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Abstract

This paper studies the analytics of a canonical model of fixed adjustment costs

in the presence of idiosyncratic productivity shocks. We provide a novel analytical

characterization of the steady state and dynamics of aggregate outcomes implied by the

model. The dynamics are shown to have an intuitive partial-adjustment representation.

These results are then used to derive a set of approximations to model outcomes in

the presence of a small adjustment cost. Surprisingly, these reveal that both aggregate

steady-state outcomes and aggregate dynamics are approximately neutral with respect

to a small fixed adjustment cost. We show that this neutrality result emerges from a

symmetry property in the distributional dynamics of the model, and arises even in the

absence of general equilibrium adjustment of prices. A set of quantitative illustrations

confirms these analytical results for parameterizations commonly used in the literature

on employment adjustment.
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Inaction in microeconomic adjustment is pervasive. A stylized fact of the empirical

dynamics of employment, investment and prices is that they exhibit long periods of inaction

punctured by bursts of adjustment (see, among others, Hamermesh, 1989; Doms and Dunne,

1998; Bils and Klenow, 2005). A leading explanation of this phenomenon is that firms face

a fixed cost of adjusting.1 In such an environment, firms will choose not to adjust for some

time, with periodic discrete adjustments in response to suffi ciently large shocks, consistent

with the empirical “lumpiness”of microeconomic dynamics.

In this paper, we analyze the aggregate implications of this lumpiness at the microeco-

nomic level. We do so in the context of a canonical model of fixed adjustment costs in the

presence of idiosyncratic shocks that has been used widely in prior literature. For concrete-

ness, we focus on the case of employment adjustment, although the model can be applied

equally to investment and price dynamics.

We establish two key results that form the basis of the paper. First, we provide a novel

analytical characterization of the aggregate steady state and dynamic outcomes implied

by the model, which are shown in general to take on a partial-adjustment representation.

Second, analytical approximations to model outcomes reveal that both aggregate steady-

state outcomes and aggregate dynamics are neutral with respect to a small fixed adjustment

cost.

The remainder of the paper proceeds as follows. In section 1, we describe the basic

ingredients of the model. Firms face shocks to labor productivity that induce changes in

their desired level of employment. Firms are subject to both aggregate and idiosyncratic

shocks. Aggregate shocks drive macroeconomic expansions and recessions; idiosyncratic

shocks drive heterogeneity in employment dynamics across firms. Due to the presence of a

fixed adjustment cost, however, firms’employment will not adjust in response to all shocks.

Instead, employment evolves according to an Ss policy at the microeconomic level, remaining

constant for intervals of time with occasional jumps to a new level.

Given this environment, Section 2 develops the first of the main results of the paper.

Specifically, it takes on the task of aggregating the lumpy microeconomic behavior iden-

tified in section 1 up to the macroeconomic level. These aggregate implications are not

obvious. Since individual firms follow highly nonlinear Ss labor demand policies, and face

heterogeneous idiosyncratic productivities, there is no representative firm interpretation of

the model.
1Of course, fixed adjustment costs are not the only explanation of the observed inaction in microeconomic

adjustment. An alternative possibility is that adjustment involves discrete marginal costs, such as in the
kinked adjustment cost case. See, for example, Bertola and Caballero (1994).
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We show how it is possible to infer the dynamics of aggregate employment by solving

for the dynamics of a related object, namely the cross-sectional distribution of employ-

ment across firms. By applying a simple mass-balance approach, we provide an analytical

characterization of the distribution dynamics of employment. We show that these display

partial-adjustment type dynamics, continually evolving toward a steady state that varies

over time with aggregate shocks. Interestingly, the rate of convergence of this process has

the intuitive property of being equal to the probability that a firm adjusts away from its

current level of employment. These dynamics of the distribution of employment across firms

in turn shape the evolution of aggregate employment, since the latter is simply the mean of

that distribution.

Section 3 uses this characterization of aggregate employment dynamics to develop the

second main result of the paper– approximate aggregate neutrality. In particular, we use

the general results of section 2 to inform analytical approximations to model outcomes in the

presence of a small fixed adjustment cost. In the neighborhood of a small adjustment cost,

we show that both the steady-state and the dynamics of the firm-size distribution coincide

with their frictionless counterparts. It follows that the same approximate neutrality extends

to the behavior of aggregate employment in general. Importantly, this result arises despite

the existence of substantial inaction in microeconomic adjustment that arises even in the

presence of small adjustment costs (for the same reasons noted by Akerlof and Yellen, 1985).

This approximate neutrality result can be traced to a symmetry property that emerges

in the distributional dynamics of employment as the adjustment friction becomes small. The

mass-balance approach of section 2 makes the intuition for this symmetry particularly trans-

parent. Specifically, the change over time in the mass of firms at a given level of employment

can be decomposed into an inflow of firms that adjusts to that level, less an outflow of firms

that adjust away from that level of employment. The key is that a fixed adjustment cost

reduces both of these flows– fewer firms will adjust away from a given employment level,

but in addition fewer firms will find it optimal to adjust to that employment level. For small

frictions, these two forces are symmetric, and therefore cancel, leaving the evolution of the

distribution of employment approximately equal to its frictionless counterpart.

In section 4 of the paper, we confirm these analytical results in a series of quantitative

illustrations. We first calibrate the model using estimates from recent literature on em-

ployment adjustment and firm productivity (Bloom, 2009; Cooper, Haltiwanger and Willis,

2005, 2007; Foster, Haltiwanger and Syverson, 2008). We find that this parameterization of

the model implies aggregate employment dynamics that are very close to their frictionless

analogue, in line with the approximate-neutrality result in section 3. Since there remains a
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lack of consensus over some of the parameters of the model, however, we also explore the

sensitivity of this baseline result to alternative parameterizations. Interestingly, we find that

aggregate employment can display more persistent, hump-shaped dynamics in response to

aggregate shocks in the case where the adjustment cost is larger relative to the variance of

innovations to idiosyncratic productivity, consistent with the general result of section 2.

In the concluding sections of the paper, we discuss how our results dovetail with the

large literature on adjustment costs. We highlight an interesting feature of our approximate

aggregate invariance result, namely that it does not rely on general equilibrium adjustment of

wages. This contrasts with Kahn and Thomas’(2008) recent influential work on investment

adjustment costs, who emphasize these general equilibrium forces. In addition, we also

revisit two key papers in the recent literature on dynamic labor demand. In simulations

of a model without idiosyncratic shocks, King and Thomas (2006) find that the response

of aggregate employment to aggregate productivity is persistent, displaying a slight hump-

shape. Bachmann (2009) observes a similar result in a model with productive heterogeneity,

but with a much lower average adjustment rate. Interestingly, this accords well with our

finding that implied aggregate dynamics become more persistent the smaller is idiosyncratic

volatility relative to the adjustment friction. These results highlight the importance of

obtaining robust estimates of magnitude of adjustment costs and the degree of idiosyncratic

risk faced by firms in future empirical work in order to infer the role of lumpy microeconomic

adjustment in aggregate employment dynamics.

1 The Firm’s Problem

We consider a canonical model of fixed employment adjustment costs. Time is discrete.

Firms use labor, n, to produce output according to the production function, y = pxF (n),

where p represents the state of aggregate labor demand, x represents shocks that are idio-

syncratic to an individual firm, and the function F is increasing and concave, Fn > 0 and

Fnn < 0. We assume that the evolution of idiosyncratic shocks is described by the distribu-

tion function G (x′|x).

At the beginning of a period, firms observe the realization of their idiosyncratic shocks x,

as well as aggregate productivity p. Given this, they then make their employment decision.

If the firm chooses to adjust the size of its workforce, it incurs a fixed adjustment cost,

denoted C.

It follows that we can characterize the expected present discounted value of a firm’s
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profits recursively as:2

Π (n−1, x; Ω) ≡ max
n

{
pxF (n)− wn− C1∆ + βE [Π (n, x′; Ω′) |x,Ω]

}
, (1)

where 1∆ ≡ 1 [n 6= ñ−1] is an indicator that equals one if the firm adjusts and zero otherwise.

The wage w is determined in a competitive labor market, and is taken as exogenous from the

firm’s perspective.3 The variable Ω summarizes the aggregate state of the economy, including

the aggregate shock p, the wage w, and all variables that are informative with respect to

their future evolution.

For the analysis that follows, it is helpful to recast the firm’s problem in equation (19)

into two related underlying Bellman equations. In particular, the value of adjusting (gross

of the adjustment cost), Π∆(x; Ω), and the value of not adjusting, Π0 (n−1, x; Ω), are given

by

Π∆ (x; Ω) ≡ max
n
{pxF (n)− wn+ βE [Π (n, x′; Ω′) |x,Ω]} , and (2)

Π0 (n−1, x; Ω) ≡ pxF (n−1)− wn−1 + βE [Π (n−1, x
′; Ω′) |x,Ω] . (3)

Clearly, the value of the firm Π (n−1, x; Ω) is simply the upper envelope of these two regimes,

Π (n−1, x; Ω) = max
{

Π∆ (x; Ω)− C,Π0 (n−1, x; Ω)
}
. (4)

In keeping with the literature on fixed adjustment costs, we assume that the optimal

labor demand policy takes an Ss form.4 Figure 1 illustrates such a policy. It is characterized

by three functions, L(n; Ω) < X(n; Ω) < U(n; Ω). In the event that the firm chooses to

adjust away from n−1, optimal employment is determined by a “reset” function X(n; Ω)

2We adopt the convention of denoting lagged values with a subscript, −1, and forward values with a
prime, ′.

3The law of one wage can be supported by assuming that workers are perfectly mobile (and thus may
seek new job opportunities at any point in time). One might wonder whether a worker is able to hold up a
firm and demand a higher wage, since her departure would appear to force the firm to pay an adjustment
cost. This strategy is feasible only if the present discounted value of work among firms that are hiring
exceeds that at her present firm. We will see in equation (5), however, that firms hire until the value of the
marginal worker is zero. Thus, marginal hires yield no rents. It follows that all workers at all firms are paid
just enough to make them indifferent between work and non-work. Moreover, if firms cannot commit, this
contract must be implemented as a period-by-period, economy-wide wage.

4It is well-known that it is diffi cult to prove the optimality of the Ss policy in settings outside the canonical
Brownian model (Harrison, Sellke and Taylor, 1983). However, Lemma 2 in the Appendix shows that, in
the neighborhood of a small adjustment cost, the optimal labor demand policy is well-approximated by its
myopic counterpart. A useful implication of this result is that, since we know the optimal myopic policy
takes the Ss form, we also know that the Ss policy is approximately optimal for the context of many of the
results in this paper.
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which satisfies the first-order condition

pX (n; Ω)Fn (n)− w + βE [Πn (n, x′,Ω′) |x = X (n) ,Ω] ≡ 0. (5)

Due to the adjustment cost, however, the firm will not always choose to adjust: It will

decide to adjust only if the value of adjusting, net of the adjustment cost, Π∆ (x; Ω) − C,
exceeds the value of not adjusting, Π0 (n−1, x; Ω). This aspect of the firm’s decision rule

is characterized by two adjustment “triggers,”L (n−1; Ω) and U (n−1; Ω). For suffi ciently

bad realizations of the idiosyncratic shock, x < L (n−1; Ω), the firm will shed workers; for

suffi ciently good shocks, x > U (n−1; Ω), it will hire workers. For intermediate values of

x ∈ [L (n−1; Ω) , U (n−1; Ω)], the firm will neither hire nor fire, and n = n−1. Thus, the

adjustment triggers trace out the locus of points for which the firm is indifferent between

adjusting and not adjusting. It follows that the triggers therefore satisfy the value-matching

conditions

Π∆ (L (n−1; Ω) ; Ω)− C = Π0 (n−1, L (n−1; Ω) ; Ω) , and (6)

Π∆ (U (n−1; Ω) ; Ω)− C = Π0 (n−1, U (n−1; Ω) ; Ω) .

Firms’ optimal labor demand policies clearly depend on the aggregate state Ω. For

example, positive shocks to p will cause the Ss policy in Figure 1 to shift downward: For

any given level of idiosyncratic productivity, a firm will be less likely to fire, and more

likely to hire in an aggregate expansion. For notational simplicity, however, we suppress the

dependence of the optimal labor demand policy on Ω in what follows.

2 An Aggregation Theorem

In this section, we describe the first key result of the paper, which develops an analytical

approach that allows one to aggregate microeconomic behavior to the macroeconomic level

when firms face a fixed cost of adjusting the size of their workforces. Aggregation in this

context non-trivial. As we have seen, under the optimal Ss policy, each individual firm’s labor

demand depends in a highly nonlinear fashion on both their individual lagged employment

n−1, as well the realization of their idiosyncratic shock x. Since firms are heterogeneous in

these state variables, it follows that there is no simple representative firm interpretion of the

model.

In order to infer the implications of lumpy microeconomic adjustment for aggregate em-

6



ployment, we first obtain a characterization of a related object– the cross-sectional distri-

bution of employment across firms. We denote the density of the latter by h (n), and its

associated distribution function by H (n). This aids aggregation since the mean of h (n)

reflects aggregate employment, which in turn allows one to infer aggregate labor demand,

and thereby aggregate labor market equilibrium.

We construct this distribution by applying a mass-balance approach. The change in the

mass of firms with employment below some level n is simply equal to the inflow into the mass

H(n) less the outflow from that mass.5 The results of applying this logic are summarized in

Proposition 1.

Proposition 1 The density of employment across firms evolves according to the difference
equation

∆h (n) = − (1− G [U (n) |n] + G [L (n) |n])
[
h−1 (n)− h̄ (n)

]
, (7)

where h̄ (n) is the associated steady-state density given by

h̄ (n) = h∗ (n)
1−H [L−1X (n) |X (n)] +H [U−1X (n) |X (n)]

1− G [U (n) |n] + G [L (n) |n]
, (8)

h∗ (n) is the frictionless density of employment, G (ξ|ν) ≡ Pr [x ≤ ξ|n−1 = ν], and H (ν|ξ) ≡
Pr [n−1 ≤ ν|x = ξ].

Proposition 1 reveals that the dynamics of the density of employment across firms take

on a partial-adjustment representation. The density h (n) is continually evolving toward a

(potentially time-varying) steady-state density h̄ (n). The latter reflects the distribution of

employment that would be attained if the aggregate state p remained at its current level

forever. Intuitively, aggregate shocks shift firms’optimal labor demand policy function in

Figure 1, which in turn shifts the steady-state density h̄ (n) that the labor market converges

to. In what follows, we show that each of the components of Proposition 1 admits a very

intuitive economic interpretation.

We begin by describing the form of the steady-state density in equation (8). It is instruc-

tive to consider first the special case in which the idiosyncratic shocks faced by the firm are

i.i.d. across time. In that case, a firm’s lagged employment n−1 provides no information on

the distribution of its current productivity x, and vice versa. It follows that the steady-state

5While the use of mass balance is a relatively standard technique in many domains of economics, the
application to the fixed adjustment cost model is non-trivial and, to the best of our knowledge, new to the
literature.
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density of employment in equation (8) takes the simpler form

h̄ (n) = h∗ (n)
1−H [L−1X (n)] +H [U−1X (n)]

1−G [U (n)] +G [L (n)]
. (9)

Thus, the density of employment h(n) is defined recursively in this special case– it depends

upon the associated distribution function of employment H(·) evaluated at two different
points in its domain in the form of a difference-differential equation.

The special case in which idiosyncratic shocks are i.i.d. also clarifies the intuition be-

hind equation (8). The result states that the steady-state density of employment h(n) is

proportional to its frictionless counterpart h∗(n). To understand the factor of proportion-

ality, consider first the denominator in equation (9), 1 − G [U (n)] + G [L (n)]. Inspection

of the illustration of the policy function depicted in Figure 1 reveals that this is simply the

probability that a firm with employment level n adjusts away from n.

The numerator of equation (9) may also be interpreted in a similar fashion. Consider a

firm that draws an idiosyncratic productivity level x = X(n). Absent an adjustment cost,

such a firm would adjust to an employment level of n. In the presence of an adjustment

cost, however, Figure 1 reveals that the firm’s decision to adjust or not will depend on the

level of employment the firm has inherited from the past. Firms whose initial employment

is either relatively low (n−1 < U−1X (n)) or relatively high (n−1 > L−1X (n)) will adjust to

n. It follows that the numerator of equation (9) is simply the probability that a firm with

productivity x = X(n) adjusts to n.

