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Abstract 

 

Recent research has shown that two entropy-based segregation indices possess an appealing 

mixture of basic and subsidiary but useful properties. It would appear that the only fundamental 

difference between the mutual information, or M index, and the Entropy, Information or H 

index, is that the second is a normalized version of the first. This paper introduces another 

normalized index in that family, the 
*

H index that, contrary to what is often asserted in the 

literature, is the normalized entropy index that captures the notion of segregation as departures 

from evenness. More importantly, the paper shows that applied researchers may do better using 

the M index than using either H or 
*

H  in two circumstances: (i) if they are interested in the 

decomposability of segregation measures for any partition of organizational units into larger 

clusters and of demographic groups into supergroups, and (ii) if they are interested in the 

invariance properties of segregation measures to changes in the marginal distributions by 

demographic groups and by organizational units.  

 

 

Keywords: Multigroup Segregation Measurement; Axiomatic Properties; Entropy Based 

Indicators; Econometric Models.  
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I. INTRODUCTION 

 

Segregation measures describe differences in the distribution of two or more demographic 

groups (genders, racial/ethnic groups) over a set of organizational units (occupations, 

neighborhoods, schools). As with the measurement of other complex, multifaceted phenomena 

in the social sciences –such as income inequality or economic poverty– it should come as no 

surprise that there exists a plethora of indicators capturing different aspects of the same 

phenomenon.
2

 In some circumstances, this multiplicity of potential measures does not cause any 

practical problem. In most applications, however, different indices will lead to different 

conclusions, making it relevant to seek criteria to discriminate between the admissible 

alternatives.  

Recent methodological papers have emphasized the conceptual and practical properties 

satisfied by two entropy-based indicators of multigroup segregation known as the Information, 

the Entropy or the H index (Reardon and Firebaugh, 2002), and the Mutual Information or M 

index (Frankel and Volij, 2009a, and Mora and Ruiz-Castillo, 2009a). It should be noted that the 

H index is a normalization of M. Taking as reference the school segregation problem in the 

multigroup case, this paper makes a number of contributions of different importance to this 

literature. 

1. Among other alternatives, the M index can be motivated as the weighted sum of “local” 

school segregation indices, and of “local” ethnic group segregation indices, with weights equal to 

the demographic importance of each school or each ethnic group, respectively. Nevertheless, a 

remark warns the reader about an erroneous use of such local segregation indices. 

                                                 
2
 Surveys include James and Taeuber (1985), Massey and Denton (1988), and Flückiger and Silber (1999). 
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2. Our second contribution is to point out that there are two ways to normalize the M 

index. Contrary to what is believed since Massey and Denton (1988), the H index captures the 

isolation or representative aspect of segregation. The second normalization, leading to what we 

call the 
*

H index, is the one that captures the evenness aspect of segregation in the classical sense 

of James and Taeuber (1985). Interestingly enough, the M index simultaneously captures the 

evenness and representative aspects of segregation. 

3. In many practical situations it is important to study segregation at several levels 

simultaneously. For that purpose, it is convenient to use additively decomposable segregation 

indices, such as the entropy-based indices, that for any partition of organizational units into 

clusters or demographic groups into supergroups allow us to express overall segregation as the 

sum of a between-groups term and a within-groups term.
3

 Assume, for example, that we want to 

assess the degree to which overall school or residential segregation is due to racial differences 

across cities or states of different size, or how much is due to segregation within a large 

supergroup consisting of all minority races in the U.S.. As pointed out in the income inequality 

literature, these deceptively simple questions raise a number of conceptual and methodological 

problems (Shorrocks, 1988, p. 435). In our third contribution, it is shown that the empirical 

questions usually asked in decomposability analysis receive the more unambiguous answers that 

are possible in a segregation context under a particular strong notion of the additively 

decomposability properties. According to these properties, the within-groups term is the 

                                                 
3
 Examples of clusters in the school segregation context are the set of public or private schools in a country, or the 

sets of schools in major regions, states, cities, school districts or neighborhoods. In the occupational segregation 

context, we can have clusters of occupations in professional categories, economic activity sectors, or two- or three-

digit occupations. Of course, supergroups can only be defined in a multigroup segregation context. Examples in a 

school or residential context are when precisely-defined ethnic categories, like Mexican or Puerto Rican, are 

aggregated into a major category such as Hispanic. In an occupational context, supergroups appear when different 

categories of women and male workers are aggregated into people of both genders of different age and/or 

educational attainment. 
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weighted average of segregation in each cluster or supergroup with weights equal to their 

demographic shares.  

4. In empirical contexts where it is advisable to use entropy-based segregation indices, such 

as in the situations pointed out in the previous paragraph, which one should we use, the H, the 

*

H or the M index? It turns out that, except for Frankel and Volij (2009a) in school segregation 

and Mora and Ruiz-Castillo (2003, 2004), and Herranz et al. (2005) in occupational segregation, 

the authors that have used an entropy-based index have preferred the H index.
4

 The major 

contribution of this paper is to show the practical and conceptual advantages of the M index in 

the following two circumstances. 

Firstly, the M index satisfies the strong decomposability properties. This ensures that its 

answers to the empirical questions usually asked in decomposability analysis are as 

unambiguous as is possible in a segregation context. On the other hand, the H and the 

*

H indices only satisfy some weaker decomposability properties. The decomposition of the 

organizational units into clusters according to the H index, and the decomposition of 

demographic groups into supergroups according to the 
*

H index are free from ambiguities. 

Unfortunately, this is not the case for the decomposition into supergroups according to the H 

index, as well as the decomposition into clusters according to the 
*

H index. Moreover, the 

weights in all the decompositions for the H and the 
*

H indices are not invariant to changes in 

the within-group distributions, leading to additional problems of interpretation due to the 

                                                 
4 Theil and Finizza (1971) introduced the H index for the study of school segregation in the two-group case. 

Reardon et al. (2000) distinguishes between the central city and the suburbs in a study of within-cities school 

segregation in the multigroup case, while Miller and Quigley (1990) and Fisher (2003) on one hand, and Iceland 

(2002) on the other study within-cities and within-regions residential segregation. Fisher et al. (2004), which is the 

only contribution on residential segregation that develops a full multilevel approach using the H index, only 

reports pair-wise comparisons of racial/ethnic groups. 
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nature of the weights. The shortcomings of the H and 
*

H indices relative to the M index are 

illustrated both by means of numerical examples, and with school segregation data by ethnic 

group in the U.S. public school system between 1989 and 2005. 

Secondly, a majority of empirical studies by sociologists and economists have used 

segregation indices that do not change if the number of people in a given demographic group is 

multiplied by the same positive constant (i.e., if the number of women in an occupational 

segregation context, or the number of blacks in a residential or school segregation context, 

raises by 10% throughout all occupations, locations, or schools). Similarly, at least in the 

literature on occupational segregation by gender in the 1980s, many authors would argue that 

segregation should remain constant if the only change between two situations under 

comparison is in the population marginal distributions by organizational units. It turns out that 

the three entropy-based measures M, H, and 
*

H violate both properties, that is, they mix up 

segregation changes with changes in the marginal distributions in segregation comparisons over 

time or across space. However, the M index admits two decompositions that isolate one term 

that captures segregation changes net of the impact of pure demographic factors (Mora and 

Ruiz-Castillo, 2009a). This paper presents the first evidence showing the advantages of using the 

M index rather than the H and 
*

H indices to deal with these issues by means of numerical 

examples, and in the context of inter-temporal changes of school segregation in the U.S. public 

school sector between 1989 and 2005. 

In this scenario, the only advantage the H and 
*

H measures can claim is normalization. 

However, this is a subsidiary property that other authors have shown not only that, like any 

other axiom, its intuitive desirability is arguable, but also that it leads to the violation of the 
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extremely convenient strong decomposability properties already mentioned (Clotfelter, 1979, and 

Frankel and Volij, 2009b). 

The rest of this paper is organized into six Sections. Section II introduces the notation, 

presents the three entropy-based indices, and motivates two initial remarks. Sections III establishes 

that the empirical questions usually asked in decomposition analysis are free of ambiguities under 

the strong decomposability properties that are only satisfied by the M index. Section IV 

disentangles the different problems of interpretation that plague the weak decomposability 

properties satisfied by the H and the H* indices. Sections V and VI discuss the invariance 

properties, and the normalization issue, while Section VII concludes. 

 

II. ENTROPY-BASED INDICES  

II.1. Notation 

It would be useful to refer to a specific segregation problem. The case discussed throughout 

the paper is the school segregation problem. Assume a city X consisting of N schools, indexed by 

n = 1,…, N. Each student belongs to any of G racial groups, indexed by g = 1,…, G. However, 

given the racial diversity existing in many countries, this paper studies the multigroup case where 

G  2. The data available can be organized into the following G x N matrix: 

 

11 1

1

N

gn

G GN

t t

t

t t

X   

where tgn  is the number of individuals of racial group g attending school n, so that 

1 1

N G

gn

n g

t t  is 

the total student population. 

The information contained in the joint absolute frequencies of racial groups and schools, 
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tgn, is usually summarized by means of numerical indices of segregation. Let (G, N) be the set of 

all cities with G groups and N schools. A segregation index S is a real valued function defined in 

(G, N), where S(X) provides the extent of school segregation for any city X (G, N). Let pgn = 

tgn/t, and denote by 

,

1, 1

G N

gn gn
g n

P p the joint distribution of racial groups and neighborhoods in a 

city X (G, N). In the following, the discussion will be restricted to indices that capture a 

relative view of segregation in which all that matters is the joint distribution, i.e. indices which 

admit a representation as a function of Pgn.
5

 

This paper considers two notions of segregation. Under the first one, referred to as 

“evenness”, segregation is viewed as the tendency of racial groups to have different distributions 

across schools.
6

 In contrast, the notion of “representativeness” asks to what extent schools have 

different racial compositions from the population as a whole.
7

 As can be seen in city X, where 

the rows are racial groups and the columns are schools, evenness and representativeness are dual 

concepts: deviations from evenness (representativeness) correspond to differences in the row 

(column) percentages. The following observation indicates how close these two views are to each 

other. 

                                                 
5
 This property, satisfied by most segregation indices, is referred to as Size Invariance in James and Taeuber (1985) and 

as Weak Scale Invariance in Frankel and Volij (2009a). For a study that focuses on translation invariant segregation 

indices that represent an absolute view of segregation, see Chakravarty and Silber (1992). 

6
 It is generally agreed that residential and school segregation are multifaceted concepts whose measurement may 

require a battery of indices, one for each facet. In the context of residential segregation, Massey and Denton (1988) 

distinguish five notions or dimensions, of which evenness is the one that agrees with the classic definition of James 

and Taeuber (1985).  

7

 Frankel and Volij (2009b) view representativeness as the multigroup generalization of the notion of “isolation”, the 

second dimension proposed by Massey and Denton (1988) in the two-group case. Racially isolated schools are, by 

definition, not representative of the population. But unlike isolation, in the multigroup case representativeness is not 

based on the exposure of one specific group to another. The remaining three dimensions –concentration, 

centralization, and clustering– require detailed geographic information and would not affect the measurement of, say, 

occupational segregation by gender or school segregation by race . Like the most commonly used measures of 

segregation, the entropy-based indices studied in this paper are “aspatial” measures that do not adequately account for 

the spatial relationships among geographical locations. See Reardon and O’Sullivan (2004) for a discussion of these 

issues. 
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Remark 1. If a segregation index S that captures the notion of evenness when applied to city 

X (G, N) is applied to the city X’ (N, G), where the role of schools and racial groups are 

reversed so that tgn = t’ng for all g and n, then what will be called the reciprocal index S* applied to 

X’ captures equally well the notion of representativeness (and vice versa).  

In general, S(X) and S*(X’) will provide a different segregation value for the same data. 

When this is not the case, that is, when S(X) is equal to S*(X’) the segregation index under 

consideration is said to be transpose-invariant. 

Before we present the entropy-based indices of segregation, the concept of entropy of a 

distribution must be introduced. Consider a discrete random variable x that takes Q probability 

values, indexed by q = 1,…, Q. Let pq be the probability of the qth value with 0
q

p and 

1

1.

Q

q

q

p  For instance, if x is the ethnic group of a randomly selected student, then pq is the 

proportion of students in the city who are in the qth group. The entropy of the Q values of 

variable x is the real value function defined as 

 

1 1

1

log( ) log

Q Q

q q q

q q q

E P p p p

p

  

with 0 log(1/0) = 0.
8

 Heuristically, the information brought about by observing the actual 

value of x is the opposite of the logarithm of its likelihood, – log(pq) = log(1/pq): the 

observation of an unlikely value brings about a large amount of information once observed. 

Therefore, the entropy can be considered a measure of the expected information for the value of 

variable x brought about by an observation. On the other hand, it is straightforward to show 

                                                 
8
 The base of the logarithm is irrelevant, providing essentially a unit of measure. In this paper the natural logarithm 

will be used.  
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that the entropy is bounded, so that it reaches its maximum value at the discrete uniform 

distribution UQ, whereby all values are equally likely to be observed, and attains its minimum 

value in any of the Q degenerate distributions. Since the entropy captures the degree of 

uniformity in the probabilities of each possible event described by x, it can be also interpreted as 

a measure of uncertainty or diversity of random variable x. 

II. 2. Segregation as Departures from Representativeness 

The M index is defined as follows. Suppose that a student is drawn randomly from the 

city, so that the uncertainty about her race is measured by the entropy of the city’s ethnic 

distribution, ,
g

E P  where 
g g

P p  and 

1

.

N

g gn

n

p p  Suppose that, in addition, we are 

informed about the school the student attends. The uncertainty about her race is now measured 

by the entropy of her school’s ethnic distribution, 
|

,
g n

E P  

where
| |g n g n

P p and
|

1

/ .

G

g n gn gn

g

p p p  If the schools in the city are all segregated, then the latter 

entropy will tend to be lower because the student’s school conveys some information about her 

race. The M index equals this change in entropy, 
|

,
g n g

E P E P  averaged over the students in 

the city: 

 
|

1

( ) ( ) .

N

n g g n

n

M p E P E P  (1) 

In information theory, expression (1) is the expected information of the message that transforms 

the marginal distribution of groups in the city, ,
g

P  to the conditional distribution of racial 

groups in school n, 
|

.
g n

P  Since 
|g n g

E P E P  measures the extent to which the racial 
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composition in school n differs from the one for the city as a whole, it can be interpreted as a 

local measure of discrepancy in racial shares or a local index of segregation in school n when 

segregation focuses on representativeness.
9

 However, the following point should be well 

understood. 

Remark 2. Local indices of segregation 
|g n g

E P E P  are not independent from each 

other. First, an independent change in the racial mix in one school (through the addition or 

removal of one student) necessarily affects the racial composition in the city, and hence the local 

measure of discrepancy in racial shares in the remaining schools. Second, a change in the racial 

composition of a school maintaining the total number of students of each race in the city as a 

whole, necessarily affects the local measure of discrepancy in some other school. 

Therefore, while equation (1) may seem to permit the decomposition of overall 

segregation at the city level in N components, it is meaningless to talk of a single school’s 

contribution to overall city segregation: segregation as deviations from representativeness arises 

from the comparison of the racial composition in the N schools –not by the racial 

characteristics of a school in isolation.  

It can be shown that M 0, log G . In particular, M takes its minimum value whenever the 

racial entropy in each school coincides with the racial entropy at the city level, 

|
,  1,..., ,

g n g
E P E P n N while it reaches its maximum value when the racial distribution at 

city level is the discrete uniform distribution UG and there is no ethnic mix within schools. In 

other words, the notion of complete segregation for this measure demands two conditions: 

there must be no racial mix within organizational units, and races must be uniformly 

                                                 
9
 Entropy-based and other local segregation indices are axiomatically characterized in Alonso-Villar and Del Río 

(2010). 
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distributed at city level. For any given racial marginal distribution ,  
g

P M  attains its maximum 

at the city’s racial entropy, .
g

E P  This fact suggests normalizing M by :
g

E P  

 
|

1

.

N

g g n

n

ng g

E P E PM

H p

E P E P

 (2) 

The H index, referred to as the Entropy or Information index, first appears in Theil and Finizza 

(1971) and Theil (1972) in the context of racial segregation in a set of schools belonging to a 

given school district. Intuitively, it captures the proportion of the racial mix uniformity in the 

city that is not due to racial mix uniformity at school level. Note that, in contrast to M, it can 

only take values within the unit interval (regardless of the logarithmic base). More importantly, 

it reaches the unit whenever there is no racial mix within schools. On the other hand, equation 

(2) implies that, contrary to some previous claims in the literature, the entropy index H is a 

segregation index that measures departures from representativeness.
10

 

II. 3. Segregation as Departures from Evenness 

Note that 
| |gn n n g g

p p p p  so that 
| |

log log log log :
g gn n n g

p p p p  the information 

obtained about race from learning about the school the student attends equals the information 

gained about the school the student attends when learning about her race. Hence, the M index 

also equals the reduction in uncertainty about a students’ school that comes from learning her 

race: 

 
|

1

( ) ( ) .

G

g n n g

g

M p E P E P   (3) 

                                                 
10

 We believe that the misunderstanding starts with Massey and Denton (1988, p. 304). For the data they analyzed, 

they found that the Entropy index shared a common latent factor, which they interpreted as an evenness factor, 

with some evenness measures of segregation. 
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In information theory, expression (3) can be interpreted as the expected message that transforms 

the set of proportions 
n

P  to the set of proportions 
|

.
n g

P  Since the term 
|

( ) ( )
n n g

E P E P  measures 

the extent to which the distribution of students in group g across schools differs from the school 

size distribution for the population as a whole, it can be interpreted as a local index of segregation 

in ethnic group g when segregation is taken to mean deviations from evenness. Of course, a 

remark similar to Remark 2 applies here as well. In the words of Reardon and Firebaugh (2002), 

“segregation is defined by the relationships among the groups’ distributions across organizational 

units –not by the distribution across units of each group in isolation”.  

Equations (1) and (3) show that the M index is transpose invariant and captures the criteria 

of evenness and representativeness in a symmetric fashion. As a function of the school 

distributions by gender, M reaches its minimum value, 0, whenever the school entropy is the 

same for all racial groups, 
|

,  1,..., ,
n g n

E P E P g G while it reaches its maximum value, log N, 

when the school distribution at the city level is the discrete uniform distribution UN but each 

racial group attends a disjoint set of schools (so that there is no ethnic mix within schools). 

Thus, the notion of complete segregation as departure from evenness for M also demands two 

conditions: in addition to requiring no racial mix within organizational units, schools must be 

uniformly distributed at the city level. For any given school distribution ,  
n

P M  attains its 

maximum at the schools entropy at the city level, .
n

E P  This fact suggests normalizing M by 

:
n

E P  

 
|*

1

.

G

n n g

g

gn n

E P E PM

H p

E P E P

 (4) 

The 
*

H index has not been defined previously. Intuitively, it captures the proportion of the 
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school distribution uniformity in the city that is not due to school-share uniformity within 

racial groups. It can only take values within the unit interval, and it reaches the unity whenever 

there is no racial mix within schools. Equation (4) implies that 
*

H is a segregation index that 

measures departures from evenness.  

In terms of the definition introduced in Remark 1, 
*

H is the reciprocal index of H. From 

equations (2) and (4) we obtain that: 

 
*

.
g

n

E P

H H

E P

  

Clearly, since the two indices are different whenever 
n g

E P E P , neither of them is 

transpose-invariant.  

 

III. STRONG DECOMPOSABILITY PROPERTIES 

III.1. Strong School Decomposability 

In many research situations it is useful to partition organizational units into clusters of 

different size. Consider a partition of the N schools into K < N school districts indexed by k = 

1,…, K. Let X
k

 be the set of schools which belong to district k, and Nk be the number of schools in 

X
k

 with 

1

.

K

k

k

N N  The data available in X
k

 can be organized into the following G x N
k

 matrix: 

 

11 1

1

k k

k

k k

N

k

gn

G GN

t t

t

t t

X  

where 
k

gn

t  denotes the number of individuals of racial group g attending school n
k

 in district k. 

School and race frequencies at city level simply result from horizontal grouping of the school 
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and race frequencies from all K districts, 
1

... ... .X X X X
k K

 Assume now that all schools in 

district k have the same racial composition as the district as a whole, i.e. let 
k

X  refer to the 

district such that  
||

k g kg n

p p  for all n
k

 and all g, or the district in which the N
k

 original schools 

have been combined into a single school with conditional racial distribution 
| |

.
g k g k

P p
11

 Then 

S(
k

X ) = 0 for every k = 1,…, K, according to any sensible segregation index S. Would this 

mean that city segregation should be equal to zero? As long as the racial composition of at least 

two districts differ from each other, it is to be expected that overall city segregation should be 

positive and equal to “between-districts” segregation, that is 
1

( ) ( ,..., )
K

S SX X X  where 

1 1

( ,..., )
K K

S SX X X X . 

These considerations motivate a decomposability property for a segregation index 

according to which, for any partition of the N schools into K < N clusters, overall segregation 

can be expressed as the sum of two terms, one that captures between-groups segregation, and 

one that captures within-groups segregation and is equal to the weighted average of segregation 

levels within each of the clusters, with weights independent of the level of segregation within 

them. Generally, it would be convenient to have the weights adding up to unity. Moreover, it is 

natural to require that the weights coincide with the demographic importance of each cluster. 

Thus, we have 

Definition 1. A school segregation index S is said to be strongly school decomposable, D1, if 

and only if for any partition of the set of N schools into K < N clusters, so that 

                                                 
11

 Alternatively, suppose that all racial groups in a district are equally distributed over the district schools. 
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1

... ... ( , ),X X X X
k K

N G  X
k

(G, Nk), k = 1,…, K, and 

1

,

K

k

k

N N  overall segregation, 

S(X), can be written as 

 
1

1

( ) ( ,..., ) ( ),  

K

K k

k

k

S S p SX X X X  (5) 

where 
k

X  refers to the cluster in which 
||

k g kg n

p p  for all n
k

 and g, and pk is the proportion of 

students in cluster k,

1

(1/ ) .

X

k

k k

G

k gn

gn

p t t  

For any partition of schools into clusters we have to make sure that the following three 

magnitudes are well defined: (i) the contribution to overall segregation of any individual cluster; 

(ii) the part of overall segregation accounted for by segregation within all clusters, and (iii) how 

much segregation can be attributed to racial differences across clusters of different size. 

In the first place, note that if we are merely interested in ranking clusters’ segregation 

levels the decomposability requirement is quite inessential. However, if the analysis involves 

comparisons between cluster and overall levels, then decomposability can be very useful indeed. 

As pointed out in the field of income inequality, a problem arises in the different interpretations 

that can be placed in statements like “x percent of overall segregation is attributed to cluster k” 

(see, inter alia, Shorrocks 1980, 1984, 1988). Fortunately, definition D1 implies a satisfactory 

way of assigning segregation contributions to the clusters. For, when equation (5) holds for any 

partition of N schools into K clusters, it seems natural to define the contribution to overall 

segregation of cluster k by: 

 Ck = pk S(X
k 

). (6) 
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It is easy to check that this definition of Ck is consistent with the other two obvious 

interpretations of the sentence “contribution to segregation of cluster k”.  First, consider the 

situation in which the original frequencies of students across races and schools in the city is 

replaced by one in which all schools in cluster k are incorporated into a single school. Since in 

this case ( ) 0,  
k

S X then from equation (5) it is immediate to see that  

 
1 1 1

( ) ( ,..., , , ,..., ),  
k k k K

k
C S SX X X X X X   

i.e. the contribution Ck can also be interpreted as the amount by which overall segregation falls 

if the segregation within cluster k is eliminated. Second, consider the situation by which the 

original joint frequencies are replaced by one in which all clusters except k become single school 

clusters. Since in this situation ( ) 0,  
j

S X for all j ≠k, it follows that  

 
1 1 1 1

( ,..., , , ,..., ) ( ,..., ),  
k k k K K

k
C S SX X X X X X X  

 i.e. Ck can also be interpreted as the amount by which overall segregation increases if 

segregation within cluster k is introduced starting from the position of zero segregation within 

each cluster. Therefore, under D1 it is possible to provide the same answer to different 

interpretations of what is meant by the contribution of each cluster to overall segregation. 

Consequently, the problem of unambiguously comparing individual clusters’ contributions is 

solved. For example, the ratio ( )/ ( ) X X
k

S S is greater, equal or smaller than one whenever 

cluster k’s contribution to the overall segregation level, / ( ),  X
k

C S is greater than, equal to, or 

smaller than its demographic importance given by pk. 

In the second place, we must examine the contribution made to overall segregation by all 

clusters taken together, C. This question admits two sensible interpretations. First, a natural 
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response is to compute the reduction in overall segregation that would arise if the segregation 

within all clusters were eliminated. In the partition into K clusters C will be:  

 
1

( ) ( ,..., ).
K

C S SX X X  

A second interpretation would consist of the sum of the individual contributions defined in 

expression (6), that is,    

 

1 1

( ).

K K

k

k k

k k

C p S X  

It is immediate to see that for any segregation measure S satisfying D1, 

1

K

k

k

C C so that both 

interpretations provide the same answer. 

