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Abstract

We study sequential auctions in which bidders demand multiple units. We model the process as
an English auction, where a seller sequentially allocates objects to potential buyers. The buyers have
private and uncorrelated valuations for the goods, and pay a participation cost. We use a novel data
set on sequential water auctions for the empirical study. Although water units are identical in nature,
two features from the empirical setting create a trade-off whereby sequential units of water end up being
complements or substitutes. First, since water is delivered to the farmer’s plot using a channel that is dug
into the ground, there is a water loss that is incurred only for the first unit. This generates a sunk cost.
Second, because the amount of land that requires irrigation is fixed, subsequent units of water exhibit
decreasing marginal returns. Units of water are complements or substitutes depending on the relative
importance of the sunk cost and decreasing returns. Seasonal variations in the average rainfall and water
requirements for farming determine the relative importance of the sunk cost and decreasing returns. This
provides us with the required variation for our empirical investigation, the first to allow for the goods to
be either complements or substitutes. When the goods are complements, one bidder wins all the objects
by paying a high price for the first unit, thus deterring other bidders from bidding on subsequent units. A
very low price is paid for the remaining units. When the goods are substitutes, different bidders win the
objects with positive probability, and they pay prices similar in magnitude. We estimate the proposed
model, and recover individual demand that is consistent with this stark pattern of outcomes. We confirm
that the observed pattern of outcomes is not collusive, but consistent with non-cooperative behavior.
Finally, we show that demand estimates are biased if one ignores participation and sunk costs.
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1 Introduction

This paper investigates sequential auctions in which buyers face sunk costs and decreasing marginal returns
due to their preference for multiple units. From an empirical stance, sunk costs and decreasing returns are
important because they affect the relationship among the valuation of subsequent units, determining bidder
behavior and the dynamics of prices. Price dynamics are central relating observed bids to the underlying
distributions that characterize individual demand, which is fundamental to discussing positive and normative
questions. Greater variation in prices caused by a high sunk cost, for instance, will affect even relatively simple
tasks such as measuring the dispersion in individuals’ private valuations. Moreover, a mercilessly competitive
environment in such a case could be incorrectly interpreted as collusive.

Depending on the importance of sunk costs relative to decreasing marginal returns of sequential units,
goods could be complements (when the marginal utility of subsequent units is greater than the marginal utility
of the first unit) or substitutes (when the marginal utility of subsequent units is lower than the marginal
utility of the first unit). The existing literature, although abundant, has provided little empirical evidence
on the effect that, by creating complementarities or substitutabilities, the valuation of subsequent units has
on bidder strategies and price behavior in sequential auctions.1 From an estimation perspective, the main
reason for this lack of evidence is the amount of variation in the degree of complementarity (in our setting,
sunk costs relative to decreasing returns) required to perform the empirical investigation. From a theoretical
point of view, bidder strategies in this setting rapidly become analytically intractable. The objective of this
paper is to address this empirical gap. To that end, we develop an economic model to assess the relative
importance sunk costs and decreasing returns have on bidding behavior. This is the first empirical paper
where sequential units of the same good may serve as either complements or substitutes within the same
market.

Using a novel data set on sequential water auctions, from an institution that was active during eight
centuries in southern Spain (Murcia), we estimate the model to recover the structural parameters and distri-
bution of private valuations. Apart from using a remarkably stable market institution that has been active
since the 13th century, this study of sequential auctions introduces a unique scenario for analyzing a stark
pattern of outcomes not previously documented in the literature. In some seasons, winning prices exhibit
a standard competitive pattern. Regardless of whether the same or different bidders (farmers) win the se-
quential units, the winning prices are similar in magnitude.2 In others, one farmer wins all the units, and
she pays a high price for the first unit, thus deterring other farmers from entering subsequent auctions. A
very low price (close to zero) is paid for the remaining units. We call this the deterrence effect (Figure 3).
We show that this pattern of outcomes is consistent with a non-cooperative equilibrium, where the observed
price dynamics are not collusive, but competitive.

The data for our analysis consists of individual winning bids, the bidder characteristics matched to
those bids, auction covariates, and, given the nature of the auctioned objects, the amount of rainfall in
the town. The basic selling unit is the right to use 15 minutes of water for irrigation (36, 000 liters). For

1In addition to the literature on sequential identical objects (Ashenfelter (1989), Ashenfelter and Genesove (1992)), the
relationship between auctioned objects has also been studied by a number of authors for the case of either complementarities
(Branco (1997), Gandal (1997)) or substitutabilities (Black and de Meza (1992), Liu (2010)). Albeit more scarce, models
encompassing the possibility of both complementarities and substitutabilities have been investigated when analyzing how this
feature relates to the auction format (Jeitschko and Wolfstetter (2002), Jofre-Bonet and Pesendorfer (2006)) or, outside the
auction literature, when analyzing print and online newspapers to study the valuing of new goods (Gentzkow (2007)). Contrary
to this prior literature, we examine, in an English-auction setting, how the degree of complementarity, as determined by the
importance of (common) sunk costs relative to (common) decreasing returns, affects price patterns by endogenizing the number
of bidders with the introduction of an arbitrary small participation cost (McAfee and McMillan (1987), Engelbrecht-Wiggans
(1993), Von der Fehr (1994)).

2Declining prices for identical objects in this type of setting is an empirical regularity known as the declining price anomaly,
which has been broadly studied in the literature and was first documented by Ashenfelter (1989) in his seminal paper.
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each weekday, eight units are sold sequentially for each schedule: four for daytime (7AM) and four for
nighttime (7PM) irrigation. The rationale for this structure is related to water requirements in the area:
since the irrigation technique used in the region is flood irrigation, four units (a complete hour) represent
the amount of water that can be absorbed by a regular farming plot.3 Daytime units are not independent
due to the presence of sunk costs and decreasing marginal returns. Due to these factors, the relevant unit of
analysis for investigating individuals’ demand and the pattern of outcomes is four-unit auctions. Observing
the identity of the winner allows us to implement the data-selection methodology required to estimate the
model, which is outlined in Section 4. Weather conditions in the area determine the relevant agricultural
irrigation technology and, hence, water demand. Additionally, spring/summer has little rainfall compared to
autumn/winter, resulting in the presence of seasonalities, which provide us with the necessary variation in
sunk costs relative to decreasing returns (varying the degree of complementarity/substitutability by season)
to perform the empirical investigation.

The interpretation of the data through the economic model is fundamental to our structural approach.
We model the environment as a sequential (ascending price) English-auction along the lines of Engelbrecht-
Wiggans (1993) and Von der Fehr (1994) in which bidders, by incurring a cost of participation, decide whether
to attend each sale to maximize their expected utility. Focusing on the symmetric independent private values
(IPV) paradigm that has dominated the prior literature (Donald and Paarsch (1996)), a sunk cost is incurred
for the first unit bought, and decreasing marginal returns are present for subsequent units. The rationale for
this is found in our empirical setting. First, because water flows through a channel dug into the ground, some
water is lost when the channel is dry (first unit), but the loss is negligible for subsequent units. Engineers
have estimated that between 15% and 40% of the first unit of water that travels through a dry channel is lost
(Vera Nicolas (2004)). Second, given that the amount of land that needs to be irrigated is fixed, subsequent
units of water exhibit decreasing marginal returns.

The relative importance of the sunk cost and the decreasing marginal returns generates a trade-off,
whereby buyers determine their course of action based on whether different units are complements or sub-
stitutes. When goods are complements, the same bidder wins all the objects: for the first unit a high price,
equal to her valuation for the whole bundle (four times the second highest valuation for the first unit, before
considering the complementarity effect and participation cost), and she thus deters others from bidding on
the remaining three units, for which she pays a very low price (close to zero). Although non-cooperative, the
resulting equilibrium price pattern, along with the fact that the same bidder wins all the units, may yield
an incorrect collusive interpretation. When goods are substitutes, different bidders win the objects with
positive probability, paying prices similar in magnitude (even when the same bidder wins all the objects).
Since participation and sunk costs are key features of our model, we provide empirical evidence for them.
Because the model is constructed with the purpose of understanding equilibrium price properties in sequential
auctions when sunk costs and decreasing returns are present, we argue that buyers are better informed than
the seller, who ignores bidder preferences for multiple units. Nevertheless, given that a sequential English
auction achieves (ex-ante) efficiency, the seller knows that the mechanism allocates water in an efficient way.4

Not requiring the farmers to reveal their marginal valuations is an additional advantage of the mechanism,
whose simplicity reduces costs associated with its implementation.

The price patterns that our model predicts in each regime (complements or substitutes) provide us with a
straightforward empirical method to determine under which regime the game is being played: when goods are
complements, very low prices are paid by the same winner for the second, third and fourth units. Although

3This amount is represented by 1-tahulla, the surface area used in Murcia. The area encompassed by 1-tahulla varies from
one city to another because the tahulla is defined based on the area that can be irrigated during a certain time. We provide
further details in Subsection 4.3.

4Ex-ante and ex-post efficiency are not equivalent in our case due to the presence of participation costs. Neither one implies
the other. Moreover, in our model there is no mechanism that achieves ex-post efficiency. Stegeman (1996) discusses the single-
unit case. In our case, when goods are complements, the proof for efficiency is analog to the single-unit case. The case when
goods are substitutes is more cumbersome.
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it is clear from the data that there are two different price patterns, given that our estimation is performed
conditional on the regime, we show that end-digit preference for these prices (second to fourth units) is consis-
tent with this empirical prediction. Aside from the particular features of our specification, our identification
exercise is closest to that of Athey and Haile (2002). Using a parametric distribution specification along with
the English structure for the auction, we construct the likelihood of our model and, to secure the needed
efficiency, we employ maximum likelihood inference techniques.5 Consistent with the model, and as a result
of the absence of a reservation price, we infer participation costs using data from auctions that were run with
some bidders present, but no one placing bids.6

By estimating the proposed model, our empirical work establishes three main results. First, we are able
to recover the individual demand—characterized by private valuations and the model’s structural parame-
ters—which is consistent with the mentioned price patterns, particularly the deterrence effect. Second, using
the interpretation from the model, we confirm that the equilibrium price dynamics are competitive. In other
words, non-cooperative behavior is not only consistent with the deterrence effect, but also necessary to gen-
erate such price differentials. Since the incentives to deviate from a collusion strategy would be higher in
the spring/summer (when the water is more valuable), we provide evidence for seasonal price fluctuations,
conditional on other observables. Finally, we show that, should the econometrician ignore the importance of
participation and sunk costs, her estimations and inferences will be biased. We test whether price variations,
conditioning on covariates, are better explained by the proposed model or a standard English-auction model,
using the fact that the latter is encompassed by the former. The insightful approach by Haile and Tamer
(2003) to relying on two weak assumptions equips the researcher with a robust structural framework for
inference. Given that even these minimal assumptions are not satisfied in the present context, we also discuss
how Haile and Tamer’s limited structure model can be interpreted in the current setting.

The paper is organized as follows. Section 2 provides a review of the related literature and places this
paper within its context. In Section 3 we introduce the theoretical model relevant to our empirical work.
Section 4 contains a description of the auction-allocating system and the data selection methodology. We
address the empirical regularities that serve as the foundation for the existence of two regimes (the size
of sunk costs relative to decreasing marginal returns), and we show how the modeling assumptions fit our
context. In Section 5 we show that regime determination is consistent with end-digit preferences. In Section
6 we discuss identification. Section 7 examines the estimation procedure, presents the results, and looks at
how these results affect the importance of sunk costs and the interpretation of complementarities. Finally,
Section 8 concludes. All tables and figures are displayed at the end of the paper.

2 Literature Review

In this section we describe the related literature and highlight how this paper contributes to the current body
of work. Although not very large, there is certain literature on sequential auctions with multiunit demand
analyzing the effects that variations in marginal valuations have on biding strategies, and the impact on price
dynamics. Contrary to the empirical evidence in our setting, however, most of it do not consider entry costs
in their analysis. Weber (1983) finds that, in an stylized sequential auctions model for identical objects, the
sequence of prices is a martingale (same expected prices). Relatively slight modifications to Weber’s model
lead to different conclusions. Including risk-aversion in his model, for instance, generates lower expected
price for later objects. In this case, expected utility (not expected price) follows a martingale. The expected
utility is lower, of course, for a risk averse bidder. McAfee and Vincent (1993) found that declining prices
in equilibrium requires non-decreasing absolute risk aversion. Sequential auctions for objects that are not

5Econometrics methods such as simulated non-linear least squares or GMM (Laffont, Ossard, and Vuong (1995), Hansen
(1982)) can be applied to our setting as well.

6Typically, every Friday, 40 units are offered, and only the first 4 or 8 are sold. Hence, we know that some bidders were
present (they bought 4 or 8 units), but also that no one bid on some of the units that were offered (34 or 32 unsold units).
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identical but stochastically identical have also been studied (Benhardt and Scoones (1994), Engelbrecht-
Wiggans (1994)). In those cases, objects are identical ex-ante but not after uncertainty has been resolved.
The relationship between early and latter objects is broken because of the stochastic component: the demand
for latter objects is smaller than for early ones. Thus, the strategical incentive for bidding lower for early
objects disappears. Contrary to our case, these models do not allow for multiunit demand.

While economists have studied price dynamics and the relationship between sequentially auctioned goods,
there is no precedent that deals with cases when both complementarities and substitutabilities (sunk cost and
decreasing returns), along with participation costs are present.7 Similar evidence to the one we describe in
Subsection 4.2 has been broadly discussed in the empirical auctions literature. Early works have documented
declining or downward price trends in sequential wine auctions (Ashenfelter (1989), McAfee and Vincent
(1993)) and real-state market (Ashenfelter and Genesove (1992)).

Several authors have studied cases of either complements due to synergies among auctioned goods, or
substitutes due to decreasing marginal utility (Black and de Meza (1992), Branco (1997), Liu (2010)). For
complements, for instance, Branco finds expected decreasing prices. In that model, individuals bid above
their value in early auctions because there is an option value for doing so. In latter auctions, and when
early objects have already been assigned, the winner bids aggressively, but the losers will bid their residual
value. Thus, the price for later units reflects the willingness to pay from a bidder without synergies. This
value is lower than the price paid for earlier units that reflect both the willingness to pay from an individual
without synergies and the option value. Selling goods in a bundle increases seller’s revenue when goods
are complements (Palfrey (1983), Levin (1997), Armstrong (2000)). Our setting differs from these in that
we consider sequential auctions instead of simultaneous.8 Numerous empirical studies have highlighted the
importance of complementarities. They arise in different industries such as defense contracts (in Anton
and Yao (1987) complementarities emerge in sequential competition due to higher experience that reduces
costs), sequential cable television license auctions (Gandal (1997)), sequential electricity auctions (in Wolfram
(1998) the start-up price generates complementarities in electricity generation between adjacent time periods),
sequential procurement auctions for school milk contracts where, similar to our analysis, complementarities
arise due to the presence of sunk investments (Pesendorfer (2000)), or between adjacent school milk contracts
(Marshall, Raiff, Richard, and Schulenberg (2006)).

As regards substitutabilities, Liu’s model, for instance, shows that competition for earlier goods is lower
than for latter ones. Therefore, winning an early auction generates an externality on other bidders (because
of the competition they face in the future). In later stages, this effect is smaller because there are less goods
in which a loser can take advantage of the resulting competition. Thus, competition (and prices paid by the
winners) will be greater. In the last auction the externality effect disappears, and everybody bids her own
valuation for that last good. Substitutabilities also arise, as in our case, when the value of sequential goods
fall (in the number of acquired units) generally because of decreasing returns and limited capacity. Substi-
tutabilities are a major component in several industries such as sequential highway construction procurement
auctions (Jofre-Bonet and Pesendorfer (2003) estimate a repeated auction game under the presence of ca-
pacity constraints with bidder asymmetry), sequential timber auctions (List, Millimet, and Price (2004)), or
sequential cattle auctions (Zulehner (2009)).

Before we advance to the description of our model, it is important to note that while prior investiga-
tions on the relationship between sequential auctions and the complements or substitutes property are more
scarce (Jeitschko and Wolfstetter (2002), Jofre-Bonet and Pesendorfer (2006)), their approaches clearly show
the importance of this feature. Jeitschko and Wolfstetter analyze optimal sequential auctions in a binary-

7Hendricks and Porter (2007) present a comprehensive review on the theoretical and empirical literature on auctions emphasiz-
ing their connection, and different approaches followed by researchers in practice. For standard IPV parametric models, Donald
and Paarsch (1996) provide an early discussion on identification, estimation and inference under this paradigm, while Athey
and Haile (2002) extensively discuss identification of different models, and derive testable restrictions that allow discrimination
between models.

8See Milgrom (2000) and Ausubel (2004) for recent contributions to this literature.
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valuations case. They find that English-auctionss extract more rent than first-price auctions.9 Our model
differs as we consider the class of continuous valuation distributions. Along with a nice literature review
that provides a comprehensive guideline on the methods and applications in the subject, Jofre-Bonet and
Pesendorfer propose a different set-up in their model of sequential auctions that also encompasses both com-
plementarities and substitubilities among the goods auctioned (in the sense that an object’s value increases or
decreases with the number of items already acquired). They find that first-price auctions give greater revenue
than a second-price (English) auctions when the goods are substitutes. For the case of complementarities,
the opposite is true. Both mechanisms are efficient in this model. Their predictions about price trend are
consistent with previous findings. Contrary to our analysis with participation costs, and where buyers are
better informed than the seller, they examine buyer’s procurement auctions in a two period auction game
where sellers have private information about their costs. Finally, although different from the strategy used
in this paper, an early influential investigation on how interdependencies among the objects auctioned affect
auction’s outcome has been studied by Hendricks and Porter (1988), where they analyze auctions for drainage
leases and show that better informed firms (who hold neighboring tracts to the drainage tracts that were
auctioned) earned higher rents than uninformed ones.

We build upon the existing literature on participation costs and entry fees (McAfee and McMillan (1987),
Engelbrecht-Wiggans (1993), Von der Fehr (1994)), by constructing our sequential English-auction model
along the lines of Von der Fehr. Our set up differs, however, in that bidders are allowed to buy more than
one unit of the good. Von der Fehr considers the case when goods are independent, and finds the same
equilibrium as in the complementarities case in ours. We are not aware of any study analyzing the presence
of both complementarities and substitutabilities when participation costs are present. Moreover, this is the
first empirical investigation in the sequential auctions literature that considers the case where sequential units
of the same good may either complement or substitute within the same market. To do that we allow the
relative size of sunk cost and decreasing returns to vary across auctions.10

3 The Model

In this section we present the theoretical model. To do that, we first explain our strategy for using variation
in the relative size of sunk costs and decreasing marginal returns to account for complementarities and
substitutabilities among different units of the same good (water).

The model we introduce below is based on the reasonable assumption that the seller does not know the
preferences from buyers (farmers) concerning multiple demand in a dynamic environment, four-unit auctions.
A sunk cost is incurred only for the first unit bought while decreasing marginal returns are present for second
to fourth units. These assumptions will be justified for our empirical environment in Subsection 4.3. The
relative importance of the sunk cost and decreasing marginal returns generate a trade-off, whereby buyers
coordinate their behavior based on whether different units are complements or substitutes.

A simple way to show this settlement of differences by mutual concessions is by assuming that the initial
sunk cost is proportional to the value of water, and decreasing marginal returns are linear in the number of
units bought. Then, the marginal utility for the farmer of each unit x of water is given by:

MUi (x) =
[
1− α1{x=1} − β (x− 1)

]
vi

where vi, only known by farmer i, is a scalar that captures the valuation of the (complete) first unit of
water (when α = 0 we have MU (1) = vi), α is a parameter that measures the sunk cost of the first unit

9Recall that the English-auction is optimal (revenue maximizing) among a general class of sequential auctions (Lopomo
(1998)).