Returning to the general result reported in equation (8), it is clear that the same in-

terpretation extends to the case with persistent idiosyncratic shocks. To summarize, then,

equation (8) may be restated simply as

h̄ (n) = h∗ (n)
Pr (adjust to n)

Pr (adjust from n)
. (10)

This is a very intuitive result: It simply implies that, if a firm is more likely to adjust to n

than it is to adjust away from n, then the distribution of employment will accumulate more

mass at n.

These observations in turn provide an intuitive interpretation of the transition dynamics

out of steady state in equation (7). As we have noted already, these dynamics take a partial-

adjustment-type form. In the light of the discussion above, however, we can interpret the rate

at which the density converges to steady state in equation (7), 1−G [U (n) |n] + G [L (n) |n],

simply as the probability that a firm adjusts away from an employment level of n. The
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intuitive result that emerges, then, is that the response of the density of employment to

aggregate shocks will be more persistent in the presence of fixed adjustment costs relative

to its frictionless counterpart, and the degree of this persistence is mediated through the

magnitude of a firm’s probability of adjusting.

Proposition 1 also aids aggregation of the model, since it provides a clear link from

microeconomic behavior in the model to the aggregate outcomes implied by that behavior.

Specifically, once one knows the optimal labor demand policy used by individual firms, as

summarized by the functions L(n) < X(n) < U(n), the evolution of the distribution of

employment in the aggregate is determined according to equations (7) and (8). In turn, this

allows one to trace out the evolution of the aggregate demand for labor, which is implied

by the mean of h(n). In particular, the optimal labor demand policy analyzed in section

1 is defined implicitly for a given level of the market wage w. Thus, the solution for the

steady-state distribution of employment in (8) also is indexed implicitly by w. Making that

dependence explicit, one can express the steady-state aggregate demand for labor as

Nd (w) =

∫
nh̄ (n;w) dn. (11)

Thus, when combined with a model of labor supply, our aggregation result allows one to

determine aggregate steady-state equilibrium employment and wages.

[Discussion of aggregate dynamics and dynamic aggregate equilibrium.]

3 Approximate Aggregate Neutrality

The previous section provided an analytical characterization of the aggregate dynamics im-

plied by a quite general form of lumpy microeconomic adjustment. In this section, we use

these general results to inform analytical approximations to model outcomes in the pres-

ence of a small fixed adjustment cost. Such a case is particularly instructive because it

is well-known that even small adjustment frictions imply substantial inaction, and hence

lumpiness, in microeconomic adjustment (see, for example, Akerlof and Yellen, 1985, and

Mankiw, 1985). Lemma 1 in the Appendix reiterates this point by showing that the adjust-

ment triggers can be approximated by

L (n) ≈ X (n)− γ (n)
√
C, and U (n) ≈ X (n) + γ (n)

√
C (12)
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for a given γ (n) > 0. These analytical approximations give rise to the second key result of

the paper:

Proposition 2 To a first-order approximation around C = 0, the evolution of the distribu-

tion of employment across firms is given by

∆h (n)′ ≈ − [h (n)− h∗ (n)] , (13)

which is the frictionless law of motion.

The approximation result in Proposition 2 implies that both the steady-state and the

dynamics of the distribution of employment across firms are second order in the adjustment

friction. In the neighborhood of a small adjustment cost, the steady-state firm-size distribu-

tion coincides with its frictionless counterpart, h̄ (n) ≈ h∗ (n), and the dynamics of h (n) are

approximately jump. As a result, any gap between the distribution of employment and its

frictionless counterpart is closed immediately– the aggregate dynamics of the model coincide

with frictionless dynamics. Put another way, aggregate outcomes are approximately neutral

with respect to a small positive adjustment cost.

Such as result is surprising in the light of the partial-adjustment representation of ag-

gregate dynamics in Proposition 1. We show that the invariance of both steady-state and

dynamic outcomes can be traced to a symmetry property in the distributional dynamics of

h (n).

Consider first the steady-state density of employment across firms. To see intuitively

how this symmetry plays out, the special case in which idiosyncratic shocks are i.i.d. over

time in equation (9) is again useful. This reveals that the distribution of employment will

coincide with its frictionless counterpart, H (n) = H∗ (n) = G [X (n)], if the adjustment

triggers satisfy the symmetry property: L−1X (n) = X−1U (n) and U−1X (n) = X−1L (n).

Intuitively, under this symmetry condition, the probability of adjust to a given level of

employment in equation (10) is offset exactly by an identical probability of adjusting away

from that employment level.

Figure 2 illustrates how this symmetry property arises in the presence of a small adjust-

ment cost. From equation (12), we know that the adjustment triggers U (n) and L (n) are

approximately symmetric around the reset function X (n) in the presence of a small adjust-

ment cost. It seems intuitive from Figure 2 that, by inverting these approximations, the

required symmetry for approximate steady-state invariance will hold. The proof of Propo-

sition 2 formalizes this intuition, and shows how the same logic extends to the case with

persistent idiosyncratic shocks.
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Proposition 2 also suggests that this approximate neutrality extends to the out-of-steady-

state dynamics of the density of employment h (n). To understand this, it is helpful to rewrite

the law of motion for h (n) in equation (7) more directly in terms of its constituent flows as

∆h (n)′ = Pr (adjust to n)h∗ (n)− Pr (adjust from n)h (n) . (14)

Intuitively, the inflow into the density of employment at some level n originates from firms

that have a) received an idiosyncratic shock that leads to a desired employment level of n, and

b) inherited an employment level suffi ciently different from n such that it is optimal to pay

the fixed cost and adjust. Thus, the inflow is equal to the density of firms that would choose

an employment level of n absent the adjustment cost, h∗ (n), times the probability that they

will in fact adjust. Likewise, the outflow from the density of employment at n is simply

the share of firms at that level of employment that receives a suffi ciently large idiosyncratic

shock to adjust away from n. Clearly, in steady state, ∆h (n)′ = 0, and equation (14) yields

the steady-state outcome in equation (10).

To see how this alternative representation informs the approximate neutrality of the

dynamics of h (n), imagine a small fixed adjustment cost is introduced into an otherwise

frictionless environment. At any instant of time, the adjustment cost reduces the outflow of

mass from any given employment level n, but also reduces the mass of firms which find it

optimal to adjust to that level of employment. For small frictions, we show that these two

forces are symmetric and therefore offset each other almost exactly, leaving the distribution

approximately equal to its frictionless counterpart along the transition path.

4 Quantitative Analysis

The preceding sections have highlighted two results on the aggregate outcomes of lumpy

microeconomic adjustment. In section 2, we provided an analytical characterization of ag-

gregate dynamics implied by sS employment policies at the firm level. In particular, Propo-

sition 1 revealed that these dynamics take a partial-adjustment form, continually evolving

toward a time-varying flow steady state. Section 3 used these analytical results to derive

approximations to these outcomes in the presence of a small adjustment cost. Proposition 2

revealed that an approximate neutrality result emerges, with aggregate dynamics coinciding

with their frictionless counterparts, despite substantial microeconomic inaction. In this sec-

tion, we illustrate these results by calibrating the model to estimates of its parameters from

recent literature.
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4.1 Calibration

The baseline calibration we analyze is summarized in Table 1. The numerical model is cast

at a quarterly frequency. We adopt the widespread assumption that the production function

takes the Cobb-Douglas form, F (n) = nα, with α < 1. The returns to scale parameter α

is set equal to 0.64 based on estimates reported in Cooper, Haltiwanger and Willis (2005,

2007). This also is similar to the value assumed by King and Thomas (2006) in their analysis

of a related fixed-cost model. The discount factor β is set to 0.99, which is the conventional

choice for a quarterly model.

The magnitude of the adjustment cost is based on estimates reported in Cooper, Halti-

wanger and Willis (2005, 2007) and Bloom (2009). Cooper, Haltiwanger and Willis (2005)

estimate a model similar to the one described above using plant-level data from the Cen-

sus’Longitudinal Research Database. They estimate a fixed cost of adjustment equal to

approximately 8 percent of quarterly revenue (see row “Disrupt”in their Table 3A). Using

Compustat data, Bloom (2009) finds nearly the same result (see column “All”in his Table

3). Based on this, we calibrate the adjustment cost parameter C to replicate these estimates.

