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Abstract

This paper examines the incentives offered by frictionless markets for innovation of asset-

backed securities. Assuming homogeneous preferences across investors with heterogeneous

risk-sharing needs and allowing for short selling of securities, we characterize economies in

which competition provides insufficient incentives to innovate so that, in equilibrium, asset

markets are incomplete in all (pure strategy) equilibria—even when innovation is essentially

costless. Thus, we provide an alternative to Allen and Gale’s (1991) classic foundation for

endogenous market incompleteness.
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An important economic role of financial innovation is attributed to allowing asset holders to

increase the value of the owned assets or to raise capital. Some of the successful innovations in

financial markets, such as asset-backed securities and, more generally, the practice of tranching,

have been introduced by assets owners to benefit from heterogenous investor demands for hedging

and risk sharing.1 This paper examines the incentives for asset owners to introduce new securities.
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1 Innovations of this type include mortgage-backed securities (Ginnie Mae first securitized mortgages through
passthrough security in 1968; in 1971 Freddie Mac issued its first mortgage passthrough; in 1981 Fannie Mae
issued its first mortgage passthrough to increase the money available for new home purchases by securitizing
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In particular, we study whether competition in financial innovation among issuers of asset-backed

securities provides sufficient incentives to complete markets.

We consider a general model with holders of real or financial assets (e.g., entrepreneurs)

who strategically choose which securities to issue in frictionless markets, in which short sales

are allowed.2 The securities are offered to competitive investors who have identical utility over

consumption, but differ in their pre-existing risks and in their demands for intertemporal con-

sumption smoothing and, hence, exhibit heterogenous risk-sharing needs. We show that under

natural assumptions on investors’ preferences (i.e., convex marginal utility such as CARA or

CRRA), any financial structure with an incomplete set of securities dominates a complete finan-

cial structure in terms of the market value of real assets. Consequently, competition in financial

innovation among issuers does not offer incentives to complete the structure of traded securi-

ties, and financial markets are inefficient in providing insurance opportunities to investors. This

occurs even if innovation is costless; for any market size (including large markets); under simulta-

neous or sequential modes of competition; static or dynamic trade of securities; for an arbitrary

number of states of the world; endowment distributions; possibly idiosyncratic returns to real

assets; and for all monotone preferences of the issuers.

This paper’s main economic insight is that frictionless markets give asset owners incentives to

introduce a limited range of asset-backed securities. Indeed, firms tend to issue only a few

securities and most financial innovations are not introduced by the original asset holders, but by

intermediaries who can profit from commission fees or bid-ask spreads. Thus, our results highlight

the essential role of intermediaries—who can benefit not only from the mitigation of market

frictions, but also by creating value through the risk-sharing, or “spanning”, motive itself—

for completing the market.3 If market efficiency is to be improved through asset innovation,

then incentives other than maximizing asset value are necessary. We discuss the effectiveness of

government regulation of the innovation process.4

mortgages; in 1983 Freddie Mac issued the first collateralized mortgage obligation); Treasury STRIPS; primes
and scores issued by firms. Partitioning the anticipated flow of income from the pool into marketable securities
that will appeal to particular groups of investors with heterogenous demands for hedging risk has also been
applied by firms to many other kinds of credit transactions, including credit card receivables, auto loans, and
small business loans.

2 Thus, in our analysis, value to securitization of an issuer’s asset does not derive from short sales constraints.
Allen and Gale (1991, 1994), Chen (1995), and Pesendorfer (1995) examine short sales restrictions as a profit
source for corporate issuers. In contrast to our model, short sales restrictions introduce limits to arbitrage and
thereby create profit opportunities through indirect price discrimination in security design.

3 See Allen and Santomero (1998), Chen (1995), Pesendorfer (1995) and Bisin (1998).
4 Missing markets and the resulting exposure to systemic risk have been central to recent discussions of the

2008 financial crisis. To monitor financial innovation, in September 2009, the Security and Exchange Commission
(SEC) created the Division of Risk, Strategy and Financial Innovation, the first new division the SEC created in
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The literature has long recognized the spanning motive as a potential determinant of financial

innovation.5 As Duffie and Rahi (1995) emphasized, however, this theory has few concrete

normative or predictive results, and these have been demonstrated only in specific numerical

examples. Here, we provide sharp predictions on the endogenous financial structure in economies

with identical investor utility functions over consumption. The economic mechanism involves (the

shape of) the investors’ marginal utility function, which changes the very nature of competition

among asset holders and hence the incentives to innovate: competition in innovation can be seen

as a problem of provision of either a public good or a public “bad”.

Allen and Gale’s (1991) seminal paper on the spanning motive suggests an alternative expla-

nation for the limited incentives to issue securities in frictionless markets. Their classic example

shows that even if each individual entrepreneur can increase the value of an asset by introducing

new securities, in equilibrium, market may be incomplete if issuing securities is costly; with pos-

itive probability, innovation may fail to occur due to the entrepreneurs’ inability to coordinate

their innovation activities to complete the financial structure. The mechanism characterized in

this paper is different. It operates even if innovation is essentially costless; does not result from

lack of coordination among entrepreneurs; and implies that market incompleteness occurs with

probability one.

This paper offers two technical contributions. We characterize the comparative statics of

the market value of a real asset with respect to the security span. Permitting unlimited short

sales, along with the assumed quasi-linearity of the investors’ utility function gives tractability

to our approach: We recast the maximization of a firm’s value over financial structures as an

optimization problem over spans. More generally—to the best of our knowledge—this paper

is the first to study the class of games in which players’ strategy sets are collections of linear

subspaces of a common linear space (spans). Apart from the financial application, these types

of games arise naturally in competition in bundling commodities or in design of product lines.

The results obtained here directly extend and contribute to these contexts.6

37 years.
5 Allen and Gale (1994) and Duffie and Rahi (1995) provide literature surveys. Other strands of the literature

attribute innovation to incentives to mitigate frictions: asymmetric information between trading parties or due to
imperfect monitoring of performance, short sales restrictions, or transaction costs. While frictions are important
for understanding potential benefits from innovation, for many asset-backed securities, such as MBSs, attributes
of the underlying assets are largely public information; transaction costs have declined significantly over the past
decades (Allen and Santomero (1998); Tufano (2003)).

6 The problem of an entrepreneur issuing securities to sell a return on a real asset is mathematically equivalent
to the problem of a producer choosing a portfolio of bundles to sell an inventory of commodities or design of
product lines in which consumers have utility over multidimensional characteristics and producers decide what
vectors of characteristics to build into their products. The difficulty that stems from strategies being linear
subspaces is that collections of all linear subspaces are not convex sets, and payoffs are discontinuous in subspace
dimensionality. Thus, standard techniques do not apply.
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The paper is organized as follows: Section 1 reviews Allen and Gale’s (1991) classic example;

Section 2 presents the model of financial innovation; Section 3 establishes some useful equilib-

rium properties; Section 4 derives the comparative statics of the firms’ market values; Section 5

characterizes the endogenous financial structure of the economy; Section 6 extends results to a

more general model; and Section 7 concludes. All proofs appear in the Appendix.

1. The Example of Allen and Gale (1991)

We introduce the problem of competition in financial innovation in the context of the classic

example by Allen and Gale (1991; henceforth AG), whose work motivated the role spanning and

risk sharing play in financial innovation. Consider a two-period economy with uncertainty in

which there are two possible states of the world in the second period, N entrepreneurs, and a

continuum of investors. Each entrepreneur is endowed with a real asset (a firm), which gives

random return z = (0.5, 2.5) in terms of numèraire, contingent on the resulting state of the world.

The entrepreneurs, who only derive utility from consumption in period zero, sell their claims

to their future return to two types of investors. As a function of their consumption in period zero,

c0, and their (random) consumption in period one, c1, one half of the investors have preferences

5 + c0 − E[ exp(−10c1)],

whereas the other half have preferences

5 + c0 + E[ ln(c1)].

The mass of each type is normalized to N/2.

To sell their future returns, all entrepreneurs simultaneously choose from two financial struc-

tures: each can costlessly issue equity, in which case one market opens and shares of the en-

trepreneur’s firm are traded; or alternatively, the entrepreneur can innovate by issuing, at a cost,

two state-contingent claims, in which case, two markets open. There are no other assets in the

economy; therefore, if all entrepreneurs choose to issue equity, financial markets are incomplete.

However, if one or more entrepreneur innovates, the financial markets are complete.

From the perspective of insurance opportunities available in the market, a key question is

whether competition among entrepreneurs gives rise to sufficient innovation to complete large

markets. AG demonstrate that, in equilibrium, markets can be incomplete with positive proba-

bility for an arbitrary market size: Arbitrage ensures that firms with identical returns have the

same market value. In this economy, if we denote by VC the market value of each entrepreneur’s
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firm when markets are complete and by VI its value when only equity is issued, AG obtain that

VC = 0.58603 > 0.58583 = VI , so that market value is greater under complete markets.7 Thus,

completing the market is essentially a public good : All entrepreneurs are better off if at least

one pays an innovation cost to introduce contingent claims. AG focus on the symmetric mixed

strategy equilibrium, in which each entrepreneur chooses to innovate with positive probability

and as a result, all outcomes, including incomplete markets, occur with positive probability.8

One lesson from this example is that in the presence of innovation costs, large frictionless

markets may be incomplete due to miscoordination among entrepreneurs that results from inde-

pendent randomization. Clearly, the fact that innovation is costly is necessary for the free riding

mechanism to operate, since otherwise markets are complete.

To hint at the economic mechanism presented in this paper, we observe that, if the utility of

the first type of investors above is instead given by

5 + c0 + E[ln(c1 + 2)],

then the predictions we obtain change: Each firm’s market value is maximized in incomplete

markets, for now VC = 2.0952 < 2.3228 = VI . Financial innovation is then no longer a public good

from the entrepreneurs’ point of view. Rather, it becomes a public “bad”, as all entrepreneurs

are worse off if one or more of them innovate. As a result, issuing equity is a strictly dominant

strategy and, in the unique equilibrium, markets are incomplete with probability 1, even if the

cost of asset innovation is infinitesimal.

Both examples describe markets with plausible investor preferences. Yet, the corresponding

predictions regarding incentives to introduce new securities and market incompleteness differ

markedly. In this paper, we attempt to identify the economic mechanisms that underlie distinct

equilibrium predictions. Our primary result is the determination of such a mechanism: We offer

sharp predictions about the form of the endogenous financial structure in a general model in

which investors value future consumption equally.

2. Investors, Entrepreneurs, and Equilibrium

We first consider a two-period economy (t = 0, 1) with uncertainty. In the second period (t = 1),

there are S states of the world, denoted by s = 1, . . . , S. All the agents in this economy, whom

7 See Tables I and II in AG, pp. 1052-1053. All examples in AG share the feature that market value is greater
under complete markets.

8 In fact, with a larger number of entrepreneurs, the free-riding problem becomes more severe: Ceteris paribus,
for each entrepreneur, the probability that at least one other entrepreneur introduces contingent claims increases.
This reduces individual incentives to innovatec and the probability that one or more entrepreneur innovates is
bounded away from 1.

5



we describe next, agree that the probability of state s occurring in the second period is Pr(s) > 0.

2.1. Investors

Financial securities are demanded by a continuum of investors who derive utility from consump-

tion of numèraire in both periods of the economy (and across states of the world at t = 1).

There are K types of investors, which we index by k = 1, . . . , K, and these types differ in their

endowments of wealth in the second period. In state s, investor k will have wealth ek,s ≥ 0; the

random variable ek = (ek,1, . . . , ek,S) denotes investor k’s future wealth. Types of investors are

interpreted as clienteles with heterogeneous demand for risk sharing arising from future income

risk. The mass of type k investors is denoted by θk > 0, and the mass of all investors is θ =
�

k θk.

While their endowments of future wealth may differ, all types of investors have the same

preferences over consumption, and their utilities are quasilinear and von Neumann-Morgenstern

in the second period consumption. For all types, the utility derived from present consumption

c0 ∈ R and a state-contingent future consumption (c1, . . . cS) ∈ RS
+ is given by c0 + U(c1, . . . cS),

where function U : RS
+ → R is defined by

U(c1, . . . cS) = E[u(c)] =
�

s

Pr(s)u(cs)

for a C2 Bernoulli index u : R+ → R that satisfies the standard assumptions of strict monotonicity

and strict concavity, as well as the Inada condition that limx→0 u�(x) = ∞.