Finally, consider the possibility of partitioning the set of schools in a country into clusters 

of different size, say regions, cities, or school districts. The empirical question to be addressed is 

“How much segregation can be attributed to racial differences across regions as opposed to 

other geographical levels.” This may be interpreted as meaning: (i) by how much segregation 

would fall if racial differences across clusters were the only source of school segregation, or (ii) 

by how much segregation would fall if racial differences at the cluster level were eliminated. 

Interpretation (i) suggests a comparison of overall segregation with the amount that would arise 

if segregation within each of K clusters were made equal to zero but racial differences across 

districts remained the same. As was seen before, for measures satisfying D1 this would eliminate 

the total within-groups term and leave only the between-groups contribution so that 

1

( ) ( ,..., ).
K

S SX X X  Interpretation (ii) suggests a comparison of overall segregation with the 

segregation level that would result if all clusters had the same racial composition, equal to the 

one for the nation as a whole, but the segregation within each cluster remained unchanged. 
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Unfortunately, in contrast to the situation for relative measures of income inequality, this 

conceptual experiment is not possible for measures of segregation, a difficulty that deserves an 

explanation.  

For any partition of an income distribution, any decomposable inequality index allows 

expressing overall income inequality as the sum of a between- and a within-groups term, where 

the between-groups term is the inequality of the distribution where each individual is assigned 

the mean income of the subgroup to which she belongs. In this situation, starting from an 

income distribution x and a partition of the population into sub-groups, there is no difficulty in 

constructing a new income distribution y satisfying two conditions: (a) the mean income of any 

subgroup is equal to the mean income for the entire population, so that the between-groups 

inequality of distribution is equal to zero, and (b) income inequality within each subgroup is 

preserved. Then it is easy to see that the difference between income inequality in the initial 

situation, say I(x) = B(x) + W(x), and income inequality in the second situation, I(y) = B(y) + 

W(y) = 0 + W(x), is equal to the between-groups term: 

 I(x) – I(y) = B(x) + W(x) - W(x) = B(x). 

That is, according to interpretation (ii), between-groups income inequality is the amount by 

which overall income inequality is reduced when the differences between subgroup income 

means are eliminated by making them equal to the population income mean.
12

 

The corresponding conceptual exercise in the segregation case is logically impossible. 

Starting from 
1

... ... ,X X X X
k K

 let us attempt to construct another city Y satisfying two 

                                                 
12

 As a matter of fact, the answers to interpretations (i) and (ii) coincide and are equal to the between-groups term 

only when the weights in the within-groups term do not depend on the subgroup means. This is only the case for 

one of the members of the entropy family of income inequality indicators: the mean logarithmic deviation (see 

Shorrocks, 1980). 
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conditions. (a) The racial composition of every cluster k in Y
 

is the same as the one for the 

original population as a whole, that is, 
|g k g

p p  for all k and g, so that there is no between-

groups segregation in Y. In this case, overall segregation in Y coincides with the within-groups 

term. (b) The level of segregation within each cluster remains as in the original city, so that the 

within-groups term in Y coincides with the one in X. Hence, overall segregation in Y coincides 

with within-groups segregation in X. If this operation were possible it is easy to see that, as in 

the income inequality case, the difference between overall segregation in X and in Y would be 

equal to the between-groups term. However, under condition (a) within-group segregation in Y 

results from the comparison between the racial distributions at school level with the racial 

distribution in the original city; but this comparison is what is involved in computing overall 

segregation in X. Therefore, within-groups segregation in Y is equal to overall segregation in the 

original city, which contradicts the fact that overall segregation in Y coincides with within-

groups segregation in X. This contradiction arises because it is generally impossible in the 

segregation context to eliminate the between-groups segregation maintaining the existing 

within-groups segregation as the former affects the latter. Nevertheless, this does not preclude 

the investigation of the original question about which geographical level accounts for a greater 

percentage of overall segregation. For any segregation measure satisfying D1, the size of the 

between-groups term at each geographical level provides a clear answer, if only in the sense of 

interpretation (i). 

III.2. Strong Group Decomposability  

In many research situations it is useful to partition demographic groups into supergroups. 

Consider a partition of the G groups in a city X (G, N) into L < G supergroups, indexed by l 
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= 1,…, L. Let Xl be supergroup l, and Gl its cardinal with 

1

.

L

l

l

G G  The data available in Xl can 

be organized into the following Gl  x N matrix: 

 

1 1 1

1

.X

l l

l

l l

N

l g n

G G N

t t

t

t t

 

where 
l

g n
t  denotes the number of individuals of racial group gl in supergroup Xl attending 

school n. School and race frequencies at city level simply result from vertical grouping of the 

frequencies from all L supergroups,
1

,X X X

T
T T

L
where superscript T stands for the 

transpose operator. 

Suppose that the Gl groups in supergroup l have the same distribution over organizational 

units as the supergroup as a whole, i. e. let X
l
 be the supergroup in which 

| |
l

n g nl
p p  for all gl 

and n, or the supergroup in which the Gl original groups have been combined into a single 

group with conditional school distribution 
| |nl nl

P p .
13

 Then S( X
l
) = 0 for every l = 1,…, L, 

according to any sensible segregation index S. Would this mean that city segregation should be 

equal to zero? As long as the spatial distribution of at least two supergroups would differ from 

each other, it is to be expected that overall city segregation should be positive and equal to 

“between-supergroups” segregation, or 
1

( ) ( ,..., )X X X
L

S S  where 

1 1
( ,..., )X X X X

T
T T

L L
S S . 

                                                 
13

 Alternatively, suppose that all organizational units have the same racial composition within each supergroup. 
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This motivates a decomposability property for a segregation index according to which, for 

any partition of the G racial groups into supergroups, overall city segregation can be expressed 

as the sum of two terms, one that captures between-supergroups segregation, and another that 

captures within-supergroups segregation and is equal to the weighted average of segregation 

within each of the supergroups. Again, it is natural to require that the weights coincide with the 

supergroups’ demographic importance. Thus, we have 

Definition 2. A school segregation index S is said to be strongly group decomposable, D2, if 

and only if for any partition of the G groups into L < G supergroups so that 

1
( , ),X X X

T
T T

L
G N  Xl (Gl, N), l = 1, …, L, and 

1

,

L

l

l

G G  overall segregation, 

S(X), can be written as 

 
1

1

( ) ( ,..., ) ( ),  X X X X

L

L l l

l

S S p S  (7) 

where X
l
 refers to the supergroup in which 

| |
l

n g nl
p p  for all gk and n, and pl  is the proportion 

of students in supergroup l,

1

(1/ ) .

X

l

l l

N

l g n

g n

p t t  

This definition also implies a satisfactory way of assigning segregation contributions to the 

supergroups. For, when equation (7) holds, the definition Cl = pl S(Xl), is consistent with all the 

obvious interpretations of the concept “contribution to segregation by supergroup l”: the 

amount by which overall segregation falls if the segregation within supergroup l is eliminated, 

or the amount by which overall segregation increases if segregation within supergroup l is 

introduced starting from the position of zero segregation within each supergroup. Similarly to 

the case of the partition of schools into clusters, it is impossible to eliminate the between-
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supergroups segregation maintaining the existing within-supergroups segregation as the latter is 

affected by the former. 

III.3. Decomposability Properties of the M Index 

It is easy to show that the M index satisfies both D1 and D2 in the multigroup case. First, 

Equation (5) takes the form:  

 

1

  

K

B W

k k

k

M M p M  (8) 

where  

 
| |

1 1

( ) ( )  = ( ) ( )  

K G

B

k g g k g k k g

k g

M p E P E P p E P E P  

is the between-groups term that captures what we will refer to as cluster segregation, and  

 
| || | | ,

1

( ) ( )  = ( ) ( )  
k k k

k

X X X

X

k
N G

W

k n g k g kg n nn n g n

gn

M p E P E P p E P E P  

captures school segregation within cluster k. Given that the M index satisfies D1, the 

contribution   
W W

k k k
CM p M is consistent with all the obvious interpretations of the concept 

“contribution to segregation by cluster k”. Similarly, M admits the following decomposition 

 

1

 

L

W

B l l

l

M M p M  (9) 

where  

 
| |

1 1

( ) ( )  = ( ) ( )  

N L

B n l l n l n nl

n l

M p E P E P p E P E P  

is the between-groups term that captures school segregation by supergroup, and  

 
| | , | | | ,

1

( ) ( )  = ( ) ( )  
X X X X X

X

l l l l l

l

N G

W

l n g g g n g g g n g n g g

n g

M p E P E P p E P E P  
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captures school segregation within supergroup l. Given that the M index satisfies D2, the 

contribution   
W W

l l l
CM p M is consistent with all the obvious interpretations of the concept 

“contribution to segregation by supergroup l”. 

