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1 Introduction1

By providing a framework for analyzing contests with endogenous timing, an endoge-2

nously determined prize and a general contest success function (CSF) the present3

paper strives to merge two strands of literature. The first group of papers focusses4

on the distinction between Cournot-Nash equilibria (NE) and Stackelberg equilibria5

in contest models with an exogenously fixed prize. The second group of papers is6

broadly concerned with the impact of an endogenously determined prize on the NE7

of a contest.8

Strategic behavior in a two-player contest over a prize of fixed and common value9

was first explored by Dixit (1987), who uses a logit as well as a probit form of the10

CSF.1 He finds that in a symmetric two-player contest there is no local incentive11

to precommit effort away from the Cournot-Nash level. Moreover, he demonstrates12

that if two unevenly matched players compete in a sequential manner, it is the13

favorite (underdog) who has an incentive to overcommit (undercommit) effort com-14

pared to the NE.2 Two decisive factors are responsible for this finding. First, the15

underdog (favorite) regards efforts as strategic substitutes (complements), i.e., the16

underdog’s best response function is downward sloping in the NE of the game while17

that of the favorite is upward sloping.3 Second, efforts exhibit negative externalities,18

i.e., the payoff of each player is a monotonically decreasing function of the competi-19

tor’s effort.4 An important implication of this finding is that sequential play may20

increase or decrease social costs (compared to the NE) contingent on the leader’s21

win probability in the NE.22

In seminal contributions Baik and Shogren (1992) and Leininger (1993) indepen-23

dently extend the Dixit-framework by introducing a preplay stage in which the two24

players determine the order of their moves prior to the actual choice of effort. They25

1The logit form of the CSF expresses the probability of winning as a function of the relative effort
of players (see Loury (1979) and Tullock (1980)). The probit form CSF is used when players
experience some noise components regarding their effective effort (see Lazear and Rosen (1981)
and Nalebuff and Stiglitz (1983)).

2Dixit (1987) defined the favorite (underdog) as the one player whose probability of winning is
greater (smaller) than one-half at the NE. This definition is largely shared by subsequent authors,
as for example Nti (1999), Yildirim (2005), or Morgan and Várdy (2007). Following these authors
we adopt Dixit’s definitions.

3For the case of an oligopoly, the issue of strategic complementarity and substitutability has first
been examined by Bulow et al. (1985).

4The issue of positive vs. negative externalities is imminently important for the analysis of the
leader’s behavior in a Stackelberg game. See, for instance, Amir (1995) and Eaton (2004).
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show that in the unique SPE of the extended game the favorite (underdog) will never1

(always) move first. Hence, players’ voluntary choice of timing leads unambiguously2

to a sequential move game which contradicts the rational explanation of a contest3

as a simultaneous move game as originated by Tullock (1980). Moreover, because of4

the particular order of moves, the unique SPE Pareto-dominates any other sequence5

of moves.6

A limitation of the previous analysis is the fact that it does not address the conse-7

quences of an endogenous prize in a contest, a fact which has attracted increasing8

attention over the last two decades. Basically, there are two ways of endogenizing9

the value of a prize in a contest. Either (1) the prize itself is a control variable of10

the players or (2) the players’ effort affects the value of the prize.511

An example for the first approach is Konrad (2002), where subsequently to the real-12

ization of a project, an incumbent decides about his investment in a project as well13

as about his effort in a contest in which he has to defend his project returns against14

a challenger. Epstein and Nitzan (2004) analyze in a political competition game the15

endogenous formation of policies prior to a lobbying contest.616

As opposed to this, we provide a framework which uses the second approach, i.e., a17

framework in which the effort exerted by a player affects the distribution as well as18

the value of the prize. Depending on whether the direct costs of effort are strictly19

positive or zero, we distinguish between general and partial equilibrium models, or20

synonymously, between conflict models and rent-seeking models.7 A Cournot-Nash21

type example of a conflict model is Hirshleifer (1991a), where, in a state-of-nature,22

two players are endowed with an inalienable resource which can be used as an in-23

put in a valuable prize (production) or for appropriation. Since effective property24

rights are absent, the contestants face a trade-off between production and appro-25

priation. He finds that in the NE the richer player, defined with respect to the26

value of the initial resource, loses his advantage over the poorer player due to the27

5We do not address the issue of artificially created contest, where a contest designer selects the
value of the prize awarded to fulfill a specific goal. See for example Moldovanu and Sela (2001),
and Che and Gale (2003).

6See also Leidy (1994), who argues that a monopolist whose right is contested in a political market
will spend lobbying effort and lower his price to defuse reformist opposition, and Hoffmann (2010),
who shows in a two-player conflict model that the anticipation of potential appropriation forces
players to engage in trade, since this mutually reduces the gains from appropriation.

7Excellent surveys are provided by Corchón (2007), Garfinkel and Skaperdas (2007), and Konrad
(2009).
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fact that each player uses his comparative advantage. In a comparable framework1

Skaperdas (1992) finds that contingent on the properties of the CSF, cooperation2

is not incommensurate with the lack of exogenously enforced property rights in a3

one-shot contest. In a different conflict model Beviá and Corchón (2010) show that4

cooperation can be achieved by compensating the poorer player in order to avoid5

open conflict.86

An example of a rent-seeking model with an endogenous prize is Baye et al. (2005),7

who uses an all-pay auction framework in order to compare different litigation sys-8

tems. Here, different legal systems are based on different fee-shifting rules, which9

determine the value of the net-prize of the contest winner and loser contingent on10

their expenditures on legal representation. Another example is Shaffer (2006) who11

discusses positive and negative externalities of effort on the value of the prize. An12

example for the latter are territorial disputes, an example for the former are labor13

tournaments.914

The question we pose is whether the findings of Baik and Shogren (1992) and15

Leininger (1993) are generalizable beyond fixed prizes. Therefore, in order to unite16

contests with endogenous timing and with an endogenous prize, we provide a frame-17

work of a two-player contest under complete information, given a general production18

technology of the prize, and a general CSF. The extended game consists of a contest19

subgame and a preplay stage in which players decide whether to exert effort as soon20

as or as late as possible. Subsequently, players choose effort in the contest subgame21

according to their previous decision. Thus, the timing game matches the extended22

game with observable delay by Hamilton and Slutsky (1990) frequently used in games23

of endogenous timing.10 No matter when exerted, the players’ effort influences not24

only the win probability of both players but also the value of the prize. We will25

assume throughout the analysis that effort has a negative impact on the value of26

8See also Anbarci et al. (2002), who compares various bargaining solutions. Here, bargaining takes
place in the shadow of conflict, i.e., players have to make irreversible outlays before the bargain
procedure. These investments not only alter a player’s disagreement payoff but also the output
subject to bargain. Dynamic conflict games are provided by Hirshleifer (1995), Grossman and
Kim (1995), Hafer (2006), and Gonzales and Neary (2008).

9Alexeev and Leitzel (1996) and Chung (1996) are early contributions to this topic. The former
presents a rent-seeking model of hostile take-overs of public companies. Here, anti-takeover strate-
gies, such as the poison pill, diminish the target’s stock (the prize). Chung (1996) shows that
promotional effort increases the market share of a firm as well as the size of the whole market.
Thus, effort-spending does have a positive externality on the combatant.

10See for example Amir and Grilo (1999), Normann (2002), Amir and Stepanova (2006), and Kempf
and Rota-Graziosi (2010a).
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the prize and allow the direct costs of effort to be non-negative. Based on these1

assumptions we are able to provide solutions for rent-seeking and conflict games.2

We examine how the endogeneity of the prize will influence the players’ timing de-3

cision. In particular, we provide a taxonomy of endogenous timing based on the4

properties of the players’ best response functions as well as on the characteristics5

of the prize-production technology. Hence, in a methodological sense, the paper is6

close to Kempf and Rota-Graziosi (2010b) who develop an endogenous timing game7

in which two countries provide public goods with spillovers. Here, a taxonomy is8

proposed depending on the sign of spillovers among countries and the nature of the9

strategic interaction between various public goods.10

It is found, in line with Baik and Shogren (1992) and Leininger (1993), that a unique11

SPE of the extended game is Pareto-dominated by no other sequential or simulta-12

neous play payoff; and that, if sequential play emerges in equilibrium, the leader13

commits less effort than in the NE. However, unlike the aforementioned literature,14

the present paper finds the following. (1) In the SPE of the extended game, players15

may decide to choose effort simultaneously, which partly reinforces the argument16

put forth by Tullock (1980) regarding the rationale of a contest as a simultaneous17

move game. (2) The SPE of the extended game does not need to be unique. In18

particular, there is no unique SPE with sequential moves if the direct costs of effort19

are zero. Hence, in a general equilibrium setting it is impossible to replicate the20

findings of Baik and Shogren (1992) and Leininger (1993). (3) Finally, we prove21

that in a symmetric game Cournot-Nash and Stackelberg equilibria typically do not22

coincide, i.e., there are local commitment incentives for the players. Again, this23

finding is an artefact of the endogenous prize assumption, since, as has been shown24

by Dixit (1987), local commitment incentives do not exist in a symmetric fixed-prize25

contest framework.26

The underlying reason for the differences in the strategic incentives in our model27

compared to the fixed-prize-framework is that in the latter costs of effort are ex-28

clusively private costs, i.e., apart from the CSF, there is no additional negative29

externality stemming from the use of effort. Thus, the marginal payoff of a player30

does not depend on the marginal costs of his competitor. On the contrary, costs of31

effort in the present model are at least partially common costs, meaning that they32

have to be borne by both players. These additional negative externalities arise as a33
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result of the endogenous prize assumption and may represent the opportunity costs1

of effort measured in terms of foregone production possibilities in a conflict frame-2

work. Furthermore, in a rent-seeking framework, they may represent the negative3

responsiveness of the prize at hand to the effort exerted. Accordingly, common costs4

reshape the strategic incentives in the NE, compared to the private cost scenario.5