2.2. Entrepreneurs

Although investors have common preferences over consumption, they are exposed to distinct

endowment risks. Real asset holders, who, by issuing asset-backed securities can tailor asset

structure to clienteles with different hedging needs, can exploit the resulting heterogeneity in

investor demand. Financial securities are issued by a group of entrepreneurs,9 each of whom has

future wealth that may depend on the state of the world, and who wants to “sell” that future

wealth in exchange for present consumption. Specifically, suppose that there is a finite number,

N , of strategic entrepreneurs who are indexed by n = 1, . . . , N . Entrepreneur n owns a real

asset (e.g., a firm) that pays zn,s > 0 units of the numèraire in the second period, if state of the

world s is realized, but he does not care about future consumption and his utility is given by the

present revenue that he can raise from selling the future return on his real asset. That is, the

9 “Entrepreneurs” represent any traders who sell future income associated with assets they own by issuing
asset-backed securities. This includes firm owners issuing securities backed by real assets or, alternatively, banks
securitizing the pool of assets they own (e.g., tranching mortgage pools).
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random variable zn = (zn,1, . . . , zn,S) is the return to the real asset that entrepreneur n wants to

sell in exchange for numèraire in the first period.

Entrepreneurs do not know investors’ future endowments and hold probabilistic beliefs over

the profile (e1, . . . , eK). These beliefs are common to all entrepreneurs and given by the joint

distribution function G, which is defined over RS×K
+ . For some of our results, we assume that

distribution G is absolutely continuous with respect to the Lebesgue measure, but no other

restrictions are placed on G. In particular, the associated marginal distributions can differ

across investor types, and the joint distribution G can feature an arbitrary interdependence

of endowments, as long as the correlations are not perfect, which is the case given absolute

continuity.

2.3. Simultaneous innovation

To sell claims to the return from their real assets zn, entrepreneurs simultaneously issue securities

in the first period. In the second period, payments against the issued securities are made and

investors consume. Each entrepreneur can choose from various alternative selling strategies. One

possibility is opening an equity market to sell shares of his asset. An alternative is to issue S

claims, one for each state, paying zn,s units of the numèraire in the corresponding state s and 0

otherwise. More generally, entrepreneur n can issue a portfolio that comprises an arbitrary finite

number of securities: A financial structure for entrepreneur n is a finite set of securities, Fn ⊆ RS.

Each security f ∈ Fn promises a payment of numèraire fs, contingent on the realization of the

state of the world s, for each s = 1, . . . , S.

Because we only allow finite financial structures, it is convenient to treat financial structures

as matrices. We write Fn = (f 1
n, . . . , f

|Fn|
n ), where |Fn| denotes the cardinality of the structure.

Financial structure Fn is required to exhaust the returns to entrepreneur n’s real asset and,

without loss of generality, the supply of each security issued by entrepreneur n is normalized to

1. Formally, let Fn be the set of all financial structures such that Fn1 = zn, where 1 = (1, . . . , 1);

entrepreneur n is restricted to issue Fn ∈ Fn.

For an exogenously given constant γ > 0, we will assume that the cost of issuing financial

structure Fn is γ|Fn|. That is, the cost of issuing each security is γ.

2.4. Equilibrium in Financial Markets

Considering all entrepreneurs,
�

n |Fn| markets open in the present. The securities traded are

given by the structure F = (F1, . . . , FN), which we treat as an S × (
�

n |Fn|) matrix.

All investors are non-atomic, therefore, the prices at which securities trade are given by the
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competitive equilibrium prices of the economy under financial structure F , where we assume

that investors can sell the issued securities short, but cannot issue any other securities.10 For

entrepreneur n, the relevant prices are those that correspond to his securities, which we denote

by pn. Hence, the market value of his firm is given by Vn(F ) = pn · 1. Because the competitive

equilibrium prices depend on the investors’ profile of future wealth, which is unknown to the

entrepreneurs, entrepreneur n’s gross payoff is EG[Vn(F )].

All entrepreneurs choose their financial structure simultaneously, behaving à la Nash, so as

to maximize the expected value of their firms, net of issuance costs.

3. Allocation and Market Value

We abstract, momentarily, from the strategic aspects of the problem to study how the market

value of the entrepreneurs’ assets is determined in financial markets, given a financial structure

F . To do this, we first characterize the future allocation of numèraire among investors that

results from trading the securities offered in F in competitive financial markets.

3.1. Market completeness

The (column) span of F , which is the linear subspace of RS defined as

�F � = {x ∈ RS | Ft = y for some t ∈ R|F |},

is the set of all transfers of future numèraire that can result from some allocation of securities

in F . A financial structure is said to be complete if it spans the entire RS; or equivalently, if its

rank is S. Otherwise, the structure is said to be incomplete.

3.2. Characterization of the equilibrium allocation

Our first result asserts that given the financial structure chosen by the entrepreneurs, competi-

tive financial markets allocate future numèraire in the same way a utilitarian (fictitious) planner

would, while restricted to allocations that are feasible under the pre-determined financial struc-

ture.
10 The definition of competitive equilibrium is standard: If the assets issued are structure F , a competitive

equilibrium comprises security prices p ∈ R|F | and an allocation (t1, . . . , tK) ∈ R|F |×K of financial securities across
investor types, such that each tk solves maxt{U(ek + Ft)− p · t}, while

�
k θktk = 1. Under our assumptions on

preferences, the condition of optimality of tk can be replaced by the requirement that FTDU(ek + Ftk) = p. We
observe in Section 3.3 that equilibrium prices exist and are unique; thus, our reference to the equilibrium prices
under structure F is justified.
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Let L be the set of all linear subspaces L ⊆ RS that contain the real assets of all entrepreneurs,

{z1, . . . , zn} ⊆ L. Given any such subspace, let X(L) be the set of allocations of numèraire that

can result from transfers in the linear subspace L, namely

X(L) = {x ∈ RS×K
+ |

�
k θk(xk − ek) =

�
n zn and (xk − ek) ∈ L for all k}. (1)

Thus, for any financial structure F , X(�F �) is a collection of allocations of numèraire that are

feasible through the trades of securities in F . Also, for any profile x = (x1, . . . , xK) ∈ RS×K
+ , let

Ū(x) =
�

k θkU(xk), which aggregates utilities across investor types at allocation (x1, . . . , xK)

of future consumption. Given transferable utility, the following characterization of competitive

equilibrium allocations of numèraire holds for any financial structure F .

Lemma 1 (Allocative Equivalence). Fix a financial structure F , let (t1, . . . , tK) be an

allocation of the securities F such that
�

k θktk = 1, and let (c1, . . . , cK) be the future allocation

of numèraire given by ck = ek+Ftk. Allocation (t1, . . . , tK) is a competitive equilibrium allocation

under structure F if, and only if, (c1, . . . , cK) solves the problem

max
x

�
Ū(x)|x ∈ X(�F �)

�
. (2)

The equivalence between the competitive allocation of numèraire and the solution to Problem

(2) has useful implications. First, note that for any financial structure F , the numèraire allocation

is uniquely determined in the resulting competitive equilibria, even if the securities trades that

yield such allocation are not (as is the case, for example, for linearly dependent securities).

Moreover, the equilibrium allocation of numèraire depends on the financial structure only up to

its span; that is, for any two financial structures F and F �, such that �F � = �F ��, the equilibrium
numèraire allocations coincide.11

3.3. Market value

Denote by x : L → RS×K
++ the (unique) solution to problem

x (L) ≡ max
x

{Ū(x)|x ∈ X(L)},

and let κ : L → RS
++ be defined as

κ(L) ≡ 1

θ

�

k

θkDU(xk(L)). (3)

11 From the lemma, the existence of a competitive equilibrium allocation in the markets that open once
entrepreneurs choose the financial structure F follows from the compactness of set X(�F �) and the continuity
of function Ū(x). Its uniqueness holds by the convexity of X(�F �) and the strict concavity of Ū(x). In terms
of primitives, the uniqueness results from the quasilinearity of the investor utilities, but does not require their
homogeneity. The dependence of the numèraire allocation on the financial structure through span alone is obtained
because in Problem (2), structure F enters the constraint only through its span, �F �.
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Given Lemma 1, for any financial structure F for which �F � = L, allocation x(L) is the fu-

ture equilibrium numèraire allocation, while κ(L) measures the average marginal utility, across

investors in equilibrium.

Function κ determines equilibrium state prices for any financial structure, whether complete

or not: Under financial structure F , competitive equilibrium asset prices are characterized by the

equality pT = κ(�F �)TF . When the financial structure is incomplete, equilibrium consumption

vectors and, hence, marginal utilities may differ across investors. However, although state prices

are not unique, those defined in (3) can be used to price securities unambiguously.12 Lemma 2

characterizes the market value of an entrepreneur’s real asset.

Lemma 2 (Market Value). The expected market value of an entrepreneur’s real asset zn under

structure F is given by EG[Vn(F )] = EG[κ(�F �)] · zn.

Two implications of this lemma are immediate. First, note that for any financial structure, the

expected market value is defined unambiguously: any two financial structures can be ranked in

terms of their profitability for each entrepreneur. In addition, note that just as with the numèraire

allocation, market value depends on the financial structure only up to its span. Therefore,

financial structures that permit the same numèraire transfers define equivalence classes for market

value for each entrepreneur.

4. Financial Structure and Market Value

We now show that within the set of all financial structures, a structure always exists that max-

imizes the expected market value of an entrepreneur’s real asset. Then, we characterize this

financial structure as to whether it is complete or incomplete. Finally, we exploit the equiva-

lence of the equilibrium numèraire allocation and Problem (2) given by Lemma 1, to present

a geometric interpretation of our results. This will elucidate the comparative statics of asset

span and equilibrium prices (and market value) as well as the impact of asymmetries in investor

preferences on predictions about incentives to innovate. To simplify our presentation, we still

abstract from the issues of competition in the determination of the financial structure and ignore

issuance costs.
12 Any vector in the set {κ(L)} + L⊥ constitutes a valid vector of state prices. In particular, each of the

vectors whose average defines κ(L) does so; the marginal utilities at equilibrium consumption can differ only in
the components that are orthogonal to the security span and their differences are irrelevant for security pricing.
Our characterization of κ(L) as an average is useful for determining a financial structure that maximizes the
entrepreneur’s market value.
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4.1. The Existence of a value-maximizing financial structure

There are two difficulties with demonstrating the existence of an optimal structure: First, even if

one restricts attention to financial structures with a fixed number of securities, the domain over

which each entrepreneur optimizes is non-compact. In addition, market value is a discontinuous

function because equilibrium state prices change discontinuously with the financial structure

when the latter changes rank.13 To deal with these two problems, we take the following approach.

Since any two financial structures with the same span are equivalent in terms of market value

(Lemma 2), optimization over financial structures can be recast as the problem of choosing a

span—a linear subspace from the set of all linear subspaces of RS—that maximizes market value

rather than optimizing over financial structures directly. The optimization problem over linear

subspaces is more tractable: For any dimension D ≤ S, the set of all D-dimensional linear

subspaces of RS is a compact manifold known as the Grassmannian, and market value Vn is

continuous on it.14 This allows us to recover the compactness of the domain and the continuity

of the objective function over subsets of the problem’s domain, which we then use to establish

the existence of a financial structure that maximizes market value.

Lemma 3 (Existence). For each entrepreneur n, a financial structure F ∗ ∈ F exists such that

EG[Vn(F ∗)] ≥ EG[Vn(F )] for all F ∈ F .

13 To see this in an extreme example, consider the following sequence of financial structures with two securities:

Fh =

�
1/h 0
0 1/h

�
, for all h ∈ N.

For any finite h, markets are complete under structure Fh and the set of feasible allocations X(�Fh�) comprises all
allocations. In the limit as h → ∞, security span collapses to a zero-dimensional subspace and X(�limh→∞ Fh�)
becomes a singleton set that comprises only the autarky point. Consequently, numèraire allocation, and hence
the average marginal utility, are discontinuous. AG do not face these difficulties in a general model, since they
consider entrepreneurs who choose a financial structure from an exogenously pre-specified, finite set of securities.