 

IV. WEAK DECOMPOSABILITY PROPERTIES 

IV.1. The Properties 

Although the H and 
*

H indices violate D1 and D2, it can be seen that they satisfy some 

weaker decomposability properties. Firstly, consider any partition of the N schools into K < N 

clusters, and recall that H can be computed by dividing the M index by the racial entropy, 

.
g

E P  On the one hand, starting from the representativeness representation of decomposition 

(8) we have: 

 

1

.

B WK

k

k

kg g

M M

H p

E P E P

  

Multiplying and dividing each summand of the second term by the within-group’s racial 

entropy, 
|

,
g k

E P and using the relation between the un-normalized and the normalized indexes, 

we have: 

 
|

1

,

K

g kB W

k k

k g

E P

H H p H

E P

 (10) 

where 
B

H captures cluster segregation, and 
W

k
H  captures school segregation within cluster k. 

On the other hand, starting from the evenness representation of equation (8), for the 
*

H index 

we have 
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*

1

.

B WK

k

k

kn n

M M

H p

E P E P

  

Multiplying and dividing the between-groups term by 
k

E P  and each summand of the second 

term by 
|

,
n k

E P  we have: 

 
|* * *

1

K

nkB Wk

k k

kn n

E PE P

H H p H

E P E P

 (11) 

where 
*B

H captures cluster segregation, and 
*W

k
H  captures school segregation within cluster k. 

Secondly, consider any partition of the G groups into L < G supergroups. Starting from 

the representativeness representation of equation (9), for the H index we have 

 

1

.

WL

B l

l

lg g

M M

H p

E P E P

  

Multiplying and dividing the between-groups term by 
l

E P  and each summand of the second 

term by 
|

,
g l

E P  we have: 

 
|

1

L

g l Wl

B l l

lg g

E PE P

H H p H

E P E P

 (12) 

where
B

H captures school segregation by supergroup, and 
W

l
H  captures school segregation 

within supergroup l.
 14

 Finally, starting from the evenness representation of decomposition (9), 

we have: 

 
*

1

.

WL

B l

l

ln n

M M

H p

E P E P

  

Multiplying and dividing each summand of the second term by 
|nl

E P  , we have: 

                                                 
14

 Equation (12) figures prominently in Reardon et al. (2000) -see their expression (4).  
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|* * *

1

,

L

nl W

B l l

l n

E P

H H p H

E P

 (13) 

where 
*

B
H  captures school segregation by supergroup, and 

*W

l
H captures school segregation 

within supergroup l. 

IV.2. Ambiguities in the Interpretation of the Contributions to Segregation 

It should be noted at the outset that the contributions of the between-groups and within-

groups terms expressed as a percentage of the H and the 
*

H indices in expressions (10)-(11), and 

(12)-(13) pose no problem because they coincide with those same relative contributions for the 

M index in expressions (8) and (9), respectively. Thus, for example, in the case of decomposition 

(10) we have: 

| | |

1 1

1

( ) / ( ) ( ) / ( )

( ) / ( ) ( ) / ( )

.

.

B WWB K K

g k g g k k g kk

k k

k kg g g g

WB K

k

k

k

E P M E P E P M E PHH

p p

H E P H M E P E P M E P

MM

p

M M

 

Similarly, for decomposition (11) we have: 

**

| | |

* *

1 1

1

( ) ( ) / ( )( ) ( ) / ( )

( ) ( ) ( ) / ( ) ( ) / ( )

.

.

WW BB K K

n k n k k n kk k k k

k k

k kn n n n n n

WB K

k

k

k

E P E P M E PE P H E P M E PH

p p

E P H E P H E P M E P E P M E P

MM

p

M M

 

On the other hand, it is important to recognize that the terms in decompositions (10) and 

(13) admit the same interpretations as those terms in any D1 and D2 index. Firstly, define 

cluster k’s contribution to overall segregation as 
|

.
g kW W

k k k

g

E P

CH p H

E P

 It is easy to show that 

W

k
CH  can be interpreted both as the amount by which overall segregation falls if the segregation 
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within cluster k is eliminated, and the amount by which overall segregation increases if 

segregation within cluster k is introduced starting from the position of zero segregation within 

each cluster. Likewise, define the contribution of all clusters to segregation as 

1

.

K

W W

k

k

CH CH  

It turns out that 
W

CH equals the reduction in segregation that would arise if the segregation 

within all clusters were eliminated. Finally, the interpretation of the between-groups term in 

decomposition (10), ,
B

H  is subject to the same conceptual limitation pointed out in the 

previous Section III.1 in relation to the decomposition of any D1 index. Namely, 
B

H  can be 

interpreted as the level of segregation if racial differences across clusters were the only source of 

school segregation so that 0
W

k
H for all k = 1,…, K. However, it cannot be interpreted as the 

decrease in segregation if racial differences at the cluster level were eliminated. For reasons of 

brevity, the properties of decomposition (13) are not discussed in detail. Nevertheless, similar 

arguments to those provided for decomposition (10) can be used to see that the terms in 

decomposition (13) can be interpreted as those in the decomposition of any D2 index for any 

partition of ethnic groups into supergroups.  

However, as indicated in the Introduction, decompositions (11) and (12) present serious 

problems of interpretation. The next example illustrates that equation (12) does not provide the 

H index with a decomposition that admits the same interpretation as that of any D2 index. It 

first shows that supergroup l’s contribution to overall segregation, 
|

( )

,

( )

g lW W

l l l

g

E P

CH p H

E P

 cannot 

generally be interpreted as the amount by which overall segregation falls if the segregation 

within supergroup l is eliminated. The reason is that in this case the overall racial entropy 

g
E P  will usually change, and this may induce changes in the weights of the contributions by 
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other supergroups. The example also shows that the term 
W

l
CH  cannot be always interpreted as 

the amount by which overall segregation increases if segregation within supergroup l is 

introduced starting from the position of zero segregation within each racial supergroup. Finally, 

it is illustrated that 
( )

( )

l

B B

g

E P

CH H

E P

 cannot be interpreted as the level of segregation if 

differences in the supergroup distributions across schools were the only source of school 

segregation.  

Example 1: Consider two cities, X and Y, with students from three racial groups, white, 

Asian, and black, and two schools, s1 and s2. The joint frequencies of students across schools 

and racial groups are summarized in the following two matrices: 

Ethnic groups

7 38 7 28 white

X = 3 2 Y = 3 12 Asian

20 5 20 5 black

s1 s2 s1 s2

Schools Schools

 

Suppose that we group together white and Asian students, referring to the resulting supergroup 

as wa. To begin with, according to index H school segregation within supergroup wa is zero in 

city Y, but positive in X, ( ) 10.28.
W

wa
H X

15

 However, the contribution of within-supergroups 

segregation in city X, ( ) 3.45,X
W

wa
CH  is not equal to the fall in overall segregation when 

eliminating segregation within supergroup wa, i.e. moving from city X to city Y, 

( ) ( ) 7.14.Y XH H  The reason is that the overall racial entropy has increased: 

( ) 104.38
g

E P Y  vs. ( ) 85.32X
g

E P . Secondly, it is immediate to note that ( ) 3.45X
W

wa
CH  

                                                 
15

 All entropy and index calculations reported hereafter are computed using natural logarithms and are multiplied 

by 100. 
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does not equal the amount by which overall segregation increases if segregation within 

supergroup l is introduced starting from the position of zero segregation within each racial 

supergroup, i.e. moving from city Y to city X, ( ) ( ) 7.14.X YH H  Finally, the term 

( ) 20.23X
B

CH  does not equal the level of segregation if differences in the supergroup 

distributions across schools were the only source of school segregation, ( ) 16.54.YH
16

 

IV.3. Further Problems of Interpretation Due to the Nature of the Weights 

In the motivation of strong school and group decomposability, it has been noted that it 

would be desirable that the weights in any decomposition should be invariant to changes in the 

within-groups distributions. Clearly, all decompositions (10) to (13) violate this property, 

leading to several problems of interpretation. Consider decomposition (12) for H. The nature of 

the weights 
l

g

E P

E P

 and 
|g l

l

g

E P

p

E P

 leads to the following two problems. Firstly, we may have 

two cities with the same HB but different contribution 
( )

( )

l

B B

g

E P

CH H

E P

to overall segregation 

due to differences in the entropy ratio .
l

g

E P

E P

 Secondly, for a given joint distribution of 

supergroups and schools, ,
ln

P  the weights 
|g l

l

g

E P

p

E P

 generally change in response to exogenous 

changes in the joint distribution of groups and schools within supergroups. Thus, although 

supergroup demographic shares, pl, remain constant, the overall racial entropy at group level, 

,
g

E P or the racial entropy at group level in supergroup l, 
|

,
g l

E P  may change. 