Before introducing our model, it should certainly be emphasized that we are not6

the first to undertake the program of generalizing the findings of Baik and Shogren7

(1992) and Leininger (1993). However, almost all papers make the assumption of8

an exogenous prize. For example Yildirim (2005) prescinds from the feature that9

each player can only move once. Endogenous timing in contests with asymmetric10

information and a lottery CSF is studied by Fu (2006). Konrad and Leininger (2007)11

study endogenous sequencing in a n-player all-pay contest with complete informa-12

tion. Finally Kolmar (2008) analyzes the emergence of perfectly secure property13

rights in a stylized two-player conflict model. Although, as in the present paper,14

the prize is allowed to be endogenous, its value is not contingent on the players’15

efforts. Moreover, the paper does not address the question of endogenous timing in16

a conflict framework and does not provide a taxonomy of endogenous leadership for17

the case of a general CSF and a general production technology.18

The paper proceeds as follows. Section 2 presents the basic model and explores the19

nature of strategic substitutes vs. complements in our setting and its influence on20

the players’ first-mover and second-mover advantages and incentives. Furthermore,21

it describes the equilibrium concepts used in the paper. Section 3 provides the equi-22

libria in the full game and the taxonomy of endogenous leadership; we conclude in23

section 4.24

2 The model25

Consider a situation in which each of two players exerts effort xi ∈ R
+ in order to win26

a prize of common value, with i = 1, 2. The prize is allowed to be endogenous, i.e.,27

its value is contingent on the vector x = (x1, x2). The prize-production technology28

V (x) ∈ R
++ has the following properties.1129

Assumption 1 (Prize-production technology)30

11The subscript i (j) denotes the partial derivative with respect to xi (xj).
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For x ≥ 0 we assume that1

Vi (x) ≡
∂V (x)

∂xi

≤ 0, (1a)2

3

Vii (x) ≡
∂2V (x)

∂x2
i

≤ 0. (1b)4

Assumptions (1a) states that an increase in effort has a non-increasing effect on5

the value of the prize, assumption (1b) that if the effect is negative, it does not6

decrease in xi. Note that the marginal productivity with respect to xi might differ7

for the two players, i.e., V1 (x) T V2 (x). It is also worth mentioning that we allow8

for q−substitutes and q−complements, i.e., we do not restrict the sign of the cross9

partial derivative of the prize-production technology
(
V12 (x) ≡ ∂2V (x)

∂x1∂x2

)
, which car-10

ries important information about the complementarity and substitutability between11

players’ effort.12 However, we assume that whatever the sign of V12(x), it remains12

constant for all x > 0.13

We now introduce some examples.14

Example 1 (A conflict framework)15

For example in Hirshleifer (1991a) each of two players possesses Ri units of an in-16

alienable primary resource which can be used to produce one-to-one two kinds of in-17

puts, xi and yi, where the latter will be used in the joint production of a single con-18

sumption good representing the prize while the former will be used as an input in the19

appropriative competition. Suppose that R = R1 = R2

κ
. Implementing the individual20

budget-constraint (Ri = xi + yi) and assuming a CES-type of production function, we get21

V (x) =
(
α(R − x1)

ρ + (1− α)(κR − x2)
ρ
) 1

ρ , with R,κ ∈ R
++, 0 6= ρ ≤ 1, and α ∈ (0, 1).22

For ρ = 1 this leads to V12(x) = 0, while ρ → 0 leads to V12(x) > 0 for xi < Ri.23

Next, we provide an example in a rent-seeking framework.24

Example 2 (A rent-seeking framework)25

Shaffer (2006) provides a model of a two-player destructive contest, where the effort exerted26

reduces the value of the prize. If we assume that the value of the basic prize is 1, the prize-27

production technology may be given by V (x) = 1− x1 x2, with V12(x) < 0.28

12The terms q−substitutes and q−complements have been suggested by Hicks (1956, p. 156).
In the contest literature several specifications have been proposed with respect to the prize:
Dixit (1987), Nti (1999) and Grossman (2001) consider exogenous prizes (V (x) = K), Shaffer
(2006) considers an endogenous prize, with V12(x) = 0, whereas Skaperdas (1992) assumes
q−complements (V12 (x) > 0). Hirshleifer (1991a,b) suggests a CES-production function, and

consequently, assumes V12(x) ≥ 0. The most general form, i.e., V12 (x) T 0, can be found in

Neary (1997a) and Bös (2004).
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Next, we turn to the CSF, pi : xi × xj → [0, 1], which determines for any given1

value of the vector x player i’s probability of winning the prize.13 As a notational2

simplification we introduce p(x) as the win probability of player 1 and 1 − p(x) as3

player 2’s win probability. The function p(x) exhibits the following properties:4

Assumption 2 (Contest success function)5

For x > 0 we assume that6

p1 (x) ≡
∂p (x)

∂x1

> 0 and p2 (x) ≡
∂p (x)

∂x2

< 0, (2a)7

8

p11 (x) ≡
∂2p (x)

∂x2
1

< 0 and p22 (x) ≡
∂2p (x)

∂x2
2

> 0, (2b)9

10
p12 (x) (1− p (x)) p (x)− p2 (x) p1 (x) (1− 2p (x)) = 0. (2c)11

Assumptions (2a) and (2b) show that each player’s win probability is an increasing12

(decreasing) and concave (convex) function of his own (his competitor’s) effort.13

Assumption (2c) is a technical one which, inter alia, allows us to simplify the analysis14

for the proof of the uniqueness of the NE.1415

The payoff function of player 1 and 2 are given by16

Π1 (x) = p(x) V (x)− C1(x1), (4.1)17

Π2 (x) = (1− p(x))V (x)− C2(x2), (4.2)18

13To avoid repetition, we use i, j = 1, 2 and i 6= j when it is obvious.
14It is similar to assumption (3) in (Skaperdas, 1992, p. 725). Assumption (2c) is fulfilled by any
logit form CSF. Assumption (2) as a whole is fulfilled, for example, by the following CSF

p(x) =
f1(x1) + α

f1(x1) + 2α+ f2(x2)
, (3)

as long as each player’s impact function f : R
+ → R

+ is a twice differentiable, increasing and
concave function and α > 0. See Amegashie (2006) and Rai and Sarin (2009) for the CSF in
(3) with fi(xi) = xi and Corchón and Dahm (2010) for fi(xi) = qi x

r
i , with qi, r > 0. This

particular form of the CSF avoids an existence problem of the logit form CSF at x = 0 if
fi(0) = 0, and which holds in particular for the Tullock CSF (where fi(xi) = xr

i ). A different
approach is to assume that p(0) = 1

2 in two-player contests (see Yildirim (2005) and Morgan and
Várdy (2007) for the general logit-form, Münster (2006) and Garfinkel and Skaperdas (2007) for
fi(xi) = f(xi), and finally Nti (1999) and Beviá and Corchón (2010) for fi(xi) = xr

i ). This,
however, creates a discontinuity at x = 0, which generates technical problems regarding the
existence of an equilibrium. Note that the general logit-form CSF can be obtained as the limit
of (3) as α → 0 (see Myerson and Wärneryd (2006) for a similar argument regarding the Tullock
CSF).

8



with C i
i(xi) ≥ 0, and C i

ii(xi) ≥ 0. Each player maximizes his expected payoff which1

equals the prize that goes to the sole winner, weighted by the probability that he wins2

the contest minus the direct effort cost. These effort costs are allowed to be zero.153

We remark that the players’ objective functions have two kinds of properties. First,4

these functions exhibit plain substitutes as defined by Eaton (2004)16. Therefore,5

the cross marginal effect on the payoff function is negative, i.e., we have negative6

spillovers with respect to the effort invested:7

Π1
2(x) ≡

∂Π1(x)

∂x2

= p2(x) V (x) + p(x) V2(x) < 0, (5.1)8

Π2
1(x) ≡

∂Π2(x)

∂x1
= −p1(x)V (x) + (1− p(x))V1(x) < 0. (5.2)9

A second property concerns the players’ strategic incentives. Following Bulow et10

al. (1985), we will say that efforts are strategic substitutes (SS) for player i if his11

marginal payoff decreases in the effort of player j, and they are strategic complements12

(SC) if player i’s marginal payoff increases in player j’s effort. Moreover, in the case13

where player i’s marginal payoff is not influenced by player j’s strategy choice, we14

will say that efforts are strategically independent (SI) for player i. Due to the15

properties of the CSF, a player’s marginal payoff depends in a non-monotonic way16

on the competitor’s effort. We will thus define SS, SC and SI in the neighborhood17

of the NE.18

2.1 Efforts in the three basic games19

Next, we consider the three basic games; the Cournot-Nash game (ΓN) and the20

two Stackelberg games, depending on whether player 1 or player 2 leads (ΓS1 or21

ΓS2 , respectively). The NE of the contest subgame
(
ΓN
)
is defined by the following22

system of maximization programs23





xN
i ≡ argmax

xi

Πi(x), xN
j given,

xN
j ≡ argmax

xj

Πj(x), xN
i given.