14 Heuristically, suppose that S = 2 and an entrepreneur chooses among all one-dimensional linear subspaces.
Each subspace is represented by a line passing through the origin and is uniquely identified by a point on a
semicircle with a radius 1 (see Figure 1). A bijection that enlarges the distance of any point on the semicircle by
a factor of 2 (around the circle) translates a semicircle into a full circle. Given such parameterization of linear
subspaces, the entrepreneur effectively chooses a point on a circle, a compact set. In addition, the dimension of
any linear subspace in the domain of optimization—each represented by a point on the circle—is, by construction,
the same and equal to 1; X(L) is a continuous correspondence defined on the circle. By the Maximum Theorem
and Lemma 1, the equilibrium numèraire allocation x(L) is continuous and so are state prices, given by the
average marginal utility. The use of a Grassmanian first occurs in the economics literature in Duffie and Shafer’s
(1985) classic proof of generic existence of a competitive equilibrium for incomplete markets. To the best of our
knowledge, we are the first to study the problem of optimization over spans and exploit the compactness of a
Grasmanian to establish the existence of a value maximizing financial structure.
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4.2. Completeness of a value-maximizing financial structure

Proposition 1 asserts that the value maximizing financial structure depends on the shape of

the marginal utility function, u�. Specifically, any incomplete financial structure is superior or

inferior to any complete financial structure, depending on whether the marginal utility is convex

or concave, respectively, on the relevant part of the domain.

More formally, let X ⊆ R+ be a convex set that contains all the possible values of equilibrium

allocations of numèraire, considering all investor types, states of the world, financial structures,

and endowment profiles.15 We say that regarding entrepreneur n’s market value, structure F

strictly dominates an alternative structure F �, if Vn(F ) > Vn(F �); that F is not dominated by F �

if this inequality is weak; and that F and F � are equivalent if Vn(F ) = Vn(F �).

Proposition 1 (Value-Maximizing Financial Structure). Fix any two financial struc-

tures F and F �, and suppose that F is incomplete and F � is complete. Regarding entrepreneur

n’s market value,

(i) if u��� > 0 on X , F strictly dominates F �, G-a.s. (and F is not dominated by F �, surely);

(ii) if u��� < 0 on X , F � strictly dominates F G-a.s. (and F � is not dominated by F , surely);

(iii) if u��� = 0 on X , structures F and F � are equivalent.

An important implication of Proposition 1 is that, even though investors may differ in their

risk-sharing needs, to increase the firm’s market value or to raise capital, it is strictly subopti-

mal for entrepreneurs to introduce asset-backed securities that fully hedge the risks of different

investor clienteles, when the investors’ marginal utility function is convex. Note that the im-

plication of this proposition holds for almost all realizations of investor endowment profiles in

the support of G and not merely in expectation. Furthermore, in an economy with only two

states of the world—since effectively there are only two choices of financial structures, complete

and equity (incomplete)—Proposition 1 fully characterizes the financial structure that maximizes

market value, which we highlight as the following corollary.

Corollary 1 (Two-State Economy). Suppose that S = 2. If u��� > 0 (u��� < 0) on X , then,

G-a.s., a financial structure maximizes an entrepreneur’s market value if, and only if, it consists

of equity only (respectively, is complete).

15 That is, let X s
k (e) be the projection, over the consumption set for investors of type k in state s, of the image

of function x(L) when the endowment profile is e. Let X s
k be the union of all the sets X s

k (e) over profiles e in the
support of G and let X = ∪k,sX s

k .
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Recall that in the example presented by AG, in which S = 2, a complete financial structure

maximizes market value. In our model, with homogeneous utility functions across investors, this

prediction holds only if the marginal utility function is concave, whereas for the utility functions

common in macroeconomics and finance, such as CARA or CRRA, an incomplete financial

structure brings higher market value. Next, we provide an example of a two-state economy in

which we highlight the key economic intuition behind Proposition 1 and Corollary 1. Given that

these results hold almost surely, the example considers deterministic investor endowments for

the transparency of the arguments.

Example 1. Suppose that S = 2, there is one entrepreneur with the riskless asset z = (1, 1), and

there are two types of investors of equal mass normalized to 1, whose Bernoulli utility function

is u(x) = 2 ln(x). In the second period, the endowments of the investors are e1 = (1, 0) and

e2 = (0, 1) and the states are equally likely.

With two states, the entrepreneur is choosing between a complete financial structure and

equity. With a complete financial structure (e.g., equity and debt), all risk is shared at the

equilibrium allocation, c1 = c2 = (1, 1); the marginal utility of each investor in each state, given

by 1/ck,s, is the same for both investors and equal to 1; and the market value of the entrepreneur’s

asset is 2.

If instead only equity is offered, each investor obtains half of the claims to z, which results in

equilibrium allocation of c1 = (32 ,
1
2) and c2 = (12 ,

3
2). The average marginal utility in each state

is 11
3 and the market value equals 22

3 .

Hence, in this economy, an incomplete financial structure dominates a complete one in terms

of market value. It is clear that, when marginal utility is linear, both complete and incomplete

financial structures yield the same market value, while when marginal utility is strictly concave,

the complete financial structure maximizes market value.

To understand the economic mechanism behind the example,16 note first that with a complete

financial structure, each investor purchases consumption only in the state for which his initial

endowment is 0, and the equilibrium marginal utilities of investors coincide in each state. When

only equity is available, for an investor to obtain consumption in the desired state, he must

also purchase the security that pays (the same quantity of) numèraire in the other state. Thus,

16 For linear marginal utility (e.g., CAPM), it is well-known that when investors’ endowments and riskless asset
are in the asset span, markets are effectively complete even if the asset span is not full. Intuitvely, in equilibrium,
mean-variance traders sell their endowments and purchase the market portfolio and the riskless asset (two-fund
separation). Consequently, a larger asset span is irrelevant to attain the first-best outcome. By contrast, we show
that for identical quasilinear preferences (but not otherwise), prices of the assets in the span are the same for all
financial structures, even if investor endowments are not within the asset span; hence, equilibrium allocation is
inefficient (and the two-fund separation does not hold).
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by introducing a wedge in consumption, an incomplete financial structure creates a wedge in

marginal utility between the two investors in each state. With convex marginal utility, the

wedge increases the willingness to pay of the investor type with lower equilibrium consumption

more than it reduces the willingness to pay of the investor who consumes more. Therefore, in each

state, an incomplete financial structure induces a higher average marginal utility in equilibrium

compared to complete markets. Because the average willingness to pay for consumption in each

state remains high after trade, the equilibrium value of equity remains high as well.

Note that in Example 1, the market value of the real asset is higher only if the equilibrium

allocation of numèraire is inefficient, in the sense that it fails to display full risk-sharing. In

general, even with inefficient endowments (which occur G-a.s., given that G is absolutely contin-

uous with respect to the Lebesgue measure), the final allocation under an incomplete financial

structure may still be efficient. For any fixed incomplete financial structure, however, the set

of endowment realizations that give efficient equilibrium allocations has zero measure; therefore,

the equilibrium allocation is inefficient G-a.s.

Since the inequalities in Proposition 1 are strict with G-probability 1, it follows that the result

is robust to sufficiently small asymmetries in investor utility functions.17 However, Proposition 1

does not generalize to arbitrary heterogeneity in utility functions across investors. Indeed, in the

AG example, investor marginal utilities are strictly convex, yet a complete financial structure

maximizes the market value of an asset. Considered together, Proposition 1 and the AG example

suggest that in markets with heterogeneous investor utilities, for convex or concave marginal

utility, no general normative predictions based solely on investor preferences can be obtained;

the optimality of complete or incomplete financial structures then depends on the details of the

economic environment, such as endowment or asset return distributions.

The hypotheses regarding the shape of the marginal utility function in the three claims of

Proposition 1 are to hold over some convex subset of the respective domains that is large enough

to include all the relevant equilibrium allocations of numèraire. We introduce this qualification

because otherwise the class of preferences under consideration, for which the third derivative

would have to be strictly negative on the whole domain, may be vacuous.18 If distribution G has

a bounded support, we can always find a bounded set of outcomes X to qualify the assumptions

on the shape of marginal utilities.

17 This is clearly the case for a given incomplete financial structure and, by the compactness argument used
in the proof of Lemma 3, extends to all incomplete financial structures.

18 While a global assumption would not be problematic for claim (i), given the Inada assumption about utility,
a strictly concave utility function does not exist wherein marginal utilities are always strictly positive and concave
or linear.
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4.3. Monotonicity of market value

In general, with more than two states of nature, Proposition 1 asserts that a complete financial

structure is almost surely dominated by any incomplete financial structure when the marginal

utility is convex. The next example shows that (even under our assumptions of homogeneous,

quasi-linear utilities) market value need not decrease “monotonically” with the hedging possibil-

ities financial structures offer to investors. That is: it is not true that given a pair of structures

F and F �, the fact that �F � ⊆ �F �� implies that Vn(F ) ≥ Vn(F �).

Example 2. Suppose that S = 3, there is one entrepreneur with the riskless asset z = (1, 1, 1),

and there are two types of investors of equal mass normalized to 1 whose Bernoulli index is the

following C2 function:

u(x) = 3×
�

2x− 1
2x

2 − 3
2 , if x ≤ 1;

ln(x), otherwise.
(4)

The investor endowments are e1 =
�
1
2 , 0, 1

�
and e2 =

�
0, 12 , 1

�
, and the states are equally likely.

When only equity is offered, F = {(1, 1, 1)}, by symmetry, the equilibrium allocation is given

by c1 = (1, 12 ,
3
2) and c2 = (12 , 1,

3
2), state prices are κ(�F �) = (54 ,

5
4 ,

2
3), and the market value of

the entrepreneur’s asset is 31
6 .

Now, consider the following (not necessarily optimal) financial structure with a state-1 con-

tingent claim and a security that pays 1 in states 2 and 3:

F � =





1 0

0 1

0 1



 .

Observe that �F � ⊂ �F ��. Because security (0, 1, 1) pays in the second state, it is relatively more

attractive to type-1 investors and in equilibrium the allocation of securities is t1 � (14 ,
2
3) and

t2 � (34 ,
1
3). The implied allocation of numèraire is c1 � (34 ,

2
3 ,

5
3) and c2 � (34 ,

5
6 ,

4
3), the state

prices are κ(�F ��) � (54 ,
5
4 ,

27
40), and the market value is � 3 7

40 > 31
6 .

Thus, financial structure F � strictly dominates F in terms of the entrepreneur’s market value.

Utility function (4) can be perturbed so that marginal utility is strictly convex on the entire domain

and F � still yields a strictly higher market value than F .

In Example 2, financial structure F introduces a wedge in numèraire consumption in the

first two states, whereas the allocation is efficient with respect to the third state. In the first

two states, given that consumption takes place in the domain of quadratic utility, distortion

brings no increase in market value relative to complete markets; the average marginal utility

remains intact. In contrast, while the two-security financial structure F � improves the efficiency

15



of the first two states’ allocations, it introduces a wedge in the third state’s allocation. Because

consumption in this state is in the domain of a logarithmic function with strictly convex marginal

utility, the wedge in the third state increases the state price for that state and the firm’s market

value.

One insight from Example 2 is that in settings in which an incomplete portfolio of asset-

backed securities maximizes the issuer’s revenue, entrepreneurs may have incentives to offer more

sophisticated financial structures than equity and an intermediate degree of incompleteness is

optimal.

The lack of monotonicity of the market value of an asset in a security span in general extends

to strictly concave marginal utility environments.19 In the important instance of CARA utility

and a riskless real asset, market value is indeed monotone in the span of the financial structure,

and the optimal financial structure involves selling a riskless security (e.g., a bond) only.

Example 3. Consider the case of a single entrepreneur with the riskless asset z = (λ, . . . , λ),

for some λ > 0, and suppose that all investors have CARA Bernoulli utility u(x) = −e−αx, while

distribution G is arbitrary. In this case, u�(x) = −αu(x), which implies that

Ū(x(�F �)) = − 1

α

�

s

�

k

θk Pr(s)u
�(xk,s(�F �)) = − θ

α
κ(�F �) · 1 = − θ

αλ
V (F ).

By Lemma 1, function Ū(x(�F �)) is increasing in �F �, thus it follows that the market value of z1

is monotonically decreasing in the security span. In particular, opening a market for the riskless

asset maximizes its market value.

4.4. A geometric interpretation

The set of all feasible allocations of numèraire in Example 1 are represented by the Edgeworth

box in Figure 2. With a complete financial structure (F ), feasible set X(�F �) comprises all

allocations in the box. If only equity is issued (F �), set X(�F ��) is represented by the line

segment that connects the endowment points. A planner’s welfare function Ū(x) attains its

unconstrained maximum at the efficient allocation (where investors consume the same quantities)

and decreases for allocations further from the center (Figure 2.A). Thus, if financial markets are

complete, the equilibrium allocation is the unconstrained maximum of Ū , whereas with only

equity, the allocation coincides with its constrained maximum on X(�F ��).
Figure 2.B depicts entrepreneur 1’s preference map, with each level curve comprising all

allocations that give rise to a given firm value V = [
�

k θkDU(xk)] · z1. Due to the symmetry of

19 As the analysis from Section 5.3 implies, the non-monotonicity of the market value function does not stem
from non-monotonicity of the welfare function Ū in asset span.
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the investor marginal utility, the critical point of the market value function, V , is at the efficient

allocation as well. Whether the efficient allocation yields a minimum or a maximum market

value, however, depends on whether the marginal utility and hence, the market value function,

is convex (as in Example 1 with a logarithmic utility) or concave.20 In the case of a quadratic

Bernoulli utility function, all allocations in the box are equivalent in terms of market value, and

entrepreneurs are indifferent to the planner’s allocation choice.