                                                 
16

 Analogous to the situation considered in remark 3, the contributions of the between- and the within-supergroup 

terms expressed as a percentage of the H (H*) indices in expression (11) (expression 12) pose no interpretability 

problem because they coincide with those same relative contributions for the M index. 
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Consequently, the contribution to within-groups segregation, 

1

,

L

W

W l

l

CH CH  may change in a 

direction contrary to what the terms 
W

l
H would indicate. Both problems are illustrated in the 

following example.  

Example 2: Consider two cities, X and Y, with students from four racial groups, white, 

Asian, black, and Hispanic and two schools, s1 and s2. The relative frequencies (in %) of students 

across schools and racial groups can be summarized in the following two matrices: 

Ethnic groups

white9 36 9.05 35.95

Asian3 2 2.95 2.05

X = Y =

black20 5 36 9

Hispanic20 5 4 1

s1 s2 s1 s2

Schools Schools

 

Suppose that we group together, on the one hand, white and Asian students, referring to the 

resulting supergroup as wa, and, on the other hand, black and Hispanic students, referring to 

the resulting supergroup as bh. Firstly, the joint distribution of supergroups and schools is the 

same in both cities X and Y and, consequently, so is the value for school segregation by 

supergroup, ( ) ( ) 24.03.
B B

H HX Y  However the contribution of between-groups segregation 

to overall segregation, ,
B

CH  is larger in Y  than in X ( ( ) 16.36Y
B

CH  vs. ( ) 13.86X
B

CH ) 

simply because the entropy ratio is larger there. Secondly, measured by ,
W

l
H  supergroup wa 

experiences slightly more school segregation in X than in Y ( ( ) 10.28X
W

wa
H  vs. 

( ) 9.74
W

wa
H Y ), while supergroup bh has no school segregation in both cities 

( ( ) ( ) 0
W W

bh bh
H HX Y ). Since the difference in the shares of black and Hispanic students is 
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much smaller in X than in Y, both the overall racial entropy and the racial entropy within 

supergroup bh are larger in X  than in Y: ( ) 120.23
g

E P X  vs. ( ) 101.82
g

E P Y , and 

|
( ) 34.66

g bh
E P X  vs. 

|
( ) 9.48.

g bh
E P Y  As a result, even though the joint frequency of 

supergroups and schools is the same for both cities, the weights 
|g l

l

g

E P

p

E P

are so much larger in 

city Y –the city with less segregation within supergroup wa– that the contribution of within-

groups segregation is also larger there: ( ) 1.55Y
W

CH  vs. ( ) 1.39.X
W

CH   

Decomposition (10) for H presents analogous problems of interpretation for the within-

groups term as 
|

1

( )

( )

K

g kW W

k k

k g

E P

CH p H

E P

 may change in a direction contrary to what the terms 

W

k
H would indicate. Also, the decompositions (11) and (13) for 

*

H  have similar problems of 

interpretation. For decomposition (11), we may have two cities with the same between-groups 

segregation, 
*

,
B

H  but different contributions to overall segregation due to differences in the 

entropy ratio .
k

n

E P

E P

 Finally, the contributions to within-groups segregation, 

|* *

1

( )

,

( )

K

nkW W

k k

k n

E P

CH p H

E P

 and 
|* *

1

( )

,

( )

L

n l W

W l l

l n

E P

CH p H

E P

may change in a direction contrary to 

what the terms 
*W

k
H and 

*W

l
H would indicate, respectively.

17

 

IV.4. Decomposability Properties in Practice: the M versus the H Index 

It will be illustrative to compare how the decomposability properties of the M and the H 

indices fair in practice with data about the evolution of the U.S. student population enrolled in 

                                                 
17

 For the sake of brevity, proofs of the statements in this paragraph using illustrative examples will be only available 

upon request. 
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public schools in Core-Based Statistical Areas (CBSAs) –urban clusters of 10,000 or more 

inhabitants, referred to in the sequel as cities– during the 1989-90 and 2005-06 academic years.
18

 

Table 1 informs about two issues. Firstly, the evolution of ethnic diversity of the student 

population. Minorities (namely, Native Americans, blacks, Asians, and Hispanics) already 

represent 34.8% of the total population of 24.8 million in 1989. Since all of them grew more 

rapidly than whites during this period, they represent as much as 48.1% of the total population of 

25.5 million in 2005. Secondly, the segregation levels achieved by the different entropy indices. In 

particular, the change in the M index during this period is M = 48.90 – 43.92 = 4.98. Suppose 

that we group together Asian, black, Hispanic, and Native American students, referring to the 

resulting “minorities” supergroup as m. Consider now the evolution of segregation between 

whites vs. minorities and the evolution of segregation within minorities. Since only one 

supergroup is considered, equation (9) simplifies to  
W

B m m
M M p M , where  

m
p denotes the 

share of minorities in the student population,  
W

m
M is the M index within minorities, and  

B
M is 

the M index of school segregation for whites vs. all minorities together. The observed increase in 

overall segregation is due, first, to the increase in 
B

M , 1.83.
B

M  In addition, the share of the 

minorities (who are highly segregated among themselves) increases substantially, 0.13.
m

p  

Thus, in spite of the fact that school segregation within minorities is decreasing,  8.25,
W

m
M  

                                                 
18

 Results pertain to those schools for which racial and ethnic information is available both in 1989 and in 2005. 

Given that a small proportion of schools did not report results in 1989, focusing on the schools which did probably 

gives a fairer comparison between the distributions observed in 1989 and in 2005 because it does not include those 

schools that did report in 2005 but failed to do so in 1989. However, interpretability of the results presented here is 

potentially compromised by the fact that some schools have been created whilst others have disappeared between 

1989 and 2005. Nevertheless, results using all observations are qualitatively similar, suggesting that the selection 

mechanisms at work are not essential to our analysis. Results obtained using the full sample are available upon 

request. 
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the contribution of segregation within minorities to overall segregation is positive, 3.15.
W

m
CM  

Consequently, 1.83 3.15 4.98.M  

Table 1 around here 

Given equation (2), it is seen that H decreases because the racial entropy is increasing 

(119.07 – 101.27 = 17.80) faster than M: 

 H = (48.90/119.07) – (43.92/101.27)  

        = 41.07 – 43.37 = – 2.30  

But how does H account for the trends in the minorities’ partition? Note that, with only one 

supergroup, decomposition (12) simplifies to 
|

.
g m

l W

B m m

g g

E PE P

H H p H

E P E P

 The H index does 

also find a decrease in segregation within minorities,  7.13,
W

m
H  and a very small increase in 

school segregation between whites and minorities, 0.03.
B

H  In spite of the increasing 

importance of minorities in the student population, the within-minorities weight only slightly 

increases (from 0.36 to 0.42) as a combined result of the decrease in the racial entropy within 

minorities (from 105.40 in 1989 to 103.71 in 2005), together with the increase in the overall 

racial entropy (from 101.27 to 119.07). The small increase in the weight does not offset the large 

decrease in segregation within minorities, and, hence, the contribution of segregation within 

minorities to overall segregation is negative,  0.11.
W

m
CH  Moreover, the contribution of 

between-groups segregation is also affected by the evolution of the ratio 
l

g

E P

E P

. It turns out 

that, simply because the racial entropy is growing relatively more than the supergroup entropy 

between whites and minorities, most of the reported decrease in the entropy index, 
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 2.30,H  stems from the decrease in the contribution of the between-groups term, 

 2.19,
B

CH  in spite of the reported increase in .
B

H   

 

V. INVARIANCE PROPERTIES 

V. 1. The Invariance Question 

Consider for a moment the special but important case of occupational segregation by 

gender, and assume that segregation in 1950 and 2000 are being compared in a given country. 

The following two questions are often asked. Firstly, should the measurement of occupational 

segregation be independent of the fact that female labour participation has greatly increased over 

time? Many people would agree that, as long as the male and female distributions over 

occupations remain constant, the degree of segregation should be the same in the two situations. 