10The presence of seasonalities in our empirical setting (due to rainfall and water requirements for farming), provides us the
required variation for the empirical analysis.
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(MU (1) = (1− α) vi), β is a parameter that measures the slope of decreasing marginal returns of subsequent
units (when α = 0 we have MU (x) = [1− β(x− 1)] vi) and 1{.} is an indicator function.

In our model the regime where buyers will be playing is linked to complementarities and substitutabilities
of sequential units of water. Units of water are complements or substitutes depending on the relative size of
the two parameters defined above. If the marginal utility of the first unit is below the marginal utility for
the remaining units, we will say that units are pure complements. If the marginal utility of the first unit is
above the marginal utility for the remaining units, we will say that units are pure substitutes.

The discrete jump from the first to second unit, generated by the sunk cost, allows us to disentangle
both effects. Figure 1 shows several cases than could arise depending on the relative value of the parameter
vector (α, β). Panels I and IV exhibit situations where subsequents units are pure complements and pure
substitutes, respectively. The proper comparison in our circumstances, it should be noticed, is between
second, third and fourth units with respect to the first one. As would become clear in next subsection, in
equilibrium, after the first auction everybody learns the type of the second strongest bidder (the bidder with
the second highest valuation). Thus, it is common knowledge that the type of the winner is above the one
of the second strongest bidder. The valuations of second, third and fourth units reflect, consequently, the
value that the winner attaches to these units respectively. For the first unit, however, the valuation reflects
the value that the second strongest bidder attaches to it.

3.1 Set Up

We proceed now to present the theoretical model. We derive, for each regime, the equations that will later be
used for the structural estimation. When goods are complements we compute the unique Symmetric (Pure
Strategy Perfect Bayesian) Equilibrium. We also prove that the strategies played by every player in this
equilibrium are dominant strategies. This strong result allows us to (partially) identify the parameters of
the model without imposing further structure to the distribution of bidders’ valuations. When goods are
substitutes we compute necessary and sufficient conditions for equilibrium. Technical details and the solution
of the model for this case are provided in appendix A. In this case the equilibrium depends on the believes
about other player’s types, and strategies that each bidder have.

We consider vi to be independent identically distributed on the interval [0,Wi], according to the increasing
distribution function Fi. It is assumed that Fi admits a continuous density fi ≡ F ′i and has full support.
We allow for the possibility that the support of Fi be the non-negative real line, [0,+∞]. It is assumed that
E[vi] < ∞. The assumption that the support of Fi is bounded below by 0 is not restrictive, since bidders
with negative valuations will not enter the auction. It would be hard to interpret, however, bidders with
negative valuations. The private valuation, vi, is only known by bidder i, and it is learned before entering
the first auction.

To allocate K goods, the seller runs an English (ascending) auction for every object. All participating
bidders observe the total number of individuals who take part of the auction, N . After every auction,
everybody observes the price paid by the winner and its identity, and the seller continues to run subsequent
auctions sequentially until all the objects are allocated. We assume that all buyers share the same utility
function, Ui (·), and that they are not financially constrained. The primitives of the model, K, N , Fi(·),
Ui (·), are common knowledge.

The strategy set for every individual is the vector S ≡
(
yki , b

k
i

)k=1,...,K

i=1,...,N
, where yki = 1 indicates that bidder

i is participating in the auction for object k, and bki is the maximum amount that bidder i is willing to pay
for object k. Bidders play sequentially, or stage by stage. This means that they choose sk =

(
yki , b

k
i

)
after

learning the outcome of the previous (k− 1) objects. Bidders participating in auction k observe the price at
which each bidder is no longer active (bids are observable) except for the winning bid. Importantly, note that
this information transmission is consistent with the auction being an English (or ascending) auction rather
than a second price auction.
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The seller allocates the object to the highest bidder: xkj = 1, where j = argmax
(
bki
)

i

, at a price equal the

second highest bidder: pk = bkl , where l = argmax
i6=j

(
bki
)
. If nobody participates in a given auction the object

is lost. In case only one bidder participates in a specific auction she obtains the object for free. Each object
is allocated to one of the N bidders or is lost if all bidders decide not to participate in the auction, hence:
N∑
i=1

xki ≤ 1, ∀k.11

Participation decision in each auction is done simultaneously by all buyers. To take part in auction k,
buyers incur a participation cost, ck, at the beginning of the period. As explained before, if only one bidder
participates she obtains the object for free, but she bears the participation cost, ck, nonetheless. An English-
auction for object k is run when at least two bidders decide to participate. The process is then repeated in
every sequential period. For simplicity of the argument, and to avoid unnecessary notation, we restrict the
analysis to the case where the participation costs are constant across auctions: ck = c > 0, ∀k.

Note that the assumption that ck = c, ∀k is not restrictive since there are no informational shocks before
the decision to enter the first auction. If we consider a case with c1 6= 0, and given the equilibrium outcome,
we can compute the expected utility for every type. Bidders enter the (first and maybe subsequent) auction
if, and only if, the expected utility they obtain from the game is positive. The ex-ante expected utility is
continuous and increasing in the agent’s type. Therefore, we can perform the same analysis considering the
types distribution:

F ∗ (wi) ≡ F (vi | EU (vi) ≥ 0)

Throughout the paper we make the assumption that EU (vi) ≥ 0 for all vi in the support. This equation
is trivially satisfied when the lower bound in the support is positive and c is arbitrarily small.

The assumption ck 6= 0, k > 1, however, is not without loss of generality because there is information
transmitted before the decision of entering the second auction. As we further explain in Subsection 4.3, this
assumption is consistent with the data in our empirical setting, where we observe no demand for some of
the goods, even though the reservation price is zero. The interpretation is that, in those situations where
no-demand is observed, the utility for all bidders is smaller than the participation cost, c. We later use this
information to identify participation costs.

3.2 Two Units

We first analyze the situation where only two goods, K = 2, are sold sequentially. In this case, the marginal
utility for the first unit is MU (1) = (1− α) vi, while the marginal utility for the second one is given by:
MU (2) = [1− β (2− 1)] vi = (1− β) vi. Let us normalize the marginal utility of the first unit and define the
normalized marginal utility as:

NMU (x) =
MU (x)

1− α

With this normalization, NMU (1) = vi, and NMU (2) =
(

1−β
1−α

)
vi = (1 + ρ) vi, where ρ ≡ α−β

1−α . This
representation allows us to characterize the utility function in a simple way, whose interpretation, in terms
of complementarities or substitubilities, depends on the sign of one parameter, ρ. Of course, the sign of
the complementarity parameter (ρ), is linked, ultimately, to the size of sunk cost (α) relative to deceasing
marginal returns (β):

• ρ > 0 iff β < α: When ρ > 0, we say that goods are complements. The reason is that in this case,
the marginal utility for the second unit is greater than the marginal utility for the first unit. This is
a situation where the sunk cost effect is relatively more important than the decreasing returns effect,

11We do not consider here the case where nobody bids for any of the objects, i.e., yki = 0 ∀i, k.

8



(β < α). In our empirical setting, and for reasons that will become clear in Section 4, this is an instance
that will be likely to occur in spring/summer.

• ρ < 0 iff β > α: The opposite takes place when ρ < 0, where we say that goods are substitutes, since
the marginal utility for the second unit is lower than the marginal utility for the first unit. Now the
decreasing marginal returns effects is relatively more important than the sunk cost effect (β > α). This
situation is likely to manifest in autumn/winter, as we discuss in Section 4.

The following is the utility of bidder i in the English-auction:

Ui =
(
x1
i + x2

i + ρx1
ix

2
i

)
vi − y1

i c− y2
i c (1)

where vi ∼ F [0,Wi] is a scalar (with Wi finite or infinite), ck > 0, is a scalar arbitrarily close to zero,
and yki , xki ∈ {0, 1}. As discussed above, after normalizing the marginal utility of the first unit to be equal to
vi, the marginal utility of the second unit is (1 + ρ) vi.

In this section, we will only consider Pure-Strategy-Symmetric Equilibrium. Cases where ρ ≤ −1 and
ρ = 0 are close to Von der Fehr (1994), in Subsections 3.2 and 3.4, respectively. Uniqueness, however, is not
proved by Von der Fehr in any of those cases.

In the remaining of the paper we refer to vN :N , as the highest realization of the random variable vi among
N distributions Fi (one draw from each distribution), and vN−1:N , as the second highest realization. More
generally, vj:N is the jth order statistc for a sample of size N from the distribution Fi.

3.2.1 Goods are Complements: ρ > 0

Proposition 1. The (Pure-Strategy-Symmetric Sequential) Equilibrium in this case is:

• First auction:

? Participation: Player i always participate in the first auction, i.e., y1
i = 1

? Bidding Strategy: We have two cases:

(a) If (1 + ρ) vi ≡ ṽi ≤ c, then b1i (vi) = b1 (vi) = vi

(b) If (1 + ρ) vi ≡ ṽi > c, then b1i (vi) = b1 (vi) = (2 + ρ) vi − c

• Second auction:

? Participation: Here we have two cases:

(a) If (1 + ρ) vi ≡ ṽi ≤ c, then do not participate in the second auction

(b) If (1 + ρ) vi ≡ ṽi > c, then participate in the second auction if, and only if, she won the first
auction, i.e. y2

i = 1 iff x1
i = 1

? Bidding Strategy: If player i participates in the second auction (y2
i = 1), she will continue bidding

until the price reaches her own valuation, i.e. b2 (vi) = vi

Proof. Notice that the first case will happen when the cost c is relatively high. In this case, the cost of
participating in the second auction is so high that bidder i does not want to participate in the second auction,
even if she won the first unit. Hence, player i will behave as in the single unit case and b1i (vi) = b1 (vi) = vi

is a weakly dominant strategy. Notice that because this is an English-auction, if only bidder i is in the
second case and all remaining bidders are in the first case, b1i (vi) = b1 (vi) = (2 + ρ) vi− c is still a dominant
strategy for player i because she will pay p1 = vj < (2 + ρ) vj − c, where vj is the maximum valuation of
the remaining bidders. This inequality is a direct consequence of bidder i being in case 1 and vi > vj . The
second case is more interesting.

9



The first step of the proof consists on proving that in any revealing (strictly increasing) equilibrium,
i.e. an equilibrium in which it becomes common knowledge after the first round who is the bidder with the
highest valuation, only the winner (the bidder with the highest type) will enter the auction, and pay the cost
c.

Since both a direct mechanism and the sequential auction will give the same utility to the winner, and
both will give the 2 objects to the bidder with the highest valuation, the total utility for the winner should
beWi = (2 + ρ) vi− (2 + ρ) vj = (2 + ρ) (vi − vj) in both cases, where j is the bidder with the second highest
valuation. For the case of a direct mechanism we can assume that there is a cost of communication for each
of the auctions, that should be paid by every bidder who wants to get the object.

The second step is to show that the winner will pay (2 + ρ) vj − c in the first auction. This payment,
together with the utility the winner obtains from both goods ((2 + ρ) vi) and the cost of entering the second
auction (c), will give him the same utility as in the direct mechanism. (2 + ρ) vi − ((2 + ρ) vj − c) − c =

(2 + ρ) vi − (2 + ρ) vj = Wi. This is easy to check. The utility for the winner in the second auction is
(1 + ρ) vi− c since the equilibrium price in the second auction is zero, i.e. p2 = 0, and the utility for the loser
is zero. Then, the total value of winning the auction is (2 + ρ) vi − c. Let us define zi = (2 + ρ) vi − c and
consider this game to be a single object auction in which the valuation for the good of player i is zi. Now
we are back into the standard case (single unit auction) and bi = zi = (2 + ρ) vi − c is a weakly dominant
strategy (see Krishna (2010) for details).

So far, we have proven that in any revealing equilibrium only the winner will enter the second auction.
The intuition for this result is that due to the cost of participating in an auction it is a necessary condition,
for player i to participate in the auction, that her probability of winning is positive. If I am going to lose the
auction for sure and it is costly to participate, Why should I enter the auction? Hence, only the winner will
enter the auction. Her utility in the second auction is (1 + ρ) vi − c. This fact, together with her utility in
the first auction vi and the Revenue Equivalence Theorem show that she should bid b1i = (2 + ρ) vi − c and
pay p1 = (2 + ρ) vj − c. Hence, this is a revealing equilibrium. We have shown that, given the payoffs in the
second auction, there is only one possible payoff and one possible bid for every player in the first auction.
Hence, this is also the unique Symmetric Equilibrium in pure strategies.

Note that, in this case, the allocation is efficient and only one bidder will enter the second auction and
pay the cost, c. This is the minimum cost we can expect to be paid if we want the object to be allocated.
Thus, the mechanism is also efficient in terms of minimizing entry costs.

3.2.2 Goods are Substitutes: −1 < ρ < 0

We proceed now to introduce two propositions that will help us identify the model’s primitives. Note that,
in this case, we do not need to solve the complete model to obtain the following results.

Proposition 2. When −1 < ρ < 0, the probability that a player different from the winner enters the last
auction is decreasing in the participation cost, c. Moreover, this probability goes to 1 when c goes to zero, i.e:
Lim
c→0

{
Pr
(
y2
i = 1 | x1

j = 1, i 6= j
)}

= 1.

Proof. It is sufficient to show that one bidder, the bidder with the second highest valuation, will enter with
probability approaching 1. If the equilibrium in the first auction is fully revealing, it will become common
knowledge that v1 ∼ F̃1 (v1) ≡ F1 (v1 | v1 > v2), where player 1 is the winner of the first auction and player
2 in the second highest bidder in the first auction. The expected utility of entering the second auction for
player 2 is:12

v2Pr [v2 > (1 + ρ) v1]− c = v2F̃1

(
v2

1 + ρ

)
− c (2)

12Note that in the second auction the winner (in the first auction) now has complete information. Hence, a necessary condition
for equilibrium is that if player 2 wins, player 1 does not enter the second auction.
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Player 2 will enter the second auction if, and only if, her expected utility is positive, i.e: Pr
(
y2

2 = 1 | x1
1 = 1

)
=

Pr
(
v2F̃1

(
v2

1+ρ

)
− c > 0

)
. Notice that c only appears in the right hand side, and the probability is decreasing

in c. The first term in the left hand side is always strictly positive, by construction. This implies that there
exist some value for c such that this term is smaller. Formally, we have:

Lim
c→0

{
Pr
(
y2
i = 1 | x1

j = 1, i 6= j
)}
≥ Lim

c→0

{
Pr
(
y2

1 = 1 | x1
2 = 1

)}
= Lim

c→0

{
Pr

(
v2F̃1

(
v2

1 + ρ

)
− c > 0

)}
= 1

Notice that we are considering only the cases where the first auction is fully revealing. If the first auction
is only partially revealing (equilibrium is pooling or semi-pooling),13 then the analysis is less restrictive. In
a pooling bidding region bidders with valuation within an interval bid the same amount. Ties are broken
randomly. Hence, with positive probability it could be the case that the bidder with the highest valuation
losses the lottery and we have v2 > v1. In this case, player 2 has even greater incentives to enter the second
auction.

Proposition 3. When goods are substitutes, −1 < ρ < 0, it is a dominant strategy for all players to bid
their valuations for the unit in the last auction, conditional on entering the auction.

Proof. Conditional on entering the last auction, there is no informational not dynamic concerns and, hence,
all bidders behave as in a standard (single-unit) second price auction. It is a well known result that, in this
type of auction, it is a dominant strategy to bid your own valuation. We skip the details of the proof here.

Proposition 4. When ρ = c = 0 it is weakly dominant strategy for all players to enter all auctions and bid
their valuations in every auction, i.e. yki = 1 and bki = vi, ∀i, k.

Proof. The proof is straightforward. The situation here is similar to the single-unit case. The difference, of
course, is the information that each player has in every stage. Nevertheless, this will not affect the result.
Note, first, that it is a weakly dominant strategy for every player to enter every auction because there are
no entry costs and the gains are zero or positive. Next, note that, conditional on entering, it is a weakly
dominant strategy for every player to bid her own valuation (for the unit) in the last auction. The game
played in the last auction is the same as in the single-unit case with the exception that now some of the
players’ distributions are degenerated or have changed, due to their strategies in the previous stage. However,
this does not change the result.

In the first stage, it is also a dominant strategy for all players to bid their valuations because their
strategies, and the information that other players can infer from it, will not change the payoffs of any player
in the second stage. Hence, the only thing that matters is whether they get the first unit and at what
price.

This is indeed the unique equilibrium in weakly dominated strategies, but not the unique Nash Equilib-
rium. Since all the valuations are revealed to all types in the first stage, equilibria can be constructed where
some players do not enter the second auction, or enter the second auction and bid below their valuations,
provided that the two highest types bidders enter both auctions and bid their valuations in both. Note,
however, that in any case the bidder with the highest valuation will win both units and will pay a price equal
to the valuation of the bidder with the second highest valuation.

This result will also hold when ρ > 0. When ρ < 0 the model is identical to Black and de Meza (1992)
and the result does not longer hold. Hence, there is continuity in strategies only when ρ > 0 and ρ→ 0 (but
not when c > 0 and c→ 0).

13It can be shown that, when c→ 0, the equilibrium is semi-pooling with probability 1.
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3.3 Four Units

Now we consider the case where four goods are sold, K = 4. The marginal utilities in this case are:
MU (1) = (1− α) vi, MU (2) = (1− β) vi, MU (3) = (1− 2β) vi and MU (4) = (1− 3β) vi.

In the remaining of this section we consider the participation cost c to be arbitrarily small, in order to
avoid excessive notation and irrelevant cases. We further assume that c1 = c2 = c3 = c4 = c. We argue that,
given the structure of the utility function, which is common to all bidders, if the same bidder ends up winning
three or four units, then she is the bidder with the highest type vN :N .14 Although it is not important at this
point we will restrict the parameter space to be α, β ∈ [0, 1].

3.3.1 Pure Complements

As explained previously in this section, we say that goods are pure complements if the marginal utility for
the first unit is below the marginal utility for the remaining units. This situation corresponds with a case
similar to the one illustrated in panel I in Figure 1. Since marginal utility is decreasing after the second unit,
this is analogous to say that the marginal utility of the first unit is below the marginal utility of the last unit,
MU (1) ≤MU (4), or, equivalently, 3β ≤ α.

Proposition 5. When goods are pure complements, β ≤ α
3 , the (Pure-Strategy-Symmetric Sequential) Equi-

librium is:

• First auction:

? Participation: Player i will always participate in the first auction, i.e. y1
i = 1

? Bidding Strategy: b1i (vi) = b1 (vi) = [(1− α) + (1− β) + (1− 2β) + (1− 3β)] vi−3c = [4− α− 6β] vi−
3c

• Second, third and fourth auctions:

? Participation: participate in all the remaining auctions if, and only if, she won the first auction,
i.e. y2

i = y3
i = y4

i = 1 iff x1
i = 1

? Bidding Strategy: If player i participates in the second, third or fourth auction (yki = 1 for k =

2, 3, 4), she will continue bidding until the price reaches its own valuation, i.e. b2 (vi) = b3 (vi) =

b4 (vi) = (1− α) vi.15

Proof. The proof is similar to the one in Proposition 1. The details are in the appendix A.

In this case the strategies and the outcomes are also analog to the single-unit case: since all second, third
and fourth units yield greater marginal utility than the first unit, the equilibrium is fully revealing.