(6)24

15For Ci
i (xi) = 0 the present model describes a conflict model, i.e., a model in which the direct costs

of effort are zero. We remark that Ci
i (xi) = 0 is only applicable if the prize is fully endogenized,

i.e., Vi(x) ≤ Vj(x) < 0. Otherwise, at least one player’s optimization problem is not well defined.
16Bulow et al. (1985) referred to this as conventional substitutes.
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The FOCs for players 1 and 2 are therefore evaluated at xN , which denotes the NE1

values
(
xN ≡

(
xN
i , x

N
j

))
.17 The FOCs for player 1 and 2 are, therefore,2

p1
(
xN
)
V
(
xN
)
+ p

(
xN
)
V1

(
xN
)
− C1

1(x
N
1 ) = 0, (7.1)3

−p2
(
xN
)
V
(
xN
)
+
(
1− p

(
xN
))

V2

(
xN
)
− C2

2(x
N
2 ) = 0. (7.2)4

We make the following assumption.5

Assumption 3 (Interior NE)6

We assume that Πi
i(0) > 0, i.e.7

p1(0)

p(0)
> −V1(0)

V (0)
+

C1
1 (0)

p(0) V (0)
, (8.1)8

−p2(0)

p(0)
> −V2(0)

V (0)
+

C2
2 (0)

p(0) V (0)
. (8.2)9

This assumption guarantees that, if a NE exists, it is an interior one.18 In order to10

guarantee that the concept of SC, SS or SI is unique for each player we introduce11

the following assumption.12

Assumption 4 (Uniqueness of the NE)13

We assume that the one-shot Cournot-Nash equilibrium is unique. In particular, we14

derive the following sufficient condition for uniqueness if Vii(x) < 0.15

1. If C i(xi) = 0 for i = 1, 2, we assume that

V11

(
xN
)
V22

(
xN
)
≥
(
V12

(
xN
))2

, (9)

2. if C i(xi) > 0 for i = 1, 2, we assume that16

(
p
(
xN
))2

V11

(
xN
)
V22

(
xN
)
≥
(
p̄
(
xN
))2 (

V12

(
xN
))2

(10)17

with p̄
(
xN
)
= max

{
p
(
xN
)
, 1− p

(
xN
)}

and p
(
xN
)
= min

{
p
(
xN
)
, 1− p

(
xN
)}

.18

17In a similar way, we will note xSi ≡
(
xL
i , x

F
j

(
xL
i

))
the levels of effort at the Stackelberg equilib-

rium in which player i leads.
18Note that, given the CSF in (3), the left hand side (LHS) of (8.1) is equal to

f ′

1
(0)

8α
>0, which

becomes arbitrarily big as α → 0. The denominators of the right-hand side (RHS) of (8.1) are
finite, so that the inequality holds as long as 0 ≤ Ci

i (0),−V1(0) < ∞. By symmetry the same
argument can be applied to (8.2).
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Now we can establish the following lemma.1

Lemma 12

Under assumptions (1), (2), (3), and (4) a unique and interior one-shot Cournot-3

Nash equilibrium
(
xN
)
exists.4

Proof. See Appendix A.1.5

6

We now turn to the issue of strategic incentives in the NE of the contest subgame.7

Applying the envelope theorem to (7), it is easy to show that8

dxj

dxi

= −
Πj

ij(x)

Πj
jj(x)

S 0 ⇔ Πj
ij(x) S 0, (11)9

for x > 0. Therefore, the sign of the slope of a player’s best response function at10

a point in the strategy space is solely determined by the sign of the cross partial11

derivative of the same player’s payoff function which - as was said earlier - may vary.12

However, uniqueness of the NE implicates that our definition of strategic interaction13

(SS, SC or SI) is unique for each player. In particular, Πi
ij(x) is given by14

Π1
12(x) =p12(x) V (x) + p1(x) V2(x) + p2(x) V1(x) + p(x) V12 (12.1)15

Π2
12(x) =− p12(x) V (x)− p2(x) V1(x)− p1(x) V2(x) + (1− p)(x) V12(x). (12.2)16

17

2.1.1 The case of a not fully endogenous prize18

We start by analyzing the rent-seeking framework where the effort of at least one19

player has no impact on the value of the prize, i.e., Vi (x) ≤ Vj (x) = 0. In this case20

the strategic incentives at the NE are21

Π1
12

(
xN
)
= −Π2

12

(
xN
)
= p12(x

N)V
(
xN
)
+ pj

(
xN
)
Vi

(
xN
)
, (13)22

so that Π1
12(x

N ) + Π2
12(x

N ) ≡ V12(x
N) = 0. Accordingly, either p12

(
xN
)
V
(
xN
)
=23

−pj
(
xN
)
Vi

(
xN
)
and both players regard efforts as SI, or the strategic incentives are24

directly opposed. Apparently, the Dixit-framework where V (x) = K is a limiting25

case of our model. More precisely, for V (x) = K equation (13) becomes Π1
12

(
xN
)
=26

−Π2
12

(
xN
)
= p12(x

N)K, so that the strategic incentives depend only on the sign27

of p12
(
xN
)
, which, interestingly, also determines the favorite and underdog of the28

11



game. The following equivalence holds for any logit type CSF:191

p
(
xN
) { >

=
<

}
1

2
⇔ p12

(
xN
) { >

=
<

}
0. (14)2

Hence, given the terminology adopted from Bulow et al. (1985), we conclude that3

for V (x) = K the favorite (underdog) regards efforts as SC (SS). Moreover, players4

regard efforts as SI if and only if p12
(
xN
)
= 0. We will use this specific correla-5

tion between win-probability and strategic incentives (ωσ-correlation) as a reference6

point in our further analysis.7

Focusing on the case where Vi(x) = 0 leads us to the question what determines8

whether a player is a favorite or an underdog ?. Two sources of asymmetries between9

players may exist. First, players may be unequal with respect to their cost function,10

in particular their marginal costs.20 Second, players’ effort may have different impact11

on the value of the CSF. As has been shown by Nitzan (1994) the relative cost12

efficiency of a player may be compensated, undercompensated or overcompensated13

by the same player’s lack in the relative impact of effort on the value of the CSF. By14

endogenizing the value of the prize we now introduce a third source of asymmetry15

between players which stems from the negative impact of a player’s effort on the16

value of the prize.17

Example 3 (A different rent-seeking framework)18

Suppose that the prize-production function is given by V (x) = 1 − θ x1, with θ ≥ 0. The19

CSF is represented by a simple logit-type CSF, p (x) = x1

x1+µx2
, with µ ∈ (0, 1). Given that20

C1
1 (x1) = γ C2

2 (x2) = γ, with γ > 1, we get Π1
12

(
xN
)
= −Π2

12

(
xN
)
=

(1−γ µ)
√

(1+γ µ)2+4µ θ

µ
,21

so that player 1 regards efforts as SC (SS) as long as µ γ < 1 (> 1). For θ = 0 the ωσ-22

correlation holds, since then Π1
12

(
xN
)
= −Π2

12

(
xN
)
= p12(x

N ), so that player 2’s relative23

cost efficiency is overcompensated (undercompensated) by player 1’s relative impact of24

effort on the CSF for µ < 1
γ
(µ > 1

γ
), so that p12

(
xN
)
> 0 (p12

(
xN
)
< 0). However,25

for θ > 0 the ωσ-correlation only holds as long as player 1’s marginal impact on the26

prize is sufficiently small, namely as long as θ <
2(1−γµ)

µ
. Indeed, an increase in θ raises27

19See Dixit (1987). For the case of a CSF described by (3), this also holds, since then

p12
(
xN
)
=

f ′
1

(
xN
1

)
f ′
2

(
xN
2

)
(
f1
(
xN
1

)
+ 2α+ f2

(
xN
2

))3
(
f1
(
xN
1

)
− f2

(
xN
2

))
.

20It is a well known fact that this is equivalent to having different valuations for the prize (see
Konrad (2009, p. 70)).
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player 1’s opportunity costs of effort, while it does not affect player 2’s. This increases1

the equilibrium effort of player 2 with respect to player 1’s effort. The strategic incentives,2

however, remain unaltered.3

2.1.2 The case of a fully endogenous prize4

Next, we turn to the case where Vi (x) ≤ Vj (x) < 0. Then, implementing the5

FOCs in each player’s cross partial derivative of the payoff function and utilizing6

assumption (2c) yields7

Π1
12

(
xN
)

= p
(
xN
)
V12

(
xN
)
+ Ω

(
xN
)
, (15.1)8

Π2
12

(
xN
)

=
(
1− p

(
xN
))

V12

(
xN
)
− Ω

(
xN
)
, (15.2)9

with10

Ω
(
xN
)
=

p1
(
xN
)
C2

2 (x
N
2 )

1− p (xN )
+

p2
(
xN
)
C1

1(x
N
1 )

p (xN )
.11

The particular form of Πi
ij(x

N) stems from the fact that the absolute value of the12

first three terms on the RHS of (12) are equal to |Ω(xN )| at xN , which is an artefact13

of assumption (2c). Eq. (15) state that the sum of the cross partial derivative14

of each player’s payoff function equals the cross partial derivative of the prize-15

production function, i.e., Π1
12(x

N ) + Π2
12(x

N ) ≡ V12(x
N). Since V12(x) T 0, we16

will now distinguish between the following cases: First, there is a group of cases17

in which the players’ strategic incentives are aligned. Here, we find that we either18

have a game of SC
(
Πi

12

(
xN
)
≥ Πj

12

(
xN
)
> 0
)
, which is only consistent with q-19

complements (V12 (x) > 0), or a game of SS
(
Πi

12

(
xN
)
≤ Πj

12

(
xN
)
< 0
)
, which is20

only consistent with q-substitutes (V12 (x) < 0), or efforts are SI for both players21
(
Πi

12

(
xN
)
= Πj

12

(
xN
)
= 0
)
, which is only consistent with V12 (x) = 0.21 Note that22

Ω
(
xN
)
= 0 if C i

i(xi) = 0, i.e., in a conflict model the strategic incentives of both23

players are always aligned and depend solely on V12(x). Hence, given a symmetric24

game and V12 (x) 6= 0, there are local commitment incentives, which, in a fixed-prize25

framework, cannot emerge, as has been shown by (Dixit, 1987, p. 893).26

Example 1 (A conflict framework - continued)27

21Games of SC can be found, for example, in Hirshleifer (1991a,b) for s > 1, and in Skaperdas
(1992), Neary (1997b), and Skaperdas and Syropoulos (1997). Players regard efforts as SI in
Hirshleifer (1991a,b) for s = 1, in Fabella (1996), Garfinkel and Skaperdas (2000), Shaffer (2006),
and Beviá and Corchón (2010). Games of SS can be found in Neary (1997a) and Bös (2004).
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Let us assume that both players have identical initial endowments (κ = 1), α = 1
2 , and that1

we have a Tullock CSF, with p (x) =
q xr1

q xr1 + xr2
, q > 0 and r ∈ (0, 1]. In the symmetric NE2

(q = 1), we have the following: In both cases (ρ → 0 and ρ = 1) we get xN1 = xN2 = r R
1+r

.3

This leads to Π1
12

(
xN
)
= Π2

12

(
xN
)
= 0 if ρ = 1, so that both players regard efforts as4

SI, i.e., there are no local commitment incentives for both players. The reason for this5

is that in a conflict game the net effect of an increase of player j’s effort on player i’s6

marginal payoff is contingent only on the value of V12(x), since Ω
(
xN
)
= 0. Hence, if an7

increase of xj leaves the (negative) marginal impact of xi on the prize (Vi(x)) unaffected,8

no player has an incentive to commit to a higher of lower level of effort. Note that the9

ω σ-correlation holds for q = 1, since p(xN ) = 1
2 . Because Ω

(
xN
)
= 0 players still regard10

efforts as SI if q 6= 1. However, the win probability reacts sensitively to changes of q away11

from unity. Hence, p12(x
N ) 6= 0 if q 6= 1, and the ωσ-correlation does not hold.12

If ρ → 0, then Π1
12

(
xN
)
= Π2

12

(
xN
)
= 1+r

8R > 0, so that both players regard efforts as SC.13

By increasing his effort, player j decreases the (negative) marginal impact of xi on the14

prize due to V12 (x) > 0. Or, to put it differently, player j decreases the opportunity costs15

of effort for player i. Again, p(xN ) = 1
2 for q = 1, and therefore the ωσ-correlation never16

holds if ρ → 0.17

In the second group of cases the strategic incentives are not aligned. More precisely,18

we may find that Πi
ij

(
xN
)
= 0 < Πj

ij

(
xN
)
, which is only consistent with V12(x) > 0,19

or that Πi
ij

(
xN
)
= 0 > Πj

ij

(
xN
)
, which is only consistent with V12(x) < 0. Finally,20

it may be that
(
Πi

ij

(
xN
)
< 0 < Πj

ij

(
xN
))
, which is consistent with V12 (x) T 0.2221

As already noted, in conflict frameworks strategic incentives are always aligned.22

In a rent-seeking framework, however, the strategic incentives depend on the value23

of V12

(
xN
)
as well as on the value of Ω

(
xN
)
. It is thus possible, that strategic24

incentives alter within a framework if one changes, for example, the impact of a25

player’s effort on the value of the CSF.26

Example 2 (A rent-seeking framework - continued)27

Let us assume that the CSF is of the logit type, with f1(x1) = λx1 and f2(x2) = x2. In28

the symmetric case (λ = 1) we have a game of SS, since Π1
12

(
xN
)
= Π2

12

(
xN
)
= −1

2 .29

Thus, if λ = 1, an increase in player i’s effort increases the (negative) marginal impact of30

player j’s effort on V (x), or, synonymously, increases the opportunity costs of effort for31

player j. Due to the continuity of the functions involved the direction of strategic incentives32

22This case must emerge if players are asymmetric rent-seeking games where V12(x) = 0. If, for
example, one adds an asymmetry, either regarding the impact function, or the cost function in
Fabella (1996) or Shaffer (2006), then the strategic incentives are directly opposed.
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remain unaltered for sufficiently small changes in λ. The sign of p12
(
xN
)
, however, reacts1

sensitively to small changes of λ away from unity. Accordingly, for λ 6= 1, p12
(
xN
)
6= 02

and favorite and underdog regard efforts as SS, so that the ωσ-correlation does not hold.3

If player 2 is sufficiently relatively effective (for example if λ = 3
4), then Π2

12

(
xN
)
≈4

1.04686 > 0 > Π1
12

(
xN
)
≈ −2.04686. Consequently, player 1 (2) regards efforts as SS5

(SC). Since now f1 (·) < f2 (·) player 2 needs less effort compared to the symmetric case6

in order to increase his own win probability by the same amount. The marginal impact of7

x2 on the prize, however, remains unaltered. Thus, now a marginal increase of player 1’s8

effort leads to an increase of player 2’s effort due to the lower opportunity costs, compared9

with the symmetric case. Hence, for λ = 3
4 , p12

(
xN
)
< 0, and the ωσ-correlation holds.10

It is worth noting that due to continuity a level of relative efficiency exists so that player11

2 regards efforts as SI (Π2
12

(
xN
)
= 0). This is the case for λ ≈ 0.78922.12

Next, we turn to the sequential move games.23 The subgame perfect equilibrium13

of the contest subgame (the Stackelberg equilibrium) is determined by applying14

backward induction. Thus, in the game where player i leads (ΓSi), we first focus15

on the follower’s (F ) maximization program which is xF
j (xi) ≡ argmax

xj

Πj(x). This16

yields17

Πj
j

(
xF
j (xi), xi

)
= 0. (16)18

We assume that the second order condition of the leader’s maximization program19

holds. In particular, we assume that20

Assumption 5
d2Πi

(
xi, x

F
j (xi)

)

dx2
i

< 0.

This assumption is crucial since it assures the existence and uniqueness of the21

Stackelberg equilibrium where the latter property guarantees that the sign of the22

slope of a player’s best response function at the NE is equal to the sign of the slope23

of the same player’s best response function once he becomes a Stackelberg follower24

in a sequential move game.25

23We are aware of the fact that given assumptions (1) and (2) we cannot rule out corner solutions
for the sequential move games. This topic has been analyzed, for example, by Grossman and Kim
(1995), Kolmar (2008), and Hoffmann (2010). However, we will assume only interior solutions
for the sequential move games.
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2.2 Effort ranking1

Given the optimizing behavior in the basic games, we are now in the position to2

establish the rankings of the levels of effort in the different equilibria.3

Lemma 24

Under assumptions (1), (2), (4), and (5) the level of effort for the Nash and5

Stackelberg games are such that if6

1. Πj
ij

(
xN
)
> 0 ⇒ xN

i > xL
i ∧ xN

j > xF
j ,7

2. Πj
ij

(
xN
)
< 0 ⇒ xN

i < xL
i ∧ xN

j > xF
j ,8

3. Πj
ij

(
xN
)
= 0 ⇒ xN

i = xL
i ∧ xN

j = xF
j .9

Proof. See Appendix (A.2).10

Our second lemma compares the effort exerted by the Stackelberg leader and follower11

with the one exerted in the NE of the contest subgame. If efforts are SC (SS) for12

player j, the Stackelberg-leader i reduces (increases) his effort compared to the NE-13

level in order to decrease the follower’s effort. Because of that we always find that14

xF
j < xN

j in these cases. Finally, if efforts are SI for player j, the leader (player i)15

has no local commitment incentives and provides the same level of effort as in the16

NE. Consequently, the follower’s effort also equals his NE-level (xF
j = xN

j ).17

2.3 First-mover/Second-mover advantage and incentive18

Given these rankings, we can now compare the payoffs in the three basic games (ΓN ,19

ΓS1 and ΓS2). This will give us the opportunity of detecting potential first-mover20

(second-mover) advantages or incentives, which will be defined in accordance with21

Gal-Or (1985) and van Damme and Hurkens (1996), respectively. First, we compare22

the payoffs of player i in the SPE of the two different sequential move subgames.23

Definition 1 (First-mover (second-mover) advantage)

Player i has a

{
first-mover advantage

second-mover advantage

}
⇔ Πi

(
xSi
)
{

>

<

}
Πi
(
xSj
)
.

Next, we compare the payoffs in the NE to the one obtained in the Stackelberg24

equilibrium.25

16



Definition 2 (First-mover (second-mover) incentive)

Player i has a

{
first-mover incentive

second-mover incentive

}
⇔
{

Πi
(
xSi

)

Πi
(
xSj

)
}

≥ Πi
(
xN
)
.

It is worth noting that whatever the nature of strategic interactions (SC, SS or SI)1

might be, players always have a first-mover incentive, that is, they weakly prefer2

their leader payoff over their payoff in the NE
(
Πi
(
xSi

)
≥ Πi

(
xN
))
. This result3

holds for a continuous strategy spaces and follows from the definition of the leader’s4

maximization program. From lemma (2) follows the last lemma.5

Lemma 36

Under assumptions (1), (2), (4), and (5) we have:7

1. If efforts are strategic complements for player i
(
Πi

ij(x
N) > 0

)
, then player i8

has a strong form of a second-mover incentive, i.e., Πi
(
xSj
)
> Πi

(
xN
)
.9

2. If efforts are strategic substitutes for player i
(
Πi

ij(x
N ) < 0

)
, then player i10

has a first-mover advantage and no second-mover incentive, i.e., Πi
(
xSi
)
≥11

Πi
(
xN
)
> Πi

(
xSj

)
.12

3. If efforts are strategically independent for player i
(
Πi

ij(x
N ) = 0

)
, then player13

i has a weak form of a second-mover incentive, i.e., Πi
(
xSj

)
= Πi

(
xN
)
.14

4. If efforts are strategically independent for player j
(
Πj

ij(x
N) = 0

)
, then player i15

has a weak form of a first-mover incentive (Πi
(
xSi

)
= Πi

(
xN
)
). If Πj

ij(x
N ) 6=16

0 he has a strong form of a first-mover incentive (Πi
(
xSi
)
> Πi

(
xN
)
).17

Proof. see Appendix A.3.18

If efforts are SC for player i, player j reduces his level of effort at the Stackelberg19

equilibrium in which he leads, compared to the NE (see lemma (2.1)). This increases20

the payoff of player i due to the property of plain substitute and induces the second-21

mover incentive. If efforts are SS for player i, we unambiguously have xL
j > xN

j (cf.22

lemma (2.2)), and then player i prefers leading over following due to the negative23

externality of player j’s effort. If efforts are SI for player i, then xL
j = xN

j and24

xF
i = xN

i (cf. lemma (2.3)). Consequently, player i’s NE and follower-payoff, as well25

as player j’s NE and leader-payoff are equivalent. Finally, if efforts are not SI for26

17



player i, then a leader j will always deviate from is NE-level of effort, which, given1

the assumptions of the model, means he must have a strong form of first-mover2

incentive.3

An interesting point of the preceding lemma is that we establish a second-mover4

incentive or a first-mover advantage for player i depending only on the concept of5

strategic complementarity or strategic substitutability of efforts for player j at the6

NE; that is without assuming monotonicity of the best response function.7

3 Selecting a leader through a timing game8

The issue of endogenous timing is examined according to the concept proposed by9

Hamilton and Slutsky (1990) in their extended game with observable delay. This ex-10

tended game Γ̃ allows players to choose non-cooperatively and simultaneously when11

to exert effort in a preplay stage. The set of possible pure strategies of player i is12

ai ≡ {e, l}, where e ≡ early and l ≡ late. Their decision is announced by the players13

subsequently. In the consecutive basic game (Γk, with k = {N, S1, S2}) the players14

choose their effort according to their timing decision to which they are committed.2415

Thus, the basic game consists of three different constituent games: ΓN if the strat-16

egy profile a = (a1, a2) = (l, l) or a = (e, e), ΓS1 for a = (e, l), and ΓS2 for a = (l, e).17

Thus, if players decide to choose effort at different times, the player who chooses to18

move late observes the effort exerted by the player who chooses to move early and19

acts accordingly.25 It is worth noting that the order of moves does not affect the20

payoffs which are conditional only on the players’ strategies.21

The normal form representation of the preplay stage is shown in table 1. The

Player 2

e l

Player 1 e Π1
(
xN
)
,Π2

(
xN
)

Π1(xS1),Π2(xS1)

l Π1(xS2),Π2(xS2) Π1
(
xN
)
,Π2

(
xN
)

Table 1
Normal form representation of Γ̃

22

24This assumption, as has been shown by Hamilton and Slutsky (1990, p. 32) is not restrictive,
i.e., no player can gain by deviating from a chosen strategy in the preplay stage.

25Following Hamilton and Slutsky (1990) and Amir and Stepanova (2006), we restrict our attention

to the SPE of Γ̃.
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solution to this reduced form game is equivalent to characterizing the solution to1

the leadership problem. There is no leader if both players choose the same ac-2

tion; a leader emerges when they choose complementary roles. Following Amir and3

Grilo (1999), E denotes the set of SPE of Γ̃, where each element of E is a pair4

{(ai, aj),xk}. Hence, each element of E represents the equilibrium timing decision5

in the preplay stage, as well as the Nash equilibrium in the basic game. In case6

a implies a sequential choice of effort xk must be subgame perfect. We obtain the7

following proposition:8

Proposition 49

Under assumptions (1), (2), (4), and (5) we find the following:10

1. If efforts are strategic complements for both players
(
Πi

ij

(
xN
)
≥ Πj

ij

(
xN
)
> 0
)
,11

then E =
{
(e, l),xSi

}
∪
{
(l, e),xSj

}
.12

2. If efforts are strategic substitutes for both players
(
Πi

ij

(
xN
)
≤ Πj

ij

(
xN
)
< 0
)
,13

then E =
{
(e, e),xN

}
.14

3. If efforts are strategically independent for both players
(
Πi

ij

(
xN
)
= Πj

ij

(
xN
)
= 0
)
,15

then E =
{
(e, l),xSi

}
∪
{
(l, e),xSj

}
∪
{
(e, e),xN

}
∪
{
(l, l),xN

}
, with xN =16

xSi = xSj .17

4. If efforts are strategic substitutes for player i and strategic complements for18

player j
(
Πi

ij

(
xN
)
< 0 < Πj

ij

(
xN
))
, then E =

{
(e, l),xSi

}
.19

5. If efforts are strategically independent for player i and strategic complements20

for player j
(
Πi

ij

(
xN
)
= 0 < Πj

ij

(
xN
))
, then E =

{
(e, l),xSi

}
∪
{
(l, e),xSj

}
.21

6. If efforts are strategically independent for player i and strategic substitutes for22

player j
(
Πi

ij

(
xN
)
= 0 > Πj

ij

(
xN
))
, then E =

{
(e, e),xN

}
∪
{
(l, e),xSj

}
, with23

xN = xSj .24

From Proposition (4) we are able to determine under which conditions a leader25

emerges at the SPE(s). Its identity does not depend on his probability of winning at26

the NE of the static game but on the nature of strategic interactions among players.27

As shown in example 3, the favorite, in Dixit’s terminology, may lead at the SPE if28

we introduce an endogenous prize, so that the ωσ-correlation does not hold.29

In proposition (4.1) both players have a strong form of a first as well as second-mover30
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incentive in the basic game. Thus, a coordination game results in the preplay stage,1

with two pure strategy Nash equilibria, (e, l) and (l, e). To solve this issue we may2

utilize the equilibrium selection concepts of payoff dominance or risk dominance3

introduced by Harsanyi and Selten (1988).4

Example 1 (A conflict framework - continued)

Assume that α = 1
2 , R = r = 1 and κ = 2. According to proposition (4.1) we have a

game of coordination in the preplay stage, which is confirmed by the payoffs in the three

different games given by table (2). Figure (1) represents the strategy space in this case.

1 \ 2 e l

e 0.27539, 0.43628 0.28333, 0.53879

l 0.33983, 0.44325 0.27539, 0.43628

Table 2
Payoffs in the 1st example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1
Strategy space in the 1st example

The solid convex (concave) curve represents the best response function of player 1 (2), and

the dashed concave (convex) curve the iso-payoff curve of player 1 (2) in the NE of the

game. The grey surface represents the set of strategy profiles which Pareto-dominate the

NE (Pareto-superior set). Obviously, both players have a strong form of first-mover and

second-mover incentive, and the payoffs resulting from (e, l) and (l, e) cannot be ranked in

a Pareto sense. We will therefore utilize the concept of risk dominance. In our framework,

the SPE xS2 risk-dominates xS1 if the former is associated with a higher (Nash) product

of deviation losses. More formally, (e, l) ≻
risk

(l, e) ⇔ ∆ < 0, with

∆ ≡
(
Π1
(
xS2

)
−Π1

(
xN
)) (

Π2
(
xS2

)
−Π2

(
xN
))

−
(
Π1
(
xS1

)
−Π1

(
xN
)) (

Π2
(
xS1

)
−Π2

(
xN
))

.