This is known as composition invariance, or invariance 1 (I1 hereafter). In the school segregation 

case with several ethnic groups, the question becomes: should segregation be invariant to changes 

in the ethnic composition of the population as long as the distribution of each group over the 

schools remains constant? Secondly, should occupational segregation be independent from the 

fact that agricultural and industrial occupations are much more important in 1950 than in 2000, 

while services occupations carry much more weight in 2000 than in 1950? Many people would 

agree that, as long as the gender composition of each occupation remains constant, the degree of 

segregation should be the same in the two situations. This is known as occupational invariance, 

or invariance 2 (I2 hereafter). In the multigroup case, the question becomes: should segregation 

be invariant to changes in the size distribution of schools as long as the ethnic composition of 

each school remains constant?  
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As indicated in the Introduction, the three entropy-based measures M, H, and 
*

H violate 

both properties, that is, they mix up segregation changes with changes in the marginal distributions 

in segregation comparisons over time or across space. However, Mora and Ruiz-Castillo (2009a) 

argue that both invariance properties have strong implications, and provide examples to defend 

that there are good reasons for recognizing the demographic importance of racial groups and 

schools in a measure of segregation at a given moment in time. Nevertheless, it is quite clear that 

in segregation comparisons across time or space it becomes extremely useful to evaluate those 

changes in segregation that do not result from changes in the marginal distributions. 

Mora and Ruiz-Castillo (2009a) present two decompositions of the M index in pair wise 

comparisons over time or across space that isolate the effects of the changes in the marginal 

distributions. In the first place, to identify an I1 term in a decomposition of a pair wise 

comparison, the differences in the M index can be written as: 

  Net( ) ( ) ( ),I1
g n

M M P E P  (14) 

 

where ( )
n

E P  is the change in the school entropy, ( )
g

M P  isolates changes in M due to changes 

in the racial marginal distribution, 
g

P , while Net( )I1  is an I1 term in the sense that it equals 

zero as long as 
|n g

P remains constant. In the second place, to identify an I2 term in a 

decomposition of a pair wise comparison, the differences in the M index can be written as: 

  Net( ) ( ) ( ),I2
n g

M M P E P  (15) 

 

where ( )
n

M P  isolates changes in M due to changes in ,
n

P  ( )
g

E P  is the change in the racial 

entropy, while Net( )I2  is an I2 term in the sense that it equals zero as long as 
|g n

P remains 

constant.  
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Decompositions (14) and (15) are not available for the H, and 
*

H  indexes. However, it is 

sometimes argued that since normalization makes complete segregation as defined in H 

independent of ,
g

P  then the notion of segregation captured by H “is independent of the 

population’s diversity.’’
19

 Clearly, H is neither I1 nor I2, but to what extent does H reduce the 

invariance problems in M? Taking into account equation (14) and the linear approximation to 

changes in H, 
1

( ) ,

( )
g

g

H M E P

E P

 it is obvious that as long as ( ) 0
g

M P  and 1,
g

E P  

then Net( ).I2H  However, it will be presently seen that changes in H can be a very 

inadequate approximation to isolate I2 changes in deviations from representativeness. Firstly, by 

means of a numerical example it will be shown that changes in H (and also changes in 
*

H ) may 

be unduly influenced by changes in 
g

P  and changes in 
n

P  when the racial and school entropies do 

not change. Secondly, in the case of the evolution of the U.S. student population enrolled in 

public schools, it will be seen how a large increase in the racial entropy coupled with a relatively 

smaller change in the school marginal distribution leads both to H greatly undervaluing the 

improvement in representativeness, and 
*

H  missing the improvement in evenness. 

V. 2. Changes in the Marginal Distributions Without Changes in the Entropies 

The next example illustrates how neither H nor 
*

H correct for the lack of invariance in M if 

the marginal distributions of schools and races change but the entropies do not.  

Example 3: Consider two cities, X and Y, with students from three racial groups, white, 

black, and Hispanic, and three schools, s1, s2, and s3. The joint absolute frequencies of students 

across schools and racial groups are summarized in the following two matrices: 

                                                 
19

 See, inter alia, Reardon et al., 2000, pp. 354. 
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Ethnic groups

30 10 5 10 10 10

5 15 5 5 15 25

5 10 15 10 10 5

s1 s2 s3 s1 s2 s3

Schools Schools

X Y

white

black

Hispanic

 

City X is predominantly white, while city Y is predominantly black. Hispanics are the 

second largest group in X and the smallest group in Y. However, racial entropies in both cities 

(multiplied by 100) are the same: ( ) ( ) 106.71.X Y
g g

E P E P  On the other hand, school 1 is 

the largest and school 3 the smallest in city X, while the order is reversed in city Y. However, 

these changes in the school marginal distribution do not affect the school entropy (multiplied 

by 100): ( ) ( ) 108.05.X Y
n n

E P E P  Moreover, both the school entropy and the racial 

entropy are close to 1. Consequently, changes in H and 
*

H  are very similar to changes in M: 

( ) ( ) 6.56X YM M  vs. ( ) ( ) 6.15X YH H  vs. 
* *

( ) ( ) 6.07X YH H . However, according 

to decomposition (14), net segregation as deviations from evenness is lower in X than in Y, 

Net( )  7.98I1 , and the change in the racial distribution increases M in X, ( ) 17.19.
g

M P  

Similarly, according to decomposition (15), net segregation as deviations from 

representativeness is lower in X than in Y, Net( )  5.98I2 , and the change in the school 

distribution increases segregation in X, ( ) 12.54.
n

M P  Hence, neither H nor 
*

H correct for the 

lack of invariance in M if the marginal distributions of schools and races change but the 

entropies do not. 

V. 3. The Effects of an Increase in the Racial Entropy: Invariance Properties in Practice 
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The case of the evolution of the U.S. student population enrolled in public schools already 

studied in section III.2 is retaken here to evaluate whether, in practice, changes in either the H 

or the 
*

H index could be seen as reasonable approximations of I2 or I1 terms, respectively. In 

section III.2 it was reported that in the period 1989-2005 the M index increased by 4.98, the H 

index decreased by  2.30  because the racial entropy increased relatively more than M, while 

the 
*

H index slightly increased by 0.50 because the school entropy decreased. However, in 

equation (15) the change in the M index due to the change in the racial entropy is 17.80, while 

the change due to the change in the marginal distribution of schools is – 0.59. Therefore, the 

change in net segregation independent of these effects is  

 Net(I2) = 4.98 – (– 0.59) – 17.80 = – 12.23. 

The term Net(I2) reflects changes in the schools’ racial mix and, therefore, can be interpreted 

as changes in deviations from representativeness. Hence, the change in the normalized entropy 

index H greatly undervalues the improvement in representativeness. 

On the other hand, in equation (13) the change in the M index due to the change in the 

schools entropy is – 4.53, while the change due to the change in the marginal distribution of 

racial groups is 10.63. Therefore, the change in net segregation independent of these effects is  

 Net(I1) = 4.98 – (– 4.53) – 10.63 = – 1.11. 

The term Net(I1) reflects changes in the groups’ conditional distributions over schools and, 

therefore, can be interpreted as changes in deviations from evenness. Hence, the change in the 

normalized entropy index 
*

H misses the improvement in evenness. 

 

VI. THE NORMALIZATION ISSUE 
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Normalization properties concern the bounds for the range of admissible values for an 

index of segregation. Most researchers would identify the absence of segregation with the 

situation where organizational units have the same racial composition or, equivalently, where 

demographic groups have the same distribution across organizational units. Similarly, most 

researchers would accept that demographic groups are completely segregated whenever they do 

not mix at all within organizational units. A segregation index is said to be normalized in the 

unit interval –or possess the NOR property– if it takes value 0 whenever there is no segregation 

and it takes value 1 whenever it reaches complete segregation as defined above.   

It is important to understand that requiring the subsidiary property NOR has larger 

implications than simply rescaling the measure of segregation. As has been repeatedly seen, the 

un-normalized and the normalized entropy-based indices do not generally give the same 

segregation ordering. In particular, both H and 
*

H rank all cities with no racial mixing within 

schools as equally segregated, while M assigns a higher segregation level to cities in which there 

is more initial uncertainty about a student’s racial group. Following an example in Frankel and 

Volij (2009b), consider city A with three schools and three racial groups and city B with two 

schools and two racial groups, such that 

 

50 0 0

50 0

0 50 0 ,  .

0 50

0 0 50

A B   

Given each city’s marginal distributions, segregation is at a maximum in both cities according to 

the three indexes. Both H and 
*

H assign to each city a segregation value of 1. However, learning 

a student’s school (racial group) in A conveys more information about a student’s race (school) 
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than in B. Consequently, segregation in A is larger than in B according to the M index: M(A) = 

1.10 and M(B) = 0.69. Consider now a third completely segregated city C:  

 

99 0

0 1

C  

Both H and 
*

H assign again to C a segregation value of 1. However, since there is much less 

uncertainty about a student’s racial group (school) in C than in either A or B, segregation in C 

according to M is much smaller than before: M(C) = 0.06.  