Idiosyncratic and aggregate shocks are assumed respectively to evolve according to the

common assumption of geometric AR(1) processes,

log x′ = µx + ρx log x+ ε′x, and (15)

log p′ = µp + ρp log p+ ε′p, (16)

where the innovations are independent normal random variables: ε′x ∼ N (0, σ2
x), and ε

′
p ∼

N
(
0, σ2

p

)
. There is less consensus over the parameters of the process of idiosyncratic shocks

in equation (15). Cooper, Haltiwanger and Willis (2005) obtain estimates of ρx = 0.39 and

σx = 0.5. In a later paper, Cooper, Haltiwanger and Willis (2007) estimate these parameters

within the context of a search-and-matching model using, in part, monthly establishment-

level data from the Job Openings and Labor Turnover Survey. These yield estimates of ρx
that are much smaller than 0.39, and estimates of σx nearer to 0.2.6 Foster, Haltiwanger, and

Syverson (2008) report estimates that imply a quarterly persistence rate of ρx ≈ 0.95. We

split the difference between these different estimates by setting ρx = 0.7 and σx = 0.35 for the

purposes of the baseline calibration, and examine the sensitivity of the results to alternative

calibrations. The baseline calibration is comparable to Bachmann’s (2009) analysis of non-

6The typical estimate of ρx in Cooper, Haltiwanger andWillis (2007) is roughly 0.4 at a monthly frequency.
The implied degree of quarterly persistence is therefore 0.43 = 0.064. Likewise, their estimates of the variance
of the monthly innovation is in the neighborhood σ2x ≈ 0.22 = 0.04. Its counterpart in a quarterly model is
therefore

√
(0.44 + 0.42 + 1) 0.04 ≈ 0.22.

12



convex adjustment costs.

The parameters of the process of aggregate shocks, ρp and σp, are calibrated so that the

model approximately replicates the persistence and volatility of (de-trended) log aggregate

employment. Using time series data on private payroll employment and detrending using

the HP filter, we compute an autocorrelation coeffi cient of 0.96 and a standard deviation

of 0.026. Values of ρp = 0.95 and σp = 0.015 are roughly consistent with these moments

(see Table 1). We do this because our goal is not to explain the volatility of aggregate

employment, but to compare model outcomes within an environment that is economically

relevant. One way of doing that is to generate aggregate outcomes that are comparable to

what we observe in the data.

4.2 Labor Supply

In order to solve for the aggregate dynamics and steady state of the model, one must specify

the supply side of the market. We consider two assumptions on labor supply. The first is

that the elasticity of labor supply is equal to unity. This value is similar to what is implied

by Chang and Kim’s (2006) structural model of indivisible labor supply, and is also the value

advocated by Kimball and Shapiro (2010) based on an analysis of survey evidence.

In addition, however, we also explore the implications of the model under the assumption

that labor supply is perfectly elastic, so that the wage may be treated as fixed (and given

by its value in Table 1).7 This case is instructive, as is shuts off any equilibrium adjustment

in wages, and thereby allows us to isolate the features of aggregate dynamics solely due to

the equilibration of the distribution of employment across firms, h (n), that we emphasize.

Equilibrium wage adjustment We introduce an upward-sloped aggregate labor supply

schedule of the simple loglinear form

N s (w) = ψwη. (17)

As noted above, we impose that the labor supply elasticity is one, so η = 1. The intercept,

ψ, is set so that mean equilibrium employment remains near 20, roughly consistent with

data from County Business Patterns. Appendix B describes how this labor supply schedule

may be derived from the problem of a large household that must allocate its members across

7To clarify: we parameterize the process (16) so that it is consistent with the empirical variation in
aggregate log employment, conditional on a labor supply elasticity of one. We do not re-calibrate the model
when the elasticity is set to infinity. This allows us to compare impulse responses given a fixed stochastic
process for p.
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market and non-market work in a setup similar to that used in Mulligan (2001). Members

of the household obtain different levels of disutility from market work. All members of the

household whose disutility falls below a threshold participate in the labor market.8 The

positive slope in (17) reflects the marginal disutility borne by the household when it deploys

to the labor market another of its members, who faces a higher disutility from market work

on the margin.

It is well-known that, in the presence of (17), individual firms face a diffi cult prediction

problem: Because employment is quasi-fixed, firms must forecast the future path of aggre-

gate wages when they decide on the size of their current workforce. Yet the wage depends

on aggregate employment, N ≡
∫
nh (n) dn, which in turn depends on the distribution of

employment across firms, an infinite-dimensional object.

We adopt Krusell and Smith’s (1998) bounded rationality algorithm to solve this problem.

Specifically, we assume that firms forecast log aggregate employment using its lag, and the

current level of log aggregate productivity,

logN = θ0 + θN logN−1 + θp log p. (18)

Using their forecast of aggregate employment implied by equation (18), firms can then fore-

cast future wages.

Figure 3 presents the impulse response of aggregate employment implied by the baseline

calibration of the model, and compares it with its frictionless counterpart. Consistent with

the result of Proposition 2, the differences between the impulse responses are very small– the

adjustment cost does not affect greatly the response of aggregate employment to aggregate

shocks. It follows that the forecast equation (18) is very accurate– estimating the equation

on model-generated data yields an R2 in excess of 0.9999. By the same token, the estimated

coeffi cients are very close to what would be expected from the frictionless model, given the

calibration of the labor supply elasticity.9

[Sensitivity to alternative parameterizations.]

Fixed wages The second case we examine assumes that the elasticity of labor supply is

infinite, so that the wage w is effectively fixed. In doing so, we suppress any equilibrium

8To ease computational burden, we assume that members’utility is linear in consumption. In that case,
the marginal utility of wealth is fixed at one (and hence absent from (17)), and there is only one price we
have to track. This restriction may be relaxed, though it is not clear to us why it would materially affect
the results.

9Specifically, we get θ̂0 = 2.97, θ̂p = 0.747, and θ̂N = 0.008. In the frictionless model, the elasticity with
respect to aggregate productivity is 0.735.
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adjustment of wages along the transition path. Examining the aggregate dynamics of the

model in this environment allows us to isolate features of these dynamics that can be traced

to the equilibration of the distribution of employment from those driven by the adjustment

of wages in general equilibrium.

With fixed wages, the numerical model is much simpler to solve. In particular, it is no

longer necessary to apply the Krusell-Smith bounded rationality algorithm in this context,

since the wage no longer needs to be forecasted. Instead, all that needs to be done is to

solve for the optimal labor demand policy functions. Since the equilibrium wage is fixed,

the aggregate state Ω is summarized completely by aggregate productivity, and the optimal

policy functions take the simple form L (n; p), X (n; p), and U (n; p). As we noted in section

1, a positive innovation to aggregate productivity p shifts these functions downward– for a

given level of idiosyncratic productivity, a firm is more likely to hire, less likely to fire, and

will select a higher level of employment conditional on adjustment. Thus, the evolution of

aggregate productivity p induces shifts in the policy function, which in turn traces out the

evolution of the distribution of employment and thereby aggregate employment.

The results of this exercise are illustrated in Figure 3. As in the case with general

equilibrium adjustment of wages, the dynamic response of aggregate employment in the

presence of adjustment costs lies very close to the frictionless response. Thus, the dynamic

neutrality observed in Figure 3 appears to derive in large part from the neutrality of the

dynamics of the distribution of employment, as opposed to the adjustment of wages.

[Sensitivity to alternative parameters.]

5 Summary and Discussion

This paper has analyzed the aggregate implications of a canonical model of fixed employment

adjustment costs. It has established two main results. First, the dynamics of aggregate

employment in the presence of an adjustment friction can be inferred simply and intuitively

by characterizing the evolution of the distribution of employment across firms. We show

that the latter displays partial-adjustment type dynamics which are in turn inherited by law

of motion for aggregate employment.

The second main result of the paper is to show that, for a suffi ciently small friction, ag-

gregate employment dynamics coincide with their frictionless counterpart. The intuition for

this result arises from a form of symmetry in the dynamics of the firm-size distribution that

emerges as the adjustment cost becomes small. In the neighborhood of a small adjustment

cost, we show that the probability that a firm adjusts to a given employment level is offset
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by an equal probability that a firm adjusts away from that level, so that the effect on the

cross-sectional distribution of employment is negligible.

In set of quantitative illustrations, we show that recent estimates of the parameters of

the model tend to imply aggregate dynamics that are close to frictionless outcomes, in line

with the approximate neutrality result of section 3. However, the quantitative analysis also

illustrates the circumstances under which aggregate employment will be more persistent.