In general, the planner preference and market value maps need not overlap, which in economies

with more than two states may result in the non-monotonicity of market value in the security

span. In Example 2, by offering two securities (F �) rather than equity (F ), the entrepreneur

enlarges the feasible set in the direction for which the welfare function Ū increases, and the

planner’s new optimum also gives rise to higher market value. For CARA utility with a riskless

asset, the two maps coincide (see Example 3). Since the constant of proportionality (−1/αλ) is

negative, a smaller security span, and hence a smaller choice set in Problem (2), weakly increases

market value. On the other hand, with the exception of CARA utility, it is apparent that one

can specify endowments and a real asset return such that increasing the span increases market

value.

With heterogeneous investor utilities, predictions regarding the optimality of an incomplete

financial structure depend on the environment’s details. Considering convex marginal utility,

then, the efficient allocation and that which minimizes market value do not necessarily coincide.

Indeed, this is the case in the AG example as depicted in Figure 3. With equity only, the

equilibrium allocation is the point on the line segment that maximizes Ū ; with a complete

financial structure, it is the unconstrained maximum that yields a higher market value. Thus,

with convex investor marginal utility, separation of the efficient and value-minimizing allocations

derived from the asymmetry of investor utilities is necessary (but not sufficient) for market

completion to be profitable for the entrepreneurs. Similarly, one can construct an example with

asymmetric strictly concave marginal utilities in which the market value is maximized by an

incomplete financial structure.

20 In a two-investor economy, the convexity of market value function in allocation in the Edgeworth box is
defined as the convexity of the function

1

2
(DU(x1) +DU(e1 + e2 + z1 − x1)) · z1

in x1. More generally, convexity is defined with respect to consumption of the firstK−1 investors and consumption
of investor K is the residual of the total resources

�
k θkek + z1. If marginal utilities are convex, then market

value is convex in this sense as well.
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5. Competition in Security Innovation

The central question of this paper concerns whether competition among asset holders provides

sufficient incentives to complete the market. Having determined the comparative statics of

market value in financial structures, we now turn to examining the strategic interactions among

entrepreneurs when choosing which securities to issue. By a standard argument (e.g., Kreps

(1979)), entrepreneurs can affect prices, even in large markets, to the extent that they can

impact the span of F . We consider the situation in which all entrepreneurs simultaneously

choose structures of issued securities, recalling that there is a per-security innovation cost γ > 0,

so that γ|Fn| is the issuance cost of Fn.21

5.1. An example

To illustrate how competition among entrepreneurs affects incentives to innovate, we first examine

economies with two states, two entrepreneurs, and the riskless real asset zn = (1, 1). By Lemma 1,

it suffices to consider that each entrepreneur chooses between equity (E ) or two state-contingent

claims (C ). Markets are incomplete when both entrepreneurs choose equity and are complete for

all other strategy pairs.

Under concave marginal utility, competition in asset innovation takes the form of a provision

of public good, as in the heterogeneous-utility example of AG. A complete financial structure

maximizes market value of both entrepreneurs, and they both benefit if one innovates. Assuming

for simplicity that the market values of the entrepreneurs’ real assets are 0 when markets are

incomplete and 1 when they are complete (by Proposition 1, VI < VC), it is useful to summarize

the entrepreneurs’ reduced form net payoffs in Table 1. Let γ < 1.

Table 1: Normalized net market values under concave marginal utilities

E C

E −γ,−γ 1− γ, 1− 2γ

C 1− 2γ, 1− γ 1− 2γ, 1− 2γ

One of the insights from the AG example that also holds in our example with concave marginal

utility is that the equilibrium financial structure can be (endogenously) incomplete with positive

probability, even if complete markets maximize each entrepreneur’s market value. Considering

21 In the absence of this cost, trivial Nash equilibria arise in which each entrepreneur chooses a complete
financial structure.
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Table 1, in the mixed strategy Nash equilibrium, all four outcomes, including incomplete mar-

kets (E,E), occur with positive probability. The probability of market incompleteness depends

positively on the innovation cost, and vanishes as costs become negligible. Market incomplete-

ness can be attributed to the entrepreneurs’ inability to coordinate on one of the two favorable

outcomes ((C,E) or (E,C)) when independently randomizing over two financial structures.22

The entrepreneurs have ex post regret when incomplete markets are realized, each preferring to

complete the market, knowing that the other did not.

Importantly, apart from the mixed strategy Nash equilibrium, there are two more equilibria

in pure strategies in which one of the two entrepreneurs innovates and markets are complete.

Clearly, in a pure strategy equilibrium, the miscoordination that may lead to market incomplete-

ness does not arise, as each entrepreneur best responds to the given financial structure chosen

by his opponent.

Next, consider an economy with convex marginal utility. The net values of the entrepreneurs’

real assets are as presented in Table 2, where we now assume that the market values are 1 when

markets are incomplete and 0 when they are complete (by Proposition 1, VI > VC). With convex

marginal utility, innovation is a public “bad”; issuing equity is a strictly dominant strategy, and

in the unique Nash equilibrium markets are incomplete.

Table 2: Normalized net market values under convex marginal utilities

E C

E 1− γ, 1− γ −γ,−2γ

C −2γ,−γ −2γ,−2γ

These examples demonstrate that predictions regarding the incompleteness of endogenous

market structure depend on primitive investor preferences, which qualitatively changes the nature

of competition among entrepreneurs and their incentives to innovate.

5.2. Endogenous market completeness

Theorem 1 offers general predictions regarding market (in)completeness. To the extent that mis-

coordination in financial innovation exhibited by a mixed strategy equilibrium is not a problem,

22 The inability to coordinate does not stem from randomization over financial structures per se, but from the
independence of entrepreneurs’ strategies (i.e., the independence of mixed strategy distributions). With public
(i.e., perfectly correlated) signals, correlated equilibria exist in which one of the events (C,E) or (E,C) is realized,
and markets are complete with probability 1.
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our model provides strong predictions based solely on investor preferences: When the investors’

marginal utility function is strictly concave, if the innovation costs are not prohibitively high,

then markets are complete in all pure strategy Nash equilibria.23 With convex investors’ marginal

utility function, the financial structure is incomplete in all pure strategy Nash equilibria, unless

the only feasible structures are complete.

Theorem 1 (Endogenous Market Completeness). The following statements characterize

the equilibrium financial structure.

1. If u��� < 0 on X , then γ̄ > 0 exists such that, for any 0 < γ ≤ γ̄, in any pure strategy Nash

equilibrium, the resulting financial structure is complete.

2. If u��� ≥ 0 on X and �{z1, . . . , zn}� �= RS, then, for any γ > 0, in any pure strategy Nash

equilibrium, the resulting financial structure is incomplete.

The predictions regarding endogenous market (in)completeness are quite robust. They hold

(with probability 1) in markets for an arbitrary number of entrepreneurs (that is, regardless

of the intensity of competition); any number of states; arbitrary payoff structures of their real

assets (with common or idiosyncratic risk); and any (absolutely continuous) joint distribution of

investor endowments.

Building on the analysis of the monotonicity of entrepreneur n’s market value in the (joint)

span of F (Section 4.3), and hence in the span of Fn given the financial structures of entrepreneurs

n� �= n, the next result provides sufficient conditions under which, in the unique (dominant

strategy) equilibrium, no innovation occurs and the resulting financial structure has minimal

span. This occurs if there are two future states of the world and the investors’ marginal utility

function is strictly convex, or, for an arbitrary number of states, if the investors’ Bernoulli utility

is CARA and all entrepreneurs are endowed with riskless real assets.

Proposition 2 (Equilibrium in Dominant Strategies). If any of the following two con-

ditions holds, there is a unique Nash equilibrium, and the resulting financial structure is F =

{z1, . . . , zn}:

1. S = 2 and u��� ≥ 0 on X ; or

23 The set of strategies (i.e., the set of linear subspaces) does not have a structure of a vector space, and
the existence of a pure strategy Nash equilibrium cannot be established with the standard Brouwer/Kakutani
approach. However, it can be shown that equilibrium exists if there are two states only or when all the assets
{z1, . . . , zn} are “sufficiently close” to collinear. Moreover, in settings in which issuance in the considered model
is sequential, the subgame-perfect Nash equilibrium is guaranteed to exist under general conditions (see Section
6.3.2).
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2. function u is CARA and, for all k, zk,s = zk,s�, for all s and s�.

Outside of CARA settings, in a model with convex marginal utility and S > 2, issuing equity

need not be a dominant strategy, and multiple Nash equilibria may exist. By Theorem 1, markets

are then incomplete in all pure strategy equilibria.

Furthermore, when the investors’ marginal utility function is convex, in a mixed strategy

equilibrium, markets may be complete with positive probability even though market value is

maximized by an incomplete financial structure and even if innovation is costly. Similar to

markets with concave marginal utility (See Section 5.1) or in the economy with heterogeneous

utilities studied by AG, equilibrium financial structure then involves a set of securities that are

individually suboptimal for each entrepreneur; that is, each has ex post regret given the financial

structures chosen by the others. The ex post regret occurs when entrepreneurs cannot coordinate

their activities—unlike pure strategy simultaneous competition, or sequential innovation. Thus,

the miscoordination mechanism identified by AG operates more broadly, even if a complete

set of securities is suboptimal: An undesirable outcome (from the entrepreneurs’ perspective)

occurs due to their inability to coordinate on an optimal financial structure, whether complete

or incomplete.

Example 4. Suppose that S = 3, there are two entrepreneurs, n = 1, 2, both endowed with the

riskless asset z = (1, 1, 1), and two types of investors whose utility function and endowments are

the same as presented in Example 2. Let the mass of each investor type be 1, and let the states be

equally likely. In Example 2 and Proposition 1, we demonstrate the existence of a financial struc-

ture whose span has dimension 2, which strictly dominates equity and (any) complete financial

structure. Therefore, the span of a financial structure F ∗ that maximizes the market value of the

entrepreneurs’ assets, which exists by Lemma 3, has dimension 2. Let V ∗ denote this maximized

market value. By continuity of market value on the set of two-dimensional spans, one can find a

two-dimensional linear subspace L∗∗ �= �F ∗�, with a corresponding two-asset financial structure

F ∗∗, which yields market value V ∗∗ that is arbitrarily close to V ∗ (V ∗∗ � V ∗). By construction,

financial structure F = {F ∗, F ∗∗} is complete.

There is a mixed strategy Nash equilibrium in which entrepreneurs randomize over F ∗, F ∗∗

and equity. The equilibrium probabilities of choosing F ∗ and F ∗∗ are

σ∗ � σ∗∗ � 1

3

�
1− γ

V ∗ − VC

�
, (5)

where VC is the market value in a complete market.24 Since V ∗ > VC, for a sufficiently small

24 Suppose that entrepreneur n� follows the mixed strategy (σ∗, σ∗∗, 1−σ∗−σ∗∗) over structures F ∗, F ∗∗ and
{(1, 1, 1)}. The expected profits of entrepreneur n, under F ∗, F ∗∗ and {(1, 1, 1)} are, respectively, (1− σ∗∗)V ∗ +
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innovation cost γ, probabilities σ∗ and σ∗∗ are strictly positive. In equilibrium, markets are

complete with probability 2σ∗σ∗∗ > 0.

For the intuition, the market value in the example is not monotonically decreasing in the

security span. Each entrepreneur is willing to pay innovation costs in order to partially complete

the market—either of the two incomplete financial structures, F ∗ or F ∗∗, gives strictly higher

market value than equity. In the described equilibrium, entrepreneurs fail to coordinate on one

of F ∗ and F ∗∗, which may result in an undesirable equilibrium outcome of complete financial

structure F and VC < V ∗.

It is worth noting that except for predictions concerning miscoordination—with concave

marginal utility or in the example presented by AG—the innovation costs are not essential

for predictions in the following sense.25 When innovation costs vanish (γ → 0), the probabil-

ity of market incompleteness tends to 0 in mixed strategy equilibria for markets with concave

marginal utility and in the example presented by AG. In contrast, in the limit of any pure strat-

egy equilibria of our model, markets with concave (convex) marginal utility remain complete

(incomplete).

5.3. Competition in innovation and welfare

The ability to alter the security span and hence the allocation of future consumption among in-

vestors allows entrepreneurs to affect prices even in markets with large numbers of entrepreneurs.

A question naturally arises regarding how the power of entrepreneurs to create markets impacts

welfare.

Our model has the following implications for the welfare appraisal of asset innovation. As-

suming negligible innovation costs, γ � 0, to achieve ex ante (and, generically, ex post) efficiency

of market outcomes, a policy must induce a full-span portfolio of securities. As suggested by

Lemma 1, this recommendation can be strengthened: Introducing an additional security is never

σ∗∗VC − 2γ, (1 − σ∗)V ∗∗ + σ∗VC − 2γ and (1 − σ∗ − σ∗∗)VC+ σ∗V ∗ + σ∗∗V ∗∗ − γ, where we used that under
{(1, 1, 1)}, market value coincides with VC (in Example 2, under equity, there is no distortion in the third state
consumption and market value is VC). Equating the three net expected payoffs and taking the limit as V ∗∗ → V ∗

gives σ∗ = σ∗∗ as in (5). In the example, with a sufficiently small innovation cost γ, when entrepreneur n� �= n
issues equity {(1, 1, 1)}, it is optimal for entrepreneur n to choose Fn = F ∗, in which case the market value
equals V ∗; it is marginally less profitable to chose F ∗∗ and obtain V ∗∗. If entrepreneur n� chooses Fn� = F ∗ or
Fn� = F ∗∗, however, then, given costly innovation, issuing equity alone maximizes the entrepreneur’s profit.

25 Innovation costs eliminate the (trivial) multiplicity of Nash equilibria, which would be present in the model
with costless innovation in which entrepreneurs simultaneously choose financial structures. If one entrepreneur
chooses a complete financial structure, it is a weak best response for all other entrepreneurs to issue complete
financial structures as well, regardless of market primitives (by changing Fn, an entrepreneur has no impact on
financial structure F ).
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detrimental to welfare, even if asset innovation does not fully complete the financial structure.

Given quasi-linearity of utilities in present consumption, for both investors and entrepreneurs,

utility is transferable and monetary transfers in period one are irrelevant for the overall welfare

in two periods. For any pair of structures F and F � such that �F � ⊆ �F ��, by Lemma 1, the

change in deadweight loss is equal to

max
x

{Ū(x) | x ∈ X(�F ��)} −max
x

{Ū(x) | x ∈ X(�F �)}.

Because X(�F �) ⊆ X(�F ��), it follows that the deadweight loss is (weakly) decreasing in the

span of a financial structure.

By our results, the equilibrium financial structure F necessarily distorts allocation in mar-

kets in which investor marginal utility is convex: maximizing the market value of an asset by all

entrepreneurs requires market incompleteness, which (G-a.s.) introduces a wedge in investors’

marginal utilities in equilibrium. Indeed, the very mechanism through which market incomplete-

ness provides an effective means to increase entrepreneurs’ market values involves introducing

inefficiency in the allocation of numèraire among investors. Thus, whenever investors marginal

utility is convex, the incompleteness of the equilibrium set of securities is always in conflict with

the socially optimal innovation. This holds for an arbitrary number of states and investors’ en-

dowments. As we demonstrate in Section 6, it also holds for general preferences of entrepreneurs

and investors and sequential innovation.26

As a more general insight from our analysis, unlike competition in quantities such as the

Cournot or Stackelberg models, the market power exercised by choosing asset innovation (spans)

and the market failure of competition among entrepreneurs do not depend on the number of

innovators or timing of strategies. Rather, (the shape of) investors’ marginal utility is the key

determinant of the completeness, and hence allocative efficiency, of financial markets.

6. Model Generalizations

The model analyzed so far is quite stylized. To highlight the paper’s main insights to the eco-

nomics of financial innovation, in this section we discuss the relevance of some of the assumptions

for our predictions. In particular, we examine assumptions regarding the entrepreneurs’ prefer-

ences and available alternatives for securitization and the investors’ preferences. Dynamic aspects

of innovation are also considered.
26 With linear marginal utilities, market value is invariant to financial structure, but among all such financial

structures, only those with a full span yield an efficient allocation.
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6.1. Entrepreneurs’ choice sets and preferences

Our assumptions on issuers’ preferences and their available financial structures abstract from

important aspects of financial innovation. For example, issuing institutions choose the asset

portfolio to be securitized, which determines zn. Moreover, it may not be revenue maximizing

to sell the entire return zn, because less than full monetization may yield higher state prices

and, hence, the value of a real asset. Furthermore, entrepreneurs or investment banks issuing

securities are often concerned not only about the expectation, but also the riskiness of revenue

from selling securities. Issuers derive utility from present and future returns. On the other hand,

not all choices of financial structures may be available to issuers. For instance, entrepreneurs may

be restricted by limited liability, or it might be cost-efficient to use only standardized securities

such as options. We next demonstrate that our main result (Theorem 1) encompasses these

aspects.

6.1.1. Exogenous intermediation

Along with entrepreneurs, financial markets may include other types of agents with different

objectives to innovate. For example, an intermediary may create securities in zero net supply

to charge commission as a function of a bid-ask spread. To allow such agents in our model, we

introduce a “noise” innovator with portfolio of securities F0. For simplicity, we assume that the

bid-ask spread is negligible. Hence, structure F0 represents securities that are exogenous to our

model.

6.1.2. Entrepreneurs’ choice sets

Suppose that each entrepreneur chooses the asset to be sold and the financial structure with

which he will sell that asset. For each asset z ∈ Zn where Zn ⊂ RS
++ is compact, let Fn(z) �= ∅

be the compact set of financial structures feasible for entrepreneur n, should he choose to sell that

asset. To allow for a large class of environments, we impose little structure on the (exogenously

given) correspondence Fn: we only require that for all Fn ∈ Fn(z), the following conditions

hold: (i) 0 � Fn1 ≤ z; (ii) there exists a complete F �
n ∈ Fn(z) such that Fn1 = F �

n1; and (iii)

{Fn1} ∈ Fn(z).

Assumption (i) ensures that the promised payment associated with each feasible financial

structure is strictly positive and does not exceed the return from the real asset, so that the

entrepreneur is solvent in all future states.27 Given the possibly restricted choice of securities,

27 In previous sections, we assumed Fn1 =zn � 0; hence, strictly positive returns in each state to the portfolio
sold. To allow for less than full monetization, we now relax this assumption by allowing Fn1 ≤ zn. The assumption
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assumptions (ii) and (iii) make the entrepreneur’s choice of financial structure non-trivial. Any

payoff that can be sold by issuing some financial structure can also be sold by issuing a complete

financial structure or a single security.

In this setting, we assume that entrepreneur n chooses a pair (zn, Fn) subject to the constraint

that zn ∈ Zn and Fn ∈ Fn(zn). Stated this way, the model accommodates important financial

environments beyond those analyzed in previous sections, such as markets in which entrepreneurs

do not fully monetize the real return; markets in which entrepreneurs with limited liability can

only issue securities with non-negative payoffs; markets in which the entrepreneurs issue only

options (assuming that the real asset yields different payoffs in different states); or markets in

which, as is common in financing production activity, entrepreneurs borrow first and then sell

part of the firm’s equity to repay. In the most restrictive set of alternatives, an entrepreneur’s

choice set comprises two securities for any given return: equity and the corresponding complete

financial structure.

6.1.3. Entrepreneurs’ preferences

Let entrepreneur n’s cost of obtaining return zn ∈ Zn, be given by Cn(zn). This is interpreted

as the cost of inputs required to generate the future return zn or, if an “entrepreneur” is an

institutional investor, the cost of buying the portfolio to be securitized, which can be heterogenous

across entrepreneurs.

Now, given F0 and the profile of choices of {(z1, F1) . . . , (zN , FN)}, entrepreneur n’s revenue
in the first period is the random variable rn,0 = Vn(F ) − Cn(zn) − γ|Fn|, where Vn(F ) is the

market value of portfolio Fn, given that the market financial structure is F = {F0, F1, . . . , Fn}.
Also, future consumption is the net asset return rn,1 = zn − Fn1.

Unlike the previous analysis, we now assume that each entrepreneur derives utility from

present and future consumption. That is, given R = (r0, r1), where r0 is a random variable and

r1 ∈ RS
+, entrepreneur n’s utility is Un(R). Function Un is assumed to be continuous and strictly

increasing in r0, in the sense that for any r1, if r0 first-order stochastically dominates r�0, then

Un(r0, r1) > Un(r�0, r1).

By the argument analogous to that in Section 3.3, market values are well defined for all

profiles {(z1, F1), . . . , (zN , FN)}, and, therefore, so are the entrepreneurs’ preferences.28

of strictly positive payoffs in all states is technical. It makes all states “relevant” in the sense that entrepreneurs
have incentives to increase state price in a given state. Our result on market incompleteness (part 2 in Corollary
2), straighforwardly extends to settings in which financial structures satisfy only weak inequality, Fn1 ≥ 0. For
complete market result (part 1 of Corollary 2), however, the completeness of the financial structure must be
defined with respect to “relevant” states; that is, states for which payoffs of all traders are strictly positive.

28 Note that we assume that the entrepreneurs do not participate in trading the assets in the sense that they
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6.1.4. Equilibrium

In the first period, all entrepreneurs simultaneously choose the pairs (zn, Fn) to maximize their

utilities over consumption in the two periods. Our next result asserts that the predictions about

endogenous market incompleteness from Section 5.2 carry over to this setting.

Corollary 2 (Robustness: Entrepreneurs). The following statements characterize the

equilibrium financial structure:

1. If u��� < 0 on X , then γ̄ > 0 exists such that, for any 0 < γ ≤ γ̄, in any pure strategy Nash

equilibrium, the resulting financial structure is complete.

2. Suppose that u��� ≥ 0 on X . For any γ > 0, if {(z∗1 , F ∗
1 ), . . . , (z

∗
N , F

∗
N)} is a pure strategy

Nash equilibrium and

�F0 ∪ {F ∗
1 1, . . . , F

∗
N1}� �= RS, (6)

then the financial structure {F ∗
0 , F

∗
1 , . . . , F

∗
N} is incomplete.

Note that whenever there are more states than entrepreneurs (or in a symmetric equilibrium,

in which Fn1 is the same for all n) and F0 = ∅, condition (6) is automatically satisfied. In such

a case, an immediate implication of Corollary 2 is that under convex marginal utility, markets

are incomplete in all pure strategy Nash equilibria.29

In general, Corollary 2 demonstrates that with convex marginal utility, entrepreneurs have

incentives to innovate in a way that leaves investors away from the Pareto efficient allocation.

Offering investors limited mutual insurance opportunities is optimal even if it requires that en-

trepreneurs retain a risky part of the firm. The predictions hold under mild assumptions on

entrepreneurs’ preferences over present and future consumption. The class of preferences in-

cludes those under risk, uncertainty, or ambiguity, such as the standard expected utility with

arbitrary risk attitudes, non-expected utility models, or models with multiple priors, (assuming

entrepreneurs’ appropriate knowledge of beliefs about distributions of endowments). The prof-

itability rankings of complete and incomplete financial structures established in Section 4.2 hold

ex post. Essentially, the entrepreneurs’ risk (or ambiguity) preferences affect which part of the

risky portfolio they securitize, but not how they do it.

do not buy (or sell) the assets issued by the other traders.
29 Markets can be trivially complete if the cost structure gives a “premium” for diversified returns. Consider

an example with two states and two entrepreneurs and suppose that each entrepreneur can generate payoff in one
state for free, whereas the cost of payoff in the other state is prohibitively high. In equilibrium, each entrepreneur
will produce one contingent claim; thus, the financial structure will be complete, even if investor marginal utility
is convex.
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6.2. Investors’ preferences

The model introduced in Section 2 assumes that the investors’ utility function is linear in the

consumption of the first period. With quasi-linear utility functions, the investors’ demands for

assets are well-behaved and the market values of all real assets are uniquely defined for each

financial structure. Without quasi-linearity, income effects may lead to non-trivial multiplicity

of competitive equilibria, so that for any given financial structure, a firm may have a different

market value depending on which particular equilibrium is realized. In this case, without a

selection criterion, the entrepreneurs’ preferences over financial structures and, hence the game

of competition among entrepreneurs, are not well-defined.