Corollary 6. When goods are pure complements, β ≤ α
3 , the marginal utility of the winner (of all auctions)

solves the following equation:

[4− α− 6β] vN :N − 3c ≥
4∑
k=1

pk = [4− α− 6β] vN−1:N − 3c (3)

14This will be the case if the bidding functions for each unit are strictly increasing in vi. Moreover, even if the bidding
functions are just weakly increasing in vi but they are strictly increasing in vi for some range in the support of Fi, then this
will also be the case.

15Note that this is an strategy off the equilibrium path.
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3.3.2 Non pure complements

The case where β > α
3 encompass situations similar to the ones depicted in panels II to IV in Figure 1. The

equilibrium behavior, however, will be different. Nevertheless, we are still able to use analogous results from
propositions 2 and 3 to compute equilibrium prices in this regime. Note, first, that proposition 2 also holds
for the case where four units are sold. Thus, there will be multiple entry in the last auction with positive
probability, and this probability goes to 1 as c tends to zero. Proposition 3, on the other hand, can be easily
extended to the case where four units are sold.

Proposition 7. When goods are not pure complements, β > α
3 , it is a dominant strategy for all players to

bid their valuations in the last auction (for that unit), conditional on entering the auction.

Proof. The argument for the proof is the same as in proposition 3.

When four units are sold for the case of not pure complements, there are more possible configurations for
the winner, and the second highest bidder, in the last auction. We summarize them in the following corollary.

Corollary 8. When goods are not pure complements, β > α
3 , the marginal utility of the winner in the last

auction solves the following equations, depending on how many units she won:
If she won all four units:

(1− 3β)vN :N ≥ p4 = (1− α)vN−1:N − c (4)

If she won three units, two out of the first three, and the last one:

(1− 2β)vN :N ≥ p4 = (1− β)vN−1:N − c (5)

Several remarks concerning the behavior in these cases worth discussing. First, note that in both cases,
whoever wins three or four units will necessary be the bidder with the highest type. When the same individual
buys all four units, we can only claim equality on the price paid for the last sequential unit (equation 4). In this
case, we know that all the remaining buyers are bidding in the last auction according toMUi (1) = (1− α) vi.
The reason is that none of them bought any of the first three units. In the case of equation 5, however, we
do not know if the second highest bidder for the last unit has already bought one unit, and hence bidding
according to MUN−1 (2) = (1− β) vN−1:N ; or has not bought any unit, and thus bidding according to
MUN−2 (1) = (1− α) vN−2:N . If the winner of the last unit (K = 4) has bought only two units, we are
unable to say whether she is the highest or the second highest type without imposing further structure. A
similar argument applies to the case where the winner of the last unit only buys one good. We can only tell
whether the last winner is bidding according to MUi (1) = (1− α) vi or MUi (k), depending on her previous
purchases. Nonetheless, if we do not know her ranking on the valuations, we cannot use this information to
infer price behavior. In Section 6 we discuss how to use corollaries 6 and 8 for identification of the distribution
of private valuations and structural parameters.16

16Going back to the illustrative example in Figure 1, in the first case (α = 0.8 and β = 0.05), all the remaining goods (second,
third and fourth) have a valuation greater than the first one. Hence, no loser will enter those auctions and the deterrence effect
will last the whole auction. In the second case (α = 0.8 and β = 0.1), only the second and third goods have greater valuation
than the first one. In the third case (α = 0.85 and β = 0.1), only the second good have greater valuation than the first one.
Hence, no loser will enter the 2nd auction but some (at least the second highest bidder) may enter the third and fourth sequential
auctions. Finally, in the forth case (α = 0.95 and β = 0.1), all the remaining goods have lower valuation than the first one. In
this case deterrence is impossible and some bidders might enter every auction with positive probability. See also the discussion
in footnote 48.
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4 Data Description

In this section we describe the auction allocating system and the data. We then introduce the empirical
regularities that support the contention that the size of sunk costs relative to decreasing marginal returns
provide the basis for the existence of two regimes. Finally, we justify the modeling assumptions made in
Section 3 within our empirical context.

The data in this paper comes from all water-auctions in Mula from January 1954 through August 1966,
when the last auction was run.17 On August 1st, 1966 the allocation system was modified from being an
auction allocation system to a two-sided bargaining system. In the bargaining system, the Heredamiento the
Aguas (water-owners holding) and Sindicato de Regantes (land-owners association) arranged a fixed a price
(renegotiated at the beginning of each month or every six months) for every cuarta of water (the smallest unit
auctioned). Gradually, the Sindicato de Regantes bought shares in the Heredamiento the Aguas association
until they finally merged in 1974.

The reasons for focusing on the period from 1954 to 1966 are, first, that it represents the final period of
the auction allocating system that was used for at least eight centuries in this region. Second, availability
of rainfall and weather data for Mula starts in 1933, which introduces a natural starting date for compiling
this information. Finally, given that the government carried out a special census in 1954/55, we are able to
obtain a detailed profile information about the farmers that bid in the auctions for this period.

Apart from being a remarkable stable market institution that had been active since the 13th century,
the study of sequential auctions in the present scenario introduces a unique circumstance for analyzing an
unusual price behavior not documented in the literature before. In certain months, winning prices exhibit a
“standard” competitive pattern where regardless of whether the same or different farmers win the sequential
units, prices are similar in magnitude (Figure 4).18 In others, where the same farmer wins all sequential
units, she pays an “abnormal” high price for the first unit, deterring other farmers from entering subsequent
auctions. This allows her to pay prices close to zero for the remaining (sequential) units. We call this the
deterrence effect (Figure 3). The relative importance of sunk costs and decreasing marginal returns cause
farmers to coordinate, affecting their marginal utility for subsequent units (within four-unit auctions). Should
the econometrician not take into account this feature, her estimations and inferences would not be accurate.
An alternative hypothesis to the behavior of farmers in the case of complementarities that is discussed in
Subsection 7.4, is that bidders might be playing some collusive (non-competitive) strategy. When the former
effect is relatively high (as defined in previous section), the deterrence effect arises and the “abnormal” price
pattern is observed.

4.1 Water Auctions as Allocation System

Although the process of allocating water in Murcia has varied slightly over the years, its basic structure has
remained, essentially, unchanged since the 13th century. Land in Murcia is divided into regadio (irrigated
land) and secano (dry land). Irrigation is only permitted in the former. A channel system allows water from
the river to reach all regadio lands.19 The fundamental reason for this division is that regadio are fertile
lands that are close to rivers and, hence, allow a more efficient use of scarce water in the region. Since it is
forbidden to irrigate lands categorized as secano, only the farmers that own a piece of regadio land in Murcia
are allowed to participate buy water.

The mechanism to allocate water to those farmers is a sequential English-auction. The auctioneer sells
by auction each of the units sequentially and independently of each other. She keeps track of the name of

17Data available in the historical archive of Mula goes back until 1801. See Donna and Espin-Sanchez (2011) for further
details.

18Declining prices for identical objects in these settings is an empirical regularity that has been broadly studied. For a seminal
paper see Ashenfelter (1989).

19The channel system was expanded from the 13th to 15th century, as a response to the greater demand for land due to the
increase in population. The regadio land’s structure has not change since the 15th century.

14



the buyer of every unit and the price paid by the winner.
The basic selling unit is a cuarta (quarter), the right to use 15 minutes of water for irrigation. Water

storage is done in the De La Cierva dam. Water flows from the dam through the channels at approximately
40 l/s. As a result, one cuarta carries 36,000 liters of water. Traditionally, auctions were made every 21 days
to complete a tanda (quota), which is the basic aggregate unit of irrigation time. During our sample period
auctions were carried out once a week, every Friday.

In every session 40 cuartas were auctioned: 4 cuartas for irrigation during the day (from 7:00 AM to 8:00
AM) and 4 cuartas for irrigation during the night (from 7:00 PM to 8:00 PM), every weekday (Monday to
Friday). The auctioneer sells, first, 20 cuartas corresponding to the night-time and, afterwards, 20 cuartas
corresponding to the day-time. Within each of these groups (day and night), units are sold beginning with
Monday (4 cuartas), and finishing with Friday’s cuartas.

4.2 Data Summary Overview

We combine data from different sources for our analysis. To get a sense of the industry context during the
period under analysis, we present a brief description for the region’s demographics, agriculture production
and weather.20 Murcia’s population share in Spain was around 3% during the period. As a municipality,
Mula comprised 2% of Murcia in 1954, ranking Mula 20th in terms of population. The three main citrus
fruits produced in the area are apricot, lemon and peach trees. Murcia’s share of these crops was 50% (2.3
million), 44% (1.5 million) and 42% (4.3 million), respectively, in terms of total Spain’s total production of
these fruits for the year 1962. Regadio land in Murcia constitutes 4% (70,000 ha.) of Spain’s.

Auction data, the primary source of data for this study, is obtained from the historical archive of Mula.21

Based on bidding behavior and water availability, auction data can be divided into three categories: (i)
Regular periods, where for each transaction the name of the winner, price paid, date and time of the irrigation
for each auction is registered, (ii) No-supply periods, where due to water shortage in the river or dam/channels
damages (usually because of intense rain), no auction is carried out, and finally (iii) No-demand periods refer
to auctions where no one bids and the registration auction sheet is blank. As we mentioned above, the sample
for this study includes almost 13 years of auction data spanning January 1954 to August 1966. Every week,
40 units (corresponding to 40 cuartas) are sold, with the exception being when no auction is run (no-supply)
or no bids are observed (no-demand). During the period under analysis a total of 17,075 auctions were run.

We complement auctions data with daily rainfall data for Mula and monthly price indexes for Spain,
which we obtain from the Agencia Estatal de Metereologia, AEMET (which is the National Meteorological
Agency), and the Instituto Nacional de Estadística de España, INE (which is the National Statistics Institute
of Spain), respectively. Mediterranean climate rainfall occurs mainly in spring and autumn. Peak water
requirements for the products cultivated in the region are reached in spring and summer, between April and
August. During this period more frequent irrigation is advisable because it is in this period where citrus trees
are more sensitive (in terms of quality of production) to water deficits. Soaring demand is reflected by the
frequency of auctions where the same farmer buys all four consecutive units (4CU), which reaches its peak
during these months, as it is depicted in Figure 12. Of course, the frequency of 4CU is not homogenous over
time but, as can be seen in Figure 7, related to seasonal rainfall. Weather is important for our analysis as it
is a determinant of seasonality. The coastal strip of southeast Spain is the most arid region of all continental
Europe due to the Foehn Effect22 and because of its location: right to the west of the mountain chain Sistema
Penibetico, which includes the Mulhacen (the second highest mountain in Europe). Although annual average

20These descriptive statistics are obtained from Population and Agricultural Census from the National Statistics Institute of
Spain (INE) (available online at http://www.ine.es/inebaseweb/treeNavigation.do?tn=201299&tns=199923#199923).

21From the section Heredamiento de Aguas, boxes No.: HA 167, HA 168, HA 169 and HA 170.
22A foehn wind is “a type of dry down-slope wind that occurs in the lee (downwind side) of a mountain range. It is a rain

shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward
slopes. As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer
than equivalent elevations on the windward slopes” (obtained from: http://en.wikipedia.org/wiki/Foehn_wind).
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rainfall is 320 mm., rainfall frequency distribution is skewed, making the majority of years dryer than this
yearly average. Aridity during the summer is especially acute. Autumn is the only relatively humid season.
The number of days when torrential rain occurs is not particularly high, but when such rain occurs it is
substantial.23 Potential evaporation is four or five times higher than rainfall and the number of arid months
vary from 7 to 11 in our sample. These arid conditions found in southeast Spain are related to the circular
air movement in the occidental Mediterranean area and to the Atlantic-origin storms.

We further augment our data with individual characteristics of the farmers’ land, which we obtain from
the 1954/55 agricultural census.24 This census was conducted by the Spanish government to enumerate all
cultivating soil, producing crops and agricultural assets available in the country. Individual characteristics
for the farmers’ land (potential bidders which we match with the names in the auctions data) include the
type of land and location, area, number of trees, production and the price at which this production was sold
in the census year. Figure 6 shows a sample card for one farmer from the census data.25 It can be seen in
Table 2, that Land Extension, Number of Trees and Kg sold vary considerably across farmers. As we discuss
later in Section 7, during the 13-year period under analysis, there are approximately 500 different bidders
in our sample. Of course, the number of bidders that win auctions during a specific year is considerably
lower (the mean for our sample is around 50) and conditional on showing up, each farmer wins on average 22
units per year (an average of 792 thousand liters per year). This is consistent with the census data we have
collected, where mean land extension is 5.5 ha. with an average of 33 trees per ha.26

In our theoretical model, it is important to be able to identify, for four-unit auctions, cases where the
same farmer wins four or three sequential units, to avoid imposing further structure on the dynamic strategic
considerations of the bidders, which are outside the scope of this paper.27 Thus, we have selected for our
estimation, auctions where a single person wins all units or where the last winner also won two out of the
first three units (for a total of three units). This represents 54% of the total number of water units sold in our
sample as displayed in Table 1. The table also exhibits the frequency distribution of units sold by number of
units bought by the same farmer. Overall 42% of the units were sold in 4CU.

Selected summary statistics for the main variables are provided in Table 2. Importantly for our analysis,
we only observe the transaction price (winning bid) and the identity of the winner (name). Winning prices
range from $0.05 to $4,830 being the mean $374. As expected, winning prices and frequency distribution of
4CU are strongly correlated with past rain (Figure 7). Interestingly, in the sample used in the structural
estimation, the counterintuitive positive correlation between average daily winning prices and daily rainfall
recovers its “correct” sign (with high significance) once we condition on seasonality. The endogeneity issue
arises because both demand (due to the nature of the trees) and supply (rainfall) are high during spring,
generating an artificial positive correlation between the variables that is, ultimately, caused by seasonality

23As an example, on October 10th 1943, 681 mm. of rain water were measured in Mula, more than twice the yearly average
for our sample.

24Detailed census data is also obtained from the section Heredamiento de Aguas in the historical archive of Mula, box No.
1,210.

25One nice feature of this data is that every individual record (card) contains information on any plot owned by the farmer,
both in the huertas and in other places. Information on whether a farmer owns another plot of land not allowed for irrigation
is important as it is the farmer’s outside option (for other sources of income) in case she does not buy water at a given auction
during a specific period.

26Average annual rainfall during the period is 320 mm. Recent irrigation studies on young citrus plantings have shown a
water use of 2-5 megalitres per hectare annually. Water savings are possible if irrigations can be allocated to similar units of
production such as young trees or reworked sections of a property. In arid regions like Murcia water requirements could be
around 20% less and, naturally, they are lower for grown up trees. Note that, as mentioned above, some farmers that are part
of water-owner holding use their own water instead of selling it through auctions. Although water stress during draughts affects
considerably the quality of production, trees would hardly die as a result. During a normal year without draughts trees could
survive the whole year from rainfall. For further details see, for example Chott and Bradley (1997), Wright (2000) and du Preez
(2001). Finally, note that although the average number of trees per farmer is 161 (see Table 2), the average number of trees
per hectare in our sample is 33 (this number is relatively lower than the conventional spacing for citrus trees of 100 trees per
hectare).

27A complete characterization of the equilibrium when goods are not pure complements would require further structure on
the primitives of the model as the equilibrium depends on the believes about other player’s types, and the strategies, that each
bidder have.
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(we further discuss seasonality below). There is substantial price variation, both within and across four-
unit auctions. Table 3 exhibits the distribution of winning prices by both, the number of consecutive units
bought by the same individual (1CU, 2CU, 3CU or 4CU) and by sequential auction (1st, 2nd, 3rd or 4th).
Interestingly, the greater variation that we observe for 4CU (with respect to non-4CU) has a well defined and
consistent pattern. While mean prices for the 1st auction in 4CU are considerably higher than for non-4CU
(635.2 against 365.6, 288.3 or 204.6), mean prices for 4th auctions in 4CU are the smallest one. Similar
patterns can be seen for the median and maximum prices. Figure 8 decomposes price variation by number
of consecutive auctions won by the same individual (left panel) and by sequential auction (right panel).
This particular pattern in prices is caused by the above mentioned deterrence effect whereby farmers exhibit
different behavior based on seasonality and rainfall (i.e., residual demand for water). During high demand
and low rainfall months (summer, for example) the same farmer buys all four sequential units paying an
abnormally high price for the first unit (with respect to the median or average price conditioning on rain)
and prices close to zero for the remaining units. In months where demand is not high (due to farming
seasonalities) or where rainfall is high, winning prices for all units are similar in magnitude, regardless of
whether the same farmer wins all sequential units (4CU) or different farmers win subsequent units (1CU,
2CU or 3CU).

Aggregate prices over time display consistent trends with the ones found in the empirical literature on
sequential auctions. Figure 9 shows that, on average, per unit prices decline by sequential unit (being the
first unit of each day considerably higher than second to fourth units, for the reason explained in previous
paragraph) and by day of the week (prices decline from Monday to Friday). Figure 9 also shows that per
unit prices are also slightly higher during the day than during the night. High water requirements for citrus
during summer cause prices to soar during those months (Figure 10). Also as expected, prices are also higher
during droughts after conditioning on seasons (Figure 11).28

To get a more precise understanding of these patterns and the factors affecting winning prices, Table 4
shows that these correlations are robust after conditioning on past rain, unit, weekday, schedule, week-of-the-
year, month and individual fixed effects. Specifically, the table displays the results obtained by regressing
daily unit prices on a seven-day-rain moving average (Rain MA7 ), the rain on the day bought in the auction
and the mentioned fixed effects. The estimated coefficients on Rain MA7 have the expected sign and they are
statistically significant at 1% level. A 10 millimeter increase in average rain in the previous week is associated
with a decrease of 40 pesetas in the equilibrium price paid in the auction. The regression in column (2) adds
unit, weekday and schedule fixed effects. The estimated coefficient on Rain MA7 increases in magnitude and
also has the expected sign. It can also be seen from this regression that, as noticed in previous figures, price
declines within day and across units (both for daylight and night auctions) and across schedules (price is on
average 110 pesetas lower for high auction than for daylight auctions). As regards weekdays average prices,
the estimated coefficients show that equilibrium prices decline monotonically within the week. Columns (3)
and (4) add week fixed effects and month seasonal dummies to the specification in column (2). The estimated
coefficient on Rain MA7, though smaller, has again the expected sign and it is statistically different from
zero. Column (5) adds both week fixed effects and month seasonal dummies to the specification in column
(2). Finally, column (6) adds, additional to the specification in column (5), individual fixed effects (we have
537 different individuals in our sample). Similar qualitative results are obtained; however, the estimated
coefficient on Rain MA7 has increased. Note that the goodness of the fit in this last regression of the table
is relatively high, indicating that average (or ex-ante) prices can be explained by observables such as rain in
the previous week and time of the allocation relatively well (favoring, thus, the idea of common knowledge
for the parameters within four-unit auctions). Although not reported, as a robustness exercise, we performed

28Drought definition has been studied by several scientific studies. In our analysis, we define a drought as an indicator that
is equal to one when average monthly rain during the specific year is below a consensus threshold defined in the literature in
terms of the historic annual average (following Gil Olcina (1994) we use a threshold of 40% in 11). For further details, see for
example a study from Valiente (2001) where the author presents diverse methodological issues analyzing drought definitions.
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an analogue analysis using average daily prices within schedule. Similar results are obtained.
A nice feature of our data is that we are able to observe the identity of the winner. This is crucial to our

analysis since it allows us to identify auctions where the same farmer buy all units (4CU). Complementary
data from the agricultural census, where we also observe the identity of the land owners, allows us to match
these characteristics to each auction’s winner. Aside from the variation in these characteristics, which is
important to justify our independence assumption across auctions, this data allows us to confirm specialized
bidding behavior from certain outliers who own a great amount of land and, therefore, bid and win more
often. This is depicted in Figure 13. We also use these characteristics in Section 7.4 to analyze an alternative
hypothesis to our model.

4.3 Fitting the Model to the Data

We now proceed to show how the above described data fits the model and we rationalize the modeling
assumptions in our context. Validating the model requires to show we can justify, in our empirical setting,
the following assumptions: (i) conditioning on auction-specific covariates farmers have IPV, (ii) the relevant
unit of analysis for individual bidders’ demand are four-unit auctions, (iii) conditioning on auction-specific
covariates accounts for possible dynamic strategic behavior relevant to our analysis, (iv) sunk cost and
decreasing marginal returns are important features in this market and not a mechanical result, and (v)
participation costs affect bidders in the market.

As emphasized in the theoretical model we assume that bidders draw new IPV at every four-unit auction.
The independence assumption allows us to model the equilibrium as Bayesian equilibrium. For the estimation
we assume that, conditional on observed covariates, farmers at each four-unit auction have IPV. The first
justification for IPV is that each bidding farmer (who may or may not be a water-owner) has her own land,
her own extension and her own mixture of trees and crops. This eliminates a pure common value scenario.
Second, the products being sold are units of water. Assuming that farmers have private (from other farmers)
information about the characteristic of this product, would not be in line with the homogeneous nature of
water units. Finally, the independence assumption is the most sensible in our context given the varying
nature of farming products and soil conditions across farmers. To understand why, recall that in the water
market the sellers are a holding formed by the water owners and the buyers are farmers that own fertile land.
Around 500 different farmers are observed to win auctions in our sample. Of course, not all these farmers
show up at every auction nor decide to participate in the case they show up. Farming products cultivated
in the area are mainly fruit and citrus trees (lemon, orange, peach, mandarin and apricot) and vegetables
(tomato, lettuce and onion). The amount of water required by the trees depends on the time of the year and
type of crop (citrus trees should not be irrigated daily). Moreover, and given that we condition on seasonality,
water requirements vary across products. For example, water needs for grapefruit and lemons are about 20%
higher than those for oranges, while water requirements for mandarins are about 10% less. Ground conditions
(which also vary across areas where different farmers have their own land) also affect water necessity. Table 5
displays appropriate intervals for watering citrus. These variations across farmers generated by these factors,
provide support for the fact that, given that each day the market is quite specific and since we work with
data for four-consecutive auctions as a unit of analysis (sequential auctions), the independence assumption
seems satisfied.29

The most comprehensive independent unit of analysis that could be considered are weekly auctions,
encompassing all 40 units sold per week. This would be the relevant definition to answer questions related
to demand fluctuations generated by supply shocks (such as no-auctions due to draught or excessive rain)
on an aggregate level. Alternatively, the narrowest possible unit observed (bought) is a cuarta (1 of the 40

29Our justification the IPV paradigm is in line with the literature on empirical auctions. For first price descending auctions see,
for example, Laffont, Ossard, and Vuong (1995) in an application to agricultural products (greenhouse eggplants in Marmande,
France) where the number of bidders vary between 11 and 18. For English-auctionss, Haile and Tamer (2003) apply their limited
structure model to U.S. Forest Service timber auctions where the number of bidders vary from 2 to 12.
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weekly units). As we explain below in this subsection, the presence of sunk costs and decreasing marginal
effects indicate cuartas within a day-schedule are not independent. Moreover, they are not the relevant unit
of analysis to investigate individual farmers’ demand nor the price pattern described above.

Our original question is motivated by the particular price behavior caused by the deterrence effect. This
particular behavior is observed within four-unit auction and, consistent with this empirical observation, is
the unit of analysis in the theoretical model. This is an immediate implication of the way the auction is
structured: one hour of water (subdivided into four cuartas) during daylight and one hour of water during
night, each weekday. The logic behind this structure is related to water requirements in the area. First, water
scarcity in the region made water accountability crucial. The standard unit used to measure surface area in
Murcia is called tahulla. One tahulla is, by definition, the surface area which can be irrigated in such a way
that water level rises 1-foot high in 1 minute.30 Needless to say, depending on soil conditions, the surface
area from 1-tahulla varies from one town to another.31 A four-consecutive units auction (a complete hour of
irrigation) is, in that sense, the amount of water that can be absorbed by a regular parcela (individual piece
of land). Of course, water requirements could and actually do differ (a) across farmers depending on farming
trees and land extension, and (b) for the same farmer over time depending on past rainfall.

Second, the irrigation technique used in Mula is flood irrigation. This is an ancient method of irrigating
crops that it is still one of the most common methods of irrigation used today. The farmer builds small
embankments in her parcela and water is delivered to the land by the channel system that simply flows
over the ground through the crop. Flood irrigation requires a minimum of water delivery that, for a regular
parcela, is captured by one tahulla.

Finally, a supply-side consideration also plays its role. The reason to supply water every 12 hours (one
hour during daylight and one during night) is to guarantee a particular and homogenous quantity for each
cuarta (which depends water crucially on water pressure since units are defined in minutes). The fact that
the De La Cierva dam is continuously filled with water from the river ensures, by spreading supply provision
across the week, homogeneity of water units.

Our data confirms these three points, validating the fact that the relevant unit of analysis for individual
demand with the IPV paradigm are four-consecutive units: the most frequent quantity purchased by farmers
is a complete hour of water (42% of sold units in Table 1).

Of course, the way in which the auction system is carried out every week raises the question of the
importance of dynamic strategic considerations between four-unit auctions both among days (Monday to
Friday for a specific schedule) and between schedules (Day vs Night for a specifc day). Table 4 shows that,
consistent with the literature on empirical sequential auctions, winning prices decline across days (for a given
schedule) and at night (for a given day). Although interesting, these dynamic strategic considerations are
outside the scope of the present investigation, and we abstract from them in our model in Section 3 (for
a broader discussion see Donna and Espin-Sanchez (2011)). It is important, however, to not that, even if
present, dynamic behavior considerations do not invalidate our model’s assumptions. As emphasized above,
the independent unit of analysis are four-unit auctions (not day-auctions of 8 units nor week-auctions of 40
units) which, conditional on covariates, are homogeneous goods. As is evident from the correlations presented
in Table 4, previous patterns are consistent along the whole sample and robust to the inclusion of a whole set
of fixed effects and covariates. Moreover, residuals from these reduced-form regressions do not show dynamic
patterns. This is not surprising as the principal difference between these four-unit auctions is related to the
uncertainty of future rain. As it is explained later in the estimation section, we will include covariates for
schedule, day-of-the-week and past rain in our estimation that would capture any technological or strategic
effect. Future rain, on the other hand, will also be included as a proxy for farmer’s beliefs to account

30The traditional Murcian measure of foot is not exactly the same to the American foot.
31The surface area of 1-tahulla is 1,118 square meters in Murcia and 1,185 square meters in the old Kingdom of Aragón, with

the exception of the region of Pías Fundaciones. The tahulla is used in regadio lands since Charles IV (king of Spain from 14
December 1788 until his abdication on 19 March 1808). In secano lands the surface area measure that is used is the fanega and
the celemín. For further details see Vera Nicolas (2004).
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for these (possible) strategic behaviors not accounted by previous covariates. In that sense, our estimates
should be interpreted as four-unit day-schedule specific auctions, conditioning on past rain and seasonality.
It seems highly implausible that after accounting for these observables and unobservables,32 and given that
the relevant unit of analysis are four-unit auctions, dynamic behavior would not affect our results concerning
individual demand.33 Nevertheless, we further investigate the residuals after our estimation in Section 7.2 to
analyze specific patterns related to this concern.

There are two main specific features from the model that need to be justified in our empirical setting.
First, the sunk cost (SC) that farmers incur when they buy their first unit. Water is allocated during the
auction and is distributed on the specific day and time of the irrigation accordingly. Water stored in the
dam is delivered to the farmer’s plot on this date using the channel system. With the exception of the main
canal, all channels are dug into the ground. On the date of the irrigation, a guard opens the corresponding
gates in order to allow the water to flow to the appropriate farmer’s land. These channels are land-specific in
the sense that different areas and lands have their own system of channels which only carry water when the
corresponding gates are opened.34 There is a water loss that is incurred due to the fact that water flows over
a dry channel. Engineers have estimated this loss to be between 15% and 40% of the water carried by one
cuarta when the channel is completely dry (see Vera Nicolas (2004)). This is the SC incurred by the bidder
for her first unit. Of course, the SC is only incurred once, for the first unit, since water losses associated with
a wet channel are negligible. In the model, the SC effect is captured by the parameter α, whose interpretation
is the percentage of water loss from the first unit due to the fact that water is flowing through a dry channel
(hence proportional to the valuation of the bidder for the unit of water). One would expect that, conditioning
on rain, water loss would be constant within season with relatively more importance (higher α) in summer.35

The second feature refers to the decreasing marginal returns (DMR) effect. The classic textbook case
for DMR is appropriate for our empirical application: given that the amount of land owned by each farmer
is fixed, marginal productivity of subsequent units of water is decreasing. When assessing the relative
importance of DMR, the impact in summer would generally be greater than in autumn. More generally,
one would expect DMR to be affected by season and rain. When water requirements are high, the slope of
the marginal productivity function will be relatively flat, as in the left panel in Figure 2. This is likely to
occur in spring and summer. On the other hand, when water requirements are low, the slope of the marginal
productivity function will be steeper, as in the right panel in Figure 2. This is likely to happen in autumn
or winter. In the model, the DMR effect is captured by the parameter β. In Section 6.1 we discuss how we
model DMR for the estimation to take into account the points addressed in this paragraph.

There are several reasons to believe that farmers face participation costs in this market. First, the most
obvious component are opportunity costs. Farmers who value their time may prefer not to participate in
the whole auction session. Auctions were run on Friday evenings during work time. Attending the auction
entailed alternative use of working time for the farmer. To contextualize this component in our empirical
setting, it is worth noting that it is not uncommon to observe the farmer’s wife, a son or other relative
substitute for the farmer on certain occasions.36 Another component of participation costs are the various
hassle costs associated with active bidding. Actually, only a fraction of the individuals who attend a Friday

32While farmers’ use their (reasonable good) predictions in their decisions, we use actual future rainfall in our estiamtion.
33Once we have conditioned on these covariates, the concern that bidders’ outside option would vary according to the day of

the week (or schedule), can be addressed by redefining the idiosyncratic individual valuation in such a way that the new one be
the original valuation net of the outside option. By normalizing Friday-night’s outside option to zero the model’s assumptions
remain valid even in such scenario.

34An obvious concern is that farmers whose lands lie next to each other may be buying different sequential units for the same
auction. In this case, the SC would only be incurred by the first farmer for her first unit but not for the second farmer for her
first unit. Fortunately, we have data on the specific location of the farmers that we are able to match to auctions’ winners to
analyze these situations as we do in 7.4.

35We discuss variation of SC across auctions (conditioning on covariates) in Subsection 6.1.
36We are able to identify these cases by matching census land data (with information on the person who registered the

property) with auctions data (where the winning bid names that is written is a relative of the name that is written in the census
card). In other situations is even more evident since the winning name in the auction’s sheet just states Wife (or son) of the
farmer who owns the land.
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auction are actively engaged in the bidding for a particular sequential auction of water and not everyone
who is present participates in every auction. As Von der Fehr (1994) points out, a reasonable assumption
for why not all attendees participate may be that they consider it so unlikely to that they will win at a price
below what they will be willing to pay, that they are not willing to bother to engage in bidding. Finally, and
related to the previous argument, participation costs may also be interpreted as the cost of preparing the bid
and the cost of learning what the item is worth in the specific environment (i.e., conditional on the specific
covariates of the auction).

Empirical evidence from our data is consistent with the assertion that farmers dislike participation, facing
positive entry costs. In particular we observe multiple weeks per year where auctions are run, farmers show
up and buy the first units of water, but where nobody bids for the last units. Since there is no reservation
price and the minimum bid increment are cents, they could potentially win all the remaining units bidding
this amount. On the contrary, they decide not to bid and leave the auction. For example, on January 22,
1954 units 1 to 12 were sold to 9 different farmers but nobody bid for units 13 to 20 (Figure 5). In 1954 we
observe similar behavior for 14 weeks,37 and this is consistent along the remaining years in our sample. Of
course, the interpretation is that, conditioning on covariates, the utility for all bidders is smaller than the
participation cost. We later use this information to identify these costs.

5 End-Digit Preferences and Regime Determination

When goods are pure complements, very low prices (symbolic prices) are paid by the same winner for second,
third and fourth units (Figure 3). Although predicted price pattern by our model for each each regime
(pure complements and non pure complements) provides us with a straightforward empirical method to
determine them, we show in this section that end-digit preference for these prices is consistent with the
empirical prediction, without specifying further assumptions on the model’s primitives.38 When goods are
pure complements a key prediction from proposition 5 is that the same bidder will win all units, pay her
valuation for the whole bundle in the first auction, and pay a price of zero for the second, third and fourth
units. The baseline model implicitly assumes that the seller will not require a reserve price for the second,
third and fourth objects. As we discuss further in this section, we do not observe zero prices (for second,
third and four units in the data), but prices very low (relatively to the first price), that is, a symbolic price.
This can be seen in light color in Figure 14, that displays the histogram (for 4CU auctions) of the percentage
change of the first winning price against the median of the second to fourth prices. The baseline model can
be easily modified to take into account this phenomenon by introducing a minimum price for the second to
fourth objects that is a function of the first price. Although there is no reserve price in the real auctions,
the minimum price can be interpreted as a general agreement to bid a symbolic price in subsequent auctions.
We further discuss this issue in the rest of this section. A commonly found effect in our data is that farmers
bid certain preferred end-digits prices substantially more often than others. This provides us with valuable
information to determine both regimes.

Kandel, Sarig, and Wohl (2001) use Israeli IPO auctions to present evidence that investors have end-digit
preference for round numbers (prices that end with 0 or 5) and that prices that end with 0 are used more
often than those ending with 5. To the best of our knowledge there has not been an examination of the
effect of end-digit preferences on inference in the auctions literature. Digit preference and systematic age
misreporting are important and broadly studied issues in demography, particularly in survey and census data
when respondents inaccurately report ages or dates of birth (Myers (1940), Das Gupta (1975), Coale and

37Weeks of January 22, February 5, April 5, May 1, May 8, May 15, May 22, May 29, June 5, June 12, July 3, July 10,
November 26 and December 3.

38Alternatively, price data in these water auctions could be interpreted as indirect observations of a latent distribution subject
to digital preference, that is, with tendency to round prices to pleasing digits (as we discuss below). See for example, Camarda,
Eilers, and Gampe (2008) for a recent study showing how digit preferences can me modeled combining a composite link model
and penalizing the likelihood function to uncover the latent distribution.
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Li (1991) and Siegel and Swanson (2004)). The concern in these cases is, typically, heaping on particular
ages such as those ending in 0 or 5. Crayen and Baten (2009) use some of these techniques to investigate
the phenomenon of age heaping, and to test the hypothesis that an unequal distribution of human capital
reduces welfare growth. Baker (1992) focuses on digit preferences in CPS unemployment duration data,
where he raises the question of what can be said without making any specific assumptions concerning the
true nature of digit preference in the CPS, and shows that employment duration is quite sensitive to the
choice of a corrective for digit preference. Finally, digit preference has also been studied in medical literature
pertaining to individual report body weight and height, blood pressure and cigarette consumption (Bopp
and Faeh (2008)). Our set up is different from all these studies as we do not (nor do we have a compelling
argument to) a priori impose a uniform (nor a particular) distribution on end-digit preference.

Table 6 shows in columns 4 and 5 the frequency distribution by the last digit of price for first-unit prices.39

We observe strong preferences for 0 and 1, and somewhat weaker preferences for 5. In 33.6% of the cases
we see an exact multiple of 10, in 34.1% we see a price ending in 1, while 8.6% report a multiple of 5. The
frequencies also show some preference for 2 and 6, but not a marked one. After taking into account these
effects we find that 48% of the first-unit price observations are inconsistent with a uniform distribution in
each digit.40 That is, we would need to reclassify 48% of the cases to obtain a uniform distribution by digit.
This is clearly not the case for our underlying distribution. We interpret these results as strong end-digit
preference for 0 and weak end-digit preference for 5.

This is perhaps not surprising because initial bids are often approximations taken in a relatively arbitrary
fashion. An important feature that is captured in our model is that, unlike sealed bid auctions, English-
auctionss reveal the identity of all bidders. The highest bidder at any given moment is considered to have the
standing bid, which can only be displaced by a higher bid from a competing buyer. If bidder i’s valuation is
sufficiently above the standing bid, it seems natural to skip certain prices and to bid directly the next round
price. In that sense, the bidders may informally round their marginal utility to the nearest end-digit bid,
according to our data ending in 0 or 5.

We can replicate this end-digit behavior by assigning a simple rule to the bidding strategy. At each bidding
round, one of the remaining bidders is assigned to bid in a predetermined manner (the bidder assignment
could be deterministic or random). Then, this bidder can drop the auction or make a bid greater than
the existing highest bid. If she decides to bid, she will bid a number ending in 0 with probability q0, a
number ending in 5 with probability q5 and a number just one peseta above the existing bid with probability
(1−q0−q5). This bidding behavior is characterized by parameters q0 and q5, and the probability of dropping
at any given point. With the proper restrictions in these elements, such as q0 > q5, we can replicate the
pattern observed on the data, that displays peaks at 0 and 5, as well as the exponential decline following 0
and 5.41

This behavior can be rationalized in a model where (q0 + q5)% of the bidders have preferences for round
numbers (0 and 5), while the remaining bidders (1 − q0 − q5)% do not. If the private valuations from both
types of bidders are drawn from the same distribution, then the assumption that bidders drop at random is
satisfied. Alternatively, a different way to rationalize this behavior, is to assume that bidders incur a cost
each time they make a bid. These models are known as penny auctions: open ascending auctions in which it
is costly to make every bid. In these models, a necessary condition for equilibrium is to to randomize between
bidding one penny above the actual winning bid, or to jump bidding. If the equilibrium jumps take the form
of a round number, this would also fit the behavior described above.

Strong preference for digit 1 is not, in general, an indication of a preference for this digit per se but,
39We obtain similar patterns if we restrict the sample by season, month and/or schedule (daylight or night).
40This number corresponds to the value of the Myer’s blended index, used to obtain a blended population which helps control

for the mentioned trends. In the absence of digit preference one would expect 10% in each terminal digit.
41If the probability of dropping the auction is increasing (decreasing) in the existing highest bid, then we will observe a positive

(negative) relationship between the frequency of 0 and 5, and the price paid by the winner. This implies a relationship between
the hazard rate of the distribution and end-digit preferences.
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instead, a sign of competition. According to our model, first-unit prices are always competitive (in the sense
that all N bidders will enter the auction as no information has yet been revealed), regardless of the regime.
Nevertheless, second to fourth-unit prices are not competitive in the pure complements regime (competition
in this regime takes part in the first unit where they bid for the whole bundle, and then pay a symbolic
price for the second to fourth units since it is optimal for the remaining N − 1 bidders not to enter in
these sequential auctions). Hence, end-digit preference for 1 in second to fourth-unit prices, as a sign of
competition, are indicative of a non pure complements regime. Alternatively, end-digit preference for 0 for
second to fourth-unit prices are indicative of a pure complement regime. Moreover, in the pure complement
regime the model predicts that all second, third and fourth consecutive prices will simultaneously behave in
this fashion. Columns 6 and 7 in Table 6 display the frequency distribution by the last digit of price for the
second to fourth units. It can be seen that prices exhibit a pattern consistent with this description.

This behavior provides us with a natural lower bound for the pure complements regime, namely, second,
third and fourth unit prices within the same four-unit auction show a strong end-digit preference for 0. This
behavior, that comes from the empirical prediction of the model, will allow us to identify the two regimes.
We could also use weaker or stronger definition of end-digit or round-number preferences to obtain different
bounds for the empirical distributions of prices in each regime.42

Specifically, the strongest version of the empirical prediction would be that all second, third and fourth
prices display, for the same individual, an end-digit preference for zero in any given four-unit auction. A
weaker version would be that two out of the three (among second to fourth) prices show an end-digit preference
for 0. The weakest version is that just one of these three prices exhibit an end-digit preference for zero. Clearly,
the last (weakest) specification only provides us an upper bound for pure complements regime identification
since, as shown in Table 6, the underlying distribution displays an end-digit preference for zero even for
the non pure complements regime. Figure 14 displays the histogram of the percentage change of first price
against the median of second to fourth price, by regime.43 It can be seen in the figure that end-digit preference
behavior (as defined above) also captures, in general, the other empirical prediction from the model, namely,
that prices are competitive in the non pure complements regime but exhibit the deterrence effect in the pure
complements one (the way to see this in the figure is that percentage change from the first to the second, third
or fourth prices is high when goods are pure complements). This is remarkable as the end-digit preference
behavior used to identify the regime is unrelated a priori to this second empirical prediction. This provides
further evidence in favor of our model.44 Regime identification is done by using the strongest version of the
empirical prediction to identify the pure complements case, i.e. the case in the left panel in Figure 14.

A final robustness check further shows that the approach in this section consistently identifies both regimes
in terms of our model. Columns 2 to 5 (first unit) in Table 7 display, by regime, the frequency distribution
in terms of end-digit prices for first-unit, among each four-unit auction. As emphasized above, both regimes
should exhibit competition for first-unit prices according to our model. This competition is captured by the
same distribution among ending digits in both regimes. This is what we observe in columns 2 to 5 (first
unit). The last two columns in Table 7 (fourth unit) show that, as predicted by the model, fourth-unit prices
for non pure complements are also competitive (the percentage of preference is 29.3 for 0 vs. 39.4 for 1).45

42We could instead assume that in the pure complements regime second, third and fourth unit prices within the same four-unit
auction show simultaneously a strong end-digit preference for 0 or 5. Although our baseline identification assumption focuses
only on end-digit preferences for 0 for sake of transparency (in the way we define this preference), our results are robust to
include end-digit preference for 5 as well.

43The figure looks similar if we use the second, or the third, or the fourth, or the average of second to fourth prices.
44Using a modified version of this assumption that differentiates end-digit preference for prices ending in 0 that exhibit more

frequency (e.g. prices like 100 are more frequent than 150) yields almost identical results.
45These results are consistent under different specifications of end-digit preference behavior.
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6 Identification

In this section we discuss identification of the distribution of private valuations and structural parameters
conditioning on the specific regime being played. The algorithm described in previous sections allow us to
separate data into four categories:

a) Same bidder wins all four units and goods are pure complements, β ≤ α
3 .

b) Same bidder wins all four units and goods are non pure complements, β > α
3 .

c) Last winner also bought two out of the first three units, three units in total, β > α
3 .

d) Otherwise.
According to our model, categories c and d are only consistent with a regime where goods are non pure

complements.
Our model does not require symmetry in the distribution of private valuations. However, in our empirical

application we only observe the identity of the winner who pays the valuation of the runner up (second highest
valuation). Identification in this case requires stronger assumptions on Fi (with respect to the symmetric
case, where Fi = F ∀i). Alternatively, if we maintain the (arguably strongest) assumption of homogeneous
bidders, we can let the distributions of valuations be more flexible.

The foundations for identification come from corollaries 6 and 8 (equations 3, 4 and 5). Note that the
system provides us with three restrictions in the parameter space, not six. For the rest of our analysis, we
focus in the symmetric case (the rationale for identification for the non symmetric case is, however, similar
once we specify a parametric distribution for valuations).

6.1 Parametric Identification

We now discuss identification by using a specific parametric functional form assumption for the distribution
of private valuations. The question is whether the joint distribution of private valuations can be recovered
from the distribution of (observed) winning bids alone. The distribution of the Jth order statistic from an
i.i.d. sample of size N from an arbitrary distribution FV (.) is given by:46

FJ:N (x) =
N !

(N − J)!(J − 1)!

ˆ FV (x)

0

tJ−1(1− t)N−Jdt ∀x

Since the right-hand side is strictly increasing in FV (x), for any J and N we can define the function
φ(FK:N (v);K,N) : [0, 1]→ [0, 1] implicitly by:

F (x) =
N !

(N − J)!(J − 1)!

ˆ φ(x)

0

tJ−1(1− t)N−Jdt ∀x

This result is immediately useful in our sequential English-auction model where bids are independent draws
from a distribution FV (.) and the equilibrium (observed) transaction price is a function of the second highest
valuation, vN−1:N .47 Thus, conditioning on goods being pure complements, the distribution of valuations
is identified up to the the multiplying constant using equation 3 and the previous result. To identify the
remaining structural parameters, α and β, we use Corollary 8. Equations 3 to 5 jointly identify the distribution
of private values and the structural parameters α and β.

For our estimation we will allow decreasing marginal returns, βt, to vary across auctions. Specifically, we
are going to model them as a function of farmers’ expectations of rain that we are going to proxy by actual
(observed) future rain:

46Arnold and Nagaraja (1992) provide an extensive discussion on order statistics, while Athey and Haile (2002) discuss its
application for the case of empirical auctions.

47Also note that this result extends immediately to cases where valuations are affected by auction-specific covariates, Zt. In
this case, FV (.|Zt) is uniquely identified by FN−1:N (.|Zt) ∀Zt.
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βt = β0 + β1R
F
t + ηt

where RFt refers to future rain and ηt is a seasonal (monthly) fixed effect. Additionally, we further let βt
have different intercepts in each regime:

βt,s = βs + β1R
F
t + ηt

βt,c = βc + β1R
F
t + ηt

(6)

An heuristic argument to understand the reasons behind this behavioral equation is given in Table 8.
This table presents probit regressions of a dummy variable identifying the regime (pure complements and
non pure complements) on future rain and other covariates. As noted above, we interpret future rain in
these regressions as a proxy for (aggregate) expected future rain for the farmers. Table 8 shows that low
expected rain and high demand months (May to August) significantly increase the likelihood of being in a pure
complement regime. Of course, the correct interpretation is the opposite. Farmers have some information
about future rain. While the idiosyncratic part of this information is captured by their type vi, the common
part is captured by βt. When farmers expect, on aggregate, no rain in a given day, they will coordinate to
play in the pure complements regime. Seasonality also affects the demand for water and affects the position
of a farmer in the curve in Figure 2. The results in Table 8 reinforce our hypothesis that it is the slope on
the marginal returns effect that drives the change of regime.

Finally, let vi ∼ F (v; θ), where θ is a parameter characterizing the distribution of valuations, F . Equations
3, 4, 5 and 6 jointly identify the parameter vector (θ, α, βs, βc, β1), conditioning on regime identification (that
we identify non parametrically as described above) and (exogenous) covariates. The full system of equations
is given by:48

[4− α− 6βt,c] vN :N − 3c ≥
4∑
k=1

pka = [4− α− 6βt,c] vN−1:N − 3c

(1− 3βt,s)vN :N ≥ p4
b = (1− α)vN−1:N − c

(1− 2βt,s)vN :N ≥ p4
c = (1− βt,s)vN−1:N − c

βt,s = βs + β1R
F
t + ηt

βt,c = βc + β1R
F
t + ηt

(7)

Finally, note that in our parameterization we fix α across auctions (and seasons, of course) but we allow
βt to vary. This is necessary to identify them separately but, ultimately (and as evident in the sequential
auction model), it is the relative magnitude of the effects that matters. The reason why we let βt vary
(instead of α) is related to the fact that the reason behind a regime switch is given by the (residual) demand
for water by the farmers, which is determined by rain and seasonal effects. Of course, we expect α to vary
across auctions and seasons as well. Given that this variation is not separately identified from the variation
on βt we should interpret the estimated changes in βt as relative changes with respect to α.49

48The third equation in the system should be in general equal to p4b = Max {(1− α)vN−1:N , (1− β) vN−2:N} since we do
not know whether the runner-up in the last auction was the bidder that already won one unit or a bidder without previous
purchases. However, when N is large we have vN :N ' vN−1:N ' vN−2:N so (1−α)vN−1:N < (1− β) vN−2:N will only happens
if β ' α. But in this case we will not expect that the same bidder to win three out of four units. In other words, in an auction
where N is large and the same bidder wins three out of four units, we expect β to be greater than α, thus p4b = (1−α)vN−1:N .

49Alternatively, if the parameter αt is also allowed to vary across auctions, our estimate for βt could be thought as an upper
bound for the real β.
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7 Estimation

In this section we discuss the estimation procedure with homogeneous bidders and how we handle the diffi-
culties that arise from it.

The econometric problem consists of finding the common distribution of valuations F and structural
parameters that best rationalize the bidding data. As discussed in the previous section, the bid levels at
which bidders drop out of the auctions are not observed with the exception of the bidder with the second-
highest valuation. Our model allows us to identify, however, the regime where bidders are playing before
performing the estimation, as discussed in the non-parametric regime identification section. Let T denote
the total number of four-unit auctions and t the subscript for all relevant variables to the tth auction.

A second concern arises from a likely heterogeneity across auctions. Observed heterogeneity arises due
to seasonal effects, rain, and the day and time of the week when the auction occurs. This means that the
distribution of private values for the tth auction, Ft(·), is not constant across auctions. In our estimation we
recover the family of distributions F (·|Zt, γ). That is, we assume that for every four-unit auction, Ft(·) =

F (·|Zt, γ), where γ ∈ Rk is a parameter vector and Zt is a vector of fully observed characteristics describing
the environment of the tth auction. We describe the inclusion of these covariates in next subsection.

The number of potential bidders, Nt, is not observed. We assume that it is constant for every four-unit
auction, Nt = N , and use the names of auction winners to infer it. Table 9 displays the timing structure
for different bidders in our sample. These numbers should be interpreted as an upper bound on the actual
number of auction winners. The reason is that many names correspond to members of the same family that
owns only one farming land (as it is clear from the agricultural census data), which is the relevant unit for
water use. For our estimation, we let the number of potential bidders in each auction be the yearly average
of different farmers that win auctions in our sample. We perform a sensitivity analysis on this assumption.

An additional concern that, ultimately, maintains an important relation with the empirical setting is that
the econometrician may be less informed than the bidders. Throughout, we have assumed that the vector Zt
of covariates is fully observed by the econometrician. In our environment, unobserved heterogeneity implies
that the distribution of bids may not independent across t. All farmers may, for example, observe some
factor (unobservable by the researcher) that shifts the location of the distribution values. This unobserved
heterogeneity could lead to correlation among bidders’ valuations, causing an identification problem and
inconsistent estimates to arise. From the agricultural census data we observe individual characteristics of the
farmers that we are able to link to the winning bids. Given the structure of the agricultural water market
we are modeling it, does not appear to be an important concern once we consider the homogeneity of the
selling good and the observed characteristics we introduce in our estimations (seasonality, past and future
rain, among others). Modeling unobserved heterogeneity requires additional assumptions on the behavior of
unobservables (independence, separability, strict monotonicity) and is outside the scope of this paper.50

Unlike in Donald and Paarsch (1993) and Laffont, Ossard, and Vuong (1995), the support of the dis-
tribution of the winning bid as defined in the previous section does not depend on the parameter vector.
Maximum likelihood estimation is possible even in our setting where losing bids are not observed.51 52Let
δ ≡ (α, βC0 , β

S
0 , β1) and let vi be independent draws from a parametric distribution F (·|θ, δ, Zt, γ) where

θ ∈ Θk is the parameter of certain family of distributions. Then, the likelihood function is given by:
50For a discussion on this issue see, among others, Athey, Levin, and Seira (2004) for an application to timber auctions and

Krasnokutskaya (2004) for a semi-parametric approach to Michigan highway procurement contracts. In a recent investigation,
Roberts (2009) use information contained in reserve prices to allow bidders’ private signals to depend on the realization of the
unobserved heterogeneity.

51Alternatively, we could use econometrics methods like simulated non linear least squares (SNLLS) as in Laffont, Ossard,
and Vuong (1995)or GMM (Hansen (1982)).

52Another potential concern with the likelihood approach in this context is the assumption that the winning bid equals the
second highest valuation (after considering sunk cost and decreasing marginal returns’ effect). This assumption is likely to be
violated when bids rise in discrete steps and, specially, in cases where bids increase faster than the required minimum (i.e.,
jumping bidding). This is clearly not the case in our setting. Winner prices exhibit great variation (see summary statistics) and
cents bids are frequently observed.
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L(θ, δ, γ | pit, RFt , Zt, {D
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t}j∈{a,b,c}, N) =
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t=1

fN−1:N

( ∑4
k=1 p

k
t

4− α− 6(βc + β1RFt )
, θ | δ, γ,RFt , Zt, {D

j
t}j∈{a,b,c}, N

)Da
t

x

fN−1:N

(
p4
t

1− α
, θ | δ, γ,RFt , Zt, {D

j
t}j∈{a,b,c}, N

)Db
t

x

fN−1:N

(
p4
t

1− βs + β1RFt
, θ | δ, γ,RFt , Zt, {D

j
t}j∈{a,b,c}, N

)Dc
t

where fN−1:N (v, θ) is the probability density function (PDF) of the N −1th order statistic from a sample
of N from the distribution of valuations F , Da

t +Db
t +Dc

t = 1 ∀t, and Da
t , Db

t , Dc
t are respectively indicator

variables for pure complements regime, non pure complements where the same bidder wins all units and non
pure complements where the same bidder wins three units, two out of the first three units and the last unit.

7.1 Distribution of Private Values

Our model and the context of the market under analysis provide insight on how farmers and auctions’ char-
acteristics should affect private values, but it offers little guidance on the functional form of this distribution.
We assume valuations follow an Exponentiated Gamma (EG) distribution for each four-unit auction.53 The
cumulative distribution function (CDF), PDF and moments of the EG distribution are given, respectively,
by the following equations:

F (v; θ) =
[
1− (v + 1)e−v

]θ
, v > 0, θ > 0 (8)

f(v; θ) = θve−v
[
1− (v + 1)e−v

]θ−1
, v > 0, θ > 0 (9)

E(V r) = θ

ˆ ∞
0

vr+1e−v
∞∑
i=0

(
θ − 1

i

)
(−1)ie−iv(1 + v)idv (10)

The reasons to use an EG distribution are related to tractability and the empirical distribution of the
N − 1th order statistic in our data. In the first place, the EG distribution gives us a close form solution
for the distribution of the jth order statistic that is characterized by a single parameter. Additionally, the
density distribution of the jth order statistic is a weighted average of EG densities. This is useful in view
of the computational difficulties of the MLE approach. Second, it has positive support. We are considering
vi to be the valuation that a farmer has for 15 minutes of water, which we expect to be always positive.
Finally, and most important, the PDF distribution of the jth order statistic of the EG distribution has a
convenient ‘bell’ shape form. Although not exclusive from the EG distribution, this feature fits well the
empirical distribution we observe in our data. Figure 15 depicts the PDF of both the EG distribution and
the corresponding N − 1th order statistic for different configurations of the parameter θ. Using the EG
distribution, we can further expand the previous likelihood function plugging the distribution of the second
highest order statistic, fN−1:N (v, θ):54

53See Shawky and Bakoban (2008) and Shadrokh and Pazira (2011) for further details on this distribution. Note also that
when the shape parameter θ = 1, the EG distribution is identical to a gamma distribution Γ(2, 1).

54We perform a Monte Carlo study in Appendix B to evaluate how well the proposed estimation procedure performs in our
setting.
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where f(v, θ) is the PDF of the EG(θ) and di(n, r) = (−1)i n
(n−1
r−1)(

n−r
i )

r+i .
To recover both, the structural parameters and the distribution of values conditioning on the vector of

covariates we let the distribution of valuations, depend on various characteristics that are drawn from our data
(observed heterogeneity), Zt, as discussed above. We assume, specifically, that observed prices follow a linear
function of the following exogenous variables and estimate all parameters using the likelihood function:55

pit = Z ′tγ = γ0 + γ1R
P
t + γ2Nightt +

4∑
i=2

γ1+iDay
i
t +

12∑
i=2

γ4+iMonthit

The first exogenous variable, RPt , refers to Past Rain, a moving average of the rain beginning seven days
prior to the date of the auction. The second variable is a dummy variable that equals one if the water was
bought for night use. The next four variables are a set of dummy variables for each weekday. Finally, the
last eleven variables are a complete set of month dummy variables to condition on seasonality. The nature
of the trees cultivated in the area makes water prices soar in our market during summer and drop in winter.
We accommodate these shocks to demand with seasonal monthly dummy variables.

Although throughout the previous estimation procedure, participation costs, c, have been fixed at an
arbitrary small magnitude, they can be recovered from our data. To do that we use our model and data where
auctions were run, no bids observed and farmers were present, along with the ML estimates. Participation
costs are identified by the necessary condition for a bidder to bid in the first auction that is given by:

(1− α)vN :N < c

More generally, a condition that additionally involves second, third and fourth marginal utilities for the
case where the bidder also enters the individual auctions for 2, 3 or 4 units should be considered. In these
cases, participation costs are also greater than the average marginal utility for second, third and fourth units.
Formally:

Max

{
(1− α),

(2− α− βt)
2

,
(3− α− 2βt)

3
,

(4− α− 3βt)

4

}
vN :N < c (11)

Note that when α < βt that the former condition is sufficient, implying the latter. In our econometric
specification the structural parameter α is fixed while the parameter βt varies according to the farmers’
expectations of (exogenous) future rain. One would expect to observe auctions without bids when farmers’s
expectations for rain, as captured by actual future rain, are high (which in the model is represented by a
relatively high βt). This is what we observe in the data. Therefore, absence of bids will only be present in a
situation where α < βt, also making the former the sufficient identification restriction.

Analogously, using the model and the remaining data not used in the structural estimation, an upper
bound can can be obtained using the fact that participation cost are lower than the minimum registered price
(conditioning on covariates, SC and DMR).

55Laffont, Ossard, and Vuong (1995) assume that private values follow a log-normal distribution and let the mean of the
logarithm of the valuations be a linear function of exogenous characteristics. Haile and Tamer (2003) condition on covariates
by constructing the conditional empirical distribution functions using Gaussian kernels.
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7.2 Estimation Results

In this section we present the estimation of the structural model associated with the theoretical benchmark
of Section 3 under various econometrics specifications. We present ML estimates obtained by maximizing
the likelihood function presented above. We use a tolerance level of 1.0e-09, let private valuations for each
four-unit auction follow an EG distribution, and follow the procedure described in previous subsections. As
discussed in Subsection 4.2, the number of bidders, N , is determined by the mean number of bidders that won
auctions during a specific year. In our 13-year sample, the average number of active bidders is slightly below
50. It is worth mentioning that each of these farmers regularly won auctions (it is reasonable, therefore, to
assume that they attended the auctions). Table 10 presents our estimation results. Columns 1 and 3 present
the estimates for N = 50, while columns 2 and 3 do it for N = 40.56

The top part of the table contains the estimate of the model’s structural parameters. All parameters have
the expected signs. We use the estimate of the parameter θ (that characterizes the distribution of private
valuations), to compute the mean valuation of the complete first unit of water. In the case of column 4, the
value of the complete first unit of water is 365 pesetas. As expected, in the specification in column 3 (with
50 different bidders), the mean value of the complete first unit of water is slightly lower, 324 pesetas.

