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ABSTRACT

Weak identification is likely to be prevalent in many economic models. When instisnaee
weak, the limiting distributions of standard test statistics - like Student, Wald, lilailnatio and
Lagrange multiplier criteria in structural models - have non-standard disbitsuand often depend
heavily on nuisance parameters. Inference procedures robusatoimgtruments have been devel-
oped. These robust procedures however test hypotheses tispeaified on structural parameters.
Even though robust procedures solve statistical difficulties related tdifidation issues, applied
researchers may want to first pre-test the exogeneity of some regrdsfore inference on the
parameters of interest. In linear IV regression, Durbin-Wu-HausmaiHptests are often used
as pre-tests for exogeneity. Unfortunately, these tests rely on the assuthat model parameters
are identified by the available instruments. When identification is deficient ak vilee properties
of DWH tests need to be investigated. Early references that study tlutseffeweak instruments
on Hausman-type tests are not well documented and usually focus on téétihmpuch is known
about pre-test estimators based on DWH tests when IV are weak. In thés pae provide a large-
sample analysis of the distribution of DWH and RH tests under both the nulthggis (level) and
the alternative hypothesis, with or without identification. We show that uti@enull hypothesis,
usual chi-square critical values are applicable irrespective of tteepee of weak instruments, in
the sense that the asymptotic critical values obtained under the identificasiom@son provide
bounds when identification fails. We characterize a necessary andieuificondition for DWH
and RH tests (with fixed level) to be consistent under the alternative ofgenédy. The latter
condition automatically holds when the rank condition for identification holdsHXééts are con-
sistent when identification holds. The consistency condition also holds in & naithe of cases
where identification fails. Moreover, we study the properties of pregstainators where OLS or
IV is used depending on the outcome of DWH exogeneity tests. We presemetital arguments
suggesting that OLS may be preferable to IV in many cases where regeegigeneity may be an
issue. We present simulation evidence indicating that: (1) over a wide casgs, including weak
instruments and moderate endogeneity, OLS performs better than 2SLi&dfsidhilar to Kiviet
and Niemczyk (2007)]; (2) pretest-estimators based on exogeneityahasecellent overall perfor-
mance. Hence, the recommendation of Guggenberger (2008) to abtedomctice of pretesting
may go too far. We illustrate our theoretical results through two empirical atjalits: the relation
between trade and economic growth and the widely studied problem of sgtueducation. We
find that exogeneity tests cannot reject the exogeneity of schoaknthe 1V are possibly weak in
this model [Bound (1995)]. However, “trade share” is endogensuggesting that the IV are not
too poor as showed by Dufour and Taamouti (2007).
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1. Introduction

The literature on weak instruments in linear structural models focuses poging statistical pro-
cedures which are robust to instrument quality, see Anderson and RL#8, AR-test), Dufour
(1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998)bkrgen (2002, K-test), Moreira
(2003, CLR-test), Dufour (2005, 2006), Dufour and Jasiak (208tbck, Wright and Yogo (2002),
Hall, Rudebusch and Wilcox (1996), Hall and Peixe (2003), DonaldNewley (2001), Doko and
Dufour (2008). Weak instrument robust statistics however, test hgpeththat are specified on the
parameters of interest. Although robust procedures prevent statdifiballities related to iden-
tification, applied researchers may need to check whether some ragrass@xogenous before
running inference on the parameters of interest (pretesting). Exibgéests of the type proposed
by Durbin (1954), Wu (1973), Hausman (1978), Revankar and Ha(il@73) are commonly used
for this purpose. Unfortunately, such tests rely on the assumption thatl pen@eneters are iden-
tified by the available instruments. When identification is weak, the propertiss §ad power)
of exogeneity tests need to be investigated. The literature related to weakriastrproblems on
exogeneity tests is not well documented. Early references include Gogger (2008) and.

Guggenberger (2008) investigates the asymptotic size properties ofddg®iest, