Hilbert spaces can be

found in van der Vaart and Wellner (1996) and Politis and Romano (1994) for independent observations

and in Jakubowski (1980) and Chen and White (1998) for dependent heterogeneous arrays.

Example 1 (cont.): Linear QR with a continuum of quantiles. In this example the natural
estimate for the nuisance parameters �0(�) is the QR estimator proposed by Koenker and Bassett

(1978) applied to the �dependent�variable Yi� �00X1i, with covariates X2i, and denoted by b�n(�): We
shall provide primitive conditions under which the following expansion holds uniformly in x = (�; w0)0 2
� := T � Rdx ;

R̂n(x) =
1

n

nX
i=1

f1(Yi � �00X1i + b�0n(�)X2i)� �g1(Xi � w)

=
1

n

nX
i=1

�i(�)w(Xi; x) + oP (n
�1=2);

where �i(�) := 1(Yi � X 0
i�0(�))��; w(Xi; x) := 1(Xi � w)�A(x)B�1(�)X2if2i� ; A(x) := E[X2if2i�1(Xi �

w)]; B(�) := E[X2iX
0
2if

2
2i� ] and f2i� is the conditional density of Yi � �00X1i given X2i; evaluated at
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�0(�)
0X2i. Thus, in this example  (Z; x; �0(�)) = �i(�)1(Xi � w); m(Zi; x; �0(�)) = �i(�)w(Xi; x); and

Assumption W follows under some mild conditions with D(x) = �E[X1ifi�w(Xi; x)]; where fi� is the
conditional density of Yi given Xi; evaluated at X 0

i�0(�), see Section 5. Note that the weight w(Xi; x)

depends on in�nite dimensional nuisance parameters that are di¤erent from �0; namely f2i� : To deal

with this issue we assume, w.l.g but with some abuse of notation, that �0 is enlarged to include these

additional nuisance parameters appearing in m: For instance, in this example we rede�ne �0 as the

QR coe¢ cients, say 
(�); and the conditional density f2i� . See Bickel, Ritov and Stoker (2006) for a

similar implicit assumption. �

2.4 Limiting Problem and the FNPT

We aim to �nd the asymptotically optimal functional of R̂n for testing H0 vs Hn: Let P0 and P1 be
the probability measures associated to the limiting distributions of Rn in L2(�) under the null H0
and under the local alternative hypotheses Hn; respectively. For a general treatment of probability

measures of random elements in Hilbert spaces see Parthasarathy (1967). In terms of the limiting

random element R1; the testing problem can be written as

H0 : R1 � P0 vs H1 : R1 � P1:

To construct an optimal test, we need to introduce some further notation. Let K be the covariance

operator associated to R1 (cf. Assumption W), i.e.

K(h)(x) :=

Z
�
C(x; y)h(y)�(dy); for all h 2 L2(�): (6)

The operator K extends the notion of covariance matrix in the �nite dimensional case. Since K is

a compact, linear and positive operator, it has a countable spectrum f�j ; 'jg1j=1; where f�jg1j=1 are
real-valued, positive, with �j # 0, and f'jg1j=1 forms a complete orthonormal basis for Im(K) such
that K'j = �j'j ; for all j 2 N:

By the functional version of the Neyman-Pearson lemma, the optimal test is given by the Radom-

Nikodym derivative or LR of P1 with respect to P0: In the current setting, it is known (see Skorohod,
1974, Chapter 16, Theorem 2), that P1 will be absolute continuous with respect to P0 provided the
following condition holds

1X
j=1

��1j hDl; 'ji2 <1; for all l = 1; :::; p; (7)

where Dl denotes the lth component of D (cf. (5)). In that case, the LR is given by

dP1
dP0

(h) = exp

0@c0�L(h)� 12
1X
j=1

��1j
�
c0��j

�21A ; h 2 L2(�); (8)

where

L(h) :=

1X
j=1

��1j hh; 'ji hD;'ji ; h 2 L2(�); (9)
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and �j := hD;'ji, j 2 N: Useful intuition about the expression of the LR can be obtained from

a �nite dimensional approximation of the problem. Let f"j := �
�1=2
j hR1; 'jig1j=1 be the so-called

principal components of R1; which are iid standard normal under the null hypothesis. Then, (8)

can be obtained as the limit of the (standard) LR of the distribution of f"jgkj=1 under the null and
under local alternatives, when k ! 1; see e.g. Stute (1997). This intuition is formalized in e.g

Skorohod (1974). The existing literature does not provide primitive conditions for the key �contiguity�

assumption (7). Below, we show that this assumption is intimately related to the assumption of �nite

Fisher information, see Section 3.

As evidenced from (8), L(R1) is a su¢ cient statistic for our testing problem. In terms of this

su¢ cient statistic, the testing problem can be equivalently characterized as the familiar H0 : L(R1) �
N(0;�) against H1 : L(R1) � N(�c�;�); where � := V ar(L(R1)): The Neyman-Pearson lemma and

some standard testing arguments, see e.g. Choi et al. (1996), suggest that an optimal test for testing

H0 against H1 is given by ��(R1); where

��(h) := 1
�
L(h)��1L(h) � �21��;p

�
;

and where �21��;p is the (1 � �)-quantile of the chi-squared distribution with p degrees of freedom,

� 2 (0; 1): The FNPT uses the �nite sample analog of R1 and is given by ��n := ��(
p
nR̂n); and the

�rst purpose of this paper is to study the e¢ ciency properties of the test ��n and related tests.

In some applications the FNPT has a closed form as a functional of
p
nR̂n; i.e. L is fully known,

see e.g. Akritas and Johnson (1982), Luschgy (1991), Sowell (1996) and Müller (2011) for examples.

However, in most regular problems a closed form expression for the FNPT is not available and estima-

tion (regularization) of the operator L is often needed. We deal with the implementation of feasible

versions of the FNPT in Section 4. There, we show that the feasible test based on a quadratic form of

bLn = 1

n

nX
i=1

bs�(Zi);
for a suitable estimated score bs�(Zi) is asymptotically equivalent to ��n. Thus, for asymptotic e¢ ciency
purposes it su¢ ces to consider for the time being the infeasible test ��n:

2.5 Asymptotic Representation of the FNPT as a Score-Type Test

The objective of this section is to provide an asymptotic representation for the FNPT as a score-type

test. This result is instrumental for other results in the paper. In Section 3 it will be shown that the

resulting score coincides with the e¢ cient score for the corresponding semiparametric problem, so the

optimality of the FNPT follows. Later in Section 4, we will use the characterization of the score to

implement a feasible FNPT.

With this objective in mind, we introduce the singular value decomposition of K; see Kress (1999).

Henceforth, to simplify notation set m(Zi; x) � m(Zi; x; �0(x)): The covariance operator K(h)(x) =

E[hm(Z; �); him(Z; x)] can be written as K = T 0T , where T 0 and T are compact linear operators

de�ned, respectively, by

Th(z) := hm(z; �); hi z 2 Rd; h 2 L2(�)

9



and

T 0a(x) := E[m(Z; x)a(Z)] x 2 �; a 2 L2(F ):

Also note that T 0 is the adjoint (dual) operator of T; that is, for all h 2 L2(�) and a 2 L2(F );

E[a(Z)Th(Z)] =


T 0a; h

�
: (10)

In addition to the sequence f�j ; 'jg1j=1, there exists a complete orthonormal basis for Im(T ) =
ker?(T 0), say f jg1j=1; satisfying, for all j 2 N; (cf. Kress, 1999, Theorem 15.16)

T'j = �
1=2
j  j ; and T 0 j = �

1=2
j 'j : (11)

For r > 0; introduce the subspace of L2(�),

	r :=

8<:h 2 L2(�) such that khk2r :=
1X
j=1

��rj hh; 'ji2 <1

9=; ;

with the corresponding inner product hh; gir :=
P1
j=1 �

�r
j hh; 'ji hg; 'ji : It is well-known that 	1 is

the so-called Reproducing Kernel Hilbert space associated to K and that 	1 = Im(T 0) � Im(K). We

now introduce two assumptions that are needed for our representation.

Assumption D: D 2 	1:

As previously mentioned, Assumption D is equivalent to the absolute continuity of P1 with respect to
P0. De�ne the process with �known�parameters

Mn(x) :=
1

n

nX
i=1

m(Zi; x; �0): (12)

We now require the asymptotic equivalence of L(
p
nR̂n) and L(

p
nMn): In view of Assumption W this

can be understood as a continuity assumption of L(�) with respect to k�k.

Assumption C: Under Hn, L(R̂n) = L(Mn) + oP (n
�1=2):

There are at least two ways to prove the high-level Assumption C. Since the operator L is continuous in

	1 with the Reproducing Kernel Hilbert space norm k�k1 ; one possibility is to strengthen AssumptionW
so that




R̂n �Mn





1
= oP (n

�1=2): A second approach is to keep Assumption W but require continuity

of L with respect to k�k ; as in Müller (2011). This is the case, for instance, if D 2 	2: A su¢ cient

condition for the latter is that Im(T ) is closed (see Lemma 3.4 in var der Vaart, 1991). This assumption

imposes further smoothness on the model, as shown below. See also Chen, Chernozhukov, Lee and

Newey (2011) for related discussion.

Note that Assumption D is equivalent to the following random vector being well de�ned in L2(F );

s�(Zi) :=
1X
j=1

�
�1=2
j hD;'ji j(Zi): (13)
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The score function s� will play a crucial role in our development. De�ne the standardized sample mean

S�n :=
1p
n

nX
i=1

s�(Zi): (14)

Our next result proves the asymptotic equivalence of the FNPT statistic L(
p
nR̂n) and the sample

mean S�n: Henceforth, for a closed subspace M; �M denotes its orthogonal projection operator.

Theorem 1: Let Assumptions W, D and C hold. Then,

(i) L(
p
nR̂n) = S�n + oP (1), under Hn:

(ii) Moreover, s� satis�es T 0s� = D; and for any other s 2 L2(F ) satisfying T 0s = D; it holds that

s� = �ker?(T 0)s:

Remark 1: Theorem 1(i) proves the asymptotic equivalence of the FNPT with a score-type test. Its

proof only uses elementary considerations, but that does not vitiate its utility. In a model with no

nuisance parameters, the equivalence is also in �nite samples. For instance, it can be shown that in fully

parametric models with no nuisance parameters, the FNPT based on the standard empirical process

boils down to the classical Rao-Score test in �nite samples. Theorem 1(ii) o¤ers an alternative way

to compute the score s� in (13) that does not require knowledge of the spectrum. This is practically

important since expressions for f�j ; 'j ;  jg1j=1 are only available for very special situations. Thus,
Theorem 1(ii) o¤ers the following algorithm for computing s�: (i) �rst, �nd a solution to the integral

equation T 0s = D; then (ii) compute the projection of s into ker?(T 0) or Im(T ): An immediate

consequence of Theorem 1(ii) is that among all possible solutions s of T 0s = D; the one with minimum

variance corresponds to s�: Note that the existence of one solution of T 0s = D in L2(F ) implies

Assumption D. In all the examples we have considered solving T 0s = D was a trivial task, as the

following classical example illustrates.

Example 2: Regression model checks. Stute (1997) proposed a FNPT for testing the signi�cance
of additional variables in homoskedastic linear-in-parameters regressions. He considered models such

as the linear semiparametric regression model

Y = �01 + �02X + �a(X) + "; E ["jX] = 0 almost surely (a.s.),

where Y and X are random variables, �0 = (�01; �02)0; a(X) is a known direction, e.g. a(X) = X2; and

the conditional distribution of " given X is unknown: De�ning Z = (Y;X)0; this semiparametric model

can be characterized by the in�nite number of moments (cf. Stute, 1997)

E[fY � �01 � �02X � �a(X)g1(X � x)] = 0 for all x 2 R: (15)

In this example �0 is parametric and estimated by the Ordinary Least Squares (OLS) estimator b�n,
and the interest is in testing H0 : � = 0; against local deviations. Stute (1997) provided su¢ cient
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conditions for the asymptotic uniform (in x 2 R) representation under Hn : �n = n�1=2c�;

R̂n(x) =
1

n

nX
i=1

(Yi � b�1 � b�2Xi)1(Xi � x); (16)

=
1

n

nX
i=1

"i0w(Xi; x) + oP (n
�1=2);

where "i0 := Yi � �01 � �02Xi; w(Xi; x) := 1(Xi � x) � E[ ~X 0
i1(Xi � x)]E[ ~Xi ~X

0
i]
�1 ~Xi; and ~Xi =

(1; Xi)
0: Thus, Assumption W holds with m(Z; x; �0) = "i0w(Xi; x), D(x) = E[a(Xi)w(Xi; x)] and

� the probability measure of X: Stute (1997) assumed homoskedasticity, i.e. �2(X) := E
�
"2
��X� =

�2. We �rst discuss the implications of our results for this case, and then we discuss extensions to

heteroskedastic regressions. Assumption D plays a fundamental role, so we start discussing su¢ cient

conditions for this assumption in the context of this example. First, the law of iterated expectations

implies that the equation T 0s(x) = D(x), that is,

E["i0w(X;x)s(Z)] = E[w(X;x)a(X)];

is trivially solved by s(Z) = ��2"i0a(X). Note that the solution does not depend on the form of w; see

Remark 2 below. Second, Parseval�s identity, (11) and Theorem 1 yield

1X
j=1

��1j hD;'ji2 =
1X
j=1

hs;  ji2 � E[s2(Z)]:

Hence, a su¢ cient (and also necessary) condition for Assumption D is E[a2(X)] <1: Similarly, it can
be shown that ker(T 0) = spanf"i0 ~Xig. Hence, from Theorem 1(ii) s� is simply the least squares errors

in a regression of s(Z) against X; i.e.

s�(Zi; �0) := ��2"i0fa(Xi)� E[a(Xi) ~X 0
i]E[ ~Xi ~X

0
i]
�1 ~Xig:

Stute (1997) suggested a FNPT approximation using certain estimates f�̂j ; '̂jg of f�j ; 'jg and trun-
cating the operator L in (9). However, notice that in this example s� is known, up the parameter

�0; and hence, there is no need to estimate the spectrum since much simpler asymptotically equiv-

alent implementations of the FNPT based on our Theorem 1(ii) exist. Namely, the classical t-test,

which is known to be optimal in the homoskedastic case, does not require spectrum estimates: Similar

simpli�cations apply to other applications of the FNPT considered in the literature, see e.g. Delgado

and Stute (2008). In these applications the problem T 0s = D is not ill-posed and there is no need to

regularize the problem by introducing tuning parameters, such as the number of principal components

k:

Consider now the conditionally heteroskedastic case. Using the same arguments above, it can be

shown that the equation T 0s = D is solved by s(Xi) := ��2(Xi)"i0a(Xi); Assumption D holds provided

E[��2(X)a2(X)] <1; and ker(T 0) = spanf��2(Xi)"i0 ~X 0
ig. It then follows from our Theorem 1 that

L(R̂n) =
1

n

nX
i=1

"i0�
�2(Xi)a

�(Xi) + oP (n
�1=2);
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where

a�(Xi) := a(Xi)� E[a(Xi) ~X 0
i]E[�

�2(Xi) ~Xi ~X
0
i]
~Xi:

The resulting score s�(Zi) = "i0�
�2(Xi)a�(Xi) is the e¢ cient score corresponding to the semiparametric

problem H0 : �0 = 0 against Hn, see e.g. Chamberlain (1987). The e¢ cient score is now unknown,

and implementations of the FNPT as suggested in e.g. Stute, Thies and Zhu (1998) and others use

implicitly a series estimator for this score based on the basis f jg1j=1; see (13). A more common

approach is to estimate nonparametrically �2(Xi) and plug in this estimate in s�(Zi); as suggested in

Robinson (1988). In Section 4.2 we propose an alternative approach.

Thus, the application of Theorem 1 to this example, jointly with well-known e¢ ciency theory, im-

plies that the tests proposed in Stute (1997), Stute, Thies and Zhu (1998), and Escanciano (2009) are

approximately semiparametrically e¢ cient. They are not fully e¢ cient because the number of compo-

nents used (the number of summands in L) was �xed in these applications. In Section 4 we construct

feasible versions of such procedures that are fully semiparametrically e¢ cient. Our results in this ex-

ample also show that the FNPT test in Boning and Sowell (1999) is not e¢ cient. These authors further

assume "i to be independent of Xi; but they do not use this information in the moment restrictions.

Note that Boning and Sowell�s (1999) test is still e¢ cient in the sense of Müller (2011), so this example

illustrates the di¤erences between Müller�s (2011) e¢ ciency and the classical semiparametric e¢ ciency.

Note also that a simple modi�cation of the moments used can account for the independence between

errors and regressors, so that to deliver an e¢ cient test under the independence assumption of Boning

and Sowell (1999). �

Remark 2: All our results go through in the previous example if we replace the indicator function in

w(Xi; x) by other comprehensively revealing class of functions. See Bierens (1982), Stinchcombe and

White (1998) and Escanciano (2006) for examples of such classes. For instance, we could use the class

fexp(x�(X)) : x 2 � 2 Rg; where � is an interval containing zero, and � is a one-to-one bounded map-
ping, see Bierens and Ploberger (1997). As mentioned earlier, the solution s(Xi) := ��2(Xi)"i0a(Xi)

does not depend on the class used. It is also straightforward to prove that ��2(Xi)"i0 ~X 0
i 2 ker(T 0):

In fact, it can be shown that for a comprehensively revealing class ker(T 0) = f��2(Xi)"i0 ~X 0
ig: To see

this, by Lemma 3.4 in Newey (1990) it su¢ ces to consider scores of the form ��2(Xi)"i0b(Xi) for some

function b(�): First, consider the case where b(Xi) is orthogonal to ~Xi. In that case,

E[fexp(x�(Xi))� E[ ~X 0
i exp(x�(Xi))]E[

~Xi ~X
0
i]
�1 ~Xigb(Xi)] � 0

is equivalent to

E[exp(x�(Xi))b(X)] = 0; for all x 2 �;

which in turn, implies that b(X) = 0 a.s. Since any function can be decomposed as b(X) = c0+ c1X +

c2b
?(X); where b?(Xi) is orthogonal to ~Xi; we conclude that ker(T 0) = f��2(Xi)"i0 ~X 0

ig: Note that the
measure � plays no role in this argument.
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3 On the E¢ ciency of the FNPT

We show in this section that the FNPT is a semiparametric e¢ cient test in the class of semiparametric

models de�ned by (1): Speci�cally, we use the concept of asymptotically uniformly most powerful and

invariant test of level �; in short AUMPI (�), de�ned formally in Choi et al. (1996, Section 5).

When p = 1 alternative de�nitions of e¢ ciency that do not require invariance are typically used. For

de�nitions of standard concepts used in semiparametric estimation theory, such as regular parametric

submodels or tangent spaces the reader is referred to Bickel et al. (1993). Let P := fP(�;�) : � 2 �� ;
� 2 ��g be a semiparametric model satisfying (1). Note that indexing the semiparametric model
by (�; �) does not entail a loss of generality, see e.g. Bickel, Ritov and Stoker (2006) for a similar

approach. De�ne the marginal class with � �xed at �0 by P2 := fP(�0;�) : � 2 ��g; and let _P2 be the
tangent space of P2 at P(�0;�0); i.e. the closed linear span of scores passing through the semiparametric
model P � P(�0;�0). Given the score _̀1 in the marginal family P1 = fP(�;�0) : � 2 ��g; we de�ne
the e¢ cient score `�1 as the orthogonal projection of the score _̀1 onto the orthocomplement of _P2;
i.e., `�1 := _̀

1 � � _P2
_̀
1; where � _P2h denotes the orthogonal projection in L2(F ) of h onto _P2: Let

I� := V ar(`�1); and assume I
� is positive de�nite. Write �n(�0) := n�1=2I��1=2

Pn
i=1 `

�
1(Zi; �0): An

e¢ cient test statistic Tn must satisfy Tn = �n(�0) + oP (1); for every �0: Choi et al. (Corollary 3, 1996)

show that the test ��n := 1
�
T 0nTn � �21��;p

�
is AUMPI (�). Hence, the FNPT will be AUMPI (�) if

we prove that, for every �0,

L(R̂n) =
1

n

nX
i=1

`�1(Zi; �0) + oP (n
�1=2):

In view of Theorem 1, this is the case if and only if s� = `�1. Our next result proves that this is indeed

the case. De�ne ker0(T 0) := fh 2 ker(T 0) : E[h(Z)] = 0g: Standard regularity conditions that imply
LAN, among other things, and that are required for the de�nition of e¢ ciency are gathered in the

Appendix A.

Theorem 2: Let the Assumptions D, C, A1 and A2 in the Appendix A hold. Then,

(i) _P2 = ker0(T 0).

(ii) s� � `�1; and hence the FNPT is AUMPI (�).

The result in Theorem 2(i) is of independent interest. This result characterizes in simple mathe-

matical terms the tangent space of nuisance parameters in a general class of semiparametric models

de�ned by moment restrictions. It extends related results by Bickel et al. (1993, Section 6.2) to a large

class of semiparametric models. Theorem 2 can be used to obtain e¢ cient inference in models such

as the quantile regression model or in semiparametric models with partial identi�cation, as shown in

Section 5. Theorem 2(ii) shows the semiparametric e¢ ciency of the FNPT:

For completeness, we discuss an alternative sense of e¢ ciency of the FNPT. Müller (2011) has

recently shown that the FNPT is optimal in a class of tests that control asymptotic size for all data

generating processes for which the underlying random element, R̂n; has the corresponding limiting
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distribution. We particularize Müller�s results to our framework, and discuss connections with the

semiparametric e¢ ciency results established here. He de�nes the class of statistical modelsM as the

class of models for which Assumption W holds. Then, he de�nes the class of tests C as those tests
that have level � 2 (0; 1) for all models inM. That is, the class of models is de�ned through a weak

convergence requirement. Then, Müller�s main �nding is as follows. Assuming that the mapping L in

(9) is continuous with respect to k�k ; the FNPT is the most e¢ cient test in the class C; and for any
other test in C with higher asymptotic average power for any model inM; there exits a model inM
for which the test has asymptotic null rejection probability larger than the nominal level �: Thus, this

new concept of e¢ ciency provides a sense of robustness of the FNPT. Our paper complements Müller�s

e¢ ciency results by proving that in regular semiparametric problems the FNPT is also semiparametric

e¢ cient in the �classical�sense of Choi et al. (1996).

We also relate our results to the recent literature in econometrics proving that e¢ cient estimation of

semiparametric models can be achieved by GMM estimators employing an in�nite number of moments,

see e.g. Ai and Chen (2003), Newey (2004) and Carrasco and Florens (2000, 2008). We establish here an

important connection between the GMM literature and our LR approach. This connection is mutually

bene�cial, both in theory and implementation of the procedures. Our discussion here is intentionally

informal. Some formal results are provided in Section 4, but a complete set of results is beyond the

scope of this paper. We modify Carrasco and Florens (2000, 2008) and Newey (2004) to properly

account for the presence of estimated, possibly in�nite-dimensional, nuisance parameters and suggest

a candidate for an optimal GMM estimator as the minimizer of the following objective function


K�1=2
n M̂n(�; �)




2 ;
where K�1=2

n is some consistent estimator of the operator K�1=2; M̂n is de�ned as Mn but with b�n
replacing �0; and where we emphasize the dependence of M̂n on �; see (12). Implementations vary

according to the estimator (regularization) K�1=2
n used. Note that the estimator should use M̂n rather

than the original R̂n for our arguments below to hold. Under some regularity conditions that allow us

to replace K�1=2
n by K�1=2; see Section 4.2., it can be shown that the feasible optimal GMM will be

asymptotically equivalent to the minimizer of

Qn(�) :=
1

2

1X
j=1

��1j

D
M̂n(�; �); 'j

E2
:

The GMM testing theory is well known in the standard setting �we can construct Wald, LM or LR

tests based on Qn(�); see Newey and West (1987). Similar ideas apply here. If we consider an LM

approach and assume smoothness in � for simplicity, the LM test for H0 involves a quadratic form in

p
n
@Qn(�0)

@�
=

1X
j=1

��1j

Dp
nM̂n(�; �0); 'j

E*@M̂n(�; �0)
@�

; 'j

+
;

which resembles the asymptotic expression for L(
p
nR̂n): Hence, the LM test based on the modi�ed

GMM objective function can be interpreted as a LR test in our semiparametric context. This con-

nection has important theoretical implications. It implies that extensions of GMM-based tests will be
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semiparametric e¢ cient in our general semiparametric context, and more generally will share Müller�s

(2011) e¢ cient concept even in non-regular settings.

4 Implementation of the Feasible FNPT

We have investigated so far the e¢ ciency properties of the infeasible FNPT. The test is not feasible be-

cause the Fisher information matrix � and the operator L are in general unknown. The implementation

of the feasible FNPT greatly depends on whether or not the spectrum of K is known. Here, we suggest

di¤erent implementations for these two exhaustive alternatives. Henceforth, bm(z; x) := m(z; x; �0; b�n)
and bmi(x) := m(Zi; x; �0; b�n):
4.1 Known Spectrum

If the spectrum f�j ; 'jg is known, L and � can be easily estimated by

Lk(h) =

kX
j=1

��1j hh; 'ji
D
D̂; 'j

E
; (17)

and b�k = kX
j=1

��1j

D
D̂; 'j

ED
D̂; 'j

E0
for a suitable consistent estimate D̂ of D and k � kn � 1; with kn !1 as n!1: The feasible FNPT
considered here replaces L(R̂n) by Lk(R̂n) and � by b�k: For instance, when the moment function is
smooth in � a natural estimate for D is

D̂(x) =
1

n

nX
i=1

�@ bmi(x)

@�
:

The assumption of known spectrum is justi�ed, not because it holds generally, but because often gen-

eral transformations of R̂n exist with known spectrum representations; see the so-called Khmaladze

or martingale transformations (cf. Khmaladze, 1981). There is an extensive literature on this trans-

formation in econometrics and statistics. Khmaladze (1981) �rst considered such transformations for

classical parametric problems, but recently Song (2010) has substantially extended it to a general class

of semiparametric models, thereby widening the scope of applications of the feasible versions that we

discuss here. When Khmaladze�s transformation is used, it remains to justify that our e¢ ciency and

asymptotic results do not change, and we provide some insights showing that this is indeed the case.

Note that Stute (1997) and Escanciano (2009) have used similar approximations to (17), but they

have not investigated the properties of the resulting tests as kn ! 1: Therefore, their tests are only
approximately e¢ cient. Full e¢ ciency requires kn !1; and it is developed in this section.

It turns out that, under suitable conditions provided below, the feasible FNPT behaves asymptot-

ically as the infeasible test, i.e.

Lk(R̂n) = L(Mn) + oP (n
�1=2); b�k = �+ oP (1): (18)
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The following assumption restricts the rate of divergence of kn and requires further smoothness in the

model:

Assumption R: (i) k � kn !1; (ii)



R̂n �Mn





1
= oP (n

�1=2) and



D̂ �D




1
= oP (k

�1
n ):

We will provide speci�c restrictions that R(ii) imposes for a generic example below. Assumption R(ii)

can be replaced by



R̂n �Mn




 = oP (n
�1=2);




D̂ �D



2
= oP (1) and kDk2 <1: As mentioned earlier,

the latter assumption implies the continuity of L with respect to k�k ; and it can be understood in
terms of further smoothness in the sense of a fast decay of the Fourier coe¢ cients for the score s�. To

see this, note that
1X
j=1

��2j hDl; 'ji2 =
1X
j=1

��1j (E[s�l (Z) j(Z)])
2 :

In fact, kDk2 < 1 is equivalent to Dl 2 Im(K) or s�l 2 Im(T ) for all l = 1; :::; p: If there are no

nuisance parameters, then Assumption R can be simpli�ed to kn !1 and



D̂ �D




1
= oP (1).

Proposition 1: Let Assumptions D, W and R hold. Then, (18) holds.

A corollary of Proposition 1 is that the feasible FNPT is an AUMPI(�) test. Proposition 1 is applicable

to cases where the asymptotic limit distribution R̂n has known spectrum. We discuss now a generic

approach that leads to that case, and justify the e¢ ciency in this generic example. For simplicity of

the exposition, we restrict our analysis here to conditional moment restrictions of the form

E [�(Z; �; �0)jX] = 0 a.s.

where X is a subvector of Z of dimension dx. A standard way to characterize this conditional moment

model is through the moment restrictions

E[�(Z; �; �0)1(X � x)] = 0 for all x 2 Rdx :

However, as proved in Appendix A sample feasible versions of the moments are generally not asymptotic

distribution-free, leading to the so-called Durbin problem (see Koenker and Xiao, 2002). An approach

that has been suggested in the literature to overcome this problem is to consider moments

E[�(Z; �; �0)M1(X � x)] = 0 for all x 2 Rdx ;

whereM is a linear operator satisfying certain properties, speci�cally, it is an isometry projecting into

the space orthogonal to the tangent space of nuisance parameters, see Song (2010) for details. It can

be shown that our results applied to the moment function  (Zi; x; �0; �0) = �(Z; �; �0)M1(X � x)

deliver a semiparametric e¢ cient test. The set of solutions of T 0s = D does not change by the presence

of M: Note that the orthogonality of M with the tangent space of nuisance parameters implies that

m �  : See Song (2010) for a formal proof. By the same orthogonality, ker(T 0) does not change by

the transformation M: Thus, from Theorem 1 the resulting score is the same with or without the

transformation, and by Theorem 2 this is the e¢ cient score.
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Example 2 (cont.): Regression model checks. Stute, Thies and Zhu (1998) investigated omnibus
asymptotic distribution-free tests based on the Khmaladze�s transformation applied to the process R̂n
in (16) under conditional heteroskedasticity. The limiting Gaussian process after the transformation

(including the integral transformation) is a standard Brownian motion, whose spectrum is given by

�j =
1

(j � 0:5)2�2 'j(x) =
p
2 sin ((j � 0:5)�x) ;

where x 2 [0; 1]: Su¢ cient conditions for AssumptionW are provided in Stute, Thies and Zhu (1998). As

mentioned earlier, a su¢ cient and necessary condition for Assumption D is that E[��2(X)a2(X)] <1:
Some simple algebra shows that




R̂n �Mn





1
= Op(n

�1=2k1=2(b�n��0)): Hence, a su¢ cient condition for


R̂n �Mn





1
= oP (n

�1=2) is nk�1n !1. Similarly, it can be shown that



D̂ �D




1
= oP (k

�1
n ); provided

nk�3n !1.

4.2 Unknown Spectrum

As mentioned earlier, in most applications the spectrum f�j ; 'jg is unknown. One possible approach,
as suggested by Carrasco and Florens (2000), is to estimate nonparametrically the spectrum. Here, we

propose an alternative method that is based on the characterization of the e¢ cient score in Theorem

1(ii) and on well-known results from the theory of linear inverse problems, see Carrasco, Florens and

Renault (2006). Our estimator for the e¢ cient score seems to be new in the literature.

Theorem 1 shows that

L(R̂n) =
1

n

nX
i=1

s�(Zi) + oP (n
�1=2);

where s�(Zi) is characterized as the solution of T 0s = D with minimum norm, i.e. a Moore-Penrose

generalized inverse of T 0. The idea is simple, we write the equation as TT 0s = TD; and solve the

sample analogue of this equation using estimates for T; T 0 and D to obtain a nonparametric estimate

of s�; say bs�: Then, we propose a feasible FNPT replacing L(R̂n) by
bLn = 1

n

nX
i=1

bs�(Zi): (19)

Since the inverse problem TT 0s = TD is in general ill-posed, we need to regularize the problem. We

choose Tikhonov regularization, as it is simple to apply. This method is based on solving the perturbed

equation

(�nI + TT
0)s��n = TD;

where s��n is implicitly de�ned, �n is a regularization (tuning) parameter such that �n # 0 at a suitable
rate and I is the identity operator. Note that such solution s��n always exists under Assumption D and

is given by

s��n(Z) :=
1X
j=1

p
�j

�j + �n
hD;'ji j(Z):
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In practice, T and T 0 are unknown and are estimated by

T̂ h(z) :=
1

n

nX
j=1

bm(z; xj)h(xj) z 2 Rd; h 2 L2(�)

and

T̂ 0s(x) :=
1

n

nX
i=1

bmi(x)s(Zi) x 2 �; s 2 L2(F );

where fxjgnj=1 is a random sample from �. For instance, when � is the probability measure of X; we

can take fxjgnj=1 � fXjgnj=1: Note that there is some abuse of notation here because T̂ 0 is not the
adjoint of T̂ ; but this notation is justi�ed asymptotically. Then, simple arguments show that the �nite

sample version (�nI + T̂ T 0)s��n = T̂ D̂ has a closed form solution given by

bs�(z) := 1

n�n

nX
j=1

~D(xj)bm(z; xj); (20)

where

~D(xj) := D̂(xj)�
1

n

nX
h=1

ph bmh(xj)

and the vector p = (p1; :::; pn)0 satis�es the system of linear equations (�nI + A)p = b; where A is an

n� n matrix with principal element

aj;l =
1

n2

nX
h=1

bmj(xh)bml(xh)

and b = (b1; :::; bn)0 with

bj =
1

n2

nX
h=1

D̂(xh)bmj(xh):

Finally, the Fisher information matrix is estimated by

b��n := 1

n

nX
h=1

bs�(Zi) (bs�(Zi))0 :
The �th level feasible FNPT is then given by

�̂�n := 1(nbL0nb��1�n bLn � �21��;p):

The test only requires estimates fbm(Zi; xj); D̂(xj)gni;j=1 and is quite easy to implement. We show below
that �̂�n is asymptotically equivalent to the infeasible �

�
n; by showing that under suitable conditions

bLn = L(Mn) + oP (n
�1=2); b��n = �+ oP (1):

The following assumption plays the role of Assumption R in the current context. For a bounded linear

operator de�ne (with some abuse of notation) kBkb := supkhka�1 kBhkb ; where the norms k�ka and
k�kb are the norms in the domain and range of de�nition of B; respectively.
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Assumption RE: (i) n�4n ! 1 and �n ! 0 as n ! 1; (ii)
p
n(D̂ � D) is asymptotically tight in

L2(�) and



T̂ 0 � T 0




2;P
= OP (n

�1=2); and (iii) D 2 	2:

The conditions in RE(ii) can be checked using our results in the Appendix. A su¢ cient condition for

asymptotic tightness is weak convergence, as implied by Prohorov�s theorem, see van der Vaart and

Wellner (1996). When the estimator b�n is pn-consistent and the moments are smooth in �0; RE(ii)
follows from standard Taylor arguments and the FCLT:

Theorem 3: Let the assumptions of Theorem 2 and Assumption RE hold. The feasible ��level FNPT
based on (19) with bs� as in (20) is AUMPI (�).
Remark 3: If P

�p
n(D̂ � T̂ 0s�) 2 Im(T 0)

�
! 1 as n ! 1 then Assumption RE(i) can be relaxed

to n�2n ! 1. Note that Im(T 0) is dense in L2(�); which suggests that the previous condition is not
strong. Similar simpli�cations can be obtained if D̂ = T̂ 0d for some d:

5 Application to a Semiparametric Linear Quantile Regression

We implement the e¢ cient feasible FNPT for the quantile regression example. At the end of this

section we discuss other potential applications of our methods for which available methods are hard to

apply. We modify the notation in the QR example to account for the presence of additional in�nite

dimensional nuisance parameters in the limiting distribution, so the model is de�ned by the moment

restrictions

E[�i(�)1(Xi � w)] = 0 for all x = (�; w0)0 2 � := T � Rdx :

where �i(�) = 1(Yi � �0X1i+
00(�)X2i)��: De�ne �0(�) := (�00; 
00(�))0 and �0(�) := (�00(�); f2i� )0; where
f2i� is the conditional density of Yi � �00X1i given X2i; evaluated at 
0(�)0X2i. A natural estimator for

0(�) is the QR estimator, initially proposed by Koenker and Basset (1978), de�ned as any solutionb
n(�) minimizing


 7�!
nX
i=1

��
�
Yi � �00X1i � 
0X2i

�
g

where �� (u) = u (�� 1 fu � 0g) is the so-called �check�function.
Standard e¢ ciency theory is di¢ cult to apply to this model. In contrast, our results can be easily

applied. Theorem 1 suggests that the e¢ cient score solves T 0s(x) = D; and among all solutions is

the one with minimum variance. Our algorithm for computing the e¢ cient score suggests �rst to

solve T 0s(x) = D and then �nd the projection s� = �ker?(T 0)s: The �rst step is straightforward in

this example �a solution is s(Z) = X1 _f (Y jX) =f (Y jX) ; where _f (yjx) := @f (yjX = x) =@y; and

f (yjX = x) is the conditional density of Yi given Xi: However, computing the projection �ker?(T 0)s

seems to be a rather complicated task. This di¢ culty does not stop us from implementing a feasible

FNPT as suggested in the previous section.

Hence, we proceed to estimate the e¢ cient score in (20). To that end, we need consistent estimates

for m and D: These are given by bmi(x) = b�i(�) bw(Xi; x)
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and

D̂(x) = � 1
n

nX
i=1

X1if̂i� bw(Xi; x);
where b�i(�) = 1(Yi � X 0

i
b�0(�))� �; b�0(�) := (�0; b
n(�)); bw(Xi; x) := 1(Xi � w)�An(x)B�1n (�)X2if̂2i�

An(x) :=
1

n

nX
i=1

X2if̂2i�1(Xi � w) (21)

Bn(�) :=
1

n

nX
i=1

X2iX
0
2if̂

2
2i� (22)

and f̂i� (f̂2i� ) is a nonparametric estimator for the conditional density of Yi (Yi��00X1i) given Xi (X2i)
evaluated at X 0

i�0(�) (
0(�)
0X2i): We follow Escanciano and Goh (2012) and construct estimators for

these quantities as follows. Let An � f�jgnj=1 be a random sample from a uniform distribution in

T ; independent of the original sample Zn � fZigni=1: The proposed estimators for f2i� and f2i� are,
respectively, f̂i� := f̂

�
X 0
i
b�(�)���Xi� and f̂2i� := f̂2 (X

0
2ib
n(�)jX2i) ; where

f̂ (yjXi) � f̂
�
yjXi; b�� := 1

nh

nX
j=1

K

 
y �X 0

i
b�(�j)

h

!
; (23)

and

f̂2 (yjX2i) � f̂2 (yjX2i; b
n) := 1

nh

nX
j=1

K

�
y �X 0

2ib
n(�)
h

�
and where b�(�) is a QR estimator that does not impose the null, h > 0 is a scalar smoothing parameter
and K(�) is a smoothing kernel satisfying some conditions below. To simplify the notation denote
~fi� := f̂ (X 0

i�0(�)jXi; �0) and ~f2i� := f̂2 (X
0
2i
0(�)jX2i; 
0) the kernel estimates using the true QR

parameters. See Escanciano and Goh (2012) for motivation of the nonparametric estimates f̂i� and

f̂2i� . These estimators posses several appealing properties over more classical kernel estimates (cf.

Rosenblatt, 1969):

For a �xed � and �j in T ; let g(�;�j)(u; v) and g2(�;�j)(u; v) be the densities of (X 0�0(�j); X 0�0(�)) and

(X 0
2
0(�j); X

0
2
0(�)) evaluated at (u; v); and de�ne the functions (
 denotes the Kronecker product)

r1(�;�j)(u; v; w) := E
�
X11(Xi � w)jX 0�0(�) = u;X 0�0(�j) = v

�
;

r2(�;�j)(u; v; w) := E
�
X1 
X21(Xi � w)jX 0

2
0(�) = u;X 0
2
0(�j) = v

�
;

q1(�;�j)(u; v; w) := r1(�;�j)(u; v; w)g(�;�j)(u; v)

and

q2(�;�j)(u; v; w) := r2(�;�j)(u; v; w)g2(�;�j)(u; v):

Then, regularity conditions that are su¢ cient for our high-level assumptions in the quantile regression

example are given as follows.

Assumption E1: (i) fZigni=1 is a sequence of iid d-dimensional random vectors; (ii) the conditional

densities
�
f ( �jx) : x 2 Rdx

	
are uniformly bounded, from above and below (from zero), with uniformly
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bounded derivative with respect to y 2 R; (iii) the density f (yjx) is twice continuously di¤erentiable
in x, with uniformly bounded derivatives; (iv) E [XX 0] is nonsingular and �nite; (v) for each �xed

� and �j in T ; u 2 R and w 2 Rdx ; k = 1; 2; the function qk(�;�j)(u; v; w) is well-de�ned and twice

continuously di¤erentiable in v with uniformly (in �; �j ; u and w) bounded derivatives and the �rst

derivative of q1(�;�j)(u; v; w) with respect to u is Liptschitz in (�; w) for each �j ; u and v.

Assumption E2: For all � 2 T ; the parameter �0(�) 2 � � Rdx, � is compact and �0(�) belongs to

its interior.

Assumption E3: (a) The kernel function K (t) : R ! R is symmetric, bounded, three times con-

tinuously di¤erentiable and satis�es the following conditions:
R
K (t) dt = 1,

R
tK (t) dt = 0; andR ��t2K (t)�� dt < 1,

��@(j)K(t)=@tj�� � C and for some v > 1,
��@(j)K(t)=@tj�� � C jtj�v for jtj > Lj ;

0 < Lj < 1, for j = 1; 2; (b) the possibly data dependent bandwidth h satis�es P (an � h � bn) ! 1

as n!1, for deterministic sequences of positive numbers an and bn such that bn ! 0; b4nn! 0 and

a2nn= log n!1.

Most of these assumptions are standard in the literature of quantile regression. Assumption E1 implies

that a solution s(Z) = X1 _f (Y jX) =f (Y jX) of T 0s(x) = D is well-de�ned, so Assumption D holds:

Note that bounded and smoothness conditions on the conditional density also imply similar conditions

on the conditional density of Yi � �00X1i given X2i: Our next result shows the optimality of the FNPT
applied to this example.

Theorem 4: Suppose the conditions of Assumptions E1-E3, Assumption RE(i) and RE(iii) hold.

Then, the ��level feasible FNPT in (19) with bs� as in (20) is AUMPI (�) for the quantile regression
model.

We brie�y mention other examples for which standard e¢ ciency theory can be hard to apply, but for

which our results are directly applicable. Newey (2004) discussed two such examples, Powell�s (1986)

censored regression quantile estimators and transformation models. A general class of models for which

our results have applications is the class of semiparametric partially identi�ed models investigated in

Escanciano and Zhu (2012); see also Arellano et al. (2011) for parametric versions. E¢ ciency within

a class of GMM estimates has been discussed in Arellano et al. (2011) for the parametric setting, but

in the semiparametric setting remains unexplored. Our results provide here the �rst feasible optimal

tests in both the semiparametric and parametric frameworks. The structure of the problem is similar

to the quantile regression example. The model satis�es the moment restrictions

E[�(Z; x; �0(Z; x))] = 0 for all x 2 �;

where �0(Z; x) contains parametric, say �0(x); and possibly nonparametric components �0(Z; x). The

model is not identi�ed because x or a subvector of it is not identi�ed. The model is still partially

identi�ed in the sense that for each x 2 � there is a unique solution �0(Z; x) of the moment restrictions.
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Suppose the parameter of interest is �0 = �0(x0) for a given x0 2 �: Then, this model �ts our setting
if we de�ne

 (Z; x; �; �0(Z; x)) =

(
�(Z; x0; �; �0(Z; x0)) if x = x0

�(Z; x; �0(Z; x)) if x 6= x0:
(24)

A complete analysis of this generic class of examples is beyond the scope of this paper, and it is deferred

to future research. To illustrate the application to partially identi�ed models we consider an example

from Altonji et al. (2005).

Example 3: Assessing the e¤ectiveness of Catholic Schools. Altonji et al. (2005) investigated
the e¤ect of attending a Catholic school on educational attainment. In this empirical study Y is e.g.

college attendance, CH is a dummy for Catholic school attendance and X is a vector of individual

characteristics, including family background, demographics, etc. They use a bivariate probit model

CH = 1(X 0
0 + u);

Y = 1(X 0�0 + �CH + v);

where (u; v) is jointly normal with correlation �: Their approach to deal with the lack of exclusion

restriction is to consider � as an unidenti�ed parameter, so e¤ectively assuming that the model is

partially identi�ed (i.e. conditional on �; the rest of parameters are identi�ed). Altonji et al. (2005)

were particularly interested in testing signi�cance of CH; and they proposed pointwise inferences for

several choices of �: A more e¢ cient approach can be based on the methods developed in this paper. For

instance, suppose we would like to test the individual hypothesis H0 : �(�0) = 0 against H0 : �(�0) 6= 0
for some �0 2 T and a certain set T ; or suppose we want to test the more stringent hypothesis
H0 : �(�) = 0 for all � 2 T against H0 : �(�0) 6= 0 for some �0 2 T : Both testing problems can be
handled by our methods using as moments the set of score equations or transformations of them as

in (24). For instance, in the second testing problem we can consider an average power criteria, and

consider the model as

E[ (Z; �; �; �0(�))] = 0 for all � 2 T ;

where  is the set of scores from the bivariate probit model, Z = (Y;X 0; CH)0; �0(�) = (
00(�); �
0
0(�))

0 and

the choice of T can be based on the e¤ect of selection. See Altonji et al. (2005) for details on the choice
of T . Our test, applied with �0 = 0; would exploit information from cross-equation restrictions, and

would lead to more e¢ cient inferences than the pointwise results considered in Altonji et al. (2005).

Again, for this class of examples existing e¢ ciency theory might be hard to apply, whereas our methods

lead to relatively simple e¢ cient inferences. �

6 Final Remarks

In this paper, we have investigated the e¢ ciency, in a classical semiparametric sense, and implementa-

tion of the FNPT in a general class of semiparametric models. We have shown that under quite general

conditions the FNPT is asymptotically equivalent to a score-type test. We have suggested a general
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algorithm for computing the associated score function in terms of the covariance operator and the

shift function resulting under local alternatives. The semiparametric e¢ ciency of the FNPT has been

established by showing that the score function is the e¢ cient score function associated to the model.

We have proposed and justi�ed feasible versions of the FNPT when the spectrum is known and when

is unknown. Finally, we have applied our results to a semiparametric quantile regression model. Our

investigation complements the optimality results for the FNPT found in Müller (2011), and shows that

the functional Neyman-Pearson approach advocated by Grenander (1950) can lead to semiparametric

e¢ cient inference. In sum, this paper extends the FNPT to general semiparametric models, establishes

its semiparametric e¢ ciency in regular models and justi�es simple practical implementations of these

procedures.

In addition to the e¢ ciency, the main appealing property of the FNPT is its wide applicability. It

can be applied to any of the myriad of papers where omnibus tests have been proposed, and which

use continuous functionals of the sample analog of the moment restrictions. It can be also applied to

non-regular problems, and in these problems it also possesses optimality properties as shown by Müller

(2011).

Although the main focus of the paper has been on e¢ cient tests, our results have important impli-

cations for e¢ cient estimation. Our results show that the semiparametric e¢ ciency bound of regular

estimators of �0 is � = kDk1 = V ar(s�(Zi)); and we have provided consistent estimators for it and a

new algorithm for computing this bound. Similarly, a simple one-step e¢ cient estimator for �0 can be

constructed as follows, b�n = b�0 � b��1�n 1n
nX
i=1

bs�(Zi);
where b�0 is an initial pn�consistent estimator of �0 that is also used in the computation of b��n andbs�: After our results, the e¢ ciency and asymptotic distribution theory for b�n can be easily obtained
using similar methods to those well established in the literature, see Lecam (1956). Obtaining more

general estimation results is a priority in our research agenda. E¢ cient estimation can be achieved

by GMM estimators, along the lines of Carrasco and Florens (2000, 2008) and Newey (2004). The

results developed of this paper can be useful to extend the existing GMM theory to our semiparametric

setting; see our proposal in Section 3.

There are also other open questions that remain for future research. We have not addressed the issue

of �bandwidth�choice. Note that in our setting this is a very complicated matter, since our problem

is one of testing, and a general theory for bandwidth choice for testing is not available, even in much

simpler settings. Developing this theory is beyond the scope of this paper. It seems reasonable to �rst

obtain such theory for the estimation problem, for which related results are available for comparison.

Many applications involve time series data, so it would be important to allow for dependence. The

main di¢ culty in extending our results to time series is the lack of an e¢ ciency theory in the general

semiparametric setting considered here. For speci�c models and dependence structures, e.g. Markov

processes, e¢ ciency results are available and our results can be straightforwardly extended; see Carrasco

and Florens (2000, 2008) for important results in this direction. We have applied the FNPT to �nite

dimensional parameters, but it can be also applied to in�nite dimensional parameters. It is unknown

24



whether or not the FNPT delivers in this case optimal inference. This extension would have important

applications in e¢ cient inference in partially identi�ed models. Finally, our theory has been restricted

to situations where the LAN holds with a limit distribution of the form R1 � R01 + c0�D; for a

Gaussian process R01: There are, however, instances where the impact of the local parameter c� in

the limiting distribution is nonlinear, such as in unit-root testing based on partial-sum processes, or

the limiting distribution is non-Gaussian. It should be of interest to investigate the semiparametric

optimality properties of the resulting FNPT in these non-standard cases, in comparison with those

already established by Müller (2011).

7 Appendix

7.1 Appendix A:

7.1.1 Su¢ cient conditions for Assumption W

In this section we establish the weak convergence of R̂n in (4) as a random element in L2(�): The

function space �� is endowed with a pseudo-metric k�k� ; which is a sup-norm with respect to x; and a

pseudo-metric with respect to Z: An example is k�k� = supz2Z;x2� j�(z; x)j : De�ne a �-enlargement of
the parameter sets ��(�) := f� 2 �� : j� � �0j � �g and ��(�) :=

n
� 2 �� : k� � �0k� � �

o
for � > 0.

De�ne R(x; �; �) := E [ (Z; x; �; �)] and

Rn(x; �; �) :=
1

n

nX
i=1

 (Zi; x; �; �):

We �rst introduce the de�nition of pathwise functional derivative to deal with the estimation e¤ects

of b�n. For each (x; �; �) 2 � � �, we say that R(x; �; �) is pathwise di¤erentiable at � 2 �� in the
direction [� � �] if f� + � (� � �) : � 2 [0; 1]g � �� and

lim
�!0

R(x; �; � + � (� � �))�R(x; �; �)
�

exists;

the derivative is denoted as V� (x; �; �) [� � �] : For the weak convergence we need the following as-
sumptions.

Assumption A1: Suppose that:

(i) (Smoothness in �) for each x 2 �, the pathwise derivative V� (x; �0; �0) [� � �0] of R(x; �0; �)
at � = �0 exists in all directions [� � �0] 2 ��; and for all (x; �) 2 ����(�n) with a positive sequence
�n ! 0, it holds that

sup
x2�

jR(x; �0; �)�R(x; �0; �0)� V� (x; �0; �0) [� � �0]j � C k� � �0k2� : (25)

(ii) P (b� 2 ��)! 1, and kb� � �0k� = oP
�
n�1=4

�
:

(iii) (Stochastic Equicontinuity) for all sequences of positive numbers �n ! 0;

sup
(x;�)2����(�n)

jRn(x; �0; �)�R(x; �0; �)�Rn(x; �0; �0) +R(x; �0; �0)j = oP

�
n�1=2

�
: (26)
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(iv)
p
nV� (x; �0; �0) [b� � �0] admits an asymptotic expansion (uniformly in x):

p
nV� (x; �0; �0) [b� � �0] = 1p

n

Pn
i=1� (Zi; x; �0; �0) + oP (1) ;

=: Tn(x; �0; �0) + oP (1) :

Assumptions A1(i)-(iv) are uniform versions (in x) of related assumptions in Chen, Linton and

Van Keilegom (2003). These assumptions are discussed extensively in the semiparametric literature.

Related assumptions are given in Escanciano and Zhu (2012) for analysis of semiparametric partially

identi�ed models. For a �xed x; the results in Newey (1994) can be applied to �nd the expression for

�: De�ne

m (z; x; �; �0) :=  (z; x; �; �0) + � (z; x; �; �0) ; (27)

where � is as in A1(iv).

Theorem A1: Under Assumption A1 and H0, the following expansion holds:

sup
x2�

�����pnR̂n(x)� 1p
n

nX
i=1

m(Zi; x; �0; �0)

����� = oP (1) :

Proof of Theorem A1: Henceforth, to simplify the notation when we evaluate � at �0 we remove

the dependence on �0 from all arguments. De�ne the linear approximation

Ln (x; �0) := Rn(x; �0) + V� (x; �0) [b� � �0]:
First, by Assumption A1(ii),(iii),(iv), uniformly in x 2 �;���R̂n(x)� Ln (x; �0)���

�
���R̂n(x)�R(x; b�)�Rn(x; �0) +R(x; �0)���

+ jR(x; b�) +Rn(x; �0)�R(x; �0)� Ln (x; �0)j
�
���R̂n(x)�R(x; b�)�Rn(x; �0) +R(x; �0)���

+ jR(x; b�)�R(x; �0)� V� (x; �0) [b� � �0]j
= oP

�
n�1=2

�
:

Hence, we conclude that, uniformly in x 2 �;

R̂n(x) =Mn(x; �0) + oP

�
n�1=2

�
;

where

Mn(x; �) :=
1

n

nX
i=1

m(Zi; x; �; �0):

�
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We obtain the following corollary, whose proof is omitted.

Corollary A1: Under Assumption A1, E[km(Zi; �)k2] <1 and H0:

p
nR̂n =) R01; in L2(�)

where R01 is as in Assumption W.

We now introduce a formal description of the local alternatives considered, and the limiting distribution

of
p
nR̂n under local alternatives. We follow Choi et al. (1996). De�ne the local parameters, t 2 [0;1);

�t := �0 + tc� + r�t and (28)

�t := �0 + tc� + r�t;

where c� 2 H�; c� 2 H�; jr�tj = o(t); kr�tkl� = o(t); as t # 0: Here H� is a local parameter space
that is a subset of Rp containing zero and H� is the local nuisance parameter space that is assumed
to be a Hilbert space with norm k�kl� : Note that c = (c�; c�) denotes the direction in which the local
parameter �t(c) , (�t(c�); �t(c�)) deviates from the point (�0; �0): We think of the parameter �t(c)

as the parameter corresponding to a smooth regular parametric submodel passing through P � P�0 .

We de�ne this important concept as follows. Let P := fP� : � � (�; �); � 2 ��; � 2 ��g be the
semiparametric model satisfying (1). Let � be a ���nite measure dominating P�; and let f (zj �) be
the corresponding density. P0 := fPt : t 2 [0;1)g is a smooth regular parametric submodel passing
through P � P�0 if P0 � P; P0 = P and if the density of Pt; say ft; is mean-square di¤erentiableZ �����f1=2t � f1=20

t
� 1
2
gf

1=2
0

����� d� ! 0 as t! 0; (29)

where g is a measurable function, that necessarily satis�es E[g(Z)] = 0 and E[g2(Z)] <1: We de�ne
formally the local alternatives as

Hn : P � P�nc ;

where �nc := �n�1=2(c) and P�t(c) is a smooth parametric submodel with �xed c and c� 6= 0: Henceforth,
de�ne for a measurable function q

Et [q(Z)] :=

Z
q(z)ft(z)dz;

We need the following regularity condition:

Assumption A2: For all smooth parametric submodels and each x 2 �; the map t! E[m(Z; x; �t; �t)]

is continuously di¤erentiable at t = 0 and supt2N Et
�
m2(Z; x; �0; �0)

�
<1; where N is a neighborhood

of 0. The parameter �0 belongs to the interior of �� :

Theorem A2: Under Assumptions A1 and A2, Assumption W holds.

Proof of Theorem A2: It is well known that an important implication of (29) is the LAN property

dP�nc
dP�0

=
1p
n

nX
i=1

g(Zi)�
1

2
E[g2(Z)] + op(1);
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see e.g. van der Vaart (1998, Theorem 7.2). To establish the limiting distribution of
p
nR̂n under Hn

we apply Lecam�s third lemma in van der Vaart and Wellner (1996, Theorem 3.10.7). To characterize

the limit, we �rst apply Lecam�s third lemma to
Dp

nR̂n; h
E
with h 2 L2(�); which yields that under

Hn Dp
nR̂n; h

E
!d N(�; hh;Khi);

where

� := E[hm;hi (Z)g(Z)]

By the adjoint property � = hh; T 0gi : Since this is true for all h 2 L2(�); we conclude that under Hn;
p
nR̂n =) R01 + T

0g; in L2(�):

It remains to prove that T 0g = c0�D: The part of the score corresponding to the nuisance parameter

satis�es T 0g� = 0 by Theorem 2 below, and hence it su¢ ces to prove that T 0g� = c0�D; where g� is

the score corresponding to � with �0 �xed. But this follows from the classical information equality

(integration by parts), Lemma 7.2 in Ibragimov and Hasminskii (1981), under Assumption A2. �

7.1.2 Preliminary results for the QR example

We collect in this section a number of known results that will be instrumental in proving Theorem 4. We

refer to references for the proofs. We begin with an important result of Chen, Linton and van Keilegom

(2003) that allows for the bounding of entropy numbers and the veri�cation of stochastic equicontinuity

for processes indexed by both Euclidean and function-valued parameters. In this connection, de�ne a

generic function class

H = fz ! m(z; �; g) : � 2 �; g 2 Gg;

where � and G are generic Banach spaces with associated norms k�k� and k�kG , respectively. Recall that
the covering numberN (�;�; k � k�) of� is the minimal numberN for which there exist �-neighborhoods

ff� : k� � �jk� � �g ; k�jk� <1; j = 1; : : : ; Ng covering �. A bracket [lj ; uj ] is the set of elements

� 2 � such that lj � � � uj . The covering number with bracketing N[�] (�;�; k � k�) is the minimal N
for which there exist �-brackets f[lj ; uj ] : klj � ujk� � �; kljk�; kujk� <1; j = 1; : : : ; Ng covering �.
An envelope function G for the class G is a measurable function such that G(x) � supg2G jg(x)j. De�ne
the entropy number

J(�;G; k�k2;P ) =
Z �

0

q
logN(";W; k�k2;P )d":

Other de�nitions of concepts from empirical processes theory may be found in e.g., van der Vaart and

Wellner (1996).

Lemma Q1. Assume that

E

"
sup

�2: k�1��2k�<�
sup

g2: kg1�g2kG<�
jm(Z; �1; g1)�m(Z; �2; g2)j2

#
� K�s
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for some constant s 2 (0; 2]. Then for any � > 0,

N[�](�;H; k�k2;P ) � N

�h �

2K

i2=s
;�; k�k�

�
�N

�h �

2K

i2=s
;G; k�kG

�
:

A typical application of Lemma Q1 implies that J(�;G; k�k2;P ) <1 and hence that the empirical process
p
n (Mn �M) ; whereMn(�; g) � n�1

Pn
i=1m (Zi; �; g) andM(�; g) � E [m(Zi; �; g)] ; is asymptotically

stochastically equicontinuous, i.e., for any sequence of positive constants �n = o(1),

sup
k�1��2k���n; kg1�g2kG��n

jMn(�1; g1)�Mn(�2; g2)�M(�1; g1) +M(�2; g2)j = oP (n
�1=2): (30)

The following Lemma is implicit in Section 2.10.3 of van der Vaart and Wellner (1996).

Lemma Q2. Let F and G be classes of functions with envelopes F and G; respectively, then

N(2�kFGk2;P ;F�G; k�k2;P ) � N(�kFk2;P ;F ; k�k2;P )�N(�kGk2;P ;G; k�k2;P ):

We now state a weak convergence theorem that is useful in dealing with estimation e¤ects in test

functionals involving the non-smooth summands �i(�; �) = 1(Yi � X 0
i�(�))� �: Let a(�) be a bounded

measurable function of Zi: Given a sequence fZingni=1 of iid arrays for each n; de�ne the weighted
empirical process

Vn(�; x) :=
1p
n

nX
i=1

(a(Zin)�in(�; �)� E [a(Zin)�in(�; �)jXin])wn(Xin; �; x);

which is indexed by � := (�; x) 2 B � �: Let FX denote the cdf of X: De�ne the metric, for �1 :=

(�1; �1; w1) 2 B � �;
�(�; �1) = j� � �1j+ jFX(w)� FX(w1)j+ k� � �1kT ;

where k�kT := sup�2T j�(�)j ; and assume that wn is such that for �n # 0

sup
�(�;�1)<�n

kwn(�; �)� wn(�; �1)k2;P = o(1)

and Wn := sup� jwn(�; �)j satis�es the Lindeberg condition, for each " > 0;

E[W 2
n ] = O(1) and E[W 2

n1(Wn > "
p
n)] = o(1):

Furthermore, de�ne the class Wn := fwn(�; �; x) : (�; x) 2 B��g and require the following assumption:

Assumption Q1. The class Wn satis�es the previous conditions and is such that J(�n;Wn; k�k2)! 0

for every �n # 0:

Theorem Q1. Under Assumptions E1, E2 and Q1, the process Vn is ��stochastically equicontinuous.

Proof of Theorem Q1. It follows from an application of Theorem 19.28 in van der Vaart (1998)

and Lemma Q1. �
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The following lemma is needed to justify the Bahadur representation of the QR estimator. Recall

f2 (yjX2 = x2) denotes the conditional density of Yi � �00X1i given X2i = x2 evaluated at y:

Lemma Q3. If f (yjX = x) satis�es Assumption E1, then f2 (yjX2 = x2) also satis�es Assumption

E1.

Proof of Lemma Q3. Let g12 (x1jX2 = x2) denote the conditional density of X1i given X2i = x2

evaluated at x1: Then, correct speci�cation and simple algebra implies the relation

f2 (yjX2 = x2) =

Z
f
�
y + �00x1

��x� g12 (x1jX2 = x2) dx1:

The result then follows from this expression and simple arguments. �

Lemma Q4. Under Assumption E1,

(i)

sup
�2T

�����pn (b
n(�)� 
0(�))� 1p
n
B�1(�)

nX
i=1

�i(�)X2if2i�

����� = oP (1):

(ii) The estimators b�(�) and b
n(�) satisfy that b�; b
n 2 B with probability tending to one and �0 2 B,
with B a class of Lipschitz functions from T to �.

Proof of Lemma Q4. For (i) see for instance Gutenbrunner and Jurecková (1992). Part (ii) follows

from (i) and our Assumptions E1 in a routine fashion. �

Our next result is related to the uniform convergence rates for kernel estimators f̂i� and f̂2i� . We view

f̂i� as a function of b� and write the Taylor approximation around the true value �0 as
f̂i� = ~fi� + _fi� (b�) + �fi� (b�) + ri� ; (31)

where b�(�) := pn(b�(�)� �0(�)) and
_fi� (�) :=

1

n3=2h2

nX
j=1

_K

�
X 0
i�0(�)�X 0

i�0(�j)

h

��
X 0
i(�(�j) + �(�))

	
;

and

�fi� (�) :=
1

n2h3

nX
j=1

�K

�
X 0
i�0(�)�X 0

i�0(�j)

h

��
X 0
i(�(�j) + �(�))

	2
;

and where henceforth for a generic functionK we denote _K(t) := @(1)K(t)=@t and �K(t) := @(2)K(t)=@t2:

The remainder term ri� is implicitly de�ned. A similar expansion to (31) holds for f̂2i� ;

f̂2i� = ~f2i� + _f2i� (b�) + �f2i� (b�) + r2i� ; (32)

with obvious de�nitions for the terms in the expansion.
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The proofs of the results below directly follow from Escanciano and Goh (2012). For an and bn as

in Assumption E3(b), de�ne

dn :=

s
log a�1n _ log log n

nan
+ b2n:

Lemma Q5. Under Assumptions E1-E3, for j = 1 and 2

sup
an�h�bn

sup
�2T

max
1�i�n

���f̂ji� � fji� ��� = Op

�
n�1=2 + dn

�
;

and

sup
an�h�bn

sup
�2T

max
1�i�n

��� ~fji� � fji� ��� = Op (dn) :

Similarly, we have the following uniform consistency results, see (21) and (22) for de�nitions of An and

Bn.

Lemma Q6. Under Assumptions E1 and E2,

sup
x2T �Rdx

jAn(x)�A(x)j = oP (1)

and

sup
�2T

jBn(�)�B(�)j = oP (1):

Proof of Lemma Q6. It follows from a combination of Lemmas Q2, Q3 and Q5. �

De�ne the class Q := fz ! 1(y � �00x1 + 
0z2i)� � : 
 2 �; � 2 T g: The proof of the following result
is standard, and hence omitted.

Lemma Q7. Let Assumption E1 hold. Then, the class Q of functions is VC, and hence satis�es

Assumption Q1.

7.2 Appendix B: Proofs of main results

Proof of Theorem 1: To prove (i), we use Assumption C and write

L(
p
nR̂n) =

1X
j=1

��1j

p

nMn; 'j
�
hD;'ji+ oP (1)

=
1p
n

nX
i=1

1X
j=1

��1j hm(Zi; �); 'ji hD;'ji+ oP (1)

=
1p
n

nX
i=1

1X
j=1

�
�1=2
j hD;'ji j(Zi) + oP (1)

= S�n + oP (1):

As for (ii), note that by Kress (1999, Theorem 15.16) and Assumption D,

T 0s� =
1X
j=1

hD;'ji'j = �Im(T 0)D = D;
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and

s� =
1X
j=1

�
�1=2
j



T 0s; 'j

�
 j

=
1X
j=1

E[s(Z) j(Z)] j

= �Im(T )s � �ker?(T 0)s:

�
Proof of Theorem 2: Let P(�0;�t); t 2 [0; "); " > 0; be a regular parametric submodel passing

through P(�0;�0); with score s(Z), and satisfying the semiparametric restrictions

Et [ (Z; x; �0; �t)] = 0:

Di¤erentiating with respect to t and evaluating at t = 0; we obtain by the chain rule

@

@t
E [ (Z; x; �0; �t(Z; x))]

����
t=0

+
@

@t
Et [ (Z; x; �0; �0(Z; x))]

����
t=0

= 0:

The �rst term is just the pathwise derivative of 
(t) := E [ (Z; x; �0; �t(Z; x))] ; which by our Assump-

tion 1 satis�es
@
(0)

@t
= E [� (Zi; x; �0; �0) s(Z)] ;

see (3.9) in Newey (1994). On the other hand, Lemma 7.2 in Ibragimov and Hasminskii (1981) under

Assumption A2 implies that

@

@t
Et [ (Z; x; �0; �0(Z; x))]

����
t=0

= E [ (Z; x; �0; �0(Z; x))s(Z)] :

Hence, the score satis�es s(Z) 2 ker(T 0); so that _P2 � ker0(T 0).
We now prove that ker0(T 0) � _P2 holds. De�ne the map 
 : P ! L2(�) as


(P ) := EP [ (Z; x; �0; �(P ))]:

The same arguments above show that 
 is Frechet di¤erentiable at P0; viewed as a mapping on square

roots of measures, with derivative _
 = T 0; see e.g. van der Vaart (1998, Section 25.3). Then, for a

given function s 2 ker0(T 0) we can use exactly the same arguments as in Bickel et al. (1993, pg. 54)
without changes to construct a parametric submodel with score s and passing through P0. Thus, we

conclude that _P2 = ker0(T 0).
As for (ii), consider a parametric submodel satisfying Et [m(Z; x; �t; �0)] = 0: Di¤erentiating this

equation with respect to t at 0 we get

c0�
@E [m(Z; x; �0; �0)]

@�
+ @Et [m(Z; x; �0; �0)]jt=0 = 0:

Regularity of the model and Assumption A2 imply, by Lemma 7.2 in Ibragimov and Hasminskii (1981)

@Et [m(Z; x; �0; �0)]jt=0 = E
h
m(Z; x; �0; �0) _̀1(Z)

i
;
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where _̀1 is the score with respect to � at �0. Hence, we conclude using our notation that

D � T 0 _̀1: (33)

Hence, by part (i), the zero mean property of scores and Theorem 1(ii) `�1 = _̀
1�� _P2

_̀
1 = �ker?(T 0)

_̀
1 =

s�: �

Proof of Proposition 1: We �rst prove that Lk(R̂n) = Lk(Mn) + oP (n
�1=2): Note that

Lk(R̂n)� Lk(Mn) =

kX
j=1

��1j

D
R̂n �Mn; 'j

ED
D̂; 'j

E

+

kX
j=1

��1j hMn; 'ji
D
D̂ �D;'j

E

=

kX
j=1

��1j

D
R̂n �Mn; 'j

ED
D̂ �D;'j

E

+

kX
j=1

��1j

D
R̂n �Mn; 'j

E
hD;'ji

+

kX
j=1

��1j hMn; 'ji
D
D̂ �D;'j

E
:

By Cauchy-Schwarz�s inequality and Assumptions D and R the absolute value of all terms is oP (1),

where for the last term we use that f��1=2j hMn; 'jig1j=1 are uncorrelated and with unit variance. This
also shows that Lk(Mn) = L(Mn) + oP (n

�1=2); since under Assumption D,

nV ar (Lk(Mn)� L(Mn)) =
1X

j=k+1

��1j hD;'ji2 ! 0;

as k !1: The proof that b�k = �+ oP (1) is trivial, and hence, it is omitted. �
Proof of Theorem 3: Write

p
nbLn = 1p

n

nX
i=1

s�(Zi) +
1p
n

nX
i=1

fbs�(Zi)� s��n(Zi)g
+

1p
n

nX
i=1

fs��n(Zi)� s
�(Zi)g

� S�n + C
�
n +B

�
n

We �rst prove that the bias term B�n = oP (1): Using well-known expansions for s��n and s
� we can
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write

B�n =
1p
n

nX
i=1

1X
j=1

b(�; �j)E[s
�(Z) j(Z)] j(Zi)

=

1X
j=1

b(�; �j)E[s
�(Z) j(Z)]

1p
n

nX
i=1

 j(Zi)

�
1X
j=1

b(�; �j)E[s
�(Z) j(Z)]"nj ;

where b(�; �) = �=(� + �) and f"njg1j=1 are implicitly de�ned. Note that f"njg1j=1 are uncorrelated,
with zero mean and unit variance. Hence, E[B�n] = 0 and

E[(B�n)
2] =

1X
j=1

b2(�; �j) (E[s
�(Z) j(Z)])

2 ! 0

as �! 0; by dominated convergence.

We now prove that C�n = oP (1): We write

1p
n

nX
i=1

(bs� � s��n)(Zi) = Z p
n(bs� � s��n)(z)Fn(dz);

where Fn is the empirical distribution of fZigni=1:
Henceforth, we will make use of the following basic result. If Bn is a possibly random operator from

L2(F ) to L2(F ) and hn is a random element of L2(F ); then����� 1n
nX
i=1

Bnhn(Zi)

����� = OP

�
kBnk2;P

�
E[h2n(Z)]

�1=2�
(34)

The proof of the last equality follows from Chebyshev and Cauchy-Schwarz inequalities.

De�ne the norms k�k2;n and k�kn as the norms k�k2;P and k�k but with F and � replaced by the

empirical distribution functions, respectively. Introducing these norms is useful because although T̂ is

not the adjoint of T̂ 0 with respect to the norms k�k2;P and k�k ; they are duals with respect to k�k2;n
and k�kn : A well known result in operator theory shows that


T̂ � T




n
=



T̂ 0 � T 0




2;n

By Markov�s inequality 


T̂ 0 � T 0


2
2;n
= OP

�


T̂ 0 � T 0


2
2;P

�
= OP

�
n�1

�
:

Hence,



T̂ � T


2

n
= OP

�
n�1

�
: But a simple inequality implies




T̂ � T


2 � E

�


T̂ � T


2
n

�
; where the

expectation is with respect to empirical distribution used in k�kn ; and hence


T̂ � T


2 = OP
�
n�1

�
:
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Using the de�nitions bs�(Zi) = bA�n T̂ D̂ and s��n(Zi) = A�nTD; where bA�n = (�nI + T̂ T 0)�1 and

A�n = (�nI + TT
0)�1; respectively, we write

bs� � s��n = bA�n T̂ (D̂ � T̂ 0s�) + bA�n T̂ T̂ 0s� �A�nTD
� �1n +�2n:

By the basic identity (B�1 � C�1) = B�1(C �B)C�1; we can prove that


 bA�n T̂ �A�nT


 � 


 bA�n





T̂ � T



+



 bA�n


 kA�nTk


T̂ T̂ 0 � TT 0




= OP

�
n�1=2��2n

�
= oP (1):

By Prohorov�s theorem we can assume w.l.g that hn(�) :=
p
n(D̂ � T 0s�)(�) converges weakly to h1:

Then, applying (34) with Bn = bA�n T̂ �A�nT; we concludeZ p
n�1n(z)Fn(dz) =

1

n

nX
i=1

A�nThn(Zi) + oP (1)

=
1

n

nX
i=1

A�nTh1(Zi) + oP (1)

= oP (1);

where the second equality follows from another application of (34) and the last equality follows from a

law of large numbers for arrays, after noting that

supnE
h
(A�nTh1(Zi))

2
i

n
! 0

and

E [A�nTh1(Zi)] = 0:

As for �2n; we write,

�2n = bA�n(T̂ T̂ 0 � TT 0)s� + ( bA�n �A�n)TT 0s�
= bA�n(T̂ T̂ 0 � TT 0)(s� � s��n):

Thus, Z p
n�2n(z)Fn(dz) =

Z p
n�21n(z)Fn(dz) +

Z p
n�22n(z)Fn(dz);

where �21n(z) = ( bA�n � A�n)(T̂ T
0 � TT 0)(s� � s��n)(z) and �22n(z) = A�n(T̂ T

0 � TT 0)(s� � s��n)(z):

Using the equalities that 


 bA�n


 = kA�nk = OP (�
�1
n )
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T̂ T̂ 0 � TT 0


 = OP (n
�1=2)

bA�n �A�n = bA�n(TT 0 � T̂ T̂ 0)A�n
and

E[
��s�(Z)� s��n(Z)��2] = O(�2n);

we obtain�
E[
��pn�21n(z)��2]�1=2 � pn 


T̂ T̂ 0 � TT 0


2 �E[��s�(Z)� s��n(Z)��2]�1=2 


 bA�n


 kA�nk

= oP (n
�1=2��1n )

= oP (1):

Hence, Z p
n�21n(z)Fn(dz) = oP (1):

Note that

p
n(T̂ T̂ 0 � TT 0) j(z) =

p
n(T̂ T 0 � TT 0) j(z) +

p
n(T̂ T̂ 0 � T̂ T 0) j(z)

= �
1=2
j

p
n(T̂ � T )�j(z) + T̂

p
n(T̂ 0 � T 0) j(z):

Hence, our assumptions imply that
p
n(T̂ T 0 � TT 0) j(z) is asymptotically tight, and by Prohorov�s

theorem we can assume it converges weakly, w.l.g. Now, the expansion for (s� � s��n)(z); kDk2 < 1
and the assumption on the weak convergence of

p
n(T̂ T 0 � TT 0) j(z) implies the weak convergence

of
p
n(T̂ T 0 � TT 0)(s� � s��n)(z) by Lemma 1 in Escanciano and Velasco (2006). Applying the same

arguments as for �1n to �22n; we obtainZ p
n�22n(z)Fn(dz) =

1

n

nX
i=1

A�nG1(Zi) + oP (1)

= oP (1);

where G1 is the weak limit of
p
n(T̂ T 0� TT 0)(s�� s��n)(z) and the second equality follows from a law

of large numbers and the convergence

supnE
h
(A�nG1(Zi))

2
i

n
�
E
�
G21(Zi)

�
n�2n

! 0:

Hence, we conclude that C�n = oP (1): The proof of b��n = �+ oP (1) is simpler, and hence omitted. �
Proof of Theorem 4: We shall apply Theorem 3. To that end, we need to check that Assumptions

W and RE hold under Assumptions E1-E4. To verify Assumption W, we apply Theorem Q1. Recall

R̂n(x) =
1

n

nX
i=1

�̂i(�)1(Xi � w);
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where �̂i(�) = 1(Yi � �00X1i+ b
0n(�)X2i)� � and x = (�; w0)0 2 T �Rdx . We shall prove that under our
assumptions and H0;

sup
x2T �Rdx

�����R̂n(x)� 1p
n

nX
i=1

�i(�)1(Xi � w)�A0(x)
p
n (b
n(�)� 
0(�))

����� = oP (1); (35)

where A(x) := E[X2if2i�1(Xi � w)]: To obtain this expansion we apply Theorem Q1 with the class

W = fx! 1(x � w) : w 2 [�1;1]dxg; which satis�es the conditions of the theorem by Theorem 2.7.1
in van der Vaart and Wellner (1996). This yields

sup
x2T �Rdx

�����R̂n(x)� 1p
n

nX
i=1

�i(�)1(Xi � w)

+
1p
n

nX
i=1

�
E [�i(�)jXi]� E

h
�̂i(�)

���Xii� 1(Xi � w)

����� = oP (1): (36)

Applying a mean value argument we obtain

sup
x2T �Rdx

����� 1pn
nX
i=1

�
E [�i(�)jXi]� E

h
�̂i(�)

���Xii� 1(Xi � w)

�
p
n (b
n(�)� 
0(�))0 1

n

nX
i=1

f2
�
X 0
2ie
n(�)��X2i�X2i1(Xi � w)

����� = oP (1);

where e
n(�) is such that je
n(�)� 
0(�)j � jb
n(�)� 
0(�)j a.s. for each � 2 T : By our assumptions,
uniformly in x 2 T � Rdx ;

1

n

nX
i=1

f2
�
X 0
2ie
n(�)��X2i� 1(Xi � w) =

1

n

nX
i=1

f2
�
X 0
2i
0(�)

��X2i�X2i1(Xi � w) + oP (1)

= A(x) + oP (1):

where the last equality follows from Glivenko-Cantelli�s theorem, i.e. the class

fz ! f2
�
x02
0(�)

��X2i� 1(Xi � w) : x 2 �g

is a Glivenko-Cantelli class by an application of Lemma Q1. Hence, we obtain the expansion (35). The

null limiting distribution then follows from the expansion and Lemma Q4. Combine this with Theorem

A2 to obtain Assumption W. Notice that Assumption A2 required in Theorem A2 holds under our

conditions on the conditional density in E1.