The parameter β1 captures the effect of future rain. As farmers expectations of future rain increase,
DMR are more severe (β1 > 0), increasing the likelihood of coordinating in a non pure complements regime
and, therefore, reducing their valuation of subsequent units of water ( ∂p

i
t

∂RF < 0). One way to evaluate the
economic significance of the parameter, is to compute the implied price elasticity, ∂pit

∂RF
RF

pit
. In particular, the

value of this elasticity evaluated at the mean price and future rain from the sample is −4.7% (we compute
the derivative numerically using the system 7). Predicted DMR are obtained by adding the estimates of
intercepts βc and βs to the one of β1, conditioning on the rain in the day of the auction. When evaluated
at the average future rain from each regime, the null hypothesis that overall DMR are lower in the pure
complements regime cannot be rejected (p-value above 10%):

H0 : β̂s + β̂1Es(RFt ) > β̂c + β̂1Ec(RFt )

where Es(RFt ) = 1
Ts

∑
t:Da

t =0R
F
t , Ec(RFt ) = 1

Tc

∑
t:Da

t =1R
F
t , Ts and Tc are the number of auctions in non

pure complements and pure complements regimes, respectively.
The estimates of sunk cost parameters, α, are statistically significant in all specifications. Given the

choice of parameterization for sunk costs, the parameter estimates can be interpreted as the percentage loss
in terms of the a complete unit of water. For our estimate in column 4 this represents 12 pesetas loss (using
the value of 365 pesetas for a complete unit). To get a sense of the magnitude in terms of water loss, an
alternative interpretation can be obtained by determining the expected rain increase required to compensate
the sunk cost loss (so that the average price remains unchanged, conditioning on covariates, regimes and
parameters estimations). For our estimates in column 4 this would correspond to 0.1656 liters per square
meter (obtained by multiplying mean average rain in the sample, 4.87 mm, by the increase in RF required to
lower prices in the same magnitude as sunk costs, 3.39%, obtained by solving for this magnitude numerically
using system 7). For an average parcela (5.5 ha in our sample), this is equivalent to 9, 106 liters of water or
25.3% of a complete unit of water (36, 000 liters).

As regards its relative size with respect to DMR in each regime, we fail to reject the following null
hypothesis at the 5% level:57

56In their simulated NLLS estimation, Laffont, Ossard, and Vuong (1995) search for the best value of N by minimizing a
lack-of-fit- criterion (proposition 4). Note that, as discussed in Subsection 6, identification of the distribution of valuations and
structural parameters of our model requires observation of the total number of bidders. The rationale for this is straightforward:
whether second highest realization of the random variable vi is from a sample of size N = 10, or from a sample of size N = 100,
is crucial to interpret the second highest bid (observable in our data). Although observation of an additional order statistic can
eliminate this requirement (Song (2004)), this would require imposing further structure on the distribution of beliefs in our model
(to interpret auctions where, for example, 3 different farmers win auctions), which is outside the scope of this investigation.

57Instead of testing the validity of the restrictions at the average rain in each regime, an alternative approach would be to
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H0 :
α̂

3
> β̂c + β̂1Ec(RFt )

H0 :
α̂

3
< β̂s + β̂1Es(RFt )

The estimated coefficient for covariates have the expected sign. To evaluate the economic significance
of the seasonal dummy variables it is convenient to use the estimates to compute the percentage change in
the equilibrium price of the auctioned unit of water, that is: ∂pit

∂Zt

1
pit
. For specification 4, for instance, prices

in September (February) are significantly 20% higher (6% lower) than on January. This is consistent with
the conventional wisdom that water is more (less) valuable during these months because of high (low) water
demand. Also as expected, past rain decreases equilibrium prices. A 10% increase in the average rainfall
from the previous week (with respect to the day of irrigation), decreases average price of a unit of water by
8.6%.

Participation cost can be recovered using data where auctions were run, no one bid and farmers were
present in the auction, along with the identifying restriction 11 that holds in such cases. Out of the 3, 203

auctions where no on bid (Table 1), we use those 2, 423 where some bidders where present (auctions similar
to the one in Figure 5). Although the estimates we obtain using specification 4 (0.0094 < c < 0.1565) are
in line both, with the intuition from the model (hassle/opportunity costs due to the fact that farmers value
their time) and the value used in the econometric specification (0.01), our interval estimate suggests caution
in its interpretation.

In comparison of columns 1-2 and 3-4, it is clear that the model with covariates outperforms the model
without them, as shown by the significance of past rain and seasonal dummy estimates, as well as the increase
in the likelihood function and the improvement in the goodness of the fit. The main reason is the dependence
of prices on seasonal factors that we capture in our specification with seasonal dummy variables. From the
residual analysis we find no evidence that the increase in the log likelihood function is due to the parametric
misspecification of the value distribution itself, and the models pass the Kolmogorov-Smirnov test, so that
EG distribution of private valuations is not rejected (for the specification in column 4 the p-value of the test
is 37%).58 Also as a robustness check, column labeled Residuals shows that residuals from the estimated
model in column 4 display no correlation with any of the covariates.

As regards the goodness-of-fit, our specification in column 4 performs relatively well, being the pseudo−
R2 = 83.3% (obtained by computing predicted prices by our model: pseudo−R2 = 1−

∑T
t=1(pt−p̂t)2∑T
t=1(pt−p̄)2

, where p̂t
are prices predicted by the model and p̄ is the mean of prices). These results are in line with the R2 obtained
in the reduced-form regressions. Although not directly comparable given the distribution assumptions in
the structural approach, the R2 = 66.1% in the reduced-form specification with all covariates and without
individual fixed effects (column 5 in Table 4) can be heuristically interpreted as the proportion of variability
in the data set that is accounted for by the covariates, while the proportion accounted by the model without
covariates in column 2 in table 10 is R2 = 26.2%. As can be seen in Figure 16, our model allows us to follow
winning prices accurately. The figure displays real prices against (i) predicted prices using specification 4
(Table 10), and (ii) a reduced-form regression with Past Rain and multiple fixed effects as regressors (similar
to Table 4).

estimate the model imposing both restrictions for each auction.
58We perform the nonparametric test to evaluate the equality of two distributions of valuations: our sample of private values

with a reference from an EG distribution.
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7.3 Understanding the Importance of the Model

We proceed now to analyze our model’s implications with respect to the importance of sunk costs and
decreasing marginal returns. Suppose that the researcher neglects the dynamics that arise from the model
and, instead, estimates a standard (button) English-auction model. Suppose, for instance, that we are in
the pure complements regime (where α

3 > β > 0), and that valuations follow a distribution with mean µv

and σv. Then, using the result from proposition 4, we can see that the estimated mean of the distribution
of valuations using the standard model, will be underestimated: µ̂SMv < µv. Similarly, the estimation of the
standard deviation of valuations will overestimated: σ̂SMv > σv.59 The same is true, of course, in the non
pure complements case.

The overestimation of the variance of the distribution is caused by attributing the variation in prices
(among different units) to a relative more disperse underlying distribution, while the farmer is actually
paying for the whole bundle in the first unit deterring, hence, entrance of other bidders in the remaining
three auctions. Not taking into account the (common) SC and DMR in the estimation is the cause for the
underestimation of the mean. In the case of the EG distribution that it is used in our specifications, this will
translate into an underestimation of the parameter θ.60

Columns 5 and 6 in Table 10 present the estimates from a standard English (button) auction (see propo-
sition 4). Aside from the mentioned bias in the parameter that characterizes the distribution, the results in
these columns unequivocally indicate that taking SC and DMR into account significantly contributes to the
explanatory power. Figure 17 replicates figure 16 using predicted prices by the standard (button) auction
model instead the ones predicted by the reduced-form model. That is, it compares winning prices with (i)
predicted prices using specification 4 (Table 10), and (ii) predicted prices using specification 6 (Table 10).
Consistent with these results, the p-value for the null hypothesis that α̂ = β̂s = β̂c = β̂1 = ĉ = 0 is less than
10−4.

An alternative approach would be to ask how the incomplete model approach from Haile and Tamer (2003)
could be adapted to the present case. They rely on two assumptions that have intuitive appeal: (i) bidders
do not bid more than they are willing to pay for a unit, and (ii) bidders do not allow an opponent to win
at a price they are willing to beat. Of course, in our case with SC and DMR, these two simple assumptions
are violated. In the pure complements regime bidders bid according to b1i (vi) = [4− α− 6β] vi − 3c > vi,
violating (i), and no bidder (except the highest type) participates in second to four unit auctions, violating
thus (ii) (see 5). In the non pure complements regime, both assumptions are also violated as well. The
intuition is different, however. In this case, the equilibrium is not fully, but partially revealing: bidders
strategies are step functions, so the equilibrium is semi-pooling. When α is greater than β but very close to
β bidders will bid above their valuations to “intimidate” other bidders and deter entry in the second auction
(but, maybe, not in the third and fourth auctions). Thus, (i) is violated. Additionally, the same argument
as in Black and de Meza (1992) and Liu (2010), when goods are substitutes, the winner of the first auction
imposes a negative externality to herself. Her willingness to pay for the second unit is lower than it was for
the first unit, making her a weaker bidder in such situation. Given that all bidders will internalize this effect,
they will bid below their marginal utility for the object. This effect will be greater, the greater are DMR, β.
Even with entry costs this effect is still present.

Although an adaptation of these assumptions to the whole four-units bundle may sound as the natural
extension of Haile and Tamer’s approach to our case, it is unlikely to produce informative bounds since

59In the pure complements case and given a fixed number of potential biddersN , the (true) mean and variance of theN−1 order
statistic will be greater than the estimated using the standard model because the (true) price paid will be [4− α− 6βt,c] vN−1:N−
3c and not 4vN−1:N (predicted by the standard model).

60The mean from both an exponentiated gamma distributed random variable an its N−1 order statistic are a positive function
of θ. Using equation 10 we obtain that:
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∑∞
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marginal valuations of the units differ according to the regime and the number of different winners per four-
unit auction. In an important sense, bundling four-unit or even the application of Haile and Tamer’s approach
separately for each regime, would require the model in Section 3 as an interpretation of the underlaying
behavior.61 Of course, the purpose of the authors’ approach is to provide a robust structural framework for
inference.

7.4 Complementarities are not Collusion

An alternative hypothesis to farmers’ behavior in the pure complements regime is that bidders might be
playing some collusive (non-competitive) strategy. As emphasized in Section 4, the demand side of this
market for water is composed by potentially hundreds of farmers (Table 9). Even when they attend the
auction and do not bid, the observed number of different winners is relatively high (Figure 5). Because of
weather conditions, farmers are competing for water that, ultimately, will determine the quality and quantity
of their crop, and in some cases, even the survival of their trees. It is unlikely that in this situation farmers can
made credible collusive commitments. Contemporaries emphasize the opposite situation: farmers compete
aggressively and mercilessly for water (specially during droughts), and water owners are reluctant to lower
the price of the water to meet the needs of the poorer farmers.62

An argument against collusion is the high number of non-collusive auctions. Farmers meet every week,
hence the discount rate from one week to the next one is close to 1. If we focus on two consecutive 4-unit
auctions, the discount rate is virtually 1. Thus, any collusive agreement would be easy to sustain and we will
observe no “price-wars”, that is, no deviations from collusion’s strategies. If the collusion hypothesis were
true, all auctions will look collusive with the exception, may be, during certain periods where we will observe
price-wars. We observe in many cases, however, that both regimes are present for the same week. Unlike
Baldwin, Marshall, and Richard (1997) this is not a formal test.63

Nevertheless, taking the analysis one step forward, if the collusion hypothesis were true (instead of the
sunk-and-entry-cost hypothesis), we would expect more collusion in autumn-winter and less collusion in
spring-summer. Incentives to deviate from the collusion strategy are higher in spring-summer because the
value of the water is higher due to seasonalities (Figures 7, 10, 11 and 12). Punishment is about the same in
any season: maximum punishment would be to play the competitive equilibrium forever. Future discounted
earnings in this case are very similar in summer and in winter. Hence, deviating from the collusive strategy is
more profitable in summer than in winter. However, what we see in the data is exactly the opposite pattern.
Figure 18 displays the distribution of auctions in the complementarities regime by month: complementarities
are more likely to be observed in summer than in winter, where water requirements (and, hence, equilibrium
prices) soar. This is in line with our interpretation according to the model with sunk and entry costs described
above.

61Note also that not considering the effect of the structural parameters (SC and DMR) explicitly, would introduce further
difficulties.

62These opinions along with an interesting qualitative analysis can be found in Vera Nicolas (2004).
63A discussion on how to detect collusion can be found on Porter (2005).
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A “competitive” collusion?

When we introduced the model and explained how it fitted the data we implicitly assumed that farmers
plots were sufficiently far away from each other. Specifically, we assumed that no other farmer could use the
same sub-channel that was (just) used by her neighbor. This is not true in reality in many cases. Because
the cost of “watering” the sub-channel is sunk, if the plots of two farmers are located next to each other and
they share the same sub-channel, then one farmer could free-ride and outbid the first winner in the second
auction. Knowing this, the first winner would bid lower in the first auction. This situation would reduce
the revenue of the auction and would create inefficiencies. Since farmers are not internalizing this free-riding
effect, they would take into account the equilibrium outcome for the reaming auction, and lower their bid in
the first auction. Then, they will try to outbid their neighbors in latter auctions.

In a situation like the one described above, it would be relatively easy to sustain a collusive agreement
among neighbors farmers. The number of members of the coalition will be small (say 3 or 4 farmers), and
because they are neighbors, they know each other very well and might even share animals or machinery for
agricultural purposes. Each farmer in the coalition would compete in the auction for the first unit, but will
not enter the remaining auctions if one member of the coalition won the first unit. With this agreement
they will achieve efficiency by solving the free riding problem. With the resulting increase in efficiency, the
revenue of the auction will also increase, and the auctioneer will be happy with the “collusion”.

7.5 Efficiency

The model displayed in Section 3 assumes that it is costly for the bidders to enter the auction. To compare
this mechanism (sequential ascending-price auction) with other possible ones, this cost has to be taken into
account. In this context, and following Stegeman (1996), we can interpret this cost as the cost that the
farmers have to incur when they send a message to the auctioneer (or to some other farmers). In this case,
the notions of ex-ante and ex-post efficiency are no longer equivalent. The reason is simple, while it might
be ex-ante efficient that more than one player send a message, it is always ex-post efficient that at most one
player send a message.

For this case where it is costly to send messages to the coordinator Stegeman has showed that the
ascending-price auction has an equilibrium that is ex-ante efficient. In contrast, the first-price auction may
have no efficient equilibrium. The author only considers the single-unit case. In our sequential unit case,
we have shown that when goods are pure complements (ρ ≥ 0 or α ≥ 3β) the analysis is identical as in the
single unit case. Hence, the result applies here as well. When goods are not pure complements, however, the
result would only apply to the last auction. Although outside the scope of this paper, further work in this
area to investigate whether a sequential ascending-price auction is ex-post efficient when the coordinator has
to allocate several objects to players that face SC, DMR and costly messages, will be useful for an adequate
comparison among other mechanism allocations.
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8 Conclusions

By affecting bidder behavior in sequential auctions, the presence of sunk costs and decreasing marginal
returns (along with participation costs) may generate very different price dynamics within the same market.
This difference in price dynamics can be attributed to the varying extent to which the value of sequential
goods complements or falls relative to previous units. The deterrence effect, where the same bidder pays
a high price for the first unit (deterring others from entering subsequent auctions), and a low price for the
remaining units, arises when sunk costs are relatively high compared to the decreasing marginal returns, thus
creating complementarities among the goods. Substitutability arises due to decreasing returns when sunk
costs are relatively small. In this case, equilibrium prices are similar in magnitude, regardless of whether the
same or different bidders win the objects. Careful consideration of these features is fundamental to demand
characterization, a cornerstone of many positive and normative questions in economics.

Using a novel data set from a decentralized market institution that was operating privately during eight
centuries in southern Spain, the current paper documents these price dynamics and develops a model to
recover the underlying structural parameters and distribution of valuations. In the model, although the
buyers are better informed than the sellers, the latter know that the sequential English-auction allocates
water (ex-ante) efficiently. Not requiring that farmers reveal their marginal valuations is an advantage of
the mechanism, whose simplicity reduces costs associated with its implementation and helps explain its
extraordinary stability. We address three main questions. Are water units complements or substitutes, and
why? Is the deterrence effect consistent with a competitive market structure or a consequence of collusive
behavior among farmers? And what would happen to the estimates in this setting if the researcher, by
ignoring the importance of participation and sunk costs, failed to account for the complementarity feature of
the sequential goods?

We document, first, that in the period under study, both complementarities and substitutabilities are ob-
served in the data, generating two different equilibrium price dynamics. Seasonality, related to the products’
water requirements and the expected rainfall, affect the relative importance of sunk costs and decreasing
returns, causing bidders to coordinate their actions into these regimes. Second, the apparent collusive be-
havior, where the same bidder wins all the goods, paying very low prices (close to zero) for all the units
following the first unit, is actually competitive (non-cooperative). Contrary to the collusion hypothesis, this
behavior (caused by complementarities) is observed when the value of water (as well as the average price
paid per unit and, thus, the incentive to deviate from a collusion strategy) increases relative to the standard
competitive pattern registered in the non-complements regime. This shows the importance of interpreting
the data through the economic model. Finally, by estimating the model, we confirm the relevance of partici-
pation and sunk costs in our empirical environment. By testing the performance of our model relative to a
standard English-auction model, we confirm that, in our case, estimations using the latter are not accurate.
Aside from the obvious bias generated by ignoring sunk costs and decreasing returns, price dynamics play an
important role, since it would not be appropriate to attribute the variation in prices among sequential units
(when the goods are complements) to a relatively more disperse underlying distribution of valuations.
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Appendix

A Technical Proofs and Extensions

A.1 Equilibrium when −1 < ρ < 0

Assumption A1:

v ≥ 2c−ρW
2+ρ

Assumption A2:
{(1 + ρ)W − E[vl|vl > v]}F [(1 + ρ)W |vl > v] < c

Assumption A2 ensures that the winner never enters the second auction.

Theorem 9. Under assumptions A1 & A2, the unique symmetric equilibrium satisfies the following proper-
ties:

(a) First Auction

(a) All players participate in the first auction y1
i = 1 for all i

(b) The bidding strategy for player i is

b1i (vi) = b1(vi) =


vi if ṽi ≤ c

(2 + ρ)vi − c if c < ṽi < vi ≤ v

(2 + ρ)v − c if vi ≥ v

.

(b) Second Auction

(a) Case 1: No pooling in the first auction (at most one bidder has valuation above v). Player i’s
participation function (y2

i−np(vi, x
1
i )) is

y2
i−np(vi, 0) = 0

y2
i (vi−np, 1) =

0 if ṽi ≤ c

1 ṽi > c

(b) Case 2: Pooling in the first auction (both bidders above v). Player i’s participation function
(y2
i−p(vi, x

1
i )) is:

y2
i−p(vi, 0) = 1

y2
i−p(vi, 1) = 0

(c) If player i participates in the second auction, their bidding strategy is:

b2(vi, x
1
i ) =

vi if x1
i = 0

ṽi if x1
i = 1

Proof. The proof will proceed by backwards induction. In all that follows, player 1 is the player with the
highest valuation, v1 > v2. Notice that when c → 0 the probability that we are in the pooling region goes
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to one. This is so because c→ 0 implies v → 0. When the number of players increases this probability also
increases.