Since ∆ ≈ −0.00036, we find that (e, l) risk-dominates (l, e).5

In proposition (4.2) both players have a first-mover advantage and no second-mover6

incentive so that both players have the dominant strategy in the timing game (e)7

which leads to a Cournot-Nash game (xN). In proposition (4.3) both players are8

indifferent between e and l, since xSi = xSj = xN . This case is represented by9

example (1) for ρ = 1. Note that this particular case may also be represented by an10
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exogenous-prize rent-seeking game, where p12(x
N) = 0. Proposition (4.4) represents1

the case which is strategically equivalent to the endogenous timing game examined2

by Baik and Shogren (1992) and Leininger (1993) if players are unevenly matched:3

Both players’ strategic incentives are directly opposed, so that player i has a domi-4

nant strategy in the preplay stage (e). Given this player j’s best response is aj = l5

and the unique SPE of Γ̃ is {(e, l),xSi}, which corresponds to the leadership of the6

underdog in a fixed prize scenario.7

In the two remaining cases (proposition (4.5) and (4.6)) efforts are SI for player i8

and are not SI for his competitor. Consequently, player i’s follower-payoff (player9

j’s leader payoff) equals his NE-payoff and player i has a first-mover advantage (see10

lemma (3.3) and (3.4)).11

Moreover, in proposition (4.5) player j regards efforts as SC, so that he has a strong12

form of a second-mover incentive (see lemma (3.1)). Accordingly, a = (e, l) as well as13

a = (l, e) are NE in the preplay stage and a game of coordination results. However,14

unlike the case in proposition (4.1), we can now use the concept of payoff dominance15

in order to select an equilibrium. In particular, (e, l) dominates (l, e) in a Pareto16

sense, as should be clear from the previous analysis.2617

Finally, in proposition (4.6) player j regards efforts as SS, so that he has no second-18

mover incentive (see lemma (3.2)) and therefore a dominant strategy in the preplay19

stage (e). Given this, player i is indifferent between all his pure strategies, since,20

as was already pointed out, he has a weak form of second-mover incentive. Conse-21

quently, a = (e, e) as well as a = (l, e) is a NE in the timing game. Since player j22

has a weak from of first-mover incentive, both SPEs yield the same payoff for both23

players and hence neither risk nor payoff dominates the other.27 Propositions (4.2),24

(4.4) and (4.6) are represented by example 2.25

Example 2 (A rent-seeking framework - continued)26

Below are the payoff matrices for λ = 1 (so that 0 > Π2
12

(
xN
)
= Π1

12

(
xN
)
), for λ ≈27

26It is worth noting that in this case (e, l) also risk dominates (l, e), since

Πi
(
xSj
)
−Πi

(
xN
)
= Πj

(
xSj
)
−Πj

(
xN
)
= 0 and

(
Πi
(
xSi
)
−Πi

(
xN
)) (

Πj
(
xSi
)
−Πj

(
xN
))

> 0.

This finding is in line with the analysis of Matsumura and Ogawa (2009).
27Here, one finds that

Πi
(
xN
)
−Πi

(
xSj
)
= Πj

(
xSj
)
−Πj

(
xN
)
= 0,

so that (e, e) ∼
risk

(l, e).
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0.78922 (and therefore Π2
12

(
xN
)

= 0 > Π1
12

(
xN
)
), and finally for λ = 3

4 (so that1

Π2
12

(
xN
)
> 0 > Π1

12

(
xN
)
). Moreover, figure (2) - (4) represent the different cases in2

the strategy space.3

1 \ 2 e l

e 0.26158, 0.26158 0.26379, 0.21422

l 0.21422, 0.26379 0.26158, 0.26158

Table 3
Payoff matrix in the 2nd example

for λ = 1

1 \ 2 e l

e 0.21078, 0.31737 0.21078, 0.31737

l 0.11846, 0.32799 0.21078, 0.31737

Table 4
Payoff matrix in the 2nd example for

λ ≈ 0.78922

1 \ 2 e l

e 0.15907, 0.38697 0.16110, 0.43759

l 0.02884, 0.42071 0.15907, 0.38697

Table 5
Payoff matrix in the 2nd example

for λ = 3
5

4
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Again, the solid curves represent the best response functions while the dashed curves rep-6

resent the iso-payoff curves of players in the NE of the game. For λ = 1 both players7

prefer their NE payoff over their follower payoff and therefore neither of the best response8

functions enters the Pareto-superior set, represented by the grey surface. The same holds9

for λ ≈ 0.78922. However, since xS1 = xN , we find that both SPEs of Γ̃ are payoff-10

equivalent. For λ = 3
4 only player 2 prefers his NE payoff over his follower payoff. Thus,11

only player 2’s best response function enters the Pareto-superior set. Moreover, player 112

undercommits effort, so that the SPE Pareto-dominates xN as well as xS2 .13

Applying proposition (4) we now provide a taxonomy of SPE in Γ̃ based on the14

properties of the prize-production technology (in particular, the sign of V12

(
xN
)
)15

as well as on the sign of the slope of players’ best response functions in the NE,16

22



V12(x
N ) > 0 V12(x

N) < 0 V12(x
N) = 0

Π1
12

(
xN
)
> 0

xS1

or

xS2

if V12(x
N ) ≥ Π1

12(x
N)

xS2 if V12(x
N) < Π1

12(x
N )

xS2 xS2

Π1
12

(
xN
)
< 0 xS1

xN if V12(x
N) < Π1

12(x
N)

xN

or

xS1

if V12(x
N) = Π1

12(x
N)

xS1 if V12(x
N ) > Π1

12(x
N)

xS1

Π1
12

(
xN
)
= 0 xS1 xS2 or xN xS1 , xS2 or xN

Table 6
A taxonomy of SPE in Γ̃

presented in table 6. For simplicity, we only display the equilibrium strategies in1

the resulting basic game.2

From proposition (4), we may deduce the following corollary.3

Corollary 54

With the exception of one case every SPE of the extended game Γ̃ is Pareto-undominated.285

More precisely, we have:6

1. If Πi
ij

(
xN
)
≥ Πj

ij

(
xN
)
> 0, both SPEs Pareto-dominate xN .7

2. If Πi
ij

(
xN
)
≤ Πj

ij

(
xN
)
< 0, the equilibria in the three basic games xN , xSi8

and xSj are not Pareto-rankable.9

3. If Πi
ij

(
xN
)
= Πj

ij

(
xN
)
= 0, the three SPEs xN , xSi and xSj are payoff-10

equivalent.11

4. If Πi
ij

(
xN
)
< 0 < Πj

ij

(
xN
)
, the SPE Pareto-dominates xN as well as xSj .12

5. If Πi
ij

(
xN
)
= 0 < Πj

ij

(
xN
)
, the SPEs of Γ̃ are Pareto-rankable. In particular,13

xSi Parteo-dominates xSj as well as xN .14

28In what follows we only concentrate on the strategies in the subgames, i.e., xk, since these
exclusively determine the payoff of each player.
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6. If Πi
ij

(
xN
)
= 0 > Πj

ij

(
xN
)
, the payoff-equivalent SPEs (xN and xSi) and the1

non-SPE (xSj) are not Pareto-rankable.2

Proof. Immediate.3

The assumptions underlying Corollaries (5.1), (5.2) and (5.4), specifically the fact4

that the three basic games have a unique equilibrium that differ from one another5

(xSi 6= xN 6= xSj ), match the assumptions made by Hamilton and Slutsky (1990).296

As a consequence, the above findings are consistent with the results of the latter,7

notably theorem V . They show that players’ voluntary choice of timing leads to a8

second-best efficient outcome, just as in the fixed-prize framework. These findings9

are based on the following facts: If we observe sequential play in the SPE, the leader10

always undercommits effort compared to the NE. If we observe simultaneous play in11

equilibrium, both players’ efforts are - ceteris paribus - lower than their Stackelberg12

leader effort.13

In corollary (5.1) both players’ best response functions enter the Pareto-superior14

set. This case is represented by example 1 (cf. figure (1)). In corollary (5.2) both15

players prefer their NE payoff over their follower payoff and therefore neither of the16

best response functions enters the Pareto-superior set (cf. figure (2) of example 2).17

That is why xN , xS1 and xS2 cannot be ranked in a Pareto sense in this case. In18

corollary (5.4) only player j prefers his NE payoff over his follower payoff (cf. figure19

(4) in example 2, with i = 1 and j = 2). Thus, only player j’s best response function20

enters the Pareto-superior set, and the unique SPE (xSi) Pareto-dominates xN as21

well as xSj .22

In the remaining cases, at least one player (player j) regards efforts as SI. Conse-23

quently, xSi = xN , which is no longer consistent with the assumptions of Hamilton24

and Slutsky (1990). Accordingly, we may find that a SPE of Γ̃ is Pareto-dominated.25

This is indeed the case for Πi
ij

(
xN
)
= 0 < Πj

ij

(
xN
)
(cf. corollary (5.5)). Here,26

xSi ≻
Pareto

xSj ∼
Pareto

xN , where xSi and xSj are both SPEs of Γ̃. In corollary (5.6)27

we find that both SPEs are payoff-equivalent and that these SPEs and the non-28

SPE are not Pareto-rankable. This case is represented by figure (3) in example 2.29

In the trivial case (cf. corollary (5.3)) all equilibria yield the same payoff, so that30

xSi ∼
Pareto

xSj ∼
Pareto

xN .31

29See footnote 1, p. 31 of Hamilton and Slutsky (1990).
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4 Conclusion1

Based on the endogenous timing game by Hamilton and Slutsky (1990), we have2

provided a framework for the analysis of endogenous leadership in contests with an3

endogenously determined prize. In a stage prior to the contest subgame, the players4

decided whether they will exert effort as soon as or as late as possible; and their de-5

cision, to which they are committed, is announced to the other player subsequently.6