The assumption of quasi-linearity is still restrictive in terms of which financial environments it

admits. In particular, it makes the marginal rates of substitution and the state prices independent

from consumption in the first period. Abusing notation slightly, assume now that the utility

derived by the investors is measured by U(c0, c1), which need not be quasi-linear. Then, the

vector of state prices is given by the average marginal rates of substitution between present and

future consumption in different states: for each s = 1, . . . , S,

κs =
1

θ

�

k

θk
∂U(ck)/∂ck,s
∂U(ck)/∂ck,0

.

With convex marginal utility, market incompleteness has an additional effect on state prices

through the marginal utility of present consumption: Investors postpone consumption to hedge

uninsurable risk (precautionary saving). The overall impact of market incompleteness on asset

value is determined by the two countervailing effects. Example 5 and Corollary 3 show that with

symmetric investors, the increase in future average marginal utility dominates the precautionary

savings effect.

Example 5. Suppose that S = 2 and that there is one entrepreneur with the riskless asset

z1 = (1, 1). The two states are equally likely. There are two types of investors of equal mass,

with utility function

U(c0, c1, c2) = u(c0) +
1

2
[u(c1) + u(c2)],

where u(x) = 2 ln(x). The investors’ endowments are all equal to 3 in the first period, while in

the future they are e1 = (1, 0) and e2 = (0, 1).

With Cobb-Douglas preferences, competitive equilibrium is unique both for complete and in-

complete financial structures. Moreover, by the construction of the economy, the equilibrium is

symmetric. Equilibrium state prices are identical in the two states, κ1 = κ2 = κ, and present

consumption is the same for both investors: c1,0 = c2,0 = c0. These variables are jointly deter-
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mined by two conditions: the budget constraint and the equalization of the (average) marginal

rate of substitution with the state price in each state.

Under complete markets, the budget constraint of an investor is c0 + κ × 1 = 3. The second

period allocation is Pareto efficient, the average marginal utility is 1, and the average marginal

rate of substitution, becomes κ(c0) = 1
2c0. Thus, the two conditions give (c0, κ) = (2, 1) (see

Figure 4.A) and the market value of the riskless asset equals 2.

When markets are incomplete, the budget constraint is c0 + κ × (12 + 1
2) = 3. The wedge

in future consumption across investors increases the average marginal utility, and the average

marginal rate of substitution κ(c0) = 2
3c0 shifts upward for any c0. The shift results in an

endogenous adjustment of savings, and in equilibrium (c0, κ) = (14
9 , 1

1
5), and the asset value

becomes 22
5 .

This example shows that distorting the second period consumption benefits the entrepreneur,

even when all investors have Cobb-Douglas preferences. Note that under both complete and

incomplete financial structures, the average marginal utility in each of the two future states is

the same in Examples 1 and 5. Moreover, with complete markets, the marginal utility in period

zero also coincides in the two examples. Yet, with Cobb-Douglas utility, the entrepreneur’s

benefit from distorting future consumption is smaller than in the quasi-linear case (25 < 2
3). With

quasi-linear utility, the marginal rate of substitution is independent from present consumption

and is affected only by the future average marginal utility. Thus, the endogenous adjustment

of present consumption resulting from market incompleteness has no impact on state price in

the quasi-linear environment. In the Cobb-Douglas example (or in any economy with decreasing

marginal utility of the first period consumption), however, such an adjustment adversely affects

state prices (see Figure 4).

It is immediate that in the Cobb-Douglas example with many entrepreneurs and costly inno-

vation, in the unique Nash equilibrium (in dominant strategies), markets are incomplete. Corol-

lary 3 generalizes this observation to the following setting: Say that an economy is a two-state

symmetric economy if the following assumptions hold: (i) there are two equally likely states,

s = 1, 2; (ii) there are two types of investors with equal mass and both have the same present

endowment, whereas future endowments are symmetric with respect to the two states, in the

sense that e1 = (a, b) and e2 = (b, a) for two absolutely continuous random variables a, b > 0;

(iii) the investors’ utility function is

U(c0, c1, c2) = u(c0) +
β

2
[u(c1) + u(c2)],

where the discount factor is β > 0, and the Bernoulli utility index u is C2, strictly concave,

strictly increasing, and satisfies the Inada conditions limx→0 u�(x) = ∞ and limx→∞ u�(x) = 0;
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(iv) each entrepreneur must sell a riskless asset zn; and (v) a unique competitive equilibrium

exists for each financial structure.

For simplicity, suppose there are no noise innovators, and that the entrepreneurs are concerned

with only their present revenue.30 Our next result is that the predictions about endogenous

market incompleteness extend to this setting.

Corollary 3 (Robustness: Investors). For the case of two-state symmetric economies,

the following statements characterize the equilibrium financial structure:

1. If u��� < 0 on X , then γ̄ > 0 exists such that, for any 0 < γ ≤ γ̄, in any pure strategy Nash

equilibrium, the resulting financial structure is complete.

2. If u��� ≥ 0 on X , then, for any γ > 0, in the unique pure strategy Nash equilibrium, the

resulting financial structure is incomplete.

Symmetry of an economy is essential for our result to hold beyond quasi-linear utilities.

Specifically, one can find examples of markets with strictly convex marginal utility in which the

overall effect of consumption distortion on market value is negative. With asymmetric endow-

ments, investors operate on different subsets of a domain of a utility function, which, effectively

results in heterogenous utilities over consumption profiles and, as in the case of heterogeneous

quasilinear utility, the revenue rankings of financial structures need not hold.31

6.3. Dynamic aspects

Finally, we augment the model to examine two dynamic aspects of financial innovation. First, we

argue that the assumption that the economy evolves over two periods only is immaterial, so long

as its horizon is finite. We also consider sequential competition in the issuance of securities. For

the sake of simplicity in our presentation, we now assume away the extensions of the previous

two subsections: we maintain that the asset of each entrepreneur is exogenously given and

that entrepreneurs care only about the revenue they obtain from the sale of their assets at the

moment of trading; these features can be introduced in the current setting, only at the cost of

more complicated notation. We still assume the presence of the noise innovator.

30 The results hold if the entrepreneurs have preferences over present and future consumption and if financial
structures are restricted to some correspondence Fn(zn), as described in Section 6.1. In fact, the result can be
extended to markets with S states and K = S investors with symmetric future endowments and a minimal Fn(zn)
that consists of a complete financial structure and equity zn.

31 We need to assume riskless returns to preserve the symmetry of the investors for any financial structure.
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6.3.1. A general, finite-horizon economy

The results so far have been presented in the context of a two-period economy. In a general

finite dynamic economy, represented by a date-event tree S, it is just a matter of re-labeling

date-events as states to argue that the results extend to such an economy if all assets are issued

at the beginning (root) of S and that trade occurs only at that node. We now argue that the

results hold even without these two assumptions, namely if assets are introduced at different

nodes of S and if trade of possibly longed-lived securities takes place in spot markets at all

possible non-terminal nodes of the tree as long as entrepreneurs precommit to issuing securities

before period zero.

Suppose that the economy evolves over a finite date-event tree S, whose root we denote by

s = 0. For any date-event s �= 0, denote by b(s) the date-event that comes immediately before;

we refer to this date-event as the immediate predecessor of s. For any s, denote by a(s) the set of

date-events that come immediately after s, a set that we refer to as the immediate successors of

s; and let A(s) be the set of all date-events that may occur after s, which we call its successors.

Date-event s is said to be terminal if A(s) = ∅.

Entrepreneur n is endowed with a future return zn : S \ {0} → R++, whereas each investor

of type k receives a future wealth given by ek : S \ {0} → R+. As previously explained, we

maintain that the profile (e1, . . . , eK) is not known by the entrepreneurs, who hold common

probabilistic beliefs G over it; this function is assumed to be absolutely continuous with respect

to the Lebesgue measure of R(|S|−1)K .

An asset issued at date-event s is a function f : A(s) → R. A financial structure is a collection

of assets; for convenience, we write financial structures as F = ∪sFs, where each Fs comprises

the assets issued at s. We assume that trade occurs at all non-terminal date-events for all assets

newly issued there, along with the re-trade of any assets previously issued. That is, denote by

F̄s the collection of all assets issued at either s or one of its predecessors.32 An investment plan

is a collection of functions t = {ts : F̄s → R | s ∈ S}, so that ts(f) represents the holdings of

asset f after trade at date-event s.33 For any investment plan t, the resulting consumption plan

c : S → R is as follows: at the root node,

ck(0) = −
�

f∈F0

p0(f)tk,0(f);

32 Formally, F̄0 = F0 and F̄s = Fs ∪ F̄b(s).
33 Strictly speaking, ts is not defined for terminal date-event s. We shall keep notation light, by not being

explicit about this or similar details.

30



at any non-terminal s �= 0,

ck(s) = ek(s) +
�

f∈F̄b(s)

tk,b(s)(f)f(s)−
�

f∈Fs

ps(f)tk,s(f)−
�

f∈F̄b(s)

ps(f)[tk,s(f)− tk,b(s)(f)];

and at any terminal s,

ck(s) = ek(s) +
�

f∈F̄b(s)

tk,b(s)(f)f(s).

Given a consumption plan c, for all types of investors, utility is,

c(0) +
�

s �=0

Pr(s)β(s)u[c(s)],

where β(s) represents the discount factor applied to date-event s.

We assume that all entrepreneurs choose their financial structures simultaneously and commit

to them. If each entrepreneur n chooses a structure Fn, the overall structure is F = ∪nFn. Asset

prices are given by a collection of functions p = {ps : F̄s → R | s ∈ S}, where ps(f) represents

the price of asset f at date-event s. We shall assume that the economy is determinate, in the

sense that it has a unique equilibrium for each financial structure.

As discussed in Section 2, we assume that the entrepreneurs care only about present revenues

and that they sell all of their future income, subject to remaining solvent in all date-events. As

such, this requires that, given F−n = {Fn� | n� �= n}, entrepreneur n chooses Fn = ∪sFn,s, subject

to the constraint that, for the equilibrium prices p resulting under F = Fn ∪ F−n,

�

f∈F̄n,b(s)

f(s) = zn(s) +
�

f∈Fn,s

ps(f)

in every future date-event s. As a result, the entrepreneur’s present revenues are the sum of the

prices of the assets he issues for the first instance of trade—namely, Vn(F ) =
�

f∈Fn,0
p0(f).

Financial structure F is said to be dynamically complete if, for any non-terminal s and any

ŝ ∈ a(s), there exists a function t : F̄s → R such that

�

f∈F̄s

t(f)f(s�) =

�
1, if s� = ŝ;

0, if s� ∈ A(s) \ {ŝ}.

Our next result is that our previous characterizations extend to this more general setting.

Corollary 4 (Robustness: Spot Markets). For the case of determinate economies, the

following statements characterize the equilibrium financial structure:

1. If u��� < 0 on X , then γ̄ > 0 exists such that, for any 0 < γ ≤ γ̄, in any pure strategy Nash

equilibrium, the resulting financial structure is dynamically complete.
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2. If u��� ≥ 0 on X and structure {z1, . . . , zn} is not dynamically complete, then, for any γ > 0,

in any pure strategy Nash equilibrium, the resulting financial structure is not dynamically

complete.

One of the implications of Corollary 4 is that the mechanism identified in this paper operates

even if there are no risk sharing needs, in the perfect foresight models in which entrepreneurs issue

securities to take advantage of heterogeneity of investors’ demands for consumption smoothing

over time; hence, the model applies to fixed income securities.

6.3.2. Sequential innovation

Suppose now that, before asset trading occurs, entrepreneurs choose their financial structures

sequentially. For the sake of simplicity, we go back to the context of the two-period economy,

but the results immediately hold for the general dynamic economies studied in Section 6.3.1.

Assume, thus, that the innovation process is as follows: the noise-innovation structure F0 is

commonly known; having observed {F0, . . . , Fn−1}, entrepreneur n chooses a financial plan Fn

subject to his own feasibility constraint. After the process of financial innovation is completed

by entrepreneur N , all financial markets open and trade of assets takes place. Given the financial

structures of all entrepreneurs, and a noise-innovation financial structure F0, we define the overall

structure as F = ∪N
n=0Fn. As before, the cost of opening a spot market for each security in each

date-event (newly issued or re-traded) is γ > 0, for all entrepreneurs.

Our last result shows that the conclusions obtained in the static game of competition among

the entrepreneurs extend to any subgame-perfect Nash equilibrium of the sequential version of

the game.

Corollary 5 (Robustness: Sequential Innovation). When competition is sequential, the

following statements characterize the equilibrium financial structure:

1. If u��� < 0 on X , then γ̄ > 0 exists such that, for any 0 < γ ≤ γ̄, in any pure strategy

subgame-perfect Nash equilibrium, the resulting financial structure is complete.

2. If u��� ≥ 0 on X and �F0 ∪ {z1, . . . , zN}� �= RS, then, for any γ > 0, in any pure strategy

subgame-perfect Nash equilibrium, the resulting financial structure is incomplete.

7. Concluding Remarks

To summarize, we have considered a game in which asset holders strategically choose securities to

issue in frictionless markets with short selling. Our results show that with competitive investors
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who have identical quasi-linear preferences over consumption, the outcome of competition in in-

novation of asset-backed securities among issuers critically depends on the convexity or concavity

of the investors’ marginal utility function. Under convexity, this paper’s main message is that

frictionless markets fail to give asset holders incentives to introduce asset-backed securities to

offer complete risk-sharing opportunities, even if innovation is essentially costless, under general

conditions.

Assessing whether convex or concave marginal utility is more plausible requires a theory of

the third derivative of the utility functions of investors. Empirical evidence developed for the-

ories that recognize the importance of the third derivative, for example, precautionary savings,

provides some support in favor of convex marginal utility (“prudence”).34 Insofar as such prefer-

ences (including the standard logarithmic, CARA and CRRA utility functions) describe markets

well, in equilibrium, asset owners will offer a structure of asset-backed securities that allows in-

vestors to achieve less-than-perfect insurance opportunities. In economies with convex marginal

utility in which market value is monotone in security span, such as markets with two states

and economies with CARA utilities and riskless real assets, issuing a single security (equity) is

a strictly dominant strategy. Consequently, in the unique (dominant strategy) equilibrium, the

financial structure has minimal span.

As a normative implication, the following welfare and regulation recommendations emerge:

A policy to encourage innovation to complete markets by reducing innovation costs might be

effective if marginal utility is concave, but it is ineffective in markets with convex marginal

utility.

Appendix

Proof of Lemma 1: To prove necessity, suppose that p and (t1, . . . , tK) are the prices and the

allocation of securities in a competitive equilibrium under structure F , and let x be any allocation

of future consumption in X(�F �). Let t�k be such that xk − ek = Ft�k and
�

k Fθkt�k =
�

n zn.

Because (p, t) is a competitive equilibrium, we have that p = FTDU(c1) and, hence,

p ·
�

k

θkt
�
k = DU(c1)

T
�

k

θkFt�k = DU(c1)
T
�

n

zn = DU(c1)
T
�

k

θkFtk = p ·
�

k

θktk.

34 Loosely speaking, the mechanism behind the theory of precautionary savings shares the implication of
convex marginal utility that lowering consumption increases an agent’s marginal utility more than increasing
consumption reduces it. The precautionary savings effect is present in a single-agent problem, however, whereas
ours crucially operates as an equilibrium mechanism through heterogeneity across agents. Furthermore, while
the precautionary savings phenomenon concerns differences in marginal utilities (and transferring consumption)
across states, the conditions for optimality of (in)complete financial structures involve differences in marginal
utilities and consumption across agents within states.
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In addition, by the optimality of each investor’s choice,

U(ek + Ft�k)− p · t�k ≤ U(ek + Ftk)− p · tk. (7)

Aggregating across types and using the equality above, we have that

Ū(x) =
�

k

θkU(ek + Ft�k) ≤
�

k

θkU(ek + Ftk) = Ū(c).

Since ck − ek = Ftk, it follows that the resulting transfers of numèraire lie in �F � and that

�

k

θkck =
�

k

θkek + F1 =
�

k

θkek +
�

n

zn,

which in turn implies that (c1, . . . , cK) ∈ X(�F �). This observation and equation (7) imply that

c indeed solves Problem (2).

For sufficiency, note first that set X(�F �), defined in (1), can be alternatively written as

X(�F �) = {(e1 + Ft�1, . . . , eK + Ft�K) |
�

k θkt
�
k = 1},

while Problem (2) can be equivalently written as

max
(t�1,...,t

�
K)

{
�

kθkU(ek + Ft�k) |
�

kθkt
�
k = 1} ,

and, by assumption, tk is its solution. By the assumption that index u satisfies the Inada con-

dition and using the fact that
�

n zn is strictly positive in all states and lies in �F �, we have

that ck is strictly positive in all components and for all k. Then, multipliers p must exist such

that for all k, FTDU(ek + Ftk) = p. Since function u is strictly concave, the latter suffices to

imply that tk solves problem maxt�k {U(ek + Ft�k)− p · t�k} and, since,
�

k θktk = 1, securities al-

location (t1, . . . , tK) and prices p constitute a competitive equilibrium under structure F . Q.E.D.

Proof of Lemma 2: Recall that x(L) is the competitive allocation of numèraire for any F such

that �F � = L. Since equilibrium prices satisfy p = FTDU(xk(�F �)) for each investor type k, if

we take the average across all investors, we obtain

pT =
1

θ

�

k

θkDU(xk(�F �))TF = κ(�F �)TF.

In addition,

Vn(F ) = pn · 1 = κ(�F �)TFn1 = κ(�F �) · zn.

The expected market value of entrepreneur n is, then, EG[Vn(F )] = E[κ(�F �)] · zn. Q.E.D.
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Proof of Lemma 3: Take any linear space L, such that {z1, . . . , zn} ⊆ L. If {z1, . . . , zn} contains

M linearly independent assets, then the orthogonal complement of �{z1, . . . , zn}� is a linear

subspace of dimension S − M and a basis for L can be constructed by taking the M linearly

independent assets and dim(L) − M linearly independent vectors in �{z1, . . . , zn}�⊥. It follows

that, for any M ≤ D ≤ S, the space of D-dimensional spaces of trades that contain {z1, . . . , zn}
is topologically equivalent to the set of (D − M)-dimensional linear subspaces of RS−M . This

Grassmannian is a compact manifold (of dimension (D −M)× (S −D)).

Consider the set of all structures F for which the dimension of span �F � is D. Over this set,

correspondence X(�F �) is upper- and lower-semicontinuous. Since function Ū is continuous on

X(�F �) for any F , it follows by the Theorem of the Maximum that the allocation function, x(L),

is continuous on the Grassmannian. Further, it also follows that the expected market value,

EG[Vn(L)] = EG[κ(L)] · zn, is continuous as well and, therefore, that a linear space L∗ exists that

maximizes it over the set of all linear subspaces of dimension D.

Denote by V D
n the maximized expected market value over the set of structures that span

D-dimensional spaces of numèraire transfers. Since S is finite, the entrepreneur’s program is

reduced to finding the maximum of {V M
n , . . . , V S

n }. Q.E.D.

Proof of Proposition 1: With the complete financial structure F �, by Lemma 1, the allocation of

numèraire is such that all investors consume the same in the second period:

xk(�F ��) = 1

θ

�
�

n

zn +
�

k

θkek

�
,

The resulting market value for entrepreneur n equals, therefore,

Vn(F
�) = κ(�F �Tzn = DU

�
1

θ

�

n

zn +
1

θ

�

k

θkek

�
· zn.

Next, consider a feasible financial structure F for which �F � �= RS. Consider the linear

subspace of endowment profiles defined by

E = {(e1, . . . , eK) ∈ RS×K | (
�

nzn +
�

kθkek) ∈ �F �}.

Since, by feasibility,
�

n zn ∈ �F �, it follows that E has dimension lower than S×K and, hence,

has zero Lebesgue measure.35 Since G is absolutely continuous with respect to the Lebesgue

35 To see this, suppose by way of contradiction that E = RS×K . Let ιs be the s-th canonical vector in RS and
construct the following profile of endowments: e1 = 1

θ1
ιs and ek = (0, . . . , 0) for every k ≥ 2. Since this profile

lies in E, we have that
�

n zn + ιs =
�

n zn +
�

k θkek ∈ �F �; then, using
�

n zn ∈ �F �, we have that ιs ∈ �F �.
But since this is true for all s = 1, . . . , S, we have that �F � = RS .
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measure for RS×K , it follows that, G-a.s., xk(�F �) �= xk�(�F �) for at least two types of investor,

k and k�.

For claim (i), note that since function u� is strictly convex over the relevant domain and since,

for each state s,
�

k θkxk,s(�F �) =
�

n zn,s +
�

k θkek,s, one has that

κs(�F �) = 1

θ

�

k

θku
� (xk,s(�F �)) > u�

�
1

θ

�

n

zn,s +
1

θ

�

k

θkek,s

�
= κs(�F ��),

and hence, κ(�F �) � κ(�F ��). It follows that

Vn(F ) = κ(�F �)Tzn > κ(�F ��)Tzn = Vn(F
�),

G-a.s. (In the G-null set where all investors equate second period consumption, the two levels of

market value are equal.)

The arguments for claims (ii) and (iii) are analogous and are hence omitted. Q.E.D.

Proof of Theorem 1: For the first claim, define the cost threshold

γ̄ =
1

2
min

�
V S
n − V D

n

S
| D = M, . . . , S − 1 and n = 1, . . . N

�
,

where M and V D
n for all n = 1, . . . N and all D = M, . . . , S are defined as in the proof of Lemma

3; by Proposition 1, γ̄ > 0. Now, given any γ ≤ γ̄, if entrepreneurs other than n chose an

incomplete financial structure F−n = {F1, ..., Fn−1, Fn+1, ..., FN}, then it is a best response for

entrepreneur n to choose Fn such that the resulting structure {Fn, F−n} is complete, again by

Proposition 1.

For the second claim, let F = {F1, . . . , FN} be the profile of financial structures chosen at

a pure strategy Nash equilibrium, and suppose that F is complete. Because by assumption,

the payoff structure of real assets constitutes an incomplete financial structure, at least one en-

trepreneur exists for whom Fn �= {zn}. For such entrepreneur, F �
n = {zn} gives strictly higher

payoff: it is less costly and his asset’s market value is at least as high as with Fn. Q.E.D.

Proof of Proposition 2: Consider entrepreneur n and suppose that the strategies chosen by his

competitors are F−n. If Vn is decreasing in the span of the financial structure, then, regardless

of the rank of F−n, financial structure Fn = {zn} maximizes the market value of zn and is also

the least expensive structure to issue. Thus, it is a unique best response to the arbitrary choices

of financial structures by other entrepreneurs.

Since market value is monotone in the security span in economies with two states or CARA

utility function and riskless assets, issuing equity is a strictly dominant strategy. The game has
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a unique (pure strategy) Nash equilibrium, with F = {z1, . . . , zn}. Q.E.D.

Proof of Corollary 2: Consider the case when u��� < 0, and fix that {(z1, F1), . . . , (zN , FN)} is

such that �∪N
n=0Fn� �= RS. Then, it must be true that �FN� �= RS. Suppose that entrepreneur

N unilaterally deviates to (zN , F �
N), such that F �

N1 = FN1 and F �
N is complete. By assumption

(ii) on FN , such a deviation is feasible for him, while, since FN and F �
N are associated with the

same future payoff, his future revenue, rN,1 = zN − F �
N1, remains unchanged. The change in his

present consumption is given by

∆rN,0 = VN(F
�)− VN(F )− γ(|F �

N | − |FN |),

where F � = {F0, . . . , FN−1, F �
N} is complete. By previous arguments, VN(F �) − VN(F ) > 0, G-

a.s. (with weak inequality surely), which implies that, as γ → 0, ∆rN,0 converges to a random

variable that first-order stochastically dominates 0. By continuity and strict monotonicity of UN ,

there exist γ̃ > 0 such that for all γ < γ̃, strategy (zN , F �
N) is strictly preferred to (zN , FN), so

that {(z1, F1), . . . , (zN , FN)} cannot be a Nash equilibrium. Define

Ω =
�
((zn, Fn), . . . , (zn, Fn)) | zn ∈ Zn and Fn ∈ Fn(zn) for all n and �∪N

n=0Fn� �= RS
�
,

and observe that, since all the sets Zn are compact, then set Ω is also compact compact, given

compactness of the Grasmannian manifolds (as in the proof of Lemma 3). Let

γ̄ =
1

2S
inf{γ̃ | ((zn, Fn), . . . , (zn, Fn)) ∈ Ω}.

