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Abstract

While coping with non-sphericity of the disturbances, GMM su¤ers from a
blind spot for exploiting the strongest possible instruments. In this study it is
demonstrated that its established optimality is achieved over a too in�exible in-
terpretation of the adopted moment restrictions. In particular, GMM does not
automatically respect the golden rule that exogenous regressors establish their
own strongest possible instruments. For some typical cross-section and dynamic
panel data models it is shown by simulation that under moderate heteroskedastic-
ity straight-forward modi�cations of the exploited set of instruments, which respect
just the very same moment conditions, can achieve very substantial reductions in
both bias and variance in �nite samples. That adapting GMM as proposed here
has profound positive e¤ects on the signi�cance of inference in models with non-
spherical disturbances is illustrated by estimating a micro employment equation
for a panel of UK companies.

1. Introduction

Since three decades, GMM (generalized method of moments) excels as the generic or-
thogonality conditions based optimal technique for limited information semiparametric
estimation. It subsumes the majority of linear and nonlinear econometric estimators.
Not starting o¤ from tight fully parametric distributional assumptions, consequently
GMM is not asymptotically e¢ cient, but in many situations this may well be compen-
sated by its greater robustness. Applications of GMM are numerous, especially for the
analysis of continuously varying dependent variables both in micro econometric stud-
ies of cross-sectional or panel data models and in the macro econometric analysis of
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time-series, in particular when stationarity assumptions can be made. The status of
GMM seems undisputable. This paper will not criticize GMM as such either, but it
will demonstrate that the standard implementation of GMM is naive, because it inter-
prets the adopted population moment conditions too narrowly when these are converted
into sample moments. In short, the standard unfeasible GMM implementation orig-
inating in Hansen (1982) suggests that, after the orthogonality conditions have been
formulated, the GMM technique will deal optimally with both any overidenti�cation
and the speci�ed nonsphericity of the disturbances. We will show that this does not
imply that the orthogonality conditions will be exploited optimally. When the model is
�rst reparametrized such that disturbances are homoskedastic and serially uncorrelated
then basically the same orthogonality conditions can as a rule lead to the employment of
much stronger instruments, which will not only yield a smaller asymptotic variance, but
also better correspondence between actual distribution in �nite samples and its asymp-
totic approximation. This has implications too for feasible implementations of GMM.
In fact, we will argue that a strategy close to the original IV (instrumental variables)
approach suggested by Sargan (1958, 1959) seems generally better. For an overview
which puts the IV and GMM approaches into historical perspective see Arellano (2002)
and for a monograph on GMM see Hall (2005).
That weakness of instruments has serious consequences for inference has been thor-

oughly investigated since about two decades already, but is still prominent on the re-
search agenda. See, for instance, Staiger and Stock (1997) and also Andrews and Stock
(2007) and its references. This still growing literature, though, has not really been ex-
tended yet to cover also the case of GMM, but is largely con�ned to simple IV estimation
of linear models with iid (independently and identically distributed) errors. Although
not �lling this gap, the major contribution of this study is the following. It shows that
for models with nonspherical disturbances, but otherwise linear in the coe¢ cients of
jointly dependent and (weakly) exogenous regressors, all aspects of GMM can in prin-
ciple be understood in terms of IV applied to a model with spherical disturbances in
transformed variables. However, this correspondence is less straight-forward as in the
similar but more basic case of GLS (generalized least-squares), which is equivalent to
OLS (ordinary least-squares) applied to transformed variables, because the instruments
are a¤ected in a topsy-turvy manner. This latter aspect has in general devastating ef-
fects on the strength of the instruments, unless one is aware of the phenomenon and
takes precautions, by implementing GMM less guilelessly.
GMM usually involves iterative estimation, even when the model is linear in its

regression coe¢ cients. This is because it requires the assessment of an optimal weighting
matrix, which should be proportional to a consistent estimator of the variance of the
limiting distribution of the employed orthogonality conditions. In practice this estimate
has to be based on residuals which are consistent for the disturbances. Usually, the
iteration is started o¤ from IV estimation, although this is suboptimal when its implicit
assumption of spherical disturbances is invalid. As we will demonstrate, the standard
implementation of GMM and the alternatives that we will suggest, will in principle
depart from this same starting position. However, in next iterations standard GMM
will generally employ weaker instruments, whereas we will suggest several alternatives
which should prevent this. These alternatives either replace these weaker instruments
through transformation by possibly stronger ones, or simply extend the standard set of
instruments by some of these possibly stronger ones, whereas all these instruments are
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still referring to exactly the same original set of population orthogonality conditions.
Such an extension has the advantage of ensuring a smaller asymptotic variance, but at
the same time carries the risk of less attractive �nite sample properties, because more
instruments may induce larger �nite sample bias, see for instance Donald and Newey
(2000). Hence, to �nd out what the major practical consequences are requires some
well-designed simulation investigations. When performing these, initially we will not
bother much about the iterations that are required in practice, but simply focus on
unfeasible ideal implementations of GMM. In these we directly exploit the in practice
unavailable optimal weighting matrix, because our �rst interest is in �nding out what
the actual potential di¤erences are between the various implementations. Next we focus
on feasible implementations of the potentially most optimal adaptations of standard
GMM. In this paper we focus mainly on the e¤ects on GMM of heteroskedasticity, and
leave a full analysis regarding serial correlation (the major worry in Sargan�s approach)
for future research, although we give hints here already on how we would approach it.
Our analysis of the options on how to improve on standard GMM analysis, both

in cross-sections and in (short) dynamic panel data models involving both endogenous
and exogenous regressors together with (conditional) cross-sectional heteroskedasticity,
leads to the conclusion that in practice one should aim to weight observations �rst to
get as close to homoskedasticity as possible. Not before, but after that (as already
done by many researchers on sensible intuitive grounds), one should design a matrix
of instruments according to the adopted orthogonality conditions that matches with
the weighted variables. In any next GMM iteration steps the required transformation of
variables should have deliberate implications for the chosen transformation of the instru-
ments. In dynamic panel data model analysis the removal of unobserved time-constant
individual heterogeneity by taking �rst di¤erences has the unpleasant side e¤ect that any
heteroskedasticity occurs jointly with moving average errors causing originally predeter-
mined regressors to be no longer weakly exogenous. In this context GMM is usually
applied in its standard form, see Holtz-Eakin et al. (1988) and Arellano and Bond
(1991), mainly using lagged internal variables as instruments. Often it has been felt
that these estimators lack precision. Especially after a �rst iteration, their root mean
squared errors do not develop in the aspired direction. This is one of the explications
that substantial e¤orts have been made to enhance their precision by taking further
orthogonality conditions into account (often of rather doubtful and hard to substantiate
validity1), see Ahn and Schmidt (1995) and Blundell and Bond (1998). We demonstrate
here that from the second stage on, provided the heteroskedasticity is substantial, inad-
vertently the employed instruments are made weak, which explains their relatively poor
performance, and concurrent poor asymptotic approximation by standard methods, see
Windmeijer (2005). We show that a simple transformation of the instrument matrix
yields a sharp reduction of root mean squared errors.
The structure of this study is as follows. In section 2 we show how GMM can be

interpreted in terms of transformed IV, which immediately demonstrates that it leads
in principle to using unnecessarily weak instruments. Section 3 lists various options for
adapting GMM in order to remedy the problem. Section 4 presents simulation results

1When we speak of a valid instrument this refers to the validity of the corresponding orthogonality
condition. The degree by which a (valid) instrument is e¤ective (or not) with respect to achieving
attractive estimator variance will always be addressed here by instrument strength (or weakness).
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on standard and adapted GMM obtained from a design by which a typical family of
simultaneous heteroskedastic cross-section models can be represented. Section 5 exam-
ines the options to modify standard GMM for dynamic panel data models, and Section
6 presents illustrative simulation results on various variants of panel GMM. In Section
7 some alternative implementations of feasible GMM are applied to a classic empirical
dynamic panel data set to illustrate the practical consequences of our modi�cations, and
Section 8 concludes.

2. The relationship between GMM and IV

GMM in its current standard form is basically just equivalent to applying IV to a prop-
erly transformed model upon exploiting instruments also subjected to a transformation
related to �but di¤erent from� the model transformation. To demonstrate this, we
consider the standard single linear regression model

y = X� + "; (2.1)

where the n�K full column rank regressor matrix may contain some endogenous regres-
sors, hence in principle E(X 0") 6= 0: An identifying set of moment conditions is available,
in the form of E(Z 0") = 0; where Z is an n � L full column rank matrix with L � K:
Provided Z 0X has rank K the IV or Two-Stage Least-Squares estimator is given by

�̂IV = [X
0Z(Z 0Z)�1Z 0X]�1X 0Z(Z 0Z)�1Z 0y: (2.2)

By de�ning for any full column rank matrix A the projection matrix PA = A(A0A)�1A0

the expression for �̂IV can be condensed to (X
0PZX)

�1X 0PZy; and even further to the
so-called second stage OLS regression (X̂ 0X̂)�1X̂ 0y by denoting the �tted �rst-stage
regression results as X̂ = PZX: Under su¢ cient regularity the IV estimator is consistent
and asymptotically normal.2 Su¢ cient for asymptotic optimality is "i j zi � iid(0; �2")
for i = 1; :::; n; where L� 1 vector zi is the transpose of the ith row of Z: Then one can
derive

n1=2(�̂IV � �)
d! N(0; �2" plimn(X

0PZX)
�1): (2.3)

This result is no longer valid when " � (0; �2"
) with 
 6= I a symmetric positive de�-
nite matrix which, without loss of generality, may be scaled such that tr(
) = n: Assum-
ing Z and " are such that we have E("i j zi; zi�1; :::; z1) = 0; E("2i j zi; zi�1; :::; z1) = �2"
ii
and, for i > t; E("i"t j zi; zi�1; :::; z1) = �2"
it the currently preferred estimator of � is
obtained by the Generalized Method of Moments (GMM), see Hansen (1982). It is given
by

�̂GMM = [X 0Z(Z 0
Z)�1Z 0X]�1X 0Z(Z 0
Z)�1Z 0y (2.4)

and is optimal in the sense that in aiming to bring the L sample moments Z 0(y�X�̂GMM)
jointly as closely as possible to zero, it weights them in a quadratic form in such a way
that the variance of the limiting distribution of �̂GMM is minimal in a matrix sense. One
obtains

n1=2(�̂GMM � �)
d! N(0; �2" plimn[X

0Z(Z 0
Z)�1Z 0X]�1): (2.5)

2All asymptotic results in this study are of a standard large sample nature, where n ! 1; upon
assuming stationarity of all regressors and instrumental variables.

4



When 
 = I (2.4) and (2.5) simplify and specialize to (2.2) and (2.3) respectively.
Estimator (2.4) is unfeasible unless 
 is known, but asymptotically equivalent feasible
implementations are available.
Whereas the GLS estimator can be obtained by applying OLS to a suitably trans-

formed model, GMM corresponds algebraically to applying IV to a similarly transformed
model, exploiting instruments which are transformed by a linear transformation which
is actually the inverse of the transpose of the model transformation. This is seen as
follows.
Let 
�1 = 	0	; where 	 has full rank but is generally non-unique. Premultiplication

of (2.1) by 	 yields the transformed model

y� = X�� + "�; (2.6)

where y� = 	y; X� = 	X and "� = 	" � (0; �2	
	0) with 	
	0 = 	(	0	)�1	0 = I:
In order to uphold respecting the very same moment conditions, we should use di¤erent
instruments now, which we shall denote as Zy: They are such that for any � and 	 we
have Zy0(y� �X��) = Zy0	(y �X�) = Z 0(y �X�); which implies Zy0	 = Z 0 or

Zy = (	0)�1Z: (2.7)

De�ning X̂� = PZyX
� = (	0)�1Z(Z 0
Z)�1Z 0X it can easily be veri�ed that

�̂
�
IV = (X̂

�0X̂�)�1X̂�0y� = �̂GMM (2.8)

indeed. Note that Zy0"� = Z 0"; so E(Z 0") = 0 does imply E(Zy0"�) = 0:
This conversion of GMM into IV also simpli�es the proof of the asymptotic normality

of GMM considerably. When choosing 	 lower-triangular then (	�1)0 will be lower-
triangular too, and it follows from E("i j zi; :::; z1) = 0 that E("�i j z

y
i ; :::; z

y
1) = 0 too,

and we also have E("�2i j z
y
i ; :::; z

y
1) = �

2
" and (for i > t) E("

�
i "
�
t j z

y
i ; :::; z

y
1) = 0: Therefore,

necessary requirements are ful�lled to employ the central limit theorem to n�1=2Zy0"�;
giving

n�1=2Z 0" = n�1=2Zy0"� = n�1=2
Xn

i=1
zyi "

�
i
d! N(0; �2" plimn

�1Zy0Zy): (2.9)

Here we used E(zyi "
�
i ) = E[E(z

y
i "
�
i j z

y
i )] = E[z

y
iE("

�
i j z

y
i )] = E(z

y
i � 0) = 0 and

V ar(n�1=2
Xn

i=1
zyi "

�
i ) = n�1E

hXn

i=1

Xn

t=1
(zyi "

�
i )(z

y
t "
�
t )
0
i
= n�1

Xn

i=1
E(zyi z

y0
i "

�2
i )

= n�1
Xn

i=1
E[zyi z

y0
i E("

�2
i j z

y
i ; :::; z

y
1)] = �

2
"n
�1
Xn

i=1
E(zyi z

y0
i );

whereas invoking the law of large numbers yields

plimn�1Zy0Zy = plimn�1
Xn

i=1
zyi z

y0
i = limn

�1
Xn

i=1
E(zyi z

y0
i ):

This provides the building blocks for �nding

n1=2(�̂
�
IV � �) = n[X�0Zy(Zy0Zy)�1Zy0X�]�1X�0Zy(Zy0Zy)�1 � n�1=2Zy0"�

d! N(0; �2" plimn[X
�0Zy(Zy0Zy)�1Zy0X�]�1); (2.10)
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which is equivalent to (2.5).
As is well-known, in the special case L = K we have

�̂GMM = �̂
�
IV = (Z

y0X�)�1Zy0y�

= [Z 0(	0)�1	0X]�1Z 0(	0)�1	0y = (Z 0X)�1Z 0y

= �̂IV : (2.11)

Then all exploited moment conditions can be satis�ed in the sample, so that the weight-
ing matrix has no e¤ect, and therefore 
 cannot play a role in optimizing the estimator.
However, it does of course still a¤ect the variance of its limiting distribution, which is
�2" plimn(Z

0X)�1Z 0
Z(X 0Z)�1 in that case.
In the speci�c case E(x�i "

�
i ) = 0; we can use the X

� variables as instruments in model
(2.6) and then the resulting method of moments estimator is

(X�0X�)�1X�0y� = (X 0	0	X)�1X 0	0	y = (X 0
�1X)�1X 0
�1y

= �̂GLS: (2.12)

This is obviously the optimal estimator under those circumstances. Nevertheless, when
E(xi"i) = 0 and 
 6= I, then mechanically following the GMM recipe (which boils down
to IV because L = K) would involve using the instruments (	0)�1X to the transformed
model (2.6) yielding the estimator

(X 0	�1	X)�1X 0	�1	y = (X 0X)�1X 0y = �̂OLS; (2.13)

which we know to be sub-optimal. This confusing result is mentioned in Davidson and
MacKinnon (2006, p.358). They suggest to interpret GLS as employing instruments

�1X to the untransformed model (2.1). Although it is indeed the case that then the
IV and GMM estimators produce �̂GLS; they provide no rationale for choosing these
instruments and thus preferring to embrace here suddenly the orthogonality conditions
E(X 0
�1") = 0 instead of E(X 0") = 0: In the next section we will provide such a ratio-
nale by arguing that GMM is only optimal within the unnecessarily restricted context
of the initial set of instruments used, whereas after the transformation of the model
the very same orthogonality conditions allow to use alternative instruments, which in
principle (but not necessarily) are stronger than those exploited by standard GMM.

3. Adapting GMM to enhance instrument strength

That in the very speci�c case E(xi"i) = 0; where all regressors are predetermined,
GMM delivers a sub-optimal estimator is due to the fact that the GMM principle is
only geared towards dealing with any non-sphericity (
 6= I) of the disturbances, and
is not aiming at the same time to achieve optimal strength of the set of instruments to
be exploited. This does not only have consequences in the less interesting case where
there are no endogenous regressors and one would never repose on GMM but directly
apply (feasible) GLS. To substantiate this, we will from now on assume that X = (X1

X2); where X1 contains K1 � 0 predetermined regressors, hence E(X 0
1") = 0; and X2

contains K2 � 0 possibly endogenous regressors, so E(X 0
2") may di¤er from a zero

vector. Moreover, X1 = (X10 X11); where X10 contains K10 � 0 exogenous regressors,
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so E(" j X10) = 0; whereas regarding the K11 � 0 regressors in X11 we just know that
they are predetermined. Of course K1 = K10 +K11 and K = K1 +K2 > 0; so X10; X11

and X2 can be void, but not all three at the same time.
Because E(" j X10) = 0 implies E("� j X�

10) = 0 we should preferably use X�
10 =

	X10 as instruments in the transformed model (2.6), whereas GMM would use Xy
10 =

(	0)�1X10 if Z includes X10; which would normally be the case. It is however highly
unlikely that regressing in the �rst stage X�

10 on Z
y = (	0)�1Z will yield a perfect

�t, whereas this would occur (and then greatly bene�ts the asymptotic variance) if
the valid instruments X�

10 would be used. Moreover, given the way in which one usually
assembles instruments for the potentially endogenous regressorsX2, namely by collecting
predetermined variables Z which yield a good �t PZX2 for X2; it seems quite likely that
�rst stage regressions of 	X2 = X

�
2 on 	Z = Z

� yield as a rule a much better �t than
those of 	X2 on (	0)�1Z = Zy; as used by standard GMM.
In the case of pure heteroskedasticity 
 is diagonal and 	 can be chosen diago-

nal. Then it is obvious that E(Z 0") = 0 not only implies E(Zy0"�) = 0; but also
E(Z 0"�) = 0; as well as E(Z�0"�) = 0: So, regarding the regressors X1 it is obvious that
in the transformed model the instruments X�

1 will be superior to X
y
1: This special case

clearly demonstrates the in�exibility of standard GMM. It translates the L orthogonal-
ity conditions E(zi"i) = 0; i = 1; :::; n; directly into "use instrument matrix Z (and
stick to it)", whereas the very same orthogonality conditions can also be expressed as
E(cizi"i) = 0; 8ci 6= 0 with ci scalar. These would induce using the instrument matrix
CZ; where C = diag(c1; :::; cn) and matrix C can be chosen such that it enhances the
instrument strength.
When 
 is non-diagonal, which may be relevant especially in a time-series or panel

data context, it is usually cumbersome to �nd valid instruments, i.e. instruments zi
which are weakly exogenous with respect to the disturbances "i of the untransformed
model (2.1). In such cases E(Z 0") = 0 requires either strict exogeneity of all instruments,
or a special form of predeterminedness in combination with a band matrix form of 
,
namely such that for some positive integer q < n�1 all elements 
ij for which ji� jj > q
have value zero, whereas zi may depend on "i�q�1�l but does not on "i�q+l for l � 0:
This situation is obtained when the disturbances establish a (possibly heteroskedastic)
qth order stochastic process of moving average type, for which

" = �"�; where "�i � iid(0; �2"); (3.1)

and � is an n� n lower-triangular band matrix such that �ij = 0 for all i > j + q (and
for all i < j; of course), giving E(""0) = �2"��

0; so 
 = ��0: Since the above implies for
l � 0 that E(zi�l"i) = 0; we deduce that E(zi�l"�i ) = 0 too. And, assuming that process
(3.1) is invertible, then 	 = ��1 is a lower-triangular matrix as well. Therefore row z�i
of Z� = 	Z is a linear combination of z1; :::; zi; thus E(zi�l"�i ) = 0 implies E(z

�
i�l"

�
i ) = 0.

Therefore, we �nd that generally when " � (0; �2"
) with 
 positive de�nite

E(Z 0") = 0 implies E(Zy0"�) = 0; E(Z 0"�) = 0 and E(Z�0"�) = 0: (3.2)

This provides ample opportunities for implementing GMM di¤erently, exploiting in the
transformed model y�i = x�0i � + "

�
i the instruments z

�
i additional to, or replacing the

probably weaker standard instruments zyi ; possibly also supplemented by zi and lagged
versions of these all.
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In many such cases of dynamic possibly autoregressive longitudinal relationships,
however, actual practice is that one does not start by seeking valid instruments for
the yet untransformed model, but directly tries to parametrize a seriously dynamic
model with serially uncorrelated disturbances. Next, when this seems possible, one may
start to seek instruments which should be valid and preferably strong for the already
transformed model and apply IV, thus avoiding GMM. Such a strategy, which comes
close to what Sargan (1958,1959) suggested, runs again into the problems with standard
GMM highlighted here, if in a next stage the problem of heteroskedasticity is addressed
by reverting to standard GMM again.
From the above, an obvious speci�c alternative to standard GMM emerges. Above

we demonstrated that E(Z 0") = 0 not just implies E(Zy0"�) = 0; but also E(Z�0"�) = 0;
whereas in the transformed model the instruments Z� will in principle be stronger than
Zy; which are employed by standard GMM. Using Z� instead of Zy we will label here
kGMM (keen GMM), which gives the coe¢ cient estimator

�̂kGMM = (X�0PZ�X
�)�1X�0PZ�y

�

= [X 0
�1Z(Z 0
�1Z)�1Z 0
�1X]�1X 0
�1Z(Z 0
�1Z)�1Z 0
�1y: (3.3)

This has limiting distribution

n1=2(�̂kGMM � �)
d! N(0; �2" plimn[X

0
�1Z(Z 0
�1Z)�1Z 0
�1X]�1): (3.4)

Its asymptotic variance matrix is not necessarily more attractive than that of stan-
dard GMM. We made that clear already for the case where all regressors are exogenous.
When choosing Z = X; standard GMMhas the OLS variance �2"(X

0X)�1X 0
X(X 0X)�1;
whereas kGMM yields the more e¢ cient GLS variance �2"(X

0
�1X)�1: But, when choos-
ing Z = 
�1X; then standard GMM produces GLS, whereas the variance of kGMM is
now �2"(X

0
�2X)�1X 0
�3X(X 0
�2X)�1; which, invoking the Gauss-Markov theorem,
must be less e¢ cient because in this special case the estimator is linear in y and unbi-
ased. So, although the one is not uniformly superior to the other, it seems very likely
that when 
 6= I and Z is selected such that it has better explanatory power for X than

�1Z has, that in that case kGMM will actually exploit stronger instruments, which in
�nite samples should lead then to smaller bias and smaller dispersion.
Note that the transformations of the instrument matrix considered above do not

involve postmultiplication of Z by a full rank square matrix, which would lead to linear
transformation of the columns of Z (and have no e¤ect on IV and GMM), but involves
premultiplication, leading to linear transformation of the rows of Z; which does alter the
space spanned by the columns of Z resulting in di¤erent IV and GMM estimators.

3.1. Various intermediate forms of adapted GMM

So, we claim that the e¢ ciency of standard GMM can often be enhanced by adapting
the set of instruments used in the transformed model, and not automatically employ Zy:
Instead of just replacing Zy by Z�; such an adaptation could also be an extension of Zy

by a �nite number of instruments. Any extension will always yield improved asymptotic
e¢ ciency compared to standard GMM, though not necessarily smaller mean squared
errors in �nite samples. When all or some of the instruments in Zy are replaced by
others, the e¤ects should be examined case by case.
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We can categorize the various options now as follows. Let in model (2.1), where
" � (0; �2"
) and X = (X1 X2) as speci�ed above, the n�L matrix Z of instruments be
Z = (Z1 Z2); where Z1 = X1 contains theK1 internal instruments, and Z2 establishes the
L2 external instruments, whereas L2 � K2: GMM uses, when implemented as estimating
the transformed model (2.6) by IV, the L instruments Zy = (	0)�1Z: In the simulations
to follow we will examine the various alternatives indicated in Table 3.1 (with between
brackets the total number of instruments). They are labelled M1 through M7.

Table 3.1
Overview of alternative extended or modi�ed sets of instruments, labelled
M1 through M7 for IV estimation of the transformed model (2.6)
M1: M2: M3:
Zy; Z�; Z [3L] Zy; Z� [2L] Zy; X�

1 [L+K1]

M4: M5: M6: M7:
Zy2; Z

�; Z [2L+ L2] Zy2; Z
� [L+ L2] Zy2; X

�
1 [L] Z� [L]

The upper row lists the extensions, so they all include Zy: Some of these have been
removed in the modi�cations given in the lower row. In M4 through M6 the instruments
Zy1 have been removed, and we do not expect that this will lead to much e¢ ciency loss,
because Z�1 = X

�
1 is included in the set of instruments. M2 skips the instruments Z from

M1 (as M5 does from M4); although valid, we do not expect Z to o¤er much strength
additional to Z� in the transformed model. In the next column with M3 and M6 Z�2
has been removed from M2 and M5 respectively, which will possibly lead to e¢ ciency
loss, because we expect that in many cases the instruments Z�2 will be stronger than
Zy2; especially when Z2 has been selected because of its explanatory power regarding X2:
Removing the standard GMM instruments Zy completely and just sticking to Z� yields
the most drastic modi�cation M7 which we labelled kGMM already, see (3.3).
The alternative implementations of adapted GMM put forward in Table 3.1 are for-

mulated as IV estimators for the transformed model. It is obvious that they correspond
to alternative GMM implementations to be applied to the untransformed model when
these exploit the sets of instruments of Table 3.1 after premultiplication by 	0: This
leads to Table 3.2.

Table 3.2
Overview of alternative extended or modi�ed sets of instruments, labelled
M1 through M7 for GMM estimation of the untransformed model (2.1)
M1: M2: M3:
Z; 
�1Z; 	0Z [3L] Z; 
�1Z [2L] Z; 
�1X1 [L+K1]

M4: M5: M6: M7:
Z2; 


�1Z; 	0Z [2L+ L2] Z2; 

�1Z [L+ L2] Z2; 


�1X1 [L] 
�1Z [L]
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In case K2 = 0 (no endogenous regressors), thus X2 is void (and Z2 irrelevant since
there is no need for external regressors) Table 3.2 makes clear what the rationale is
for switching from the OLS orthogonality conditions E(X 0") = 0 to E[(
�1X)0"] = 0;
which yield GLS. This paves the way to achieve genuine optimality, whereas exploiting
just E(X 0") = 0; as propounded by GMM, disregards the obvious way to enhance
the e¢ ciency. However, the representation as if we should use instruments 
�1X is
not really enlightening, because it hides that there are two issues at stake, namely
coping with non-sphericity and choosing optimal instruments. Intuition is better served
by distinguishing between coping with non-sphericity through model transformation,
giving the spherical disturbances 	"; for which in the model with exogenous X the most
adequate instruments are 	X; instead of (	0)�1X: So, the preferable moment conditions
E[(
�1X)0"] = 0 are easier interpreted through the (algebraically equivalent) expression
E[(	X)0	"] = 0:

3.2. Consequences for feasible GMM

In the foregoing we examined alternative GMM estimators upon assuming that 
 is
known, which in reality is usually not the case. In practice some form of feasible GMM
(FGMM) has to be employed. For standard GMM the most basic feasible procedure (2-
step GMM), which is asymptotically equivalent to GMM, goes as follows. First (possibly
wrongly) taking 
 to be I; and thus applying sub-optimal IV, residuals "̂i = yi �
x0i�̂IV are obtained, which are consistent for the disturbances. Next, in the case of pure
heteroskedasticity, FGMM estimates of the coe¢ cients and their variance are obtained
by replacing in the formulas �2"Z

0
Z by
Pn

i=1 "̂
2
i ziz

0
i: Obviously 2-step kGMM estimates

are obtained by replacing the expressions Z 0
�1Z; Z 0
�1X and Z 0
�1y by
Pn

i=1 "̂
�2
i ziz

0
i;Pn

i=1 "̂
�2
i zix

0
i and

Pn
i=1 "̂

�2
i ziyi respectively. Only when L = K the same e¤ect is achieved

if one simply uses the standard IV formula substituting "̂�2i zi for zi: Cases where 
 is
nondiagonal require a more subtle approach; we return to that when discussing dynamic
panel data models.
When performing just two steps standard GMM and kGMM (or another adaptation)

will already be di¤erent, and if standard GMM is used in the habitual way (not adapting
the instruments in order to achieve kGMM results) then usually the modi�ed estimator
which uses stronger instruments will be more e¢ cient. That means that especially after
more steps, when residuals have been obtained by the more e¢ cient adapted estimator,
further e¢ ciency gains may be achieved. In the simulations to follow, we will primarily
examine nonfeasible GMM which exploits the true value of 
 in order to �nd out what
the genuine di¤erences are between standard GMM and the various suggested extensions
and modi�cations. This will indicate what the potential di¤erences will be between
feasible standard and modi�ed implementations of GMM. Only for situations where
these di¤erences are most promising, we will simulate feasible variants.

4. Simulation results for a heteroskedastic cross-section model

We shall design a DGP in which we can easily change the seriousness and characteristics
of the heteroskedasticity, the strength of the instruments, the degree of simultaneity and
the signi�cance of the relationship. To assure that the �rst two moments of IV estimators
exist we choose the degree of overidenti�cation to be 2. In the relationship under study
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we allow for the presence of an intercept, another exogenous regressor and one possibly
endogenous regressor, hence K1 = 2; K2 = 1 and K = 3. The two exogenous regressors,
which are also used as instruments (L1 = K1); are xi1 = 1 and xi2 � iidN(0; 1): The
three external instruments (L2 = 3) are generated too as mutually independent zij �
iidN(0; 1) for j = 3; 4; 5; i = 1; :::; n: Until we mention otherwise, the experiments are
such that the four random exogenous variables are generated only once, so they are kept
�xed over the replications of the Monte Carlo simulation. In order to make the results
less dependent on their arbitrariness we have rescaled these four vectors such that they
do have mean zero and variance unity in the sample of n observations and are mutually
orthogonal. To verify to what degree the results still depend on the arbitrary draws of
the exogenous variables, we will compare results for a few di¤erent arbitrary draws. In
order to generate the two endogenous variables and the pattern of the heteroskedasticity
such that these are very realistic for typical cross-section applications we proceed as
follows. We assume that any heteroskedasticity is of the so-called multiplicative nature
and related to xi2 and zi3 only. A parameter � � 0 determines the seriousness of the
heteroskedasticity (where � = 0 implies homoskedasticity) and a parameter �; with 0 �
� � 1; determines the relative importance of xi2 and zi3 regarding any heteroskedasticity.
For the diagonal elements of 
; indicated by !i = 
ii; we generate values as follows.
Consider the variable

hei (c) = exp(hi(c)); with hi(c) = c+ �[�
1=2xi2 + (1� �)1=2zi3] � iidN(c; �2): (4.1)

This follows a lognormal distribution with

E[hei (c)] = exp[c+ �
2=2]; V ar[hei (c)] = [exp(�

2)� 1] exp(2c+ �2):

So, upon taking c = ��2=2; the expectation of hei (��2=2) will be 1 and its vari-
ance 2 exp(�) � 1: About 99% of the drawings from hi(��2=2) will be in the interval
[��2=2� 2:58�;��2=2 + 2:58�]: Thus, for the corresponding variable hei (��2=2); which
will establish !i; 99% of the drawings will fall in the interval

[exp(��2=2� 2:58�); exp(��2=2 + 2:58�)]: (4.2)

For particular values of � intervals are found as indicated in Table 4.1.

Table 4.1
Heteroskedasticity for di¤erent values of �
� bounds of 99% intervals

!
1=2
i !i

.2 .76 1.28 .59 1.64

.4 .57 1.61 .33 2.59

.6 .42 1.98 .18 3.93

.8 .30 2.39 .09 5.72
1.0 .21 2.83 .05 8.00
1.2 .15 3.28 .02 10.76
1.4 .10 3.73 .01 13.90
1.6 .07 4.15 .00 17.25
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To ensure that we have
Pn

i=1 !i = n we rescale the random series h
e
i (��2=2) by dividing

by its sample mean. Like all exogenous variables the series !i is kept �xed over the repli-
cations. From Table 4.1 we learn that � � 1 implies pretty serious heteroskedasticity,
whereas we may qualify it mild when � < :3; say.
The reduced form equation for xi3 is

xi3 = �31 + �32xi2 + �33zi3 + �34zi4 + �35zi5 + vi3; (4.3)

where we take
vi3 = !

1=2
i v�i3; with v

�
i3 � iidN(0; 1):

Then the joint strength of the three external instruments will be determined by the
concentration parameter inspired scalar quantity

�2 = n(�233 + �
2
34 + �

2
35)=3: (4.4)

Choosing all three instruments equally weak or strong, we should take

�33 = �34 = �35 = n
�1=2 j�j :

This implies V ar(xi3) = �232 + 3�
2=n+ !i:

The structural form equation will be generated as

yi = �1 + �2xi2 + �3xi3 + "i; (4.5)

where
"i = �"!

1=2
i

�
�v�i3 + (1� �2)1=2"�i

�
; with "�i � iidN(0; 1):

So, � 2 (�1;+1) is the correlation coe¢ cient of "i and vi3; which in this context expresses
the simultaneity. Because the 4 random exogenous instruments will be kept �xed over
the replications of the Monte Carlo, the correlation between xi3 and "i will also be �:
Without loss of generality we may choose �31 = 0 and �1 = 0 and hence, given �; �

2

and �; the remaining free parameters are �32; �2; �3 and �": Note that �32 determines
the multicollinearity between the structural form regressors xi2 and xi3: Without loss
of generality we may �x one of the remaining three parameters of the structural form
equation. We will take �" = 1: Now the choice of �2 and �3 will determine the signal-
noise ratio of the structural form equation. We will experiment a bit with choosing
�2 and �3; starting by giving them both value :5, and check whether the �t in the
resulting DGPs seems realistic for cross-sections. By that we mean standard errors of
the estimated coe¢ cients which are a fraction of their corresponding true coe¢ cient
value in the range 0.1-2, say. Since �2" = 1 we will assess what we will call the realized
signal-noise ratio by

SNR =
1

n� 1
Xn

i=1
[�2(xi2 � �x2) + �3(xi3 � �x3)]2: (4.6)

From this we can obtain FIT = SNR=(1 + SNR): We will check whether this has an
average over the simulation replications in the range of about 0.1-0.6, which seems a
reasonable range for cross-sections. In summary, we will examine various cases from the
grid

n = f50; 200g � = f:1; :5g
� = f:5; 1g �32 = f0; :4; :8g
� = f:2; :5; :8g �2 = f:3; :5g
�2 = f2; 10; 50g �3 = f:3; :5g
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In Table 4.2 we collect a �rst set of results for the larger sample size, serious het-
eroskedasticity (the minimum and maximum values of !1=2i were .21 and 4.13 respec-
tively), strong instruments, substantial simultaneity, no multicollinearity between xi2
and xi3 and values of the coe¢ cients such that a moderate �t results. The heading men-
tions the average (and the standard deviation between parentheses) of the FIT de�ned
below (4.6) and of the F3;n�L test statistic on the joint signi�cance of the external in-
struments in the reduced form equation for xi3 when estimated by OLS (thus neglecting
the heteroskedasticity). Both measures have their drawbacks, but they are only used
here to get a rough impression of major characteristics of the DGP. FGMM refers to the
2-step feasible version of standard GMM.

Table 4.2
Simulation results for n = 200; � = 1; � = :5; �2 = 50; � = :5; �32 = 0; �2 = �3 = 0:5;
giving simulation average for FIT of .41 (.03) and for F3;n�L of 52.5 (13.2)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM .002 .090 .090 1.000 .003 .094 .094 1.000
AGMM-M1 -.000 .047 .047 .524 .014 .052 .054 .574
AGMM-M2 -.000 .047 .047 .526 .007 .053 .053 .566
AGMM-M3 -.000 .047 .047 .526 .007 .071 .072 .764
AGMM-M4 -.000 .047 .047 .525 .011 .052 .053 .570
AGMM-M5 .000 .047 .047 .526 .005 .053 .053 .566
AGMM-M6 .000 .047 .047 .528 .003 .094 .094 1.00
AGMM-M7 .000 .047 .047 .527 .000 .053 .053 .569
FGMM .001 .089 .089 .991 .003 .093 .093 .993
IV -.001 .092 .092 1.023 -.000 .099 .098 1.050
OLS .001 .080 .080 .897 .282 .073 .292 3.111
WLS -.005 .044 .044 .492 .175 .039 .179 1.912

We �nd that all techniques examined produce little bias for this case, except the two
inconsistent estimators OLS and WLS which show substantial bias for the coe¢ cient of
the endogenous regressor. For �2 all adapted GMM techniques have much lower standard
error than classic GMM and therefore produce stunning improvements in RMSE over
standard GMM. This is also the case for �3 except for M6, which proves to be equivalent
to the standard GMM estimator.3 Also M3, which like M6 lacks Z�2 in its instrument
set, performs less impressive with respect to �3: The columns Rel.E¤ contain the RMSE
divided by the RMSE of GMM. What the e¤ects are of taking �32 nonzero can be seen
from Table 4.3.

3We have tried to prove this formally, but were not successful yet.
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Table 4.3
Simulation results for n = 200; � = 1; � = :5; �2 = 50; � = 0:5; �32 = :8; �2 = �3 = 0:5;
giving simulation average for FIT of .57 (.02) and for F3;n�L of 52.4 (13.2)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.001 .095 .095 1.000 .003 .094 .094 1.000
AGMM-M1 -.011 .063 .064 .678 .014 .052 .054 .574
AGMM-M2 -.006 .064 .064 .674 .007 .053 .053 .566
AGMM-M3 -.006 .075 .075 .790 .007 .071 .072 .764
AGMM-M4 -.009 .064 .064 .676 .011 .052 .053 .570
AGMM-M5 -.004 .064 .064 .675 .005 .053 .053 .566
AGMM-M6 -.002 .090 .090 .950 .003 .094 .094 1.000
AGMM-M7 -.000 .064 .064 .677 .000 .053 .053 .569
FGMM -.001 .095 .095 1.003 .003 .093 .093 .993
IV -.001 .095 .095 1.004 -.000 .099 .098 1.050
OLS -.225 .092 .243 2.560 .282 .073 .292 3.111
WLS -.145 .055 .155 1.628 .175 .039 .179 1.912

The results regarding �3 are found to be invariant with respect to multicollinearity
(which we can prove analytically) but not those regarding �2: For the latter less im-
pressive results are obtained through adapting the instrument set, especially so for M3
and M6. In the results to follow we will no longer monitor these less successful variants
closely. To focus on reasonably realistic cases we will set �32 at the moderate value of .4
in all the calculations to follow. Because the value of FIT is rather high for cross-sections
we will also reduce the values of �2 and �3 to .3 from now on and at the same time we
will decrease the value of �2 to the transitional value of 10 in order to see what happens
when the instruments are almost weak.

Table 4.4
Simulation results for n = 200; � = 1; � = :5; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .23 (.02) and for F3;n�L of 11.3 (4.8)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.005 .100 .100 1.000 .019 .211 .212 1.000
AGMM-M1 -.027 .064 .069 .690 .065 .107 .126 .592
AGMM-M2 -.015 .066 .067 .672 .037 .113 .119 .560
AGMM-M3 -.015 .079 .080 .799 .035 .155 .159 .750
AGMM-M4 -.022 .065 .068 .681 .054 .110 .122 .576
AGMM-M5 -.010 .067 .067 .672 .025 .116 .118 .557
AGMM-M6 -.008 .098 .099 .984 .019 .211 .212 1.000
AGMM-M7 -.002 .068 .068 .680 .005 .120 .120 .566
FGMM -.005 .101 .101 1.004 .018 .211 .211 .995
IV -.006 .101 .101 1.012 .006 .223 .223 1.049
OLS -.172 .084 .191 1.910 .433 .095 .443 2.089
WLS -.150 .048 .158 1.573 .365 .055 .369 1.738
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From Table 4.4 we note that weaker instruments lead to slightly more bias, especially
for the variants which use many instruments. This is all in agreement with established
understanding of the behavior in �nite samples of IV and GMM estimators. Especially
the standard error of the estimators for �3 has increased, but it is remarkable how ro-
bust the values of the relative e¢ ciencies are, indicating that by adapting GMM without
making any extra orthogonality conditions, but just exploiting those already made in a
better way, RMSE reductions of about 40% are up for grabs. The inconsistent estimators
OLS and especially WLS have an (almost always) smaller standard error than all GMM
implementations, but their huge bias makes them un�t. Note that FGMM barely beats
IV. Hence, making an attempt to assess and exploit the heteroskedasticity is not nec-
essarily worthwhile, although we should add that in practice such an assessment would
be required anyhow for the actual consistent estimation of the variance of IV. Next we
will examine a case with really weak external instruments.

Table 4.5
Simulation results for n = 200; � = 1; � = :5; �2 = 2; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .22 (.02) and for F3;n�L of 3.13 (2.2)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.045 .185 .190 1.000 .135 .507 .525 1.000
AGMM-M1 -.090 .088 .126 .661 .223 .186 .290 .553
AGMM-M2 -.062 .098 .116 .610 .153 .215 .264 .502
AGMM-M3 -.064 .132 .147 .772 .159 .306 .344 .656
AGMM-M4 -.080 .091 .122 .638 .198 .196 .279 .531
AGMM-M5 -.047 .105 .115 .603 .115 .233 .260 .495
AGMM-M6 -.055 .209 .216 1.136 .135 .507 .525 1.000
AGMM-M7 -.012 .125 .126 .659 .031 .288 .289 .551
FGMM -.045 .187 .192 1.011 .129 .508 .524 .997
IV -.045 .193 .198 1.040 .107 .536 .547 1.042
OLS -.193 .086 .211 1.110 .485 .103 .495 .944
WLS -.189 .048 .195 1.023 .465 .061 .469 .893

Especially the estimates of the coe¢ cient of the endogenous regressor are seriously
biased now, but less so for M7 (kGMM). This variant bene�ts here from using relatively
few instruments. Standard GMM uses as many, but because these are weaker they do not
only yield more bias, but also much larger standard errors. Regarding �3 the standard
error of GMM is even larger than the true coe¢ cient value, and its bias is about half the
coe¢ cient value. Using many more instruments, M1 has much lower standard errors,
but at the expense of very serious bias. Although M7 su¤ers from the weakness of the
instruments too it might still yield reasonably useful inference, whereas that does not
seem possible here for standard GMM. M6 gives worse estimates of �2 than standard
GMM. For the cases considered hence far M5 and M7 produce the best results, although
no technique is uniformly superior. Below we will get back to the �2 = 10 case and
examine the e¤ects of �; �; � and n: Therefore Table 4.6 should be compared especially
with Table 4.4 because they only di¤er regarding the value of �:
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Table 4.6
Simulation results for n = 200; � = :5; � = :5; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .23 (.01) and for F3;n�L of 11.1 (4.2)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.005 .103 .103 1.000 .016 .195 .195 1.000
AGMM-M1 -.047 .083 .096 .932 .117 .139 .182 .931
AGMM-M2 -.028 .087 .092 .894 .071 .152 .167 .855
AGMM-M3 -.017 .094 .096 .930 .044 .173 .179 .915
AGMM-M4 -.040 .085 .094 .913 .099 .144 .175 .895
AGMM-M5 -.020 .089 .092 .892 .050 .158 .166 .847
AGMM-M6 -.006 .101 .101 .984 .016 .195 .195 1.000
AGMM-M7 -.004 .094 .094 .913 .011 .170 .171 .873
FGMM -.005 .104 .104 1.010 .015 .197 .197 1.008
IV -.004 .103 .103 1.005 .010 .197 .197 1.007
OLS -.176 .070 .186 1.812 .434 .066 .439 2.244
WLS -.172 .061 .182 1.770 .421 .058 .425 2.176

In Table 4.6 � = :5 and this gave !1=2i values with a minimum and a maximum of .49
and 2.17 respectively. When the heteroskedasticity is more moderate the added strength
of the instruments used by the adapted GMM techniques is much more moderate too,
so that especially the variants that add many instruments su¤er from bias. Again M5
and M7 come out favorably. In what follows we put � = 1 again and examine the e¤ects
of the remaining design parameters.

Table 4.7
Simulation results for n = 200; � = 1; � = :2; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .22 (.02) and for F3;n�L of 11.3 (4.9)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.005 .097 .097 1.000 .019 .209 .210 1.000
AGMM-M1 -.028 .063 .069 .708 .068 .110 .130 .618
AGMM-M2 -.016 .064 .066 .686 .039 .116 .123 .584
AGMM-M3 -.016 .079 .081 .833 .039 .162 .166 .793
AGMM-M4 -.023 .063 .067 .698 .057 .113 .126 .602
AGMM-M5 -.011 .065 .066 .685 .026 .119 .122 .580
AGMM-M6 -.008 .096 .096 .993 .019 .209 .210 1.000
AGMM-M7 -.002 .067 .067 .694 .005 .127 .124 .589
FGMM -.005 .097 .097 1.006 .018 .209 .210 1.000
IV -.006 .098 .098 1.016 .008 .222 .222 1.058
OLS -.172 .074 .188 1.939 .433 .090 .442 2.108
WLS -.152 .045 .158 1.638 .370 .055 .374 1.784
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Table 4.8
Simulation results for n = 200; � = 1; � = :8; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .23 (.02) and for F3;n�L of 11.3 (4.7)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.004 .111 .111 1.000 .018 .206 .207 1.000
AGMM-M1 -.026 .065 .070 .631 .062 .104 .121 .586
AGMM-M2 -.014 .067 .068 .618 .035 .110 .116 .559
AGMM-M3 -.013 .079 .080 .723 .032 .150 .154 .743
AGMM-M4 -.021 .066 .069 .624 .052 .107 .118 .572
AGMM-M5 -.010 .068 .068 .618 .024 .113 .115 .557
AGMM-M6 -.008 .098 .099 .890 .018 .206 .207 1.000
AGMM-M7 -.002 .069 .069 .624 .004 .117 .117 .565
FGMM -.005 .110 .110 .996 .017 .205 .205 .993
IV -.005 .113 .113 1.019 .006 .213 .213 1.032
OLS -.172 .094 .196 1.768 .433 .096 .443 2.144
WLS -.149 .050 .157 1.422 .360 .054 .364 1.758

Tables 4.7 and 4.8 show that the e¤ect of � is very moderate. Giving it again the
value of :5 we change the simultaneity in Table 4.9.

Table 4.9
Simulation results for n = 200; � = 1; � = :5; �2 = 10; � = 0:1; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .23 (.02) and for F3;n�L of 11.3 (4.8)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM .001 .102 .102 1.000 .001 .213 .213 1.000
AGMM-M1 -.005 .066 .067 .654 .011 .117 .112 .528
AGMM-M2 -.002 .067 .067 .662 .006 .115 .115 .543
AGMM-M3 -.002 .081 .081 .792 .006 .158 .158 .742
AGMM-M4 -.004 .067 .067 .656 .009 .113 .113 .533
AGMM-M5 -.001 .068 .068 .666 .004 .117 .117 .550
AGMM-M6 -.001 .100 .100 .982 .001 .213 .213 1.000
AGMM-M7 .000 .069 .069 .674 -.001 .120 .120 .564
FGMM .000 .102 .102 1.002 .001 .217 .212 .996
IV .000 .102 .102 1.004 -.001 .226 .223 1.047
OLS -.033 .096 .101 .995 .086 .109 .138 .651
WLS -.030 .054 .061 .603 .072 .061 .095 .446

Little changes for the GMM procedures when there is hardly simultaneity, although
the ordering of the adapted procedures is di¤erent now, with M1 outperforming all
the others. Compared with other adapted GMM procedures, M6 is less attractive for
estimating �2. The inconsistent procedures show much less bias now, so that regarding
RMSE both OLS and WLS beat standard GMM with a wide margin, and WLS even
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surpasses all the adapted GMM procedures. This, and also the poor results for IV,
shows that transforming the instruments under heteroskedasticity is essential for gaining
e¢ ciency, but strict orthogonality with respect to the transformed disturbances of the
employed instruments should not necessarily be a matter of principle. Just using the
strongest possible (though mildly invalid) instruments, as WLS does, can be preferable
to using a great number of weaker though valid instruments, as all the GMM procedures
do. In Table 4.10 we look into the case of Table 4.4 again, but now for a much smaller
sample size.

Table 4.10
Simulation results for n = 50; � = 1; � = :5; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .22 (.04) and for F3;n�L of 12.2 (5.9)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.004 .180 .180 1.000 .024 .202 .203 1.000
AGMM-M1 -.034 .124 .129 .717 .081 .113 .139 .684
AGMM-M2 -.020 .127 .129 .716 .049 .119 .129 .635
AGMM-M3 -.017 .136 .137 .761 .041 .154 .159 .784
AGMM-M4 -.029 .125 .128 .715 .069 .115 .134 .661
AGMM-M5 -.014 .128 .129 .720 .035 .122 .127 .626
AGMM-M6 -.010 .149 .149 .829 .024 .202 .203 1.00
AGMM-M7 -.004 .131 .131 .729 .012 .128 .128 .633
FGMM -.005 .183 .183 1.019 .024 .201 .202 .996
IV -.014 .188 .188 1.048 .016 .217 .217 1.071
OLS -.120 .171 .209 1.164 .303 .141 .334 1.646
WLS -.094 .114 .148 0.823 .220 .088 .237 1.166

Table 4.10 shows that also in a much smaller sample the alternatively transformed
instruments are much better than those used by standard GMM. The improvement over
GMM is less impressive here as for the n = 200 case. However, these results are hard
to compare, because the higher-order sample moments of the exogenous regressors will
have been di¤erent, and also the range of values obtained for !1=2i is not the same (here
between .34 and 2.84).
To examine the e¤ect of conditioning on exogenous variables we have reproduced the

case of Table 4.4 for various di¤erent arbitrary realizations of the exogenous variables,
and therefore for the !i series. Although that does make the �gures di¤erent, occasion-
ally even by margins of around 20%, we found no evidence of a systematic disturbing
in�uence on our general �ndings from the speci�c series that we used for all the foregoing
Tables. Finally, we shall examine the case of Table 4.4 in an alternative simulation de-
sign, where all exogenous random variables have been redrawn every replication, without
any standardizing or orthogonalizing.
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Table 4.11 Unconditional simulation
Simulation results for n = 200; � = 1; � = :5; �2 = 10; � = 0:5; �32 = :4; �2 = �3 = 0:3;
giving simulation average for FIT of .22 (.02) and for F3;n�L of 11.3 (4.5)

�2 �3
Bias Std.Err RMSE Rel.E¤ Bias Std.Err RMSE Rel.E¤

GMM -.006 .106 .106 1.000 .019 .198 .199 1.000
AGMM-M1 -.026 .061 .066 .627 .066 .105 .123 .620
AGMM-M2 -.015 .063 .065 .613 .039 .110 .117 .585
AGMM-M3 -.013 .076 .077 .728 .033 .151 .155 .777
AGMM-M4 -.022 .062 .066 .620 .055 .107 .120 .603
AGMM-M5 -.010 .064 .065 .612 .027 .112 .115 .578
AGMM-M6 -.007 .092 .092 .872 .019 .199 .200 1.003
AGMM-M7 -.003 .065 .065 .617 .008 .116 .116 .583
FGMM -.006 .106 .106 1.001 .018 .198 .199 1.000
IV -.009 .107 .108 1.017 .019 .204 .204 1.026
OLS -.174 .081 .191 1.809 .434 .088 .443 2.222
WLS -.142 .049 .150 1.419 .360 .057 .364 1.829

From Table 4.11 we see that the unconditional results are not very much di¤erent
from the results obtained for a speci�c set of exogenous variables. Nevertheless, they
support again the general conclusion that especially the variants M5 and M7, but also
M2, yield substantial "free-lunch" (because no additional orthogonality assumptions are
being made) reductions in standard deviation and possibly in bias too. The remarkable
feature of M7 (keen GMM) is that it achieves its substantial improvements over stan-
dard GMM by using exactly the same number of instruments. Variants M2 and M5
both use all the instruments exploited in kGMM, but also maintain instruments from
standard GMM, which proved to be bene�cial in various of the tables just presented.
Such adaptations will be labelled kfGMM below, because they are both keen and faith-
ful (regarding classic GMM). Especially kGMM and kfGMM variants will be examined
further now in more complex models.

5. Adapting GMM for dynamic panel data models

Here we consider a case where heteroskedasticity may occur jointly with simultaneity,
moving-average errors and weakly-exogenous regressors and instruments. Consider the
balanced linear �rst-order dynamic panel data model

yit = �i + � t + yi;t�1 + �
0xit + "it; with "it = �"!

1=2
i "�it; (5.1)

where i = 1; :::; N indexes the individual subjects in the sample and t = 1; :::; T the time
periods. In the right-hand side of (5.1) the �i are unobserved individual-speci�c time-
constant e¤ects, � t are unobserved time-speci�c individual-constant e¤ects, xit is a k�1
vector of observed explanatory variables (not containing a constant), which individually
may be either exogenous, predetermined or endogenous, depending on their correlation
structure with the unobserved idiosyncratic disturbances "it: Because "�it � iid(0; 1) the
disturbances "it are independent, both between time periods and between individuals.
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However, there is cross-section heteroskedasticity if not all !i (with
Pn

i=1 !i = n) are
equal to unity. We will examine standard and adapted GMM estimators which are
consistent for N large and T �nite, and focus on structural relationships which are
dynamically stable, requiring jj < 1: So, (non)stationarity of yit should �nd its origin
in the time-series properties of the series xit:
Stacking the observations for individual i; we may also write

yi = �i�+ � + yi;�1 +Xi� + �"!
1=2
i "�i ; (5.2)

where �; � ; yi;�1 and "�i are all T � 1 vectors, � just containing unit elements, � =
(� 1; :::; �T )

0 and yi;�1 and "�i stacking all yi;t�1 and "
�
it for t = 1; :::; T; whereas Xi stacks

the T rows x0it: To remove the unknown N !1 incidental parameters �i from the model
it should be transformed. We consider taking �rst di¤erences and de�ne the matrices

D =

26666664
�1 1 0 � � � � � � 0

0 �1 1
. . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 0

0 � � � � � � 0 �1 1

37777775 , H =

26666666664

2 �1 0 � � � � � � 0

�1 2 �1 . . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
. . . . . . . . . �1

0 � � � � � � 0 �1 2

37777777775
; (5.3)

where D is (T � 1)� T and H = DD0 is (T � 1)� (T � 1). Obviously D performs the
�rst di¤erence operation and D�T = 0. Also de�ning ~yi = Dy; ~� = D�; ~yi;�1 = Dyi;�1;
~Xi = DXi and ~"�i = D"

�
i ; which all have T � 1 rows, we have

~yi = Wi� + �"!
1=2
i ~"�i ; (5.4)

whereWi = (IT�1 ~yi;�1 ~Xi) and coe¢ cient vector � = (~� 0  �
0)0 has K = T +k elements.

Note that not all individual T elements of � can be identi�ed now, but only (linear
combinations of) the T � 1 successive di¤erences between them. Since E(~"�i~"�0i ) = H
this transformation leads to disturbances which for each individual�s remaining T � 1
observations have MA(1) structure with a known �rst-order serial correlation coe¢ cient
of �:5.
If Zi is the (T � 1)�L matrix containing the observations regarding individual i on

the L instrumental variables that will be exploited to the di¤erenced model (5.4), then
the optimal but unfeasible standard GMM estimator of � can be written as

�̂GMM =

��XN

i=1
W 0
iZi

��XN

i=1
!iZ

0
iHZi

��1 �XN

i=1
Z 0iWi

���1
��XN

i=1
W 0
iZi

��XN

i=1
!iZ

0
iHZi

��1 �XN

i=1
Z 0i~yi

�
; (5.5)

where matrix Zi is constructed as follows.
Partition Zi of the full instrument matrix Z should of course include a partition IT�1;

which represents the orthogonality conditions E(~"i) = 0: For an endogenous regressor
x
(j)
it (j = 1; :::; k) we have E(~x(j)it ~"it) 6= 0; so its current value cannot be used as an
instrument in model (5.4). Similarly for a predetermined regressor, where E(xjit"i;t�1) 6=
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0 implies E(~xjit~"i;t) 6= 0; and for the lagged-dependent variable, where E(yi;t�1"i;t�1) 6= 0
implies E(~yi;t�1~"i;t) 6= 0: However, by taking higher-order lags of endogenous and of
predetermined regressors one may obtain valid internal instruments. The established
GMM procedures for dynamic panel data models exploit that E(yi;t�1�l�"it) = 0 for
l = 1; :::; t� 1 and t = 2; :::; T: This allows to incorporate in Zi the partitions

JT�1yi0; JT�2yi1; :::; J1yi;T�2; where Jt = (Ot It)0; t = 1; :::; T � 1: (5.6)

Matrix Jt is of order (T � 1) � t and such that JT�1 = IT�1 whereas for t < T � 1
matrix Ot is of order (T � 1 � t) � t with all its elements equal to zero. The full
set (5.6) contributes no less than T (T � 1)=2 columns to Zi: Similar possibilities arise
for a regressor x(j)it (j = 1; :::; k) for which we distinguish the three categories: either
E(x

(j)
it "is) = 0 for s > t (possibly endogenous), or s � t (at least predetermined), or 8s; t

(exogenous). Then one may incorporate in Zi for estimating model (5.4) by GMM the
partitions

JT�2x
(j)
i1 ; :::; J1x

(j)
i;T�2; when possibly endogenous (5.7)

JT�1x
(j)
i1 ; :::; J1x

(j)
i;T�1; when predetermined (5.8)

IT�1x
(j)
i1 ; :::; IT�1x

(j)
iT ; when exogenous. (5.9)

For each element of regressor vector xit these yield additional columns to Zi; namely
(T � 1)(T � 2)=2; or T (T � 1)=2 or T (T + 1) columns respectively. Of course, not all
these columns have to be included in Zi: Often on just includes the initial columns of
the separate partitions collected in (5.6) through (5.9) or restricts those of the latter
even to just one linear combination of its T (T + 1) columns, namely ~x(j)i :
Let now 	i be the non-unique matrix such that (!iH)�1 = 	0i	i; then we can

construct the transformed variables W �
i = 	iWi; ~y

�
i = 	i~yi and Z

y
i = (	

0
i)
�1Zi: Given

our derivations in Section 2, it is now straight-forward that GMM estimator (5.5) can
also be obtained as the IV estimator

�̂GMM = �̂
�
IV =

��XN

i=1
W �0
i Z

y
i

��XN

i=1
Zy0i Z

y
i

��1 �XN

i=1
Zy0i W

�
i

���1
��XN

i=1
W �0
i Z

y
i

��XN

i=1
Zy0i Z

y
i

��1 �XN

i=1
Zy0i ~y

�
i

�
= (W �0PZyW

�)�1W �0PZy ~y
�; (5.10)

where W � stacks all W �
i ; and similarly for Z

y and ~y�: From this IV perspective it is
obvious that unnecessary e¢ ciency losses will be incurred if columns of W �

i that would
establish valid instruments for the transformed model

~y�i = W
�
i � + ~"

�
i ; (5.11)

where ~"�i = 	i~"i with E(~"
�
i~"
�0
i ) = �

2
"IT�1; are not in the space spanned by the columns

of Zyi :
Let us examine what a lower-triangular transformation 	i may look like. A trans-

formed model (5.11) can be obtained by using a backward orthogonal deviation trans-
formation to the model in levels (5.2), see Arellano and Bover (1995) for the related

21



forward orthogonal deviations transformation. Consider

!
�1=2
i S1=2D�

= !
�1=2
i

26666664

1
2

0 0 � � � 0

0 2
3

0
. . .

...
... 0

. . . . . .
...

...
. . . . . . 0

0 � � � � � � 0 T�1
T

37777775

1=2 2666664
�1 1 0 � � � � � � 0
�1
2

�1
2

1 � � � � � � 0
...

. . . . . .
...

� 1
T�2 � � � � � � � 1

T�2 1 0

� 1
T�1 � � � � � � � 1

T�1 � 1
T�1 1

3777775

= !
�1=2
i

26666664

1
2

0 0 � � � 0

0 2
3

0
. . .

...
... 0

. . . . . .
...

...
. . . . . . 0

0 � � � � � � 0 T�1
T

37777775

1=2 26666664

1 0 � � � 0 0
1
2

1
. . . 0

...
. . . . . .

...
1

T�2
2

T�2
. . . 1 0

1
T�1

2
T�1 � � � T�2

T�1 1

37777775D

= !
�1=2
i S1=2FD = 	iD; (5.12)

where we de�ned the (T �1)�T matrix D� and the (T �1)� (T �1) matrices S; F and
	i implicitly. Note that D�yi takes yit for t = 2; :::; T in devation from the (backward)
sample average over the indexes s = 1; :::; t� 1: That D� = FD and

V ar(	i~"i) = V ar(!
�1=2
i S1=2FD"i) = V ar("

�
i ) = �

2
"I

can easily be veri�ed. This result implies that we can employ lower-triangular trans-
formation matrix 	i to the model in �rst di¤erences (5.4) in order to get rid of its
nonsphericity. Due to its lower-triangular nature it is obvious from (3.2) that using
this very same transformation to the instruments Zi; which are valid instruments for
estimating the �rst-di¤erenced model by GMM, will yield valid instruments Z�i = 	iZi
that allow to estimate model (5.11) consistently by IV.
Above we demonstrated that Zi is composed of many partitions which are of the

form Jtw
(j)
is (j = 1; :::; K): This implies that Z�i is composed of partitions 	iJtw

(j)
is =

w
(j)
is 	iJt = w

(j)
is 	i(t); where 	i(t) contains the t �nal columns of 	i: Because 	i is lower-

triangular 	i(t) has full column rank, and spans the same subspace as Jt: This implies
that 	iJtw

(j)
is spans the same subspace as !