2-(c): From the players perspective, once the participation decision has been made, the final auction is
a standard English-auction. As a result, it is a dominant strategy of this stage game for each player to bid
their valuations.
2-(b)-Case-2: This is the case after pooling in the first auction, that is v1, v2 ≥ v. We will write down the
relevant expected utilities from entering and argue that any deviation (in pure strategies) results in negative
expected utility. In this case, since the winner of the auction is determined by a random probability lottery,
we will refer to the winner and loser valuations as vw and vl, respectively. This is simply to emphasize that
in this pooling region, the entry decision only depends on the outcome of the first auction, not the relative
valuations. First, consider the loser of the first auction. The strategy says that they enter the second auc-
tion. The only possible deviation in pure strategies is not to enter the second auction, but given the winner’s
strategy (not to enter), we get:

EU [y2
i−p(vl, 0) = 1|y2

i−p(vi, 1) = 0] =vl − c ≥ v − c

≥ P
[
vw <

v + c

1 + ρ

∣∣∣∣vw > v

]
v − c =0 = EU [y2

i−p(vl, 0) = 0|y2
i−p(vi, 1) = 0]

Hence, there is no profitable deviation. Now consider the winner of the first auction. By following the
strategy y2

i−p(·, ·), this player will not enter the auction and get an expected utility of zero. Now, the only
possible pure strategy deviation is to enter the auction, which gives her an expected utility of:

P [vl < (1 + ρ)vw|vl > v][(1 + ρ)vw−E[vl|vl > v]− c]− (1− P [vl < (1 + ρ)vw|vl > v])c

=P [vl < (1 + ρ)vw|vl > v](vw(1 + ρ)− E[vl|vl > v]− c

≤P [vl < (1 + ρ)vw|vl > v](W (1 + ρ)− E[vl|vl > v]− c

(by assumption 2) ≤0

Thus, by entering, the winner will now get negative utility, and, therefore, she has no profitable deviation.
Notice that this result depends exclusively on A2. If A2 does not hold, but A1 does, then there will be an
equilibrium in which the winner also enter the second auction if her valuation is high enough.

2-(a)-Case-1: Now consider the participation decision when no pooling occurred in the first auction, i.e.:
v2 ≤ v < v1. Consider player 1. His strategy is simply a threshold strategy, as long as her valuation for the
second good is larger than the cost of entry, she will enter since player 2 will not enter, and player 1 will
win the object and pay a price of 0. So, assuming player 2 follows y2

i−np(·, 0), player 1’s strategy is clearly
optimal. However, we must show that given this strategy by player 1, player 2’s strategy is in fact optimal.
This is not immediately obvious, since player 2’s threshold v is the solution in terms of v2 to:

P [(1 + ρ)v1 < v2 + c|v1 > v2]v2 = c

That is, since player 2’s valuation will become public after the first auction when there is not any pooling,
player 1 will enter no matter what if her valuation is above v2 + c. We have to show that this threshold is
still binding when player 2 knows that player 1 will enter with any valuation above c. In this case, v2 < v,
the only deviation to consider is that player 2 enters after losing for some valuation less than v. First, note
that if v2 < c, it clearly makes no sense to enter, since regardless of player 1’s entry choice, player 2 will get
a lower utility. There are now 2 cases to analyze.

(a) Suppose v2(1 + ρ) < c. In this case, it is possible that (1 + ρ)v1 < c, i.e., that agent 1 will not enter.
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Then, the expected utility from entering is:

P [(1 + ρ)v1 < c|v1 > v2](v2 − c) + P [c < (1 + ρ)v1 < v2|v1 > v2](v2 − c)

+ P [(1 + ρ)v1 > v2|v1 > v2](−c)

= P [(1 + ρ)v1 < v2|v1 > v2]v2 − c

≤ P [(1 + ρ)v1 < v2 + c|v1 > v2]v2 − c < 0, ∀ v2 < v

Since by not entering, player 2 can ensure 0 expected utility, this deviation is not profitable.

(b) Suppose v2(1 + ρ) ≥ c. When this is true, player 1 will always enter since v1 ≥ v2. Then, by deviating
and entering, player 2 gets:

P [ṽ1 < v2|v1 > v2](v2 − c) + P [ṽ1 ≥ v2|v1 > v2](−c)

= P [ṽ1 < v2|v1 > v2]v2 − c

≤ P [ṽ1 < v2 + c|v1 > v2]− c ≤ 0, ∀ v2 < v

Again, since not entering gives 0 expected utility, this is not a profitable deviation.

Thus, there is no profitable deviation from the second auction participation strategy.

1-(b): We need to show that if players are following the bidding strategy for the first auction as described
in Theorem 9, they have no profitable deviation. We will consider each part of the function separately and
show that any deviation results in lower utility for the players.

ṽi ≤ c: Consider an upwards deviation, b̃1(vi) = vi + ε, for ε > 0. For player 1, since she is the highest type,
this will not change anything, she will still win for sure and still pay v2. In the case where v1 = v2, any
upward deviation will still result in a utility of 0. Finally consider player 2, if she follows b̃1(·), she will
now win with positive probability and get utility:

U2 = v2 − v1 < 0

Thus, no player will gain from deviating from the prescribed strategy upwards. Now, consider a
downwards deviation. Now, if player 2 deviates, she will still lose for sure, and get utility of 0. The
same for the case where v1 = v2, either deviation still results in utility of 0. However, if player 1 plays
b̃(v1) = v1− ε, with positive probability she will lose when she is the highest type, thus getting 0 utility
when previously she was getting positive utility v1 − v2 > 0. Thus, downward deviations are also not
profitable, so when ṽi < c, the strategy in Theorem 9 has no profitable deviations.

c < ṽi < v < v: Here, agents bid above their valuation for the first object, because if they win, they will also get the
second object for free. Since they get the second auction for free, the effective valuation of the first
object (since winning it implies they get they second one) is (2 + ρ)vi − c. Again consider an upwards
deviation, b̃1(vi) = (2 + ρ)vi + c+ ε. For player 1, an upwards deviation has no effect, as she will still
win the object for sure, and the price payed does not change. For player 2, bidding b̃1(v2) means that
she will win the 1st auction with positive probability, giving utility of:

v2 − [(2 + ρ)v1 − c+ (1 + ρ)v2 − c = (2 + ρ)(v2 − v1) < 0

So an upwards deviation makes no player better off, and some strictly worse off. Now, consider a
downwards deviation, b̃1(vi) = (2 +ρ)vi+ c− ε. Player 2 will still lose with probability 1, so no change.
But now, player 1 may lose when she is the highest type, and thus obtains utility of 0 from deviating,
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while playing the prescribed strategy would give utility

v1 − b(v2) + (1 + ρ)v1 − c ≥ v1 − (2 + ρ)v2 − c+ (1 + ρ)v1 − c = (2 + ρ)(v1 − v2) > 0

Thus, no downwards deviation is profitable. So when c < ṽi < v < v, deviating gives all players lower
utility in some cases, and never improves upon the strategy in Theorem 9.

ṽi > v: The first step is to show that no jump in bidding occurs at v. Then, we will show that agents will pool
for all values between v and W . The difference between this and the previous case, is that the loser of
the first auction now gets positive utility from entering the second auction. Consider the case where
vi = v+ ε. We now show that such agents will bid (2 +ρ)v− c. Assuming ties are broken with an equal
probability, the utility to agent i bidding b1(vi) is:

Ui =
1

2
[vi − [(2 + ρ)v − c]] +

1

2
[vi − c]

= vi −
2 + ρ

2
v

= (vi − v)− ρ

2
v

> 0 (12)

This is true for all ε > 0. We will now show that deviating from this results in lower utility. First,
consider an upward deviation, b̃1(vi) = (2 + ρ)v − c+ ε. This will give:

Ui = vi − [(2 + ρ)v − c] + 0

= (vi − v)− (1 + ρ)v + c

ε→0−→ c− (1 + ρ)v

< 0

by assumption. Thus, players will not bid strictly higher at v.

Now consider a downward deviation, say for player i, with vi > v, b̃1(vi) = (2 + ρ)v − c− ε. There are
two possibilities, either v−i ≥ v or v−i ≤ v. Such a deviation, will mean that player i never reaches the
pooling region, and that there exists a set of v−i’s such that b1(v−i) > b̃1(vi). We will write down the
payoff from playing the candidate equilibrium strategy as well as that from the deviation. The original
payoff is:

1

2
P [v−i > v](vi − b(v−i) + ṽi − c) + P [v−i ≤ v](vi − b(v−i) + ṽ1 − c)

=
1

2
P [v−i > v](vi − (2 + ρ)v + ṽi) + (1− P [v−i > v])(vi − (2 + ρ)v + ṽ1)

=(2 + ρ)

(
1

2
P [v−i > v](vi − v) + (1− P [v−i > v])(vi − v−i)

)
(13)

Note that both terms are positive. Define v̂−i so that b1(v̂−i) = b̃1(vi). Now, the payoff from deviating
to b̃1(·), is:

P [v−i ≥ v] ∗ 0+P [v−i ∈ [v̂−i, v] ∗ 0 + P [v−i < v̂−i](vi − (2 + ρ) + c+ ṽi − c)

= P [v−i < v̂−i](2 + ρ)(vi − v−i)

≤ P [v−i < v̂−i](2 + ρ)(vi − v−i) + P [v−i ∈ [v̂−i, v]](2 + ρ)(vi − v−i)

Now, this is just equal to the second term of (13), and since the first term of (13) is also positive, the
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payoff from deviating is strictly less than the payoff from following the strategy. So in any neighborhood
to the right of v, there is no incentive to deviate.

What remains to show, is that all agents will pool, including those with the highest possible valuation
W . An agent with valuation W will not deviate down for the same reason as above. So we need only
show that there is no incentive to deviate upwards. From (12) we know that any agent with valuation
above v has positive expected utility by following the prescribed bidding strategy. We will show that
deviating upwards will result in negative utility even for typeW . If typeW bids b̃1(W ) = (2+ρ)v−c+ε,
the expected utility is:64

P [v2 ≤ v](2 + ρ)(W − v2) + P [v2 > v](W − (2 + ρ)v + c)

If instead, the player follows the original strategy, she will get payoff of:

P [v2 ≤ v](2 + ρ)(W − v2) +
1

2
P [v2 > v](2 + ρ)(W − v)

The first terms of these expressions are the same, so we need only compare the second terms. To
complete the proof, we need only show that

(2 + ρ)

2
(W − v) > W − (2 + ρ)v + c

This is the same as showing that

v >
2c

2 + ρ
− ρ

2 + ρ
W,

which is exactly A1.

A.2 Proposition 5

Proof. Following the same argument as in the proof of Proposition 1, the first step of the proof consists
on proving that in any revealing (strictly increasing) equilibrium, i.e. an equilibrium in which it becomes
common knowledge after the first round who is the bidder with the highest valuation, only the winner (the
bidder with the highest type) will enter the remaining auctions, and pay the cost c.

Since both a direct mechanism and the sequential auction will give the same utility to the winner, and
both will give the 4 objects to the bidder with the highest valuation, the total utility for the winner should
be Wi = (4− α− 6β) vi − (4− α− 6β) vj = (4− α− 6β) (vi − vj) in both cases, where j is the bidder with
the second highest valuation. For the case of a direct mechanism we can assume that there is a cost of
communication for each of the auctions, that should be paid by every bidder that want to get the object.

The second step is to show that the winner will pay (4− α− 6β) vj − 3c in the first auction. This
payment, together with the utility the winner get from both goods ((4− α− 6β) vi) and the cost of entering
the remaining auctions (3c), will give him the same utility as in the direct mechanism. (4− α− 6β) vi −
((4− α− 6β) vj − 3c)−3c = (4− α− 6β) vi− (4− α− 6β) vj = Wi. The utility for the winner in the second
auction is (1− β) vi − c since the equilibrium price in the second auction is zero, i.e. p2 = 0, and the utility
for the loser is zero. Similarly, the utility for the loser in the third auction is (1− 2β) vi − c and the utility
in the fourth auction is (1− 3β) vi − c. Then, the total value of winning the auction is (4− α− 6β) vi − 3c.
Now lets define zi = (4− α− 6β) vi − 3c and consider this game to be a single object auction in which the
valuation for the good of player i is zi. Now we are back into the standard case (single unit auction) and
bi = zi = (4− α− 6β) vi − 3c is a weakly dominant strategy.

64From the equilibrium, the participation decision of type W will be not to enter the second auction if she wins the first

39



We have proven that in any revealing equilibrium only the winner will enter the remaining auctions. The
intuition for this result is that, as in Proposition 1, because to the cost of participating in an auction, it is
a necessary condition for player i to participate in the auction, that her probability of winning is positive.
Thus, only the winner will enter the remaining auctions. Her utility in the second, third and fourth auctions
is (1− β) vi− c, (1− 2β) vi− c and (1− β) vi− c respectively. This fact, together with her utility in the first
auction being (1−α)vi and the Revenue Equivalence Theorem show that she will bid b1i = (4− α− 6β) vi−c
and pay p1 = (4− α− 6β) vj−c. Hence, this is a revealing equilibrium. Therefore, we have shown that, given
the payoffs in the second, third and fourth auctions, there is only one possible payoff and one possible bid for
every player in the first auction. Hence, this is also the unique Symmetric Equilibrium in pure strategies.

B Monte Carlo Study

In this section we perform a Monte Carlo study to test the estimation procedure from Section 7. We are
interested in evaluating how well the proposed estimation procedure outlined in the text is performing. We
simulate T English-auctionss in which for any auction t there are N bidders whose values are distributed
according to an exponentiated gamma distribution. Prices are simulated using the model in Section 3. Then,
conditioning on the regime and assuming only that we have data on the transaction price from these auctions
(and rain), we attempt to recover the structural parameters via the maximum likelihood procedure outlined
in Section 7. Specifically, first, we generate data that mimics rain in each regime. As explained in the text,
rain behavior is characterized by high frequency of non rain days and mean rain significantly differs across
regimes. To generate rain data we first generate a random indicator variable equals to one if rain is positive
on a given day, and zero otherwise. We let this indicator I = 1 with probability p , and I = 0 with probability
1−p , and choose a value of p using the frequency of days with positive rain in our data. For those days with
positive rain we let amount of rain be a uniform random variable with mean equal to the observed mean in the
data. Given that MLE is performed conditional on regime determination, we let the proportion of auctions
in non pure complements and pure complements regimes, Ts

T and Tc

T respectively, match the proportion from
our data (Section 5). Moreover, we let the proportion farmers that win three units, two out of the first three,
and the last one (equation 5), match the proportion we observe in our data. We then draw T values from
fN−1:N (v, θ), where f(v, θ) is the PDF of the EG(θ) and fN−1:N (v, θ) is its N − 1-order statistic. To do
this we let N = {40, 50}, as in our estimation in Section 7. Then, given specific values for the structural
parameters, θ and δ ≡ (α, βC0 , β

S
0 , β1), we construct observed prices according to the structural equations

from our model (system in 7). We then repeat this process S times. The results displayed in Table 11, where
the estimators perform relatively well, gives further support and confidence to the results discussed in the
text.
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Table 1: Frequency distribution of units bought by the same farmer
# of goods Frequency Total

1CU 3,527 .21 3,527
2CU 2,838 .17 6,365
3CU 1,683 .10 8,048
4CU 5,824 .34 13,872
No bids 3,203 .19 17,075
Total 17,075 1.00 17,075

Table 2: Summary Statistics of Selected Variables
Variable Mean SD Min Max Obs
Rain 8.53 46.33 .00 980.00 3,834
Price 271.61 374 .05 4,830 13,872
Land Extension 5.54 32.24 .25 900 819
Selling Price 15.07 222.52 .02 5,700 964
Kg sold 5,569.70 10,003.76 0 110,000 1,000
Number of Trees 161.49 493.45 1 12,300 946
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Table 3: Distribution of winning prices: by # of CU and sequential auction
Price distribution by number of consecutive bids

Median Mean SD Max Min Obs
1CU 100 208.4 303.9 3000 0.05 3527
2CU 121 243.2 330.4 2700 0.05 2838
3CU 161 291.7 369.2 2850 0.05 1683
4CU 161 318.2 424.1 4830 0.05 5824

Price distribution by number of consecutive bids: 1st Auction
Median Mean SD Max Min Obs

1CU 100 204.6 288.3 2921 0.05 979
2CU 146 288.3 384.7 2700 0.05 666
3CU 204 365.6 433.9 2809 0.05 371
4CU 444.5 635.2 607.4 4830 0.05 1456

Price distribution by number of consecutive bids: 2nd Auction
Median Mean SD Max Min Obs

1CU 95 216.4 360.4 3000 0.10 629
2CU 102 217.4 293.4 2685 0.05 857
3CU 161 268.8 326.8 2850 0.05 528
4CU 101 226.2 280.2 2605 0.05 1456

Price distribution by number of consecutive bids: 3rd Auction
Median Mean SD Max Min Obs

1CU 93 191.3 284.9 2357 0.10 713
2CU 125 245.1 328.8 2601 0.10 773
3CU 150 262.8 346.9 2801 0.05 527
4CU 100 214.0 269.8 2625 0.05 1456

Price distribution by number of consecutive bids: 4th Auction
Median Mean SD Max Min Obs

1CU 110.5 217.5 294.7 2600 0.05 1206
2CU 111 225.9 310.6 2601 0.10 542
3CU 160.5 292.0 382.4 2630 0.05 257
4CU 100 197.5 255.1 2935 0.05 1456

Price distribution for 4-consecutive bids
Auction Median Mean SD Max Min Obs
1st to 4th 161.0 318.2 424.1 4830 0.05 5824
1st 444.5 635.2 607.4 4830 0.05 1456
2nd 101.0 226.2 280.2 2605 0.05 1456
3rd 100.0 214.0 269.8 2625 0.05 1456
4th 100.0 197.5 255.1 2935 0.05 1456
1st and 2nd 250.0 430.8 515.3 4830 0.05 2912
2nd and 3rd 100.0 220.1 275.1 2625 0.05 2912
3rd and 4th 100.0 205.7 262.6 2935 0.05 2912
1st to 3rd 200.0 358.5 460.1 4830 0.05 4368
2nd to 4th 100.0 212.5 268.8 2935 0.05 4368
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Table 4: Correlation between winning prices and covariates
Variables (1) (2) (3) (4) (5) (6)

Rain MA7 -4.0543*** -4.1117*** -0.2505*** -2.9911*** -4.6681** -5.1535**
(0.6742) (0.6894) (0.0784) (0.5580) (2.0885) (2.0363)

Rain Day Bought -0.2346 -0.1853 0.0064 0.0519 0.0050 0.0576
(0.1434) (0.1416) (0.0732) (0.1558) (0.0639) (0.0642)

Unit 2 Day -167.9547*** -167.9118*** -167.8286*** -167.9125*** -179.3032***
(19.4659) (19.7591) (19.4542) (19.7671) (22.2753)

Unit 3 Day -173.0328*** -172.9898*** -172.9066*** -172.9905*** -190.7941***
(19.9287) (20.2295) (19.9165) (20.2378) (23.1855)

Unit 4 Day -176.5446*** -177.2624*** -176.5451*** -177.2450*** -195.7469***
(20.4404) (20.7581) (20.4387) (20.7678) (23.7353)

Unit 2 Night -237.5795*** -238.2013*** -237.8597*** -238.2003*** -250.8435***
(24.9031) (25.3139) (24.9367) (25.3245) (27.8536)

Unit 3 Night -243.3244*** -243.8726*** -243.5220*** -243.8720*** -258.5112***
(25.4507) (25.8682) (25.4838) (25.8790) (28.8682)

Unit 4 Night -254.8376*** -255.8049*** -255.1867*** -255.7997*** -271.2714***
(25.7254) (26.1506) (25.7817) (26.1619) (29.3638)

Tuesday 26.0232*** -31.9125*** 32.1906*** -32.4870*** -35.3381***
(7.4927) (5.5094) (8.2359) (5.6156) (7.0576)

Wednesday -34.5756*** -94.7660*** -29.3838** -95.3776*** -88.4682***
(10.6269) (11.1828) (11.9714) (11.0480) (10.8098)

Thursday -59.6530*** -121.7359*** -55.4057*** -121.3586*** -104.5693***
(10.7704) (11.9630) (12.3518) (11.8223) (10.6204)

Friday -94.9538*** -158.8524*** -95.5421*** -159.2511*** -147.2448***
(12.7055) (14.3726) (14.4995) (14.4039) (13.7166)

Night -110.0908*** -124.5486*** -111.0406*** -124.6170*** -126.7151***
(11.3642) (10.2793) (10.9544) (10.2805) (11.9505)

UnitFE NO YES YES YES YES YES
Weekday FE NO YES YES YES YES YES
Schedule FE NO YES YES YES YES YES
Week FE NO NO YES NO YES YES
Month FE NO NO NO YES YES YES
Individual FE NO NO NO NO NO YES
R2 0.016 0.083 0.659 0.230 0.661 0.688
Observations 13,801 13,801 13,801 13,801 13,801 13,801

All columns are OLS regressions. Dependent variable is the winning price in each auction (one cuarta).
Robust standard errors in parentheses. FE stands for Fixed Effects. Individual FE refers to a set of dummy
variables identifying different winners (names) in our sample. Week FE refers to a set of dummy variables
identifying (52 or 53) weeks of the corresponding year. *** p<0.01, ** p<0.05, * p<0.1. Sample restricted
to auctions with positive bids during the period January 1954 to August 1966.
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Table 5: Irrigation requirements for Citrus Trees

Timing after planting Month
Dec. - Feb. Mar. - Apr. May - Jun. Jul. - Sep. Oct. - Nov.