As was pointed out in Clotfelter (1979), a critical problem with segregation indices that 

satisfy NOR is that they fail to capture well changes in inter-racial contact. Compare the effect 

of merging the two schools in city C, yielding the one-school city represented by column vector 

[99 1]’, with the effect of merging the two schools in B, yielding the one-school city represented 

by [50 50]’. The first merger has a very small effect on the inter-racial exposure of the average 

student, while the second one has a much larger effect: each student switches from a completely 

segregated school to one that is completely integrated. The M index reflects this difference, 

falling by 0.06 in C versus 0.69 in B. In contrast, H and 
*

H  miss the difference because the 

segregation value they both assign decreases by 1 in the two cases.  

It can be concluded that there are conceptual reasons for not requiring subsidiary property 

NOR from a segregation index. Furthermore, Frankel and Volij (2009b) establish the 

incompatibility of NOR and decomposability properties D1 and D2, providing an argument in 

empirical studies for avoiding indexes that satisfy NOR. 

Finally, it should be noted that all segregation indices that are bounded above can be 

weakly normalized, in the sense that they can be expressed as proportions of maximum 

segregation, by simply dividing them by its maximum value. In particular, the M index reaches 
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its maximum at the smallest value between log(G) and log(N) because, as a measure of departure 

from evenness, it cannot be larger than log(N), and, as a measure of departure from 

representativeness, it cannot be larger than log(G). Given that in most empirical applications 

log(G) < log(N), normalizing M in this weak sense is simply equivalent to computing the 

logarithm in base G. The resulting measure can be interpreted as the proportion of maximum 

deviation from representativeness. However, this exercise is not very useful for two reasons. 

Firstly, the most robust feature of the index, namely the ranking it induces, is still the same and 

captures both departures from representativeness and evenness. Secondly, although the resulting 

index takes values in the unit interval it does not satisfy NOR.  

 

VII. CONCLUSIONS 

This paper adopts the methodological criterion that, as in the income inequality literature, 

one way to select an adequate segregation measure is to study which basic and subsidiary but 

useful properties different indices satisfy. This is important because, as one of the leading 

advocates of this approach indicates, “If this search is not undertaken, there is a tendency to 

continue using those measures that have been popular in the past. The index is then chosen by 

default, or historical accident, rather than by any assessment of its merits.” (Shorrocks, 1988, p. 

433).
20

 We have discussed three types of subsidiary properties as they apply to three entropy-

based segregation indices, M, H, and 
*

.H   

                                                 
20

 Grusky and Charles (1998, p. 497) complain that this situation has indeed been prevalent in the history of 

research on occupational segregation by gender: “For all its faddishness, the concept of path dependency proves 

useful in understanding the history of sex segregation research, and not merely because the index of dissimilarity 

(hereafter, D) has shaped and defined the methodology of segregation analysis over the last 25 years. It is perhaps 

more important that D has been so dominant during this period that it undermined all independent conceptual 

development. Indeed, segregation scholars have effectively assumed that sex segregation is simply whatever D 

measures.” 
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First, it is often convenient to have segregation measures with the subsidiary property of 

additive decomposability. In a decomposition context, consider the notion of “contribution to 

overall segregation by a subgroup k, or by all subgroups together in a certain partition”, or 

consider the question of “how much segregation can be attributed to a given discrete variable”. 

As in the income inequality or the economic poverty literature, it is not always possible that all 

intuitive interpretations of these questions coincide under a certain decomposability property. 

For the first time in the literature, in this paper it has been shown that these questions receive 

the more unambiguous answers that are possible in a segregation context under the 

decomposability properties D1 and D2 that are only satisfied by the M index. The H and the 

*

H  indices satisfy some weaker decomposition properties. However, numerical examples and 

actual data have been used to establish that the dependence of the weights in these 

decompositions on both demographic information about the marginal distributions and school 

and racial entropies pose serious problems of interpretation, specially in the decomposition of 

the H index for partitions of groups into supergroups, and the decomposition of the 
*

H index 

for partitions of schools into clusters. 

Second, the invariance properties that require a segregation measure to be independent 

from changes in the relative importance of demographic groups or organizational units have 

also greatly concerned many authors in the segregation field. The M index is not invariant in 

this sense but changes in overall segregation according to the M index can be decomposed in two 

complementary ways to isolate terms that capture changes in net segregation independent of 

variations in the marginal distributions of schools and racial groups. No such decompositions 

are available to the H and the 
*

H  indices. When such demographic changes are important, as it 



42 

 
42 

has been shown to be the case in an example and when assessing the change in school 

segregation in the U.S. during 1989-2005, this is a serious limitation. 

Finally, many authors have insisted on the convenience of a third subsidiary property, 

namely, normalization. This can be easily achieved in our case by dividing the M index into the 

appropriate population entropy. If the racial entropy is chosen, then the H index is obtained. 

Similarly, if the entropy of the schools is chosen, then the 
*

H index is obtained. However, the 

cost of either normalization is very high indeed. On one hand, at a conceptual or intuitive level, 

it can be argued that neither the H nor the 
*

H  index captures well changes in inter-racial or 

inter-group exposure. On the other hand, all normalized indices, including the H and the 
*

H  

indices, violate the strong decomposability properties D1 and D2 with the consequences already 

analyzed.  

In conclusion, applied researchers have available three segregation indices based on the 

entropy notion first advocated by Theil and his co-author Finizza: the M index on one hand, 

and the H and 
*

H  indices on the other hand. However, the advantages of the M index are 

inescapable. In the first place, Frankel and Volij (2009a) have formally characterized the ranking 

induced by the M index in terms of eight ordinal axioms –a result that allows us to know 

exactly which value judgments are invoked when using this ranking rather than the ones 

induced by remaining entropy-based indices for which no such characterization result is 

available.
21

 But beyond this convenient situation, one selects which index to use in practice 

                                                 
21

 Very few segregation indices have been similarly characterized. In the two groups case, Chakravarty and Silber 

(1992) characterize an index of absolute segregation, while Chakravarty and Silber (2007) axiomatically derive a 

class of numerical indices of relative segregation that parallel the multidimensional Atkinson inequality indices. 

Two members of that class are monotonically related to the square root index, independently characterized by 

Hutchens (2004), and the M index. In the multigroup case, Frankel and Volij (2009a) provide an ordinal 

characterization of two families of Atkinson indices. 
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taking also into account its cardinal properties. In this respect, this paper has shown that when 

decomposability properties are desired in the empirical work there is much to be gained by 

focusing exclusively on the un-normalized M index. When, in addition, invariance properties are 

also thought to be useful, it has been seen that applied researchers would do better using the M 

index and its invariant decompositions rather than using either H or 
*

H . Finally, the 

significance of the segregation differences and levels can only be studied under alternative 

hypothesis if the measure is explicitly embedded in a statistical framework. Researchers with these 

considerations in mind can exploit the statistical properties established in Mora and Ruiz-Castillo 

(2009b) for the M index. No comparanle statistical framework has been yet provided for the H 

and H* indices. 
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Table 1. School Enrolment, Ethnic Mix, Entropies and School Segregation in the U.S., 1989:2005 

 No. of students (millions)  Racial Shares (%) 

 1989 2005 Change (%)  1989 2005 Change  

Minorities 8.61 12.24 42.10  34.78 48.05 13.27 

      Native 

American 0.17 0.23 33.77  0.68 0.89 0.20 

      Asian 1.03 1.40 36.11  4.15 5.49 1.34 

      Black 3.99 4.53 13.70  16.10 17.80 1.70 

      Hispanic 3.43 6.08 77.33  13.85 23.87 10.02 

White 16.14 13.23 -18.06  65.22 51.95 -13.27 

Total 24.76 25.47 2.87  100 100 0 

 

 

Entropies and Segregation Indexes 

 

g
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M H H* 

1989 101.27 1040.25 57.35 996.32 43.92 43.37 4.22 

2005 119.07 1035.72 70.17 986.82 48.90 41.07 4.72 

Change  17.80 -4.53 12.82 -9.50 4.98 -2.30 0.50 

        

Notes: Ethnic shares are the percentages of students from every race/ethnic group. The terms Native American, Asian, 

Black, and White refer to non-Hispanic members of these racial groups. Asian includes Native Hawaiians and Pacific 

Islanders; Native American includes American Indians and Alaska Natives (Innuit or Aleut). The term Hispanic is an 

ethnic rather than a racial category since Hispanic persons may belong to any race. Minorities include all categories except 

White. 

 

 
 

 

 

 