�1=2
i Jtw

(j)
is : So, instead of taking 	iZi for Z

�
i ;

one may simply take !�1=2i Zi: From this we deduce that the kGMM estimator can be
obtained by applying GMM to the heteroskedasticity corrected �rst-di¤erences model

!
�1=2
i ~yi = !

�1=2
i Wi� + !

�1=2
i ~"i;

where V ar(!�1=2i ~"i) = �
2
"H; upon exploiting the instruments !

�1=2
i Zi: This gives

�̂kGMM =

��XN

i=1
!�1i W

0
iZi

��XN

i=1
!�1i Z

0
iHZi

��1 �XN

i=1
!�1i Z

0
iWi

���1
��XN

i=1
!�1i W

0
iZi

��XN

i=1
!�1i Z

0
iHZi

��1 �XN

i=1
!�1i Z

0
i~yi

�
: (5.13)
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After �rst estimating � consistently by the 1-step estimator

�̂GMM1 =

��XN

i=1
W 0
iZi

��XN

i=1
Z 0iHZi

��1 �XN

i=1
Z 0iWi

���1
��XN

i=1
W 0
iZi

��XN

i=1
Z 0iHZi

��1 �XN

i=1
Z 0i~yi

�
; (5.14)

consistent residuals b~"(1)i = ~yi �Wi�̂GMM1 can be obtained, which yield

�̂
2(1)
";i = b~"(1)0i

b~"(1)i =(2T � 2): (5.15)

From these the feasible and asymptotically optimal two-step estimators

�̂GMM2 =

��XN

i=1
W 0
iZi

��XN

i=1
�̂
2(1)
";i Z

0
iHZi

��1 �XN

i=1
Z 0iWi

���1
��XN

i=1
W 0
iZi

��XN

i=1
�̂
2(1)
";i Z

0
iHZi

��1 �XN

i=1
Z 0i~yi

�
(5.16)

and

�̂kGMM2 =

��XN

i=1
W 0
iZi=�̂

2(1)
";i

��XN

i=1
Z 0iHZi=�̂

2(1)
";i

��1 �XN

i=1
Z 0iWi=�̂

2(1)
";i

���1
��XN

i=1
W 0
iZi=�̂

2(1)
";i

��XN

i=1
Z 0iHZi=�̂

2(1)
";i

��1 �XN

i=1
Z 0i~yi=�̂

2(1)
";i

�
(5.17)

easily follow.

6. Simulation results for a dynamic panel data model

The model just discussed and various possible GMM implementations will be examined
now for the case where k = 1; so

yit = �i + � t + yi;t�1 + �xit + "it; with "it = �"!
1=2
i "�it; (6.1)

and � has just one element. The individual and time e¤ects are drawn as

�i = ���
�
i ; �

�
i � iidN(0; 1);

� t = ���
�
t ; �

�
t � iidN(0; 1):

(6.2)

We will consider both the cases where these e¤ects are fully random and hence redrawn
each replication, and the case where they are kept �xed. The latter representing for
instance the situation where the sample represents a panel of countries over a particular
time span, and the former being more relevant for a micro panel where the sample
represents a population with many more subjects than N: When the e¤ects are kept
constant over the replications the series ��i and �

�
t are drawn only once, but standardized

such that their sample average is zero and their sample variance unity.
The heteroskedasticity !i is designed in the same vein as in the pure cross-section

model, but now such that it may depend on the individual speci�c e¤ect ��i of the
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relationship and on another independent individual speci�c e¤ect ��i � iidN(0; 1); which
both will also a¤ect the regressor xit: Generating �rst the series

hi(��2=2) = ��2=2 + �[�1=2��i + (1� �)1=2��i ] � iidN(��2=2; �2); (6.3)

we can next obtain !i = exp(hi(��2=2)); which has again lognormal distribution with
expectation 1 and variance 2 exp(�) � 1: When the ��i are generated only once, we do
the same for the ��i ; upon standardizing and orthogonalizing them with respect to ��i .
As before, in the end we rescale the !i series such that it sums to n:
Regressor xit is stable �rst-order autoregressive and is generated as

xit = �xi;t�1 + ���
�
i + ���

�
i + ���

�
t + �v(1� �2)1=2

�
�"�it + (1� �2)1=2v�it

�
; (6.4)

with j�j < 1 and v�it � iidN(0; 1): The latter drawings are all mutually independent from
all "�it and also from the e¤ects ��i ; �

�
i and �

�
t ; which occur in the generating process for

xit with coe¢ cients ��; �� and �� respectively. Note that �; which should obey j�j < 1;
again determines the simultaneity. Parameter �v serves to control the variance of xit:
Both variants of the autoregressive process for xit require a start-up value. For that we
choose

xis = 0; with integer s � 0: (6.5)

The role of the start-up time point s is the following. The required initial values yi;0 will
be obtained by what is generally called "preheating", which means that, although we will
only use the sample data for t = 1; :::; T when estimating the model, the generation of
the DGP will start o¤ from a point in time s � 0; by �xing both (6.5) and yi;s = 0; which
are their unconditional expectations. When jsj is chosen rather large, then for t � 0;
j�j < 1 and jj < 1 the series for xit and for yit will have approached their stationary
track and then an implementation of the so-called system estimator, see Blundell and
Bond (1998), is generally seen as one of the most appropriate GMM estimators for
this model. Otherwise, and when jsj is rather small, moment conditions associated
with the stationarity of the initial conditions yi0 and xi0 will not be satis�ed and an
implementation of the Arellano and Bond (1991) GMM estimator is generally seen as the
one we should prefer, see also Holtz-Eakin et al. (1988). First, we will focus on various
possible implementations of the Arellano-Bond classic GMM procedure, as indicated in
Table 6.1.
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Table 6.1
Overview of examined standard GMM implementations, labelled GMMa through
GMMf, for model (6.1) and the number of instruments L in their exploited Zi

~�  � L [for T = 6]
GMMa IT�1 (5:6) ~xi

[T � 1] [T (T � 1)=2] [1] (T 2 + T )=2 [=21]

GMMb IT�1 leading columns (5:6) ~xi
[T � 1] [2T � 3] [1] 3T � 3 [=15]

GMMc IT�1 (5:6) (5:8)
[T � 1] [T (T � 1)=2] [T (T � 1)=2] T 2 � 1 [=35]

GMMd IT�1 leading columns (5:6) leading columns (5:8)
[T � 1] [2T � 3] [2T � 3] 5T � 7 [=33]

GMMe IT�1 (5:6) (5:7)
[T � 1] [T (T � 1)=2] [(T � 1)(T � 2)=2] T 2 � T [=30]

GMMf IT�1 leading columns (5:6) leading columns (5:7)
[T � 1] [2T � 3] [2T � 5] 5T � 9 [=21]

Hence, we distinguish six GMM variants and for all we will also examine an adapted
variant which uses exactly the same number of instruments, though keenly transformed.
These will be indicated as kGMMa through kGMMf. Note again that these do not ex-
ploit any extra information in the form of further orthogonality conditions or true values
of parameters than exploited by standard GMM. At this stage we do not yet examine
feasible versions of GMM and kGMM thus use for both the true heteroskedasticity pa-
rameters !1 through !N : Table 6.1 indicates that all variants include the time dummies
IT�1 in Zi because these are exogenous. Implementations a, c and e use the full set of
lagged levels of the dependent variable as instruments, whereas b, d and f curtail this
large number by taking only the initial two columns of JT+1�tyi;t�2 for t = 2; :::; T: Re-
garding instrumenting the regressor xit we examine 5 alternatives. In a and b we use ~xi
as its own instrument, apparently assuming that it is exogenous. In GMMc and GMMd
instruments are used that would be valid if the regressor were predetermined. In GMMc
all of these are used and in GMMd these have been curtailed Note that GMMa through
GMMd, and also their adapted versions, will be inconsistent when � 6= 0: In GMMe
and GMMf xit is treated as endogenous. GMMe uses all available internal instruments
and GMMf is again a curtailed version. In their kGMM counterparts all the regressors
and instruments have been multiplied by !�1=2i : Note that our DGP does not entail any
options for exploiting external instrumental variables (what is in close agreement with
a line of conduct often followed in the practice of dynamic panel data analysis).
The Monte Carlo design has many parameters some of which we will keep constant

most of the time. The �rst results to be presented below focus on the following chosen
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numerical combinations4:
N = 200; T = 6; s = �5;
 2 f0:3; 0:8g; � = 1� ;
�" = 1; �� = �"(1� ); �� = �"(1� );
� = 0:8; �v = 3; �� = �� = �� = �v(1� �);
� = f0; 0:6g; � = f0:5; 1g; � = 0:5:

9>>>>=>>>>; (6.6)

So, xit is stationary, though not strictly covariance stationary yet, and relatively smooth
through time. First we focus on results based on just one arbitrary draw for the indi-
vidual and time e¤ects. For � = 1 these gave rise to !i values varying between :06 and
9:9:

Table 6.2
Simulation results on standard GMM (kGMM) for N = 200; T = 6; � = 0; � = 1

 = 0:8 � = 0:2
Bias Std.Err RMSE Bias Std.Err RMSE

a -.208 (-.022) .200 (.060) .289 (.064) -.011 (.001) .024 (.011) .026 (.011)
b -.204 (-.015) .248 (.062) .321 (.064) -.011 (.001) .025 (.011) .027 (.011)
c -.072 (-.024) .072 (.041) .102 (.048) -.084 (-.019) .107 (.046) .136 (.050)
d -.083 (-.024) .096 (.052) .127 (.058) -.121 (-.024) .159 (.062) .199 (.067)
e -.085 (-.033) .084 (.052) .119 (.062) -.088 (-.022) .124 (.052) .152 (.056)
f -.099 (-.035) .117 (.072) .153 (.079) -.139 (-.029) .194 (.075) .238 (.081)

Focussing on standard GMM �rst, we see from Table 6.2 (where � = 0 so all estima-
tors are consistent) that there is often substantial bias. Estimating � bene�ts when the
single instrument ~xi is used at the expense of the precision of the  estimate. Reduc-
ing the number of instruments is found to be bene�cial neither for the bias nor for the
standard errors. The same patterns show up for the kGMM results, but at a much more
attractive level. It shows moderate bias and much smaller standard deviations, yielding
RMSE values which would allow rather precise inferences on the true parameter values,
whereas this seems impossible at the chosen parametrization by standard GMM. Obvi-
ously its much stronger instruments reduce both the bias and the standard deviation.
To obtain more attractive results for standard GMM would require to increase the value
of �v; by which the signal to noise ratio would improve, or by increasing N .