We now check Assumption RE(ii). Throughout the proofs, we use the fact that the nonparametric

estimates ~fi� and ~f2i� only depend on the sample An � f�jgnj=1 and Xi; and that An is independent of
the original sample Zn � fZigni=1: That means that in many of the probabilistic arguments we use, we
can �rst condition on An and deal with conditional probabilities treating the nonparametric functions
as given. This simpli�es substantially the arguments.
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We �rst deal with
p
n(T 0 � T 0)a(x); for a 2 L2(F ): We can assume w.l.g that a is bounded and

continuous on the support of Z. We write

p
n(T̂ 0 � T 0)a(x) := 1p

n

nX
i=1

fbmi(x)a(Zi)� E[mi(x)a(Zi)]g

=
1p
n

nX
i=1

n
�̂i(�)1(Xi � w)a(Zi)� E[�i(�)1(Xi � w)a(Zi)]

o
�A(x)B�1(�) 1p

n

nX
i=1

n
�̂i(�)X2if̂i2�a(Zi)� E[�i(�)X2ifi2�a(Zi)]

o
+
�
A(x)B�1(�)�An(x)B�1n (�)

� 1p
n

nX
i=1

�̂i(�)X2if̂i2�a(Zi)

=: C11n(x)�A(x)B�1(�)C12n(x) + C13n(x):

By Lemmas Q2 and Q7, and by standard empirical processes arguments the class

fz ! q1(z)1(x � w)a(Zi) : q1 2 Q; w 2 [�1;1]dxg

is P -Donsker. Hence, a stochastic equicontinuity argument and a uniform law of large numbers imply

that, uniformly in x 2 T � Rdx ;

C11n(x) =
1p
n

nX
i=1

f�i(�)1(Xi � w)a(Zi)� E[�i(�)1(Xi � w)a(Zi)]g

+ E[X 0
2ia(X

0
i�0(�); Xi)1(Xi � w)fi� ]

p
n (b
n(�)� 
0(�)) + oP (1):

Using the Taylor expansion in (32) we write

C12n(x) =
1p
n

nX
i=1

n
�̂i(�)X2i ~f2i�a(Zi)� E[�i(�)X2ifi2�a(Zi)]

o
+

1p
n

nX
i=1

�̂i(�)X2i _f2i� (b�)a(Zi) + 1p
n

nX
i=1

�̂i(�)X2i �f2i� (b�)a(Zi)
+

1p
n

nX
i=1

�̂i(�)X2ir2i�a(Zi)

=: C121n(x) + C122n(x) + C123n(x) + C124n(x):

Applying Theorem Q1 to the class Wn = fwn(�; �;�) = _f2i� (�) : � 2 T ;� 2 Bg; see Lemma Q4 for
de�nition of B, and a stochastic equicontinuity argument we obtain the uniform expansion, in x 2 �;

C122n(x) =
1p
n

nX
i=1

�
E
h
�̂i(�)a(Zi)

���Xii� E [�i(�)a(Zi)jXi]�X2i _f2i� (b�) + oP (1)
=
p
n (b
n(�)� 
0(�))0 1

n

nX
i=1

f
�
X 0
i
e�n(�)���X2i� a(X 0

i
e�n(�); Xi)X2iX 0

2i
_f2i� (b�) + oP (1)

= OP

�
n�1=2h�1

�
= oP (1);
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where we have used in the last equality that _f2i� (b�) = OP
�
n�1=2h�1

�
: The same arguments show that

C123n(x) = oP (1) uniformly in x 2 �: It is also straightforward to prove that C124n(x) = OP
�
n�2h�2

�
=

oP (1); uniformly in x 2 �: Hence,

C12n(x) =
1p
n

nX
i=1

n
�̂i(�)X2i ~f2i�a(Zi)� E[�i(�)X2ifi2�a(Zi)]

o
+ oP (1):

An application of Theorem Q1 with Wn = fwn(Xi; �) = ~f2i� : � 2 T g; and Lemma Q5 yield the
uniform expansion

C12n(x) =
1p
n

nX
i=1

f�i(�)X2ifi2�a(Zi)� E[�i(�)X2ifi2�a(Zi)]g

+ E[X2iX
0
2ifi�fi2�a(X

0
i�0(�); Xi)]

p
n (b
n(�)� 
0(�)) + oP (1):

To deal with C13n(x); it can be shown using our previous arguments that the vector process p
n(An(�)�A(�))p
n(Bn(�)�B(�))

!

converges weakly in L2(�). Thus, by an application of the functional delta method, we obtain the weak

convergence of
p
n
�
A(�)B�1(�)�An(�)B�1n (�)

�
:

This together with the uniform (in �) convergence

1

n

nX
i=1

�̂i(�)X2if̂i2�a(Zi) =
1

n

nX
i=1

�i(�)X2ifi2�a(Zi) + oP (1);

see Lemma Q5, implies the weak convergence of C13n: From these uniform expansions our conditions

on
p
n(T 0 � T 0)a(x) can be veri�ed in a routine fashion.
Finally, we deal with

p
n(D̂(x)�D(x)): For simplicity, we assume w.l.g thatX1 is a scalar. Similarly

as for
p
n(T 0 � T 0)a(x); we write

p
n(D̂(x)�D(x)) = � 1p

n

nX
i=1

n
X1if̂i� bw(Xi; x)�D(x)o

= � 1p
n

nX
i=1

n
X1if̂i�1(Xi � w)� E[X1ifi�1(Xi � w)]

o
+A(x)B�1(�)

1p
n

nX
i=1

n
X1iX2if̂i� f̂i2� � E[X1iX2ifi�fi2� ]

o
�
�
A(x)B�1(�)�An(x)B�1n (�)

� 1p
n

nX
i=1

X1iX2if̂i� f̂i2�

=: �D1n(x) +A(x)B�1(�)D2n(x)�D3n(x):
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Long but simple algebra shows that D1n is asymptotically, uniformly in x 2 �; equivalent to C311n +
C312n + C313n; where

C311n(x) :=
1p
n

nX
i=1

fX1ifi�1(Xi � w)� E[X1ifi�1(Xi � w)]g ;

C312n(x) :=
1p
n

nX
i=1

X1i( ~fi� � fi� )1(Xi � w)

and

C313n(x) :=
1p
n

nX
i=1

X1i _f2i� (b�)1(Xi � w):

The process C312n; centered at its expectation, is stochastic equicontinuous, and by the independence

assumption, for each x;

V ar

 
1p
n

nX
i=1

X1i( ~fi� � fi� )1(Xi � w)

�����An
!
� E

h
X2
1i(
~fi� � fi� )21(Xi � w)

i
= oP (1):

Hence, uniformly in x 2 �;

C312n(x) =
p
nE
h
X1i( ~fi� � fi� )1(Xi � w)

i
+ oP (1)

=
1p
n

nX
j=1

a1h(x; �j) + oP (1);

where

a1h(x; �j) := E

�
r1(�;�j)(X

0�0(�); X
0�0(�j); w)

1

h2
_K

�
X 0�0(�)�X 0�0(�j)

h

�����An�
r1(�;�j)(u; v; w) := E

�
X11(Xi � w)jX 0�0(�) = u;X 0�0(�j) = v

�
:

Let g(�;�j)(u; v) be the density of (X
0�0(�j); X 0�0(�)) conditional on An: De�ne

q1(�;�j)(u; v; w) := r1(�;�j)(u; v; w)g(�;�j)(u; v):

Then, Z
q1(�;�j)(u; v; w)

1

h2
_K

�
u� v
h

�
dudv = �

Z
q1(�;�j)(u; u� th; w)

1

h
_K (t) dudt

=

Z
t _K (t) dt

Z
_q1(�;�j)(u; u; w)du+O

�
h2
�

=: �3a1(x; �j) +O
�
h2
�
;

where _q1(�;�j)2(u; v; w) = @q1(�;�j)(u; v; w)=@v: Then,

max
1�j�n

sup
x
ja1h(x; �j)� �3a1(x; �j)j = O

�
h2
�
:
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Using this, we conclude

C312n(x) = �3
1p
n

nX
j=1

a1(x; �j) + oP (1):

The weak convergence of C312n follows easily from the last display and Assumption E1.

The analysis of C313n is quite similar to that of C312n: Using a stochastic equicontinuity argument,

we obtain

C312n(x) =
p
nE[X1i _f2i� (b�)1(Xi � w)] + oP (1)

=
1p
n

nX
j=1

a2h(x; �j) fb
n(�j)� 
0(�j) + b
n(�)� 
0(�)g+ oP (1);
where

a2h(x; �j) := E

�
r2(�;�j)(X

0
2
0(�); X

0
2
0(�j); w)

1

h2
_K

�
X 0
2
0(�)�X 0

2
0(�j)

h

�����An�
r2(�;�j)(u; v; w) := E

�
X1X

0
21(Xi � w)

��X 0
2
0(�) = u;X 0

2
0(�j) = v
�
:

Let g2(�;�j)(u; v) be the density of (X
0
2
0(�); X

0
2
0(�j)) conditional on An: De�ne

q2(�;�j)(u; v; w) := r2(�;�j)(u; v; w)g2(�;�j)(u; v):

Then, with

a2(x; �j) :=

Z
_q2(�;�j)(u; u; w)du;

and _q2(�;�j)2(u; v; w) = @q2(�;�j)(u; v; w)=@v; we obtain

max
1�j�n

sup
x
ja2h(x; �j)� �3a2(x; �j)j = O

�
h2
�
:

Using this, we conclude

C313n(x) = �3
p
n(b
n(�)� 
0(�)) 1

n

nX
j=1

a2(x; �j)

+
�3p
n

nX
j=1

a2(x; �j)(b
n(�j)� 
0(�j)) + oP (1):
By a standard law of large numbers and by Lemma 3.1 in Chang (1990), C313n weakly converges to

�3

�
�1(�)E[a2(w; �)] +

Z
T
a2(w; �)�1(�)d�

�
;

where �1(�) is the limiting distribution of
p
n(b
n(�)� 
0(�)): The analysis of D2n is similar to that of

D1n and that of D3n(x) is similar to that of C13n(x): Details are omitted: �
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