By compactness of Ω, γ̄ > 0. Then for any γ < γ̄ and any arbitrary profile ((zn, Fn), . . . , (zn, Fn))

such that zn ∈ Zn and Fn ∈ Fn (zn) for all n, that gives rise to incomplete financial structure,

entrepreneur N has incentives to unilaterally deviate and hence profile is not a Nash equilibrium.

Now, suppose that u��� ≥ 0, and consider any profile {(z1, F1), . . . , (zN , FN)} such that

�∪N
n=0Fn� = RS while �F0 ∪ {F11, . . . , FN1}� �= RS. It must be true that Fn �= {Fn1} for

some n. Consider n’s deviation (zn, {Fn1}), which is feasible for him by assumption (iii) on Fn.

The future consumption of entrepreneur n, rn,1 = z∗n − Fn1, remains unchanged, whereas the

change in his present consumption is

∆rn,0 = Vn(F
�)− Vn(F )− γ(1− |Fn|),

for F � = {F0, . . . , Fn−1, {Fn1}, Fn+1, . . . , FN}. By previous results, Vn(F �) − Vn(F ) ≥ 0 surely,

while |Fn| > 1, by construction. By strict monotonicity of Un, strategy (zn, {Fn1}) is strictly

preferred to (zn, Fn), so {(z1, F1), . . . , (zN , FN)} cannot be a Nash equilibrium. Q.E.D.
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Proof of Corollary 3: Let (z̄, z̄) = 1
θ

�
n zn. We first construct symmetric equilibria under a

complete and an incomplete financial structure. For a complete financial structure, all investors’

consumption will be the same, a+b
2 + z̄ in both states. Under an incomplete financial structure,

each type of investor will obtain one half of the available riskless assets, so that in both states

one half of the investors will consume a+ z̄ while the other will consume b+ z̄. Also by symmetry,

c1,0 = c2,0 = c1.

Future consumption is thus expressed in terms of primitives, and the state prices (for both

states) become functions of c1 given by

κC(c1) =
β

2

u�(a+b
2 + z̄)

u�(c1)
(8)

if markets are complete, whereas if they are incomplete they are given by

κI(c1) =
β

4

u�(a+ z̄) + u�(b+ z̄)

u�(c1)
. (9)

Both of these functions are increasing in c1, from 0 (as c1 → 0) to ∞ (as c1 → ∞).

Consider now a second equation, resulting from the investors’ budget constraint, c1+2κz̄ = e,

where e is their endowment in the first period. By direct computation

κ =
1

2z̄
(e− c1), (10)

which is linear, has a positive intercept and is decreasing in c1. Each of the two schedules (8) and

(9) cross the budget line (10) precisely once (see Figure 4), which gives precisely one solution for

the complete financial structure (κC , cC) and one for the incomplete financial structure (κI , cI).

It is straightforward to verify that the implied prices of securities and the corresponding allo-

cation define a competitive equilibrium under the complete and incomplete financial structures,

respectively. Moreover, by assumption, the competitive equilibria are unique and, hence, the

constructed symmetric equilibria are globally unique.

If u��� ≥ 0, the wedge in future consumption under incomplete markets implies that schedule

(9) is strictly above schedule (8); therefore, these two solutions satisfy κI ≥ κC . It follows that

the value of the riskless assets are at least as high under incomplete markets, and, by the standard

argument, that issuing equity is a strictly dominant strategy for each entrepreneur.

Conversely, with u��� < 0, one has that κI < κC and market value is maximized under com-

plete markets. For sufficiently small innovation costs in pure strategy Nash equilibrium, one of

the entrepreneurs completes the market. Q.E.D.

Proof of Corollary 4: For the simplicity of presentation, we provide the argument after two

intermediate steps: First, we recast the dynamic setting as a two-period economy in which asset
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trading occurs only once. Second, we invoke some previous results on two-period economies to

characterize the value-maximizing structures in the general setting.

Step 1: Consider any profile {F1, . . . ,Fn}. Let the unique competitive equilibrium prices and

investment plans be p and {t1, . . . , tK}. Equilibrium prices are characterized by market-clearing

conditions: for all f ∈ F̄s, in all non-terminal date-event s� ∈ A(s),

�

k

θktk,s�(f) = |{n | f ∈ Fn}|, (11)

and by the first-order conditions that for all k, at all non-terminal s �= 0, and for all f ∈ F̄s,

ps(f) =
�

s�∈A(s)

Pr(s�|s)β(s
�)

β(s)

u�[ck(s�)]

u�[ck(s)]
f(s�), (12)

whereas, if f ∈ F0,

p0(f) =
�

s �=0

Pr(s)β(s)u�[ck(s)]f(s). (13)

Now, we define an alternative collection of assets, all of which are issued at date-event 0. For

each f ∈ Fn,0, let φf = f . For each s �= 0 and f ∈ F̄n,s, let

φf,s(s
�) =






−ps(f), if s� = s;

f(s�), if s� ∈ A(s);

0, otherwise.

Finally, for each s �= 0 and f ∈ F̄n,s \ Fn,s, let φ
−
f,s = −φf,s. (Introduction of φ−

f,s will allow us to

assume that the supply of each security is equal to 1, even though in the dynamic economy re-

traded assets are in zero net supply). The collection of all these assets is denoted by Φn. Consider

an economy in which all trade has to take place at date-event 0, using the assets in Φ = ∪nΦn.

Denote by π the equilibrium prices of this economy. It can be verified, using equations (11) to

(13), that the equilibrium prices of this economy are π(φf ) = p0(f) for each f ∈ Fn,0, while every

other asset is traded at π(φ) = 0.36

Note that the economy in which trade occurs only at date-event 0 (in the assets contained

in Φ) is equivalent to the two-period economy as in Section 2 in which there are |S| − 1 future

states of the world. Thus, we can invoke the results derived in Section 4.

Step 2: Fix any two financial structures F and F�, with the associated equilibrium prices p and

p�. Suppose that F is dynamically incomplete, while F� is not. Let Φ and Φ� be, respectively, the

36 Also, that equilibrium demand for assets is as follows: for each f ∈ Fn,0, τk(φf ) = tk,0(f); for each
f ∈ Fn,s, s �= 0, τk(φf,s) = tk,s(f); and for each f ∈ F̄n,s \ Fn,s, τk(φf,s) = [tk,s(f) − tk,b(s)(f)]+ and τk(φ

−
f,s) =

[tk,s(f)− tk,b(s)(f)]−.
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associated structures constructed in Step 1, and let π and π� be the equilibrium prices for the

two-period economies. By construction,

Vn(F) =
�

f∈Fn,0

p0(f) =
�

f∈Fn,0

π(φf )

and

Vn(F
�) =

�

f∈F �
n,0

p�0(f) =
�

f∈F �
n,0

π�(φ�
f ).

Using backward induction over S, note that a financial structure is dynamically complete

if, and only if, the associated structure constructed in Step 1 is complete (in the two-period

economy). Thus according to Proposition 1, it follows that:

(i) if u��� > 0, then, G-a.s., Vn(F) > Vn(F�) while Vn(F) ≥ Vn(F�) surely;

(ii) if u��� < 0, then, G-a.s., Vn(F�) > Vn(F) while Vn(F�) ≥ Vn(F) surely; and

(iii) if u��� = 0, then Vn(F�) = Vn(F).

Step 3: Based on characterization of Step 2, the argument follows according to the proof of

Theorem 1. For the first claim, suppose that issuance costs are sufficiently low. If entrepreneurs

other than n chose an incomplete F−n, then it is a best response for entrepreneur n to choose

Fn such that the resulting {Fn,F−n} is complete, as indicated in Step 2.

For the second claim, let F = {F1, . . . ,FN} be a pure strategy Nash equilibrium; suppose

that financial plan is dynamically complete. Since {z1, . . . , zn} is not dynamically complete, it

must be true that Fn �= {zn} for some n. But this is a contradiction, as F�
n = {zn} is less costly

and—according to Step 2—Vn is at least as high with F�
n as with Fn. Q.E.D.

Proof of Corollary 5: For the first statement, suppose that u��� < 0 and consider a subgame-perfect

Nash equilibrium that results in a sequence of choices (F1, . . . , FN) for which �∪N
n=0Fn� �= RS. It

follows that �∪N−1
n=0 Fn� �= RS. Consider a deviation for entrepreneur N , which, for any history

characterized by (F1, . . . , FN−1), gives F �
N , such that F �

N1 = FN1 and F �
N is complete. Since

u��� < 0, EG[VN(F �)] > EG[VN(F )], where F � = {F0, . . . , FN−1, F �
N} is complete. For sufficiently

small γ, F �
N is a profitable deviation; therefore, (F1, . . . , FN) cannot result from a subgame-perfect

Nash equilibrium .

Now, suppose that u��� ≥ 0, and consider an subgame-perfect Nash equilibrium that results

in a sequence of choices (F1, . . . , FN). For each n = 0, . . . , N define

F̄n = ∪n
m=0Fm ∪ {Fn+11, . . . , FN1}.

We argue by induction that if F̄n is incomplete, then so is F̄n+1:

(1) Consider first the case of entrepreneur N : If F̄N−1 is incomplete, any FN that completes
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F̄N = F is strictly dominated by the feasible, single-security financial structure {FN1}, which is

strictly cheaper and has (weakly) higher market value.

(2) Consider now any entrepreneur n ≤ N−1: Suppose that, for any m > n, if F̄m is incomplete,

then so is F̄m+1. Suppose that F̄n−1 is incomplete. By the induction hypothesis, if F̄n is incom-

plete, then so is F̄N = F . It follows again that any Fn that completes F̄n is strictly dominated

by {Fn1}, because the latter is strictly cheaper and does not have lower market value.

Now, by assumption, F̄0 = F0 ∪ {z1, . . . , zN} is incomplete, which gives the result. Q.E.D.
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Bijection Bijection 

A. The Edgeworth box represents all feasible allocations. With a complete structure (F), all allocations in the Edgeworth box are feasible, while if only equity (F’) is 
issued, the feasible set is comprised of the line segment connecting the endowment points. Competitive allocation is determined by the planner indifference curves: 
The planner attains the unconstrained maximum at the Pareto efficient allocation or the center of the Edgeworth box. Utility decreases (deadweight loss increases) for 
allocations located further away from the center. Thus, with the complete structure F, the planner chooses the unconstrained maximum, whereas with equity (F’), the 
equilibrium allocation coincides with the planner’s constrained choice. 
B. The curves represent the entrepreneur market value map plotted against the shaded planner preference map. Whether the Pareto efficient allocation yields a 
minimum, or a maximum, depends on whether the marginal utility, and hence the market value function, is convex or concave. Given the logarithmic utility, the 
entrepreneur maximizes the market value by moving away from the Pareto efficient allocation and, hence, prefers the allocation resulting from equity. 

FIGURE 2. EQUILIBRIUM ALLOCATION AND AN ENTREPRENEUR’S CHOICE (EXAMPLE 1) 

 FIGURE 1. EXISTENCE OF A VALUE-MAXIMIZING FINANCIAL STRUCTURE 

Each one-dimensional linear subspace in R2, a line passing through the origin, is uniquely identified by a point on a semicircle. The bijection that enlarges the distance 
along the circle by a factor of two translates the semicircle into a full circle. Given this parameterization, an entrepreneur maximizing the market value over one-
dimensional spans is effectively selecting a point on a circle - a compact set. By assumption, all linear subspaces parameterized by the points on the circle have 
dimension one; thus, X(L) is a continuous correspondence on the circle. By the Maximum Theorem and Lemma 1, allocation x(L) is a continuous function and state 
prices are given by the average marginal utility. 

L 

 FIGURE 3. ALLEN AND GALE (1991) EXAMPLE: ASYMMETRIC UTILITY 

A. With equity only, the equilibrium allocation is given by a point on the feasible set that maximizes the planner preferences. With a complete financial structure, the 
equilibrium allocation is the planner’s unconstrained maximum.   

B. Given the shape of the market value curves (plotted against the shaded planner preference map), the efficient allocation corresponds to higher market value.
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A.  B. 
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 FIGURE 4. NON-QUASILINEAR AND QUASILINEAR PREFFERENCES 

An incomplete financial structure increases future average marginal utility, which results in a higher marginal rate of substitution (and, hence, state price) for any level 
of present consumption (and, hence, savings). Consequently, equilibrium state prices increase, thereby negatively affecting the present consumption. In the Cobb-
Douglas example (A), reduced present consumption negatively affects the equilibrium marginal rate of substitution (the move along the dotted line). For quasi-linear 
preferences (B), the endogenous adjustment of savings does not affect the present marginal utility and, thus, has no further impact on the marginal rate of substitution 
(state price). 
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