0 - 1 month 2 to 3 days
2 - 3 months 3 to 5 days
4 months to 1 year 14 days 7 to 10 days 5 to 7 days 2 to 5 days 5 to 10 days
1 to 2 years 14 to 21 days 10 to 14 days 7 to 10 days 7 to 10 days 10 to 14 days
3 years or older 21 to 30 days 14 to 21 days 14 days 10 to 14 days 14 to 21 days

Obtained from Table 2 in Wright (2000), modified from Chott and Bradley (1997).

Table 6: End-Price Preferences

All units First Unit Non First Unit Second Unit Third Unit Fourth Unit
Last Digit Freq % Freq % Freq % Freq % Freq % Freq %

0 2584 53.7 404 33.6 2,180 60.4 724 60.2 727 60.4 729 60.5
1 1265 26.3 411 34.1 854 23.7 298 24.8 291 24.2 265 22.0
2 141 2.9 87 7.2 54 1.5 21 1.7 17 1.4 16 1.3
3 88 1.8 43 3.6 45 1.2 20 1.7 10 0.8 15 1.2
4 46 1.0 32 2.7 14 0.4 7 0.6 3 0.2 4 0.3
5 448 9.3 104 8.6 344 9.5 87 7.2 124 10.3 133 11.0
6 133 2.8 61 5.1 72 2.0 21 1.7 21 1.7 30 2.5
7 50 1.0 30 2.5 20 0.6 13 1.1 5 0.4 2 0.2
8 31 0.6 19 1.6 12 0.3 3 0.2 4 0.3 5 0.4
9 28 0.6 13 1.1 15 0.4 9 0.7 1 0.1 5 0.4

Total 4,814 100 1,204 100 3,610 100 1,203 100 1,203 100 1,204 100

Notes: Sample restricted to 4CU auctions. Last Digit refers to the end-digit winning price. Non integer winning prices are
excluded.

Table 7: End-Price Preferences by Regime

First Unit Fourth Unit
Pure Compl Not Pure Compl Pure Compl Not Pure Compl

Last Digit Freq % Freq % Freq % Freq %
0 202 38.0 202 30.1 532 100 197 29.3
1 174 32.7 237 35.3 0 0 265 39.4
2 38 7.1 49 7.3 0 0 16 2.4
3 17 3.2 26 3.9 0 0 15 2.2
4 15 2.8 17 2.5 0 0 4 0.6
5 41 7.7 63 9.4 0 0 133 19.8
6 27 5.1 34 5.1 0 0 30 4.5
7 9 1.7 21 3.1 0 0 2 0.3
8 7 1.3 12 1.8 0 0 5 0.7
9 2 0.4 11 1.6 0 0 5 0.7

Total 532 100 672 100 532 100 672 100

Notes: Sample restricted to 4CU auctions. Last Digit refers to the end-digit winning price. Non integer winning prices are
excluded. Regime is determined by assuming all second, third and four unit prices paid for the same winner within the same
four-unit auction display end-price preference for 0.
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Table 8: Rain expectations and regime coordination

Variables (1) (2) (3)

Future Rain -0.0052*** -0.0055*** -0.0061***
(0.0013) (0.0013) (0.0014)

Tuesday 0.0303 0.0324
(0.0439) (0.0444)

Wednesday -0.0332 -0.0378
(0.0437) (0.0440)

Thursday 0.0220 0.0237
(0.0449) (0.0453)

Friday -0.0347 -0.0423
(0.0476) (0.0481)

Night -0.0615** -0.0653**
(0.0294) (0.0298)

February 0.0668
(0.1016)

March 0.0268
(0.0974)

April 0.1885**
(0.0867)

May 0.2387***
(0.0828)

June 0.2319***
(0.0835)

July 0.1561*
(0.0867)

August 0.2188**
(0.0855)

September 0.0592
(0.1011)

October -0.0749
(0.0959)

November 0.0927
(0.0950)

December 0.1147
(0.1024)

Weekday FE NO YES YES
Schedule FE NO YES YES
Month FE NO NO YES

Notes: Same restricted to the used in the structural estimation in Table 10 (see Section 4). Almost identical results are obtained
using the whole sample. All specifications are probit regressions. Marginal effects are reported. Robust standard errors in
parenthesis. Dependent variable is a dummy variable equal to one if the regime is pure complements (see Section 6). Future
Rain is a moving average of rain in Mula for seven days after the corresponding date of the auction (Future Rain is a proxy
variable for farmers’ rain expectations for the day where they are buying water). Past Rain (a moving average of rain in Mula
for seven days before the corresponding date of the auction) and Actual Rain (the amount of rain in Mula in the day of the
auction) are not statistically significant in any of the above regressions. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Timing Structure of different winners: Estimation Sample

Month 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 Total
1 4 6 0 3 1 11 3 0 0 0 28 0 11 61
2 4 4 0 2 4 2 3 0 0 0 19 0 21 57
3 5 3 0 9 0 1 2 0 0 10 29 8 23 79
4 0 2 0 6 2 5 4 6 0 17 28 38 28 121
5 5 7 0 6 1 13 9 6 9 4 32 30 31 130
6 3 7 0 7 0 8 10 7 10 14 23 25 29 119
7 2 3 0 6 9 26 8 5 13 15 17 21 23 117
8 9 3 0 3 4 10 7 14 18 15 21 16 3 102
9 8 8 0 3 8 10 5 13 0 8 35 19 0 97
10 8 7 3 2 11 2 0 9 0 10 16 19 0 78
11 7 2 3 0 8 2 0 4 0 21 29 23 0 82
12 1 0 2 2 3 1 0 0 0 36 18 12 0 69

Total 48 43 8 43 48 80 47 54 44 106 179 147 128 537

Notes: Total in the last line refers to the total number of different winners for the specific year. Given that, within a year, the
same bidders win multiple units in several months, this number is below the sum over months by year. Similarly for the last
column, where Total is the number of different bidders for the specific month during the 13-year sample. Finally, 537, refers to
the total number of different bidders in the whole sample.
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Table 10: Estimation Results

Structural parameters
Specifications

Sequential Auction Model Standard Model
(1) (2) (3) (4) Residuals (5) (6)

Mean Valuation [E(V )] 389.06 547.43 324.91 365.38 136.13 178.67
[0.0411] [0.0001] [0.0001] [0.0001] [0.0005] [0.0001]

Sunk Cost (α) 0.0113 0.0377 0.0126 0.0342
[0.0211] [0.0001] [0.0002] [0.0001]

βc
-0.1134 -0.0575 -0.2139 -0.1153
[0.3608] [0.6105] [0.1788] [0.5416]

βs
0.0123 0.01671 0.3103 0.1024
[0.6413] [0.6684] [0.0186] [0.3457]

Marginal Effects on Price

Future Rain (β1)
-0.1081 -0.0938 -0.0705 -0.0471
[0.0192] [0.0025] [0.0119] [0.0516]

Selected Covariates

Past Rain (γ1)
-0.0394 -0.0474 1.7687 0.0131 0.0119
[0.0773] [0.0424] [0.0001] [0.0858] [0.1628]

Feb (γ6)
-0.0498 -0.0623 26.4326 0.1062 0.0024
[0.1396] [0.0533] [0.7778] [0.3506] [0.9770]

Mar (γ7)
0.0381 0.0404 -16.0550 0.1625 0.1918
[0.2539] [0.3909] [0.9991] [0.1137] [0.0557]

Apr (γ8)
0.0753 0.0593 8.0710 0.1490 0.3107
[0.0315] [0.1599] [0.9176] [0.1218] [0.0006]

May (γ9)
0.0602 0.0665 8.3087 0.1349 0.1090
[0.1110] [0.2241] [0.9138] [0.1646] [0.2408]

Jun (γ10)
0.0737 -0.0422 -21.5523 0.1370 0.1016
[0.1082] [0.3482] [0.7826] [0.1253] [0.2276]

Jul (γ11)
0.2225 0.1975 -126.9779 0.3260 0.2023
[0.0513] [0.1229] [0.1054] [0.0293] [0.3236]

Aug (γ12)
0.1954 0.1462 -76.7241 0.4184 0.2424
[0.0246] [0.0529] [0.9238] [0.0717] [0.2336]

Sep (γ13)
0.1842 0.2010 -33.1308 0.2836 -0.0399
[0.0837] [0.0350] [0.6857] [0.2360] [0.8539]

Oct (γ14)
0.1912 0.2171 18.6739 0.1881 0.7153
[0.0356] [0.0264] [0.8283] [0.4702] [0.0004]

Nov (γ15)
0.0223 0.0603 4.1315 0.0898 0.2176
[0.5330] [0.2102] [0.9616] [0.3679] [0.0021]

Dec (γ16)
0.0720 0.0344 -9.7702 0.0570 0.0907
[0.1014] [0.4173] [0.9186] [0.5347] [0.2564]

Mean ρ
- Pure complements 0.3707 0.2319 0.6725 0.4003
- Non-complements -0.0221 -0.0084 -0.9267 -0.2804

N 50 40 50 40 40 50 40
Schedule FE No No Yes Yes Yes Yes Yes
Weekday FE No No Yes Yes Yes Yes Yes
Pseudo R2 0.2861 0.2620 0.8504 0.8326 0.0235 0.1779 0.1634
Log likelihood -1,352.53 -1,353.11 -1,262.47 -1,264.91 -3,506.15 -3,625.79
# of Auctions 5,964 5,964 5,964 5,964 5,964 5,964 5,964

Notes: P >| z | is reported in squared brackets (for the Mean Valuation it corresponds to the p-value corresponding to the
estimate of the parameter θ). Estimates in columns 1 to 4 (sequential auction model) are MLE obtained by maximizing
the likelihood function in Subsection 7.1 using a tolerance level of 1.0e-09, and the procedure described in Section 7. For
the distribution of private values and inclusion of covariates, we use the parametric specification described in Subsection 7.1.
Estimates in specifications 5 and 6 (standard model) are MLE obtained by maximizing the likelihood function from a standard
English-auction model, without fixed costs nor decreasing marginal returns (the sample is the same as the one in columns 1 to
4, including in this cases all sequential prices in the estimation). Estimates in the column labeled Residuals are OLS regressions
using the residuals from the model in specification 4. Although not reported in the table, weekday, year and schedule fixed
effect are included when indicated. Number of years in the sample is 13. Number of months in the sample is 119. The number
of different winners (across all 13 years) is 537. Marginal effects are reported for future and past rain, as well as for months
covariates (see subsection 7.2 for further details). The complementarity parameter, ρ, is computed as detailed in the theoretical

model in Section 3. When the goods are pure complements is given by ρc =
α−3βc
1−α =

α−3(βc+β1R
F
t )

1−α . The table reports, for

each specification of the sequential auction model in columns 1 to 4: ρ̄c =
α̂−3(β̂c+β̂1Ec(RF

t ))

1−α̂ . Similarly, when the goods are

non-complements, the table reports, for each specification: ρ̄s =
α̂−3(β̂s+β̂1Es(RF

t ))

1−α̂ . See subsection 7.2 for details.
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Table 11: Monte Carlo Design and Results for Testing Performance of the Estimators

Parameter Bias Variance MSE
θ -2.94E-09 6.03574E-07 6.03574E-07
α 4.62E-09 0.024073353 0.024073353
βc 2.59E-08 0.057346695 0.057346695
βs -3.35E-10 0.014881658 0.014881658
β1 -3.02E-09 0.073328361 0.073328361

Notes: The table displays the results from a Monte Carlo study to test the performance of the estimators in Section 7. The
design is explained in Appendix B. The specifics of the design that appear in the Table are the following: T = 10, 000, S = 200,
Nt = 40, θ = 0.3, α = 0.1, βc = −0.1, βs = 0.1, β1 = 0.25. Similar results were obtained with Nt = 50 (not reported).
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Figure 1: Sunk Cost and Decreasing Returns Effect

The figure displays the actual utility derived by the first, second, third and forth goods consumed by a bidder with type vi = 1.
In case I (top-left), all the remaining goods (second, third and forth units) have a valuation greater than the first one (pure
complements). Case II (top-right) shows a situation where only second and third units are valued above the first one. In case
III (bottom-left), only the second unit is above the first one. Finally, case IV (bottom-right) plots a situation where all goods
valuations are below the one of the first unit.

Figure 2: Marginal Returns of Irrigation Water

Marginal returns of water in summer (left) and autumn (right).
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Figure 3: Auction Sample: Goods are complements

Auction # Name Price
1 Juana Fernandez 1580
2 Juana Fernandez 50
3 Juana Fernandez 50
4 Juana Fernandez 50
5 Francisco Gabarron 1401
6 Francisco Gabarron 50
7 Francisco Gabarron 50
8 Francisco Gabarron 50
9 Jose Ferez 1401
10 Jose Ferez 25
11 Jose Ferez 25
12 Jose Ferez 25
13 Antonio Belijar Boluda 1401
14 Antonio Belijar Boluda 25
15 Antonio Belijar Boluda 25
16 Antonio Belijar Boluda 25
17 Manuel Gutierrez 1406
18 Manuel Gutierrez 50
19 Manuel Gutierrez 50
20 Manuel Gutierrez 50

Sample from original data obtained from the historical archive: Goods are complements (Summer - July 22, 1966, Day).
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Figure 4: Auction Sample: Goods are Substitutes

Auction # Name Price
1 Pedro Foma 123
2 Pedro Foma 111
3 Pedro Foma 111
4 Pedro Foma 109
5 Pedro Blayas 115
6 Jose Ruiz 116
7 Mauricio Guimenez 117
8 Mauricio Guimenez 106
9 Ambrosio Ortiz 116
10 Ambrosio Ortiz 100
11 Ambrosio Ortiz 100
12 Carlota Pomares 116
13 Eliseo Guimenez 120
14 Antonio Muñoz 112
15 Antonio Navarro 110
16 Vicente Ledesma 106
17 Jose Galvez 103
18 Juan Martinez 91
19 Juan Martinez 90
20 Jesus Gutierrez 100

Sample from original data obtained from the historical archive: Goods are Substitutes (Winter - February 18, 1955, Day).
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Figure 5: Auction Sample: Auction where farmers are present and no one bids

Auction # Name Price
1 Sebastian Aguilar 48
2 Felipe Amaro 42
3 Felipe Amaro 48
4 Diego Guivao 50
5 Felipe Amaro 54
6 Antonio Llamas 51
7 Cristobal Romero 47
8 Cristobal Romero 50
9 Cristobal Futam 2
10 Cristobal Futam 5
11 Cristobal Futam 1
12 Cristobal Futam 1
13 Luis Moya 2.75
14 Luis Moya 1
15 Luis Moya 1
16 Luis Moya 1
17
18
19
20

Sample from original data obtained from the historical archive: Auction where farmers are present and no one bids (Winter -
January 22, 1954, Day).
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Figure 6: Sample of individual data obtained from the Agricultural Census

Figure 7: Rain and frequency distribution of 4CU over the sample period

57



Figure 8: Winning Prices: by # of consecutive units bought, by the same farmer and by unit
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Figure 9: Winning Prices: by weekday, hour and schedule

Figure 10: Price and seasonality
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Figure 11: Winning prices: by season and drought

Figure 12: Frequency distribution of auctions by month
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Figure 13: Winning farmers and winning prices

Figure 14: Within Price Distribution by Regime (1st price vs median 2nd to 4th prices)

Notes: Both figures display, for 4CU, the percentage change of the first winning price against the median of the second to fourth
winning prices. In the figure on the left, LB is computed by assuming that all second, third and fourth unit prices paid by the
(same) farmer within the same four-unit auction display end-price preference for 0. In the figure on the right, UB is computed by
assuming that only one among second, third or fourth unit prices paid by the (same) farmer within the same four-unit auction
display end-price preference for 0.
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Figure 15: Exponentiated Gamma (EG) Distribution: PDF vs N − 1 order statistic

Figure 16: Winning and Estimated Prices I

Notes: The figures display winning prices against: (i) predicted prices according to the sequential auction model presented
in the text (specification 4 in Table 10), and (ii) predicted prices according to a reduced-form model (for the sample) using
as regressors: Past Rain, unit (3 dummy variables), weekday (4 dummy variables), schedule (1 dummy variable), month (11
dummy variables), year (12 dummy variables), week (51 dummy variables) fixed effects, additional to a constant (see Table 4).
The graph plots mean monthly values of the prices. Similar results are obtained using a spline.
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Figure 17: Winning and Estimated Prices II

Notes: The figure displays winning prices against: (i) predicted prices according to the sequential auction model presented in
the text (specification 4 in Table 10), and (ii) predicted prices according to the standard (button) auction model (specification
6 in the same table). The graph plots mean monthly values of the prices. Similar results are obtained using a spline.

Figure 18: Regime Frequency Dissagreagation by Month

Notes: The figure depicts the frequency of 4CU by regime (see Section 5) and month. It can be seen that complementarities
are more likely to be observed in summer than in winter, where water requirements (and, hence, equilibrium prices) soar. We
interpret this as evidence in favor of the competition hypothesis (according to our model with entry and sunk costs) and against
the collusion hypothesis.
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