In this model we have provided a taxonomy of endogenous leadership, based on the7

properties of the players’ best response functions as well as on the characteristics8

of the prize-production technology. Thus, we were able to generalize the findings9

of Baik and Shogren (1992) and Leininger (1993) regarding the behavior of the10

Stackelberg-leader. However, there are differences compared to the aforementioned11

literature. In particular, we were able to establish that the SPE of the extended12

game may be represented by a simultaneous move game, and that in a sequential13

move SPE the leader might be the favorite of the Cournot-Nash game.14

Our work can be extended in various ways:15

Regarding the previous work of Yildirim (2005) and Romano and Yildirim (2005)16

it would be interesting to establish in which way the findings of the present paper17

would be modified if one abstains from the assumption that each player is allowed18

to exert effort only once. For instance, in the case were players are evenly matched,19

Yildirim (2005) finds that the outcome of the game is equivalent to a game where20

players move simultaneously, although effort might be exerted early and late. There-21

fore, allowing the players in our framework to exert effort twice might eliminate the22

coordination issue in a game of strategic complements.23

24

Finally, in a rent-seeking framework one may allow for a prize which increases in25

the effort of the players. Previous papers dealing with this topic include Cohen et26

al. (2008) and Gershkov et al. (2009). Although the prize is assumed to depend27

in a positive manner on the effort exerted, the issue of endogenous timing has not28

yet been analyzed. Contingent on the properties of the prize-production technology,29

this might lead to a game in which the payoff of a player does not react in a mono-30

tonic manner on the effort of his competitor. Hence, one might find in the NE that31

the effort of each player has a positive effect on each player’s payoff, which would32

reshape the commitment incentives in the sequential move games.33
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1

These extensions are the subject of current research.2
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A Appendix - Proofs1

A.1 Proof of lemma 12

Here, we prove the existence and uniqueness of the Nash equilibrium.3

A.1.1 Existence of the Nash equilibrium4

Given assumptions (1) and (2), the payoff function Πi(x), described by equations (4), is continuous5
in (xi, xj). We now show that each player’s payoff function is strictly concave in his own strategy.6
The second derivative of the payoff function yields7

Π1
11 (x) = p11 (x)V (x) + 2p1 (x)V1 (x) + p (x) V11 (x)− C1

11(x1), (A.1)8

Π2
22 (x) = −p22 (x) V (x)− 2p2 (x) V2 (x) + (1− p (x))V22 (x)− C2

22(x2). (A.2)9

Assumptions (1) and (2) together with Ci
ii(xi) ≥ 0 imply that10

Π1
11 (x) < 0 and Π2

22 (x) < 0. (A.3)11

Therefore the solution to the maximization problem (cf. eq. 6) is unique. Moreover, the payoff-12
function is also continuous. We can thus conclude that best response function BRi(xj) is single-13
valued and continuous.14

15
The strategy space of player i (Xi = R

+) is convex. Next, we eliminate some strategies so that
the set of the remaining strategies is compact. Define x̄1 > 0 such that

Π1(x̄1, 0) = 0.

Thus, since Π1
2(x) < 0

Π1(x̄1, x2) > Π1(x1, x2),

for any x1 > x̄1 and for all x2 ∈ R
+. Therefore for all x1 > x̄1, x̄1 strictly dominates x1. Hence,16

after elimination of those strictly dominated strategies the strategy space of player 1 becomes17
[0, x̄1] which is a compact, convex and non-empty set. By symmetry the same argument can be18
applied to player 2.19

20
A Nash-equilibrium satisfies the following equations:21

BR1(x2) = x1, (A.4)22

BR2(x1) = x2. (A.5)23

By substituting (A.5) into (A.4), or vice versa, we see that the NE is given by a fixed point of the24
composite function BRi := BRi ◦BRj : [0, x̄i] → [0, x̄i], where the composite function BRi(·) is a25
continuous and single valued mapping of a non-empty, convex and compact set into itself. Hence,26
the existence of a fixed point directly follows from Brouwer’s Fixed Point Theorem. Finally, notice27
that the one-shot NE is interior, i.e., xN > 0. In particular, x = 0 can not be an equilibrium due28
to assumption (3). In addition, x = (xi, 0), with xi > 0 can not be an equilibrium, since player i,29
given assumption (2) can always deviate from any xi > 0 in a strictly profitable manner.30

A.1.2 Uniqueness of the Nash equilibrium31

We now prove the uniqueness of the NE if Vii(x) < 0, i.e., we prove that BRi(·) has a unique fixed
point.30 For this we will utilize the index theory approach, (see Kolstad and Mathiesen (1987) and

30Uniqueness of the NE for Vi(x) = 0 follows easily from the negative quasi-definiteness of the
Jacobian of the marginal payoffs (see Rosen (1965)).
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Vives (2001), p. 48), which, in the case of two players, requires the determinant of the Jacobian
of the marginal payoffs, evaluated at xN , to be positive, i.e.,

|J | =

∣∣∣∣∣∣∣

Π1
11

(
xN
)

Π2
12

(
xN
)

Π1
12

(
xN
)

Π2
22

(
xN
)

∣∣∣∣∣∣∣
> 0. (A.6)

From this it follows that the multiplied slope of both players’ best response functions must be
smaller than one, i.e.,

Π1
12

(
xN
)

Π1
11 (x

N )

Π2
12

(
xN
)

Π1
22 (x

N )
< 1. (A.7)

We will now split cases.1

• Case 1: Efforts are strategic complements (substitutes) for both players2
We first explore the case where efforts are strategic complements (substitutes) for both3
players, i.e., either Πi

ij

(
xN
)
≥ Πj

12

(
xN
)
> 0 or Πi

ij

(
xN
)
≤ Πj

12

(
xN
)
< 0.314

We will now distinguish between rent-seeking games (Ω(x) 6= 0) and conflict games (Ω(x) =5
0).6

a. Rent-seeking games7

For Ω(x) 6= 0 we deduce from eq. (15)8

Π1
12

(
xN
)
Π2

12

(
xN
)

=
(
Ω
(
xN
)
+ p

(
xN
)
V12

(
xN
)) (

−Ω
(
xN
)
+
(
1− p

(
xN
))

V12

(
xN
))

Implementing p̄
(
xN
)
= max

{
p
(
xN
)
, 1− p

(
xN
)}

leads to9

Π1
12

(
xN
)
Π2

12

(
xN
)

≤
(
Ω
(
xN
)
+ p̄

(
xN
)
V12

(
xN
)) (

−Ω
(
xN
)
+ p̄

(
xN
)
V12

(
xN
))

=
(
p̄
(
xN
)
V12

(
xN
))2 −

(
Ω
(
xN
))2

<
(
p̄
(
xN
)
V12

(
xN
))2

. (A.8)

Using (A.1) and (A.2), and implementing p
(
xN
)
= min

{
p
(
xN
)
, 1− p

(
xN
)}

, we
deduce

Π1
11

(
xN
)
< p

(
xN
)
V11

(
xN
)
≤ p

(
xN
)
V11

(
xN
)
< 0, (A.9)

and
Π2

22

(
xN
)
<
(
1− p

(
xN
))

V22

(
xN
)
≤ p

(
xN
)
V22

(
xN
)
< 0. (A.10)

Thus, combining eq. (A.8), (A.9) and (A.10) as well as assumption (4) yields

Π1
12

(
xN
)

Π1
11 (x

N )

Π2
12

(
xN
)

Π1
22 (x

N )
<

(
p̄
(
xN
)

p (xN )

)2 (
V12

(
xN
))2

V11 (xN )V22 (xN )
≤ 1. (A.11)

b. Conflict games10

For Ω(x) = 0 we deduce from eq. (15)11

Π1
12

(
xN
)
Π2

12

(
xN
)

= p
(
xN
) (

1− p
(
xN
)) (

V12

(
xN
))2

(A.12)

Using (A.1) and (A.2) we deduce

Π1
11

(
xN
)
< p

(
xN
)
V11

(
xN
)
< 0, (A.13)

31Since in this case sign
(
Π1

12(x)
)
= sign

(
Π2

12(x)
)
it follows that

Π1

12(xN)
Π1

11
(xN )

Π2

12(xN)
Π1

22
(xN )

> 0. Thus,

condition (A.7) is equal to the condition for local stability of the NE (see Vives (2001), p. 51).
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and
Π2

22

(
xN
)
<
(
1− p

(
xN
))

V22

(
xN
)
< 0. (A.14)

Combining eq. (A.12), (A.13) and (A.14) as well as assumption (4) yields

Π1
12

(
xN
)

Π1
11 (x

N )

Π2
12

(
xN
)

Π1
22 (x

N )
<

(
V12

(
xN
))2

V11 (xN )V22 (xN )
≤ 1. (A.15)

• Case 2: Residual case.1
Next, we turn to the residual case where Πi

ij

(
xN
)
≤ 0 ≤ Πj

ij

(
xN
)
. In this case condition2

(A.7) can easily be established. In particular,3

Π1
12

(
xN
)

Π1
11 (x

N )

Π2
12

(
xN
)

Π2
22 (x

N )
≤ 0. (A.16)4

Since5

BR′
i(x

N
i ) ≡ (BRi ◦BRj)

′(xN
1 ) = BR′

i

(
BRj(x

N
i )
)
BR′

j(x
N
i ) =

Π1
12

(
xN
)

Π1
11 (x

N )

Π2
12

(
xN
)