In line with our general analytical characterization of macroeconomic dynamics, aggregate

employment displays more persistent, hump-shaped dynamics when the fixed adjustment

cost is large relative to the magnitude of idiosyncratic shocks facing firms.

Interestingly, these conclusions dovetail with the large literature on adjustment costs.

Within the literature on dynamic labor demand, there are two papers in particular that

are related to ours. The first is King and Thomas (2006). They find that, in a model

without idiosyncratic productivity shocks, the response of aggregate employment displays

a slight hump shape, reminiscent of partial-adjustment type dynamics. A second paper of

interest is Bachmann (2009), who also finds that a fixed adjustment cost model induces

sluggish dynamics in aggregate employment. While his model allows for idiosyncratic risk

comparable to that used in this paper, his calibration implies a comparatively low adjustment

rate. Thus, the results of both of these papers are consistent with our finding that it is the

magnitude of the adjustment cost relative to idiosyncratic risk that determines the aggregate

effects of lumpy adjustment at the microeconomic level.

These results highlight a number of interesting avenues for future research. First, given

the importance of the magnitude of adjustment costs and the degree of idiosyncratic risk

faced by firms in shaping implied aggregate dynamics, it will be fruitful for future empirical

work to focus on obtaining robust estimates of these two critical parameters. Second, to

the extent that estimates of these parameters line up with the approximate aggregate neu-

trality we identify in section 3, it is worthwhile to consider other adjustment frictions that

can simultaneously account for lumpy microeconomic adjsutment and persistent aggregate

employment dynamics. For instance, both fixed and kinked (proportional) adjustment costs

induce inaction at the microeconomic level, but may have very different implications for

aggregate employment dynamics.

16



6 References

Akerlof, George A. and Janet L. Yellen. 1985. “A Near-Rational Model of the Business
Cycle, with Wage and Price Inertia.”Quarterly Journal of Economics, 100 823-838.

Bachmann, Ruediger. 2009. “Understanding Jobless Recoveries.” Mimeo, University of
Michigan.

Bertola, Giuseppe and Ricardo J. Caballero. 1994. “Cross-sectional effi ciency and labour
hoarding in a matching model of unemployment.”Review of Economic Studies, 61(3) 435-
456.

Bils, Mark and Peter J. Klenow. 2004. “Some Evidence on the Importance of Sticky Prices.”
Journal of Political Economy, 112(5) 947-985.

Bloom, Nicholas. 2009. “The Impact of Uncertainty Shocks.”Econometrica, 77(3) 623-685.

Caballero, R. and E. Engel. 1999. “Explaining Investment Dynamics in U.S. Manufacturing:
A Generalized (S,s) Approach.”Econometrica, 67(4) 783-826.

Caballero, R., E. Engel, and J. Haltiwanger. 1997. “Aggregate Employment Dynamics:
Building from Microeconomic Evidence.”American Economic Review, 87(1) 115—137.

Caplin, Andrew S. and Daniel F. Spulber. 1987. “Menu Costs and the Neutrality of Money.”
Quarterly Journal of Economics, 102(4) 703-725.

Chang, Yongsung and Sun-Bin Kim. 2006. “From Individual to Aggregate Labor Supply:
A Quantitative Analysis based on a Heterogeneous-Agent Macroeconomy.” International
Economic Review, 47(1) 1-27.

Cooper, Russell, John Haltiwanger, and Jonathan L. Willis. 2004. “Dynamics of Labor
Demand: Evidence from Plant-level Observations and Aggregate Implications.”Working
Paper No. 10297, National Bureau of Economic Research.

Cooper, Russell, John Haltiwanger, and Jonathan L. Willis. 2007. “Implications of Search
Frictions: Matching Aggregate and Establishment-level Observations.”Working Paper No.
13115, National Bureau of Economic Research.

Davis, Steven J., and John Haltiwanger. 1992. “Gross Job Creation, Gross Job Destruction,
and Employment Reallocation.”Quarterly Journal of Economics, 107(3) 819-864.

Doms, Mark E. and Timothy Dunne. 1998. “Capital Adjustment Patterns in Manufacturing
Plants.”Review of Economic Dynamics, 1(2) 409-429.

Foster, Lucia, John Haltiwanger, and Chad Syverson. 2008. “Reallocation, Firm Turnover,
and Effi ciency: Selection on Productivity or Profitability?” American Economic Review,
98(1) 394-425.

17



Gertler, Mark and John Leahy. 2008. “A Phillips Curve with an Ss Foundation.”Journal
of Political Economy, 116(3) 533-572.

Golosov, Mikhail and Robert E. Lucas. 2007. “Menu Costs and Phillips Curves.”Journal
of Political Economy, 115(2) 171-199.

Hamermesh, Daniel. 1989. “Labor Demand and the Structure of Adjustment Costs.”Amer-
ican Economic Review, 79(4) 674-689.

Harrison, J. Michael, Thomas M. Sellke and Allison J. Taylor. 1983. “Impulse Control of
Brownian Motion.”Mathematics of Operation Research, 8(3) 454-466.

House, Christopher L. 2008. “Fixed Costs and Long-Lived Investments.”Working paper No.
14402 National Bureau of Economic Research.

Judd, Kenneth. 1998. Numerical Methods in Economics, Cambridge, MA: The MIT Press.

Kahn, Aubhik and Julia Thomas. 2008. “Idiosyncratic shocks and the role of nonconvexities
in plant and aggregate investment dynamics.”Econometrica, 76(2) 395-436.

Kimball, Miles and Matthew Shapiro. 2010. “Labor Supply: Are Income and Substitution
Effects Both Large or Both Small?”Mimeo, University of Michigan.

King, Robert and Julia Thomas. 2006. “Partial Adjustment Without Apology.” Interna-
tional Economic Review, 47(3) 779-809.

Krusell, Per, and Anthony Smith. 1998. “Income and Wealth Heterogeneity in the Macro-
economy.”Journal of Political Economy, 106(5) 867-896.

Mankiw, N. Gregory. 1985. “Small Menu Costs and Large Business Cycles: A Macroeco-
nomic Model of Monopoly.”Quarterly Journal of Economics 100(2) 529-537.

Mulligan, Casey. 2001. “Aggregate Implications of Indivisible Labor.”Advances in Macro-
economics (B.E. Journal of Macroeconomics), 1(1), Article 4.

18



A Appendix

For ease of exposition, section 1 presented a simple model of fixed adjustment costs. In
this appendix, we describe a more elaborate version of the model that allows for exogenous
worker attrition at a rate that may depend on the aggregate state. The latter generalization
allows us to extend our results to factor adjustment models with depreciation (the case of
a constant worker attrition rate) and to canonical menu costs models (which is isomorphic
to a case with aggregate-state-dependent attrition). The proofs of Propositions 1 and 2 in
what follows hold for this more general case.
Worker attrition is modeled as follows. At the same time as a firm observes the realization

of its idiosyncratic shock x, an exogenous fraction δ (Ω) of its workforce separates. It follows
that we can characterize the expected present discounted value of a firm’s profits recursively
as:

Π (ñ−1, x; Ω) ≡ max
n

{
pxF (n)− wn− C1∆ + βE [Π (ñ, x′; Ω′) |x,Ω]

}
, (19)

where ñ−1 ≡ (1− δ (Ω))n−1 denotes employment carried into the period, and all other vari-
ables are as defined in section 1. As in section 1 and the literature on fixed adjustment costs,
we continue to assume that the optimal labor demand policy takes an Ss form. The“reset”
function X(n) satisfies the first-order condition

pX (n)Fn (n)− w + β (1− δ)E [Π1 (ñ, x′; Ω′) |x = X (n) ,Ω] ≡ 0, (20)

and the adjustment triggers satisfy the value-matching conditions

Π∆ (L (ñ−1; Ω) ; Ω)− C = Π0 (ñ−1, L (ñ−1; Ω) ; Ω) , and

Π∆ (U (ñ−1; Ω) ; Ω)− C = Π0 (ñ−1, U (ñ−1; Ω) ; Ω) . (21)

Proof of Proposition 1. We wish to derive the flows in and out of the mass of firms with
employment below some number m, H(m). Consider first the inflow into that mass– i.e.
the mass of firms that cuts employment from above m to below m. To derive this flow, first
fix a level of lagged employment, n−1 and denote the distribution of productivity conditional
on lagged employment as G (ξ|ν) ≡ Pr [x ≤ ξ|n−1 = ν]. We can use Figure 1 to identify four
potential sets of inflows corresponding to the following cases:
1) If m < X−1L (ñ−1), so that n−1 >

L−1X(m)
1−δ , the probability of reducing employment

below m will be G [X (m) |n−1].