Table 6.3
Simulation results on standard GMM (kGMM) for N = 200; T = 6; � = 0:6; � = 1

 = 0:8 � = 0:2
Bias Std.Err RMSE Bias Std.Err RMSE

a -.131 (.073) .260 (.066) .292 (.098) .292 (.109) .028 (.014) .293 (.110)
b -.055 (.094) .407 (.076) .410 (.121) .302 (.106) .040 (.015) .304 (.107)
c -.339 (-.252) .064 (.055) .345 (.258) .123 (.025) .140 (.079) .186 (.083)
d -.370 (-.286) .081 (.068) .379 (.294) .026 (-.043) .202 (.101) .203 (.109)
e -.038 (-.006) .069 (.052) .079 (.052) .088 (.054) .095 (.047) .130 (.072)
f -.013 (.012) .088 (.072) .089 (.073) .083 (.057) .138 (.069) .161 (.089)

4In designing the Monte Carlo experiments in Sections 4 and 6 the chosen parametrizations and the
established links between particular parameter values have been chosen deliberately in order to aim at
orthogonalization and optimization as set out in Kiviet (2012).

26



The only design parameter with a di¤erent value in Table 6.3 is �: Only variants
e and f are consistent now. The results show that simultaneity should better not be
neglected. Variant e outperforms f and kGMM again leads to less bias and smaller stan-
dard deviations. Nevertheless, upon comparing the kGMM results of a and e regarding
the standard errors it is striking to note that using relatively few instruments that �t
the regressors well lead to relatively high precision even if some of the instruments are
actually invalid.

Table 6.4
Simulation results on standard GMM (kGMM) for N = 200; T = 6; � = 0:0; � = 1

 = 0:3 � = 0:7
Bias Std.Err RMSE Bias Std.Err RMSE

a -.064 (-.026) .123 (.077) .139 (.082) -.004 (.008) .025 (.027) .025 (.028)
b -.079 (-.030) .164 (.101) .183 (.105) -.006 (.009) .026 (.034) .027 (.036)
c -.008 (-.003) .029 (.017) .030 (.017) -.009 (-.002) .070 (.030) .071 (.030)
d -.009 (-.003) .034 (.020) .035 (.020) -.019 (-.003) .097 (.037) .099 (.037)
e -.043 (-.016) .070 (.043) .082 (.046) -.001 (.004) .077 (.036) .077 (.036)
f -.041 (-.021) .086 (.057) .095 (.061) -.021 (.000) .108 (.042) .110 (.042)

Table 6.4 looks again at � = 0 but now the value of  is more moderate. Here
we note that for implementations a and b GMM actually works rather well for � (but
poorly for ) and then kGMM does not outperform it. Nevertheless, on the whole,
kGMMc performs best here. Of course, if we had adapted GMM such that we would
simply add the transformed instruments to the standard ones the asymptotic variance
could not be worse than that of standard GMM. Therefore, we will now examine such
an implementation, that we already labelled kfGMM.

Table 6.5
Simulation results on standard GMM (kfGMM) for N = 200; T = 6; � = 0:0; � = 1

 = 0:3 � = 0:7
Bias Std.Err RMSE Bias Std.Err RMSE

a -.064 (-.009) .123 (.028) .139 (.030) -.004 (.003) .025 (.014) .025 (.014)
b -.079 (-.008) .164 (.031) .183 (.032) -.006 (.002) .026 (.014) .027 (.014)
c -.008 (-.005) .029 (.015) .030 (.015) -.009 (-.001) .070 (.020) .071 (.020)
d -.009 (-.004) .034 (.016) .035 (.016) -.019 (-.001) .097 (.022) .099 (.022)
e -.043 (-.017) .070 (.030) .082 (.034) -.001 (.010) .077 (.030) .077 (.032)
f -.041 (-.014) .086 (.034) .095 (.037) -.021 (.009) .108 (.034) .110 (.035)

Note that doubling the number of instruments, although not always bene�cial for
the bias, improves the quality of the adaptation of GMM tremendously. Note that in
Table 6.5 the RMSE values are reduced by at least 50% or occasionally by as much
as 80%. Apparently one should not bother so much about the number of instruments.
That standard GMM has much larger bias and standard deviation is not due to the large
number of instruments, but primarily to their relative weakness. This weakness with
respect to those of adapted GMM depends on the seriousness of the heteroskedasticity.
Therefore, we will now look into a case where this is more moderate.
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Table 6.6
Simulation results on standard GMM (kfGMM) for N = 200; T = 6; � = 0; � = :5

 = 0:8 � = 0:2
Bias Std.Err RMSE Bias Std.Err RMSE

a -.162 (-.030) .175 (.045) .239 (.054) -.009 (.001) .024 (.015) .026 (.015)
b -.144 (-.022) .207 (.046) .252 (.051) -.008 (.001) .025 (.015) .026 (.015)
c -.059 (-.033) .065 (.033) .088 (.046) -.071 (-.008) .099 (.029) .122 (.030)
d -.069 (-.023) .086 (.034) .110 (.041) -.101 (-.006) .143 (.031) .176 (.031)
e -.067 (-.037) .074 (.037) .099 (.052) -.071 (.001) .113 (.034) .133 (.034)
f -.077 (-.025) .102 (.038) .128 (.046) -.107 (.001) .170 (.037) .201 (.037)

Table 6.6 should be compared with Table 6.2. The only two di¤erences are that
now � is .5, giving rise to !i values ranging from .28 to 3.6, and we examine kfGMM
instead of kGMM. The quality of standard GMM has improved because the smaller �
has been less detrimental for the strength of its instruments. However, despite the milder
heteroskedasticity, the doubling of the number of instruments in kfGMM makes that it
outperforms standard GMM, again leading to RMSE values that are at most about half
but sometimes just 20% of those of standard GMM. Corresponding t-values could be
two to �ve times higher.

7. Empirical illustration

The proposed adapted GMM estimators kGMM and kfGMM will be applied now to
the classic empirical example used in Arrelano and Bond (1991). It concerns an unbal-
anced panel of 140 UK companies over the years 1976 -1984 used to estimate a dynamic
employment equation speci�ed as

nit = �1ni;t�1 + �2ni;t�2 + �
0xit + � t + �i + "it: (7.1)

Here nit is the log of employment in �rm i at the end of year t and the vector xit includes
wit; the log of real product wage, kit; the log of gross capital stock and ysit; the log of
industry output, and their lags. Here we only present results for the case where the
regressors xit are assumed to be strictly exogenous. The model contains both individual
and time e¤ects. In the second and third columns of Table 7.1 we replicate the results
in Arrelano and Bond (1991, Table 4, column a2).
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Table 7.1
Various GMM estimates for the employment equation (7.1)

2-step GMM-AB 2-step kGMM 2-step kfGMM
regressor coef. std.err coef. std.err. coef. std.err.
ni;t�1 .629 .090 .557 .110 .610 .036
ni;t�2 -.065 .027 -.051 .028 -.087 .014
wit -.526 .054 -.332 .045 -.549 .024
wi;t�1 .311 .094 .215 .055 .344 .035
kit .278 .045 .230 .025 .336 .015
ki;t�1 .014 .053 .047 .033 -.010 .020
ki;t�2 -.040 .026 -.042 .021 -.030 .013
ysit .592 .116 .636 .069 .565 .052
ysi;t�1 -.566 .140 -.286 .097 -.610 .066
ysi;t�2 .101 .113 -.029 .066 .050 .058

The 1-step Arrelano and Bond (GMM-AB) estimates were used to estimate the cross-
sectional variances of the idiosyncratic errors "it. After normalization, the !i values
ranged from .007 to 7.92, which corresponds about to 1 < � < 1:4 (compare Table
4.1), showing that there is serious cross-sectional heteroskedasticity in the disturbances.
With this estimated !i, we constructed new instrumental variables by multiplying them
by !�1i . As we explained before, each individuals exogenous instruments should also
be premultiplied by H�1; but we did not because of the complications stemming from
the unbalancedness of the panel. Using the original Zi yields the 2-step GMM-AB.
Using the same algorithm with the adpated instruments yields 2-step kGMM. And using
both the standard AB instruments and the transformed ones produces 2-step kfGMM.
Especially the latter yield much smaller estimated standard errors, sometimes less than
50% of the standard results. These calculated standard errors are robust for time-series
heteroskedasticity, as in the Arellano and Bond (1991) paper. Of course, these standard
error estimates may be rather inaccurate, see Windmeijer (2005). Taking them serious
nevertheless, we see that the kfGMM results provide enhanced evidence in favour of
omitting regressor ysi;t�2 from the speci�cation and against omitting ki;t�2:

8. Conclusions

We reveal an inherent unfavourable and yet generally unperceived feature of GMM
as it is currently usually implemented. Extracting from the assumed orthogonality
conditions instrumental variables such that they are reasonably e¤ective (strong) for
the regressors in the habitual sense, as understood for IV estimation, implies that these
very same instruments will be much weaker in the context of GMM. This is, because
implicitly GMM estimates a transformed model, in order to get rid of any non-sphericity
of the disturbances, but at the same time this transformation a¤ects the instruments
in such a way that they will actually be much weaker than the researcher realizes. It
is shown, however, that various relatively simple precautions enable to neutralize this
weakening process of the instruments. Moreover, options are uncovered for pro�table
extensions of the set of instruments still in connection to just the originally adopted
orthogonality conditions. By simulation it is shown that empirically relevant forms of
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heteroskedasticity undermine the quality of standard GMM estimates and that some
of the suggested adapted forms of GMM yield estimates that show both less bias and
smaller standard errors. Reductions of the root mean squared errors of the coe¢ cient
estimates of the alleged optimal standard GMM technique by a factor 2 or more are in
fact not exceptional.
In this paper we only examined GMM estimators for models linear in the coe¢ cients

of the regressors; however, the results have implications for general nonlinear models
too that deserve further investigation. We also show that in models with endogenous
regressors and serial correlation of moving average form, the set of valid instruments can
easily be extended by substantially stronger instruments, by seeking instruments not
for the original model but for the model after a transformation that removes the serial
correlation. Practical consequences of this have not been examined here yet.
For one classic empirical data set it has been examined what the practical conse-

quences are. From that it seems that the conclusions drawn from our Monte Carlo
designs are realistic, although one should keep in mind that the synthetic experiments
produce accurate assessments of true bias and true standard deviation, whereas for the
empirical result the bias cannot be assessed because the true parameter values are un-
known, and the obtained estimated standard errors may be very misleading regarding
the underlying true standard deviations. Nevertheless, we do �nd substantially smaller
estimated standard errors and therefore we unreservedly recommend to use GMM in
future as exposed here in a more keen way than presently is the custom.
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