Π2
22 (x

N )
(A.17)6

it follows from (A.11), (A.15) and (A.16) that

BR′
i(x

N
i ) < 1 (A.18)

in each case, i.e., we found a bound for the slope of BRi(·) at xN
i . From (A.18) it follows that7

we can rule out the existence of equilibria which are limit points of other equilibria.32 That is,8
there are finitely many equilibria which are isolated. Hence, if (xN

1 , xN
2 ) is an equilibrium, then9

there is an ε = ε(xN
1 , xN

2 ) such that for all x̂i ∈ [xN
i − ε, xN

i + ε], with i = 1, 2, (x̂1, x̂2) is not an10
equilibrium. Using the above results, we can now rule out in either case the existence of a second11
equilibrium.12
Suppose that (xa

1 , x
a
2) and (xb

1, x
b
2) are two isolated equilibria. Let xa

1 < x1 < xb
1. Then starting13

from xa
1 and using the mean value theorem we have, since BR1(x

a
1) = xa

1 ,14

BR1(x1)− xa
1 = BR′

1(y)(x1 − xa
1),

for some y ∈ (xa
1 , x1). Note that, by assumption, the term in brackets on the right hand side is

unambigiously positive. Assuming that 0 < BR′
1(y) < 1 we get

BR1(x1) < x1, (A.19)

while assuming BR′
1(y) ≤ 0 leads to

BR1(x1) ≤ xa
1 . (A.20)

Starting from xb
1, we have, since BR1(x

b
1) = xb

1,15

xb
1 − BR1(x1) = BR′

1(z)(x
b
1 − x1),

for some z ∈ (x1, x
b
1). Now, the term in brackets on the right hand side is unambigiously negative.

Assuming that 0 < BR′
1(z) < 1, we get

BR1(x1) > x1, (A.21)

which contradicts (A.19) as well as (A.20). Assuming that BR′
1(z) ≤ 0 leads to

BR1(x1) ≥ xb
1, (A.22)

32See Skaperdas (1992, p. 737) for a game of SC.
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which also contradicts (A.19) and (A.20). Thus, there exists a unique NE.1
�2

A.2 Proof of lemma 2 (Comparison of the levels of effort)3

Let the function Ψi (xi) be4

Ψi (xi) = Πi
i

(
xi, x

F
j (xi)

)
+Πi

j

(
xi, x

F
j (xi)

) dxF
j (xi)

dxi

. (A.23)5

This function corresponds to the first derivative of the leader payoff function. For xL
i , we obtain the6

FOC of the leader, that is Ψi

(
xL
i

)
= 0. Since Ψ′

i (xi) < 0 we find that the Stackelberg equilibrium7
exists and is unique. Next, we split cases.8

• If Πj
ij

(
xN
)
> 0 efforts are strategic complements for the player j at the Nash equilibrium.9

We deduce that
dxF

j (xi)

dxi
> 0 at xN

i , i.e., the best response function of player j is increasing10
at the Nash equilibrium. We thus have11

Ψi

(
xN
i

)
= Πi

i

(
xN
i , xF

j (x
N
i )
)
+Πi

j

(
xN
i , xF

j (x
N
i )
) dxF

j (xi)

dxi

= Πi
j

(
xN
i , xF

j (x
N
i )
) dxF

j (xi)

dxi

< 0 = Ψi

(
xL
i

)
,

since by definition Πi
i

(
xN
i , xF

j (x
N
i )
)
= 0, Πi

j

(
xN
)
< 0 and

dxF
j (xi)

dxi
> 0. The decreasing of12

Ψi

(
xN
)
in xi involves13

Ψi

(
xN
i

)
< Ψi

(
xL
i

)
⇔ xN

i > xL
i . (A.24)14

Since Πj
ij

(
xN
)
> 0 this involves that xF

j < xN
j .15

• If Πj
ij

(
xN
)
< 0, then we have

dxF
j (xi)

dxi
< 0 at the Nash equilibrium, and consequently16

Ψi

(
xN
i

)
> 0 ⇔ xN

i < xL
i . (A.25)17

Since Πj
ij

(
xN
)
< 0 this involves that xF

j < xN
j .18

• If Πj
ij

(
xN
)
= 0, then we have

dxF
j (xi)

dxi
= 0 at the Nash equilibrium, and consequently19

Ψi

(
xN
i

)
= 0 ⇔ xN

i = xL
i . (A.26)20

Since Πj
ij

(
xN
)
= 0 this involves that xF

j = xN
j .21

�22

A.3 Proof of lemma 323

(First-mover advantage and second-mover incentive)24

We have to consider three different cases:25

• If Πi
ij

(
xN
)
> 0, the rankings are: xF

i < xN
i and xN

j > xL
j (see lemma 2). We have26

Πi
(
xF
i , x

L
j

)
= max

xi

Πi
(
xi, x

L
j

)
≥ Πi

(
xN
i , xL

j

)
> Πi

(
xN
i , xN

j

)
, (A.27)

where the first inequality results from the follower’s maximization program, and the second27
from the fact that xL

j < xN
j and Πi

j(x) < 0.28
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• If Πi
ij

(
xN
)
< 0, the ranking are: xF

i < xN
i and xN

j < xL
j . We have1

Πi
(
xN
i , xN

j

)
= max

xi

Πi
(
xi, x

N
j

)
≥ Πi

(
xF
i , x

N
j

)
> Πi

(
xF
i , x

L
j

)
, (A.28)2

where the first inequality results from the definition of the Nash maximization program,3
and the second from the fact that xN

j < xL
j and Πi

j(x) < 0.4

• If Πi
ij

(
xN
)
= 0, the rankings are: xF

i = xN
i and xN

j = xL
j . Thus,5

Πi
(
xF
i , x

L
j

)
= Πi

(
xN
i , xN

j

)
, and Πj(xF

i , x
L
j ) = Πj(xN

i , xN
j ) (A.29)6

follows immediately.7

Moreover, the following holds for Πi
ij

(
xN
)
T 0.8

• If Πj
ij

(
xN
)
6= 0, then9

Πi(xL
i , x

F
j ) = max

xi

Πi(xi, x
F
j (xi)) > Πi(xN

i , xF
j (x

N
i )) = Πi(xN

i , xN
j ), (A.30)

since xL
i 6= xN

i and Ψ′(xi) < 0.10

• If Πj
ij

(
xN
)
= 0, then11

Πi(xL
i , x

F
j ) = max

xi

Πi(xi, x
F
j (xi)) = Πi(xN

i , xF
j (x

N
i )) = Πi(xN

i , xN
j ), (A.31)

since xL
i = xN

i and Ψ′(xi) < 0.12

�13

A.4 Proof of proposition 4 (SPE)14

1. Πi
ij

(
xN
)
≥ Πj

ij

(
xN
)
> 0. In this case

Πi
(
xSi
)
> Πi

(
xN
)

and Πi
(
xSj
)
> Πi

(
xN
)

(A.32)

holds for both players. For the first relation see (A.30) for the second (A.27). Hence,15
(ai, aj) = (e, e) or (l, l) cannot be a NE of the timing game.16

2. Πi
ij

(
xN
)
≤ Πj

ij

(
xN
)
< 0. In this case

Πi
(
xSi
)
> Πi

(
xN
)
> Πi

(
xSj
)

(A.33)

holds for both players. See (A.30) for the first inequality and (A.28) for the second. Ac-17
cordingly, both players have a dominant strategy (e).18

3. Πi
ij

(
xN
)
= Πj

ij

(
xN
)
= 0. In this case

Πi
(
xSi
)
= Πi

(
xN
)
= Πi

(
xSj
)

(A.34)

holds for both players. See (A.31) for the first equality and (A.29) for the second. Thus,19
each possible strategy profile constitutes a NE of the timing game.20

4. Πi
ij

(
xN
)
< 0 < Πj

ij

(
xN
)
. In this case

Πi
(
xSi
)
> Πi

(
xN
)

and Πi
(
xSj
)
> Πi

(
xN
)

(A.35)

holds for player i and

Πj
(
xSj
)
> Πj

(
xN
)

and Πj
(
xSi
)
> Πj

(
xN
)

(A.36)
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holds for player j. Hence, player j’s best response to player i’s dominant strategy (ai = e)1
is aj = l.2

5. Πi
ij

(
xN
)
= 0 < Πj

ij

(
xN
)
. In this case

Πi
(
xSi
)
> Πi

(
xN
)
= Πi

(
xSj
)

(A.37)

holds for player i (see (A.30) for the inequality and (A.29) for the equality) and

Πj
(
xSi
)
> Πj

(
xN
)
= Πj

(
xSj
)

(A.38)

for player j (see (A.30 for the inequality and (A.29) for the equality). Thus, (ai, aj) = (e, l)3
as well as (l, e) is a NE of the timing game.4

6. Πi
ij

(
xN
)
= 0 > Πj

ij

(
xN
)
. Again, in this case

Πi
(
xSi
)
> Πi

(
xN
)
= Πi

(
xSj
)

(A.39)

holds for player i. For player j we get

Πj
(
xSj
)
= Πj

(
xN
)
> Πj

(
xSi
)
, (A.40)

where the equality stems from (A.29) and the inequality from (A.28). So player j has a5
dominant strategy (e), and player i, given the dominant strategy of player j is indifferent.6
Accordingly, (ai, aj) = (e, e) as well as (ai, aj) = (l, e) is a NE of the timing game.7
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