2) If m ∈ [X−1L (ñ−1) , ñ−1], so that n−1 ∈
[
m

1−δ ,
L−1X(m)

1−δ

]
, the probability of reducing

employment below m will be G [L (ñ−1) |n−1].
3a) If n−1 < X−1U (ñ−1), and m ∈ [ñ−1, n−1], so that n−1 ∈

[
m, m

1−δ
]
, the probability of

reducing employment below m will be G [U (ñ−1) |n−1].

3b) If n−1 > X−1U (ñ−1), and m ∈ [ñ−1, X
−1U (ñ−1)], so that n−1 ∈

[
U−1X(m)

1−δ , m
1−δ

]
, the

probability of reducing employment below m will be G [U (ñ−1) |n−1].

4b) If n−1 > X−1U (ñ−1), and m ∈ [X−1U (ñ−1) , n−1] , so that n−1 ∈
[
m, U

−1X(m)
1−δ

]
, the

probability of reducing employment below m will be G [X (m) |n−1].
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It follows that the inflow is given by

Inflow into H (m) =

∫ ∞
L−1X(m)

1−δ

G [X (m) |n−1] dH−1 (n−1) +

∫ L−1X(m)
1−δ

m
1−δ

G [L (ñ−1) |n−1] dH−1 (n−1)

+

∫ m
1−δ

max
{
m,

U−1X(m)
1−δ

} G [U (ñ−1) |n−1] dH−1 (n−1)

+

∫ max

{
m,

U−1X(m)
1−δ

}
m

G [X (m) |n−1] dH−1 (n−1) , (22)

Following a similar logic, the outflow from the mass H (m) is given by the mass of firms
that raises employment from below m to above m. Similar to above, we can use Figure 1 to
identify two potential sets of outflows from H(m):

4a) If n−1 < X−1U (ñ−1), and m ∈ [n−1, X
−1U (ñ−1)], so that n−1 ∈

[
U−1X(m)

1−δ ,m
]
, the

probability of increasing employment above m will be 1− G [U (ñ−1) |n−1].
5a) If n−1 < X−1U (ñ−1), and m > X−1U (ñ−1), so that n−1 <

U−1X(m)
1−δ , the probability

of increasing employment above m will be 1− G [X (m) |n−1].
5b) If n−1 > X−1U (ñ−1), and m > n−1, so that n−1 < m, the probability of increasing

employment above m will be 1− G [X (m) |n−1].
It follows that the outflow is given by

Outflow from H (m) =

∫ m

min
{
m,

U−1X(m)
1−δ

} (1− G [U (ñ−1) |n−1]) dH−1 (n−1)

+

∫ min

{
m,

U−1X(m)
1−δ

}
0

(1− G [X (m) |n−1]) dH−1 (n−1) . (23)

The mass of firms with employment below some level n this period is equal to the mass
below n in the previous period plus inflows into the mass less outflows from the mass. Thus,
using equations (22) and (23) we can express the evolution of the distribution function H (n)
as

∆H (m) = G [X (m)]−H−1 (m)−
∫ L−1X(m)

1−δ

U−1X(m)
1−δ

G [X (m) |n−1] dH−1 (n−1) (24)

+

∫ L−1X(m)
1−δ

m
1−δ

G [L (ñ−1) |n−1] dH−1 (n−1) +

∫ m
1−δ

U−1X(m)
1−δ

G [U (ñ−1) |n−1] dH−1 (n−1) .

Differentiating, denoting the frictionless density of employment as h∗ (m) ≡ g [X (m)]X ′ (m),
using Bayes’rule to write the distribution of lagged employment conditional on current pro-
ductivity as H (ν|ξ) ≡ Pr [n−1 ≤ ν|x = ξ] =

∫ ν
0
G′(ξ|ν̃)
g(ξ)

dH−1 (ν̃), and defining m̃ ≡ (1− δ)m
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yields the stated result,

∆h (m̃) = −
[
h−1 (m̃)− h̄ (m̃)

]
+

1

1− δ (G [U (m̃) |m]− G [L (m̃) |m])
[
h−1 (m)− h̄ (m)

]
,

(25)
where the steady-state density satisfies the recursion

h̄ (m̃) =

(
1−H

[
L−1X (m̃)

1− δ |X (m̃)

]
+H

[
U−1X (m̃)

1− δ |X (m̃)

])
h∗ (m̃)

+
1

1− δ (G [U (m̃) |m]− G [L (m̃) |m]) h̄ (m) . (26)

Setting δ = 0 yields the result stated in Proposition 1.

Lemma 1 In the presence of a small fixed adjustment cost, the adjustment triggers and their
inverses are approximately equal to

L (ñ) ≈ X (ñ)− γ (ñ)
√
C, U (ñ) ≈ X (ñ) + γ (ñ)

√
C, and (27)

L−1 (x) ≈ X−1 (x) + γ̄ (x)
√
C, U−1 (x) ≈ X−1 (x)− γ̄ (x)

√
C, (28)

where γ (ñ) ≡
√

2/∆xx (ñ, X(ñ)), and γ̄ (x) ≡
√

2/∆11 (X−1(x), x). In addition, γ (ñ) =
X ′ (ñ) γ̄ (X (ñ)).

Proof of Lemma 1. The proof holds for any given aggregate state Ω, and so for trans-
parency we suppress dependence on Ω in what follows. Recall that the adjustment triggers
satisfy the value matching condition, ∆ (ñ, x′) ≡ Π∆ (x′) − Π0 (ñ, x′) = C. In the presence
of C ≈ 0, we may restrict our focus to a second-order approximation to ∆ (ñ, x′) around
x′ = X(ñ):

∆ (ñ−1, x) ≈ ∆ (ñ−1, X(ñ−1)) + ∆x (ñ−1, X(ñ−1)) (x−X (ñ−1))

+
1

2
∆xx (ñ−1, X(ñ−1)) (x−X (ñ−1))2 . (29)

The first and second terms on the right side are zero by optimality. Setting ∆ (ñ−1, x) = C,
it follows that the triggers are as stated in (27).
The inverse triggers may be derived symmetrically by approximating ∆ (ñ−1, x) around

ñ−1 = X−1(x):

∆ (ñ−1, x) ≈ ∆
(
X−1(x), x

)
+ ∆1

(
X−1(x), x

) (
ñ−1 −X−1(x)

)
+

1

2
∆11

(
X−1(x), x

) (
ñ−1 −X−1 (x)

)2
. (30)

Again, optimality implies the first two terms in the expansion are zero. Setting ∆ (ñ−1, x) =
C yields the stated inverse triggers in (28).
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To complete the proof, define the firm’s objective function, gross of the adjustment cost,
by Θ (n, x) ≡ pxF (n)−wn+β

∫
Π (ñ, x′) dG (x′|x). Note that ∆ (ñ−1, x) = Θ (X−1 (x) , x)−

Θ (ñ−1, x). It follows that ∆11 (ñ−1, x) = −Θnn (ñ−1, x), and that

∆xx (ñ−1, x) = Θn

(
X−1 (x) , x

) ∂2X−1 (x)

∂x2
+ Θnn

(
X−1 (x) , x

) [∂X−1 (x)

∂x

]2

+2Θnx

(
X−1 (x) , x

) ∂X−1 (x)

∂x
+ Θxx

(
X−1 (x) , x

)
−Θxx (ñ−1, x) . (31)

By optimality, we know that Θn (X−1 (x) , x) ≡ 0. It follows that Θnn (X−1 (x) , x) ∂X−1(x)
∂x

+
Θnx (X−1 (x) , x) = 0. Thus, we can rewrite (31) as

∆xx (ñ−1, x) = −Θnn

(
X−1 (x) , x

) [∂X−1 (x)

∂x

]2

+ Θxx

(
X−1 (x) , x

)
−Θxx (ñ−1, x) . (32)

Recalling from above that ∆11 (ñ−1, X (ñ−1)) = −Θnn (ñ−1, X (ñ−1)), noting that ∂X−1(x)
∂x

=

[X ′ (X−1 (x))]
−1, and evaluating at x = X (ñ−1) yields

∆xx (ñ−1, X (ñ−1)) = ∆11 (ñ−1, X (ñ−1))

[
1

X ′ (ñ−1)

]2

, (33)

which implies that γ (ñ) = X ′ (ñ) γ̄ (X (ñ)), as required.

Lemma 2 To a first-order approximation around C = 0, the optimal labor demand policy
coincides with its myopic (β = 0) counterpart.

Proof of Lemma 2. Fix next period’s aggregate state Ω′. In what follows, we show that the
stated result holds for any given realization of Ω′. We seek to show that the expected future
value of the firm

∫
Π (ñ, x′; Ω′) dG (x′|x) is independent of n to a first-order approximation

around C = 0 for all Ω′. To begin, partition the forward value into parts associated with
each of the three continuation regimes– firing, inaction, and hiring:∫

Π (ñ, x′; Ω′) dG (x′|x) =

∫ L(ñ;Ω′)

0

[
Π∆ (x′; Ω′)− C

]
dG (x′|x)

+

∫ U(ñ;Ω′)

L(ñ;Ω′)

Π0 (ñ, x′; Ω′) dG (x′|x)

+

∫ ∞
U(ñ;Ω′)

[
Π∆ (x′; Ω′)− C

]
dG (x′|x) . (34)

For ease of exposition, the remainder of the proof suppresses the dependence on Ω′. Differen-
tiating, using the value-matching conditions in (6) to eliminate the derivatives of the limits
of integration, (3) to substitute for Π0

1 (ñ, x′), and denoting D (ñ, x) ≡
∫

Π1 (ñ, x′) dG (x′|x)
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yields the recursion:

D (ñ, x) =

∫ U(ñ)

L(ñ)

[px′Fn (ñ)− w] dG (x′|x)+β (1− δ)
∫ U(ñ)

L(ñ)

D ((1− δ) ñ, x′) dG (x′|x) . (35)

It is straightforward to show that the latter is a contraction mapping in D, and therefore
that there exists a unique fixed point. The mapping depends implicitly on the adjustment
cost C via the adjustment triggers, L (ñ) and U (ñ).
Consider a first-order approximation to D (ñ, x) around the frictionless (C = 0) case,

D (ñ, x) ≈ D (ñ, x)|C=0 + DC (ñ, x)|C=0 · C. (36)

The leading term D (ñ, x)|C=0 = 0– in the absence of an adjustment friction, the firm’s
problem is static. From equation (35) the derivative, DC (ñ, x), is given by the recursion

DC (ñ, x) = [pU (ñ)Fn (ñ)− w + β (1− δ)D ((1− δ) ñ, U (ñ))] g (U (ñ) |x)
∂U (ñ)

∂C

− [pL (ñ)Fn (ñ)− w + β (1− δ)D ((1− δ) ñ, L (ñ))] g (L (ñ) |x)
∂L (ñ)

∂C

+β (1− δ)
∫ U(ñ)

L(ñ)

DC ((1− δ) ñ, x′) dG (x′|x) . (37)

We conjecture that DC (ñ, x)|C=0 = 0, and confirm that the latter recursion (37) verifies
this conjecture when evaluated at C = 0. Under the conjecture, the approximation (36)
implies that D (ñ, x) ≈ 0. From the first-order condition (5) for an adjusting firm, this in
turn implies the simple approximate labor demand rule, pxFn(n) ≈ w. Therefore, the policy
function is given by X(n) ≈ w/[pFn(n)]. Substitution into the recursion for DC (ñ, x) (37)
then implies

DC (ñ, x) ≈ pFn (ñ) [U (ñ)−X (ñ)] g (U (ñ) |x)
∂U (ñ)

∂C

−pFn (ñ) [L (ñ)−X (ñ)] g (L (ñ) |x)
∂L (ñ)

∂C

+β (1− δ)
∫ U(ñ)

L(ñ)

DC ((1− δ) ñ, x′) dG (x′|x) . (38)

Now consider the triggers, L(ñ) and U(ñ). Using equation (27) from Lemma 1, and their
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derivatives, we can write10

DC (ñ, x) ≈ 1

2
γ (ñ)2 pFn (ñ)

[
g
(
X (ñ) + γ (ñ)

√
C|x

)
− g

(
X (ñ)− γ (ñ)

√
C|x

)]
+β (1− δ)

∫ U(ñ)

L(ñ)

DC ((1− δ) ñ, x′) dG (x′|x) . (39)

Continuity of the density of idiosyncratic shocks g (·|x) implies that the first line converges
to zero as C → 0. It follows that the conjecture is confirmed, DC (ñ, x)|C=0 = 0.

Lemma 3 The evolution of the density of idiosyncratic productivity conditional on lagged
employment satisfies the dynamic equation

G ′ (x|n−1) = π−1

∫ U(ñ−1)

L(ñ−1)
g (x|x−1)G ′−1

(
x−1|n−11−δ

)
dx−1

G−1

[
U (ñ−1) |n−1

1−δ
]
− G−1

[
L (ñ−1) |n−1

1−δ
] + (1− π−1) g (x|X (n−1)) . (40)

where π−1 ≡ Pr [n−1 = ñ−2] is the probability of not adjusting last period. If g is analytic,
the law of motion preserves analyticity of G ′.
Proof of Lemma 3. First note that we may write G (x|n−1) =

∫
G (x|x−1) dG (x−1|n−1),

where

G (ξ|n−1) ≡ Pr [x−1 ≤ ξ|n−1]

= Pr [x−1 ≤ ξ|n−1, n−1 = ñ−2] Pr [n−1 = ñ−2]

+ Pr [x−1 ≤ ξ|n−1, n−1 6= ñ−2] Pr [n−1 6= ñ−2] . (41)

In the event that the firm adjusted last period, n−1 6= ñ−2, we know that the firm would
have adjusted so that x−1 = X (n−1). Thus,

Pr [x−1 ≤ ξ|n−1, n−1 6= ñ−2] = 1 [ξ ≥ X (n−1)] . (42)

In the case in which the firm did not adjust last period, we know n−2. That information
alone implies that x−1 will be distributed according to the c.d.f of x−1|n−2, which denote by
G−1, the lagged counterpart of G. In addition, however, we also know n−1. This implies that
x−1 ∈ [L (ñ−1) , U (ñ−1)], but is otherwise uninformative on the distribution of x−1. Thus,

Pr [x−1 ≤ ξ|n−1, n−1 = ñ−2] =
G−1

(
ξ|n−1

1−δ
)
− G−1

[
L (ñ−1) |n−1

1−δ
]

G−1

[
U (ñ−1) |n−1

1−δ
]
− G−1

[
L (ñ−1) |n−1

1−δ
] . (43)

Defining

π−1 ≡ Pr [n−1 = ñ−2] =

∫
(G−1 [U (ñ−2) |n−2]− G−1 [L (ñ−2) |n−2]) dH−2 (n−2) , (44)

10When we take these derivatives, recall that, since X(n) = w/[pFn(n)] under the conjecture, it is therefore
independent of C.
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we can therefore write

G (x−1|n−1) = π−1

G−1

(
x−1|n−11−δ

)
− G−1

[
L (ñ−1) |n−1

1−δ
]

G−1

[
U (ñ−1) |n−1

1−δ
]
− G−1

[
L (ñ−1) |n−1

1−δ
] + (1− π−1)1 [x−1 ≥ X (n−1)] .

(45)
Substituting into the definition of G (x|n−1) yields its dynamic update equation,

G (x|n−1) = π−1

∫ U(ñ−1)

L(ñ−1)
G (x|x−1)G ′−1

(
x−1|n−11−δ

)
dx−1

G−1

[
U (ñ−1) |n−1

1−δ
]
− G−1

[
L (ñ−1) |n−1

1−δ
] + (1− π−1)G (x|X (n−1)) . (46)

That the latter preserves analyticity of G follows from analyticity of G, the fact that sums,
products and integrals of analytic functions are themselves analytic, and that quotients of
analytic functions with a non-zero denominator are also analytic.

Proof of Proposition 2. Recall the law of motion for the density of employment h (n),
which we rewrite here as

∆h (ñ) =

(
1−H

[
L−1X (ñ)

1− δ |X (ñ)

]
+H

[
U−1X (ñ)

1− δ |X (ñ)

])
h∗ (ñ)

+
1

1− δ (G [U (ñ) |n]− G [L (ñ) |n])h−1 (n)− h−1 (ñ) . (47)

We conjecture that ∂h/∂C|C=0 = 0 = ∂G/∂C|C=0, and confirm that this is verified by the
law of motion. Note from the proof of Proposition 1 that, since H (ν|ξ) =

∫ ν
0
G′(ξ|ν̃)
g(ξ)

dH−1 (ν̃),
it follows that ∂H/∂C|C=0 = 0 under the conjecture. In addition, from Lemma 2 we know
that ∂X/∂C|C=0 = 0. Given this, under the conjecture we can write the derivative of the
law of motion (47) with respect to the adjustment cost in the neighborhood of C = 0 as

∂ [∆h (ñ)]

∂C
≈ −

[
H′
[
L−1X (ñ)

1− δ |X (ñ)

]
∂L−1X (ñ)

∂C
−H′

[
U−1X (ñ)

1− δ |X (ñ)

]
∂U−1X (ñ)

∂C

]
h∗ (ñ)

1− δ

+

[
G′ [U (ñ) |n]

∂U (ñ)

∂C
− G′ [L (ñ) |n]

∂L (ñ)

∂C

]
h−1 (n)

1− δ . (48)

Noting that C = 0 implies that L−1X(ñ)
1−δ = n = U−1X(ñ)

1−δ , U (ñ) = X (ñ) = L (ñ), G ′ (ξ|ν) =

g [ξ|X (ν)] andH′ (ν|ξ) = g [ξ|X (ν)]
h∗−1(ν)

g(ξ)
, and recalling that h∗ (n) = g [X (n)]X ′ (n) yields

∂ [∆h (ñ)]

∂C
→
{
−
[
∂L−1X (ñ)

∂C
− ∂U−1X (ñ)

∂C

]
X ′ (ñ) +

[
∂U (ñ)

∂C
− ∂L (ñ)

∂C

]}
g [X (ñ) |X (n)]

h∗−1 (n)

1− δ , (49)

as C → 0. Lemma 1 implies that ∂L−1X(n)
∂C

≈ γ̄(X(n))

2
√
C
≈ −∂U−1X(n)

∂C
and that ∂U(n)

∂C
≈ γ(n)

2
√
C
≈

−∂L(n)
∂C

in the neighborhood of C = 0. Thus, we can write

∂ [∆h (ñ)]

∂C

∣∣∣∣
C=0

= lim
C→0

{
− γ̄ (X (ñ))√

C
X ′ (ñ) +

γ (ñ)√
C

}
g [X (ñ) |X (n)]

h∗−1 (n)

1− δ . (50)
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Finally, recalling from Lemma 1 that γ (n) = X ′ (n) γ̄ (X (n)) for all C, we find that
∂ [∆h (n)] /∂C|C=0 = 0, as required.
It remains to verify that ∂G/∂C|C=0 = 0. First, rewrite the law of motion for G as

G ′ (x|n−1) = π−1

∫ U(ñ−1)

L(ñ−1)
[g (x|x−1)− g (x|X (n−1))]G ′−1

(
x−1|n−11−δ

)
dx−1

G−1

[
U (ñ−1) |n−1

1−δ
]
− G−1

[
L (ñ−1) |n−1

1−δ
] + g (x|X (n−1)) ,

(51)
and recall the probability of not adjusting last period π−1 in equation (44). Using Lemma 1
and the conjecture, it follows that π−1 = O

(
C1/2

)
and G−1

[
U (ñ−1) |n−1

1−δ
]
−G−1

[
L (ñ−1) |n−1

1−δ
]

=

O
(
C1/2

)
. Thus, the limiting behavior of G as C → 0 is determined by the limiting behavior

of the remaining term, A ≡
∫ U(ñ−1)

L(ñ−1)
[g (x|x−1)− g (x|X (n−1))]G ′−1

(
x−1|n−11−δ

)
dx−1. Under

the conjecture,

∂A

∂C
≈ [g (x|U (ñ−1))− g (x|X (n−1))]G ′−1

(
U (ñ−1) | n−1

1− δ

)
∂U (ñ−1)

∂C

− [g (x|L (ñ−1))− g (x|X (n−1))]G ′−1

(
L (ñ−1) | n−1

1− δ

)
∂L (ñ−1)

∂C
. (52)

From Lemmas 1 and 3, in the neighborhood of C = 0 we can write the latter as

∂A

∂C
≈ g2 (x|X (ñ−1)) g

′
[
X (ñ−1) |X

(
n−1
1− δ

)]
γ (ñ−1)

3
√
C → 0 as C → 0. (53)

It follows that ∂G/∂C|C=0 = 0, as required.

B Labor supply

Imagine a large household with a continuum of identical members. Let L be the size of the
household and N the number of employed members. Each member i derives felicity from

consumption equal to σ
σ−1

c
σ−1
σ

i . If member i works, he suffers disutility denoted by ζ i. We
follow Mulligan (2001) and assume that disutilities differ across members. Thus, household
utility is given by

σ

σ − 1

∫ L

0

c
σ−1
σ

i di−
∫ N

0

ζ idi. (54)

The household’s decision problem with respect to N may be recast as the choice of a
threshold, ζ̄, such that households with disutility in excess of ζ̄ are not sent to work. It
follows that the employment rate is given by N

L
≡ n = Z

(
ζ̄
)
, where Z is the distribution

function of ζ over household members.11

11If one interprets disutility as a fixed attribute of a worker, then workers with high disutility generally do
not work but receive the same consumption as everyone else. As a result, the non-employed are always better
off. This seems unpalatable, but it is not the only interpretation of the model. Instead, assume that there
is a fixed distribution of disutilities, and each worker takes an i.i.d. draw from this distribution each period.
That is, there are some periods where the marginal value of time is particularly high for some workers (and
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The first-order condition is given by

ζ̄ = Z−1 (n) = λw, (55)

where w is the real wage rate and λ is the marginal value of wealth. To obtain a closed-
form solution, assume the probability density of disutility takes the form z (ζ) = Aζb, where
A > 0, in which case we can write

n = Z
(
ζ̄
)

= A
ζ̄

1+b

1 + b
=⇒ ζ̄ = Z−1 (n) =

[
A−1 (1 + b)n

] 1
1+b . (56)

Since we have a free parameter, it is convenient to set A ≡ 1+b
a1+b

, where a > 0. Putting all
this together, the first-order condition becomes

an
1
1+b = λw. (57)

Note that as b → −1, the Frisch elasticity of labor supply goes to zero. As b → ∞, the
elasticity goes to infinity. Also, note that if σ = ∞, then the first-order condition for
consumption implies λ = 1. In that case, the labor supply schedule simplifies further to
an

1
1+b = w, which is of the form given in the main text. Specifically, in the main text, we

set η ≡ 1
1+b

and ψ = aL−
1
1+b , which leaves us with w = ψNη.

so they want to remain at home), and there are other periods where the disutility of work is relatively low
for those same workers. In this environment, members are equally well-off on average over their (infinite)
lives.
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Figure 1. An Ss labor demand policy 
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Figure 2. Intuition for the role of symmetry in aggregate neutrality 



Table 1. Baseline Calibration 

Parameter Meaning Value Reason 

  Returns to scale 0.64 Cooper, Haltiwanger and Willis (2005) 

  Discount factor 0.99 Quarterly real interest rate = 1% 

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Adj. Cost / Avg. Revenue 0.08 
Cooper, Haltiwanger and Willis (2005); 

Bloom (2009) 

   Persistence of   0.7 
Cooper, Haltiwanger and Willis (2005); 

Foster, Haltiwanger and Syverson (2008) 

   Std. dev. of innovation to   0.35 
Cooper, Haltiwanger and Willis (2005,  

2007) 

   Persistence of   0.95 Autocorrelation of detrended log   

   Std. dev. of innovation to    0.015 Std. dev. of detrended log   

 



Figure 3. Dynamic response of aggregate employment to a 1% innovation to aggregate productivity: Baseline calibration 

A. Upward-sloped labor supply (   ) 

 

B. Fixed wage (   ) 
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Figure 4. Dynamic response of aggregate employment to a 1% innovation to aggregate productivity: Sensitivity, Fixed wage case 

A. Lower idiosyncratic persistence (      ) B. Lower idiosyncratic volatility (      ) 

  
C. Higher adjustment friction (              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) D. Worker attrition (      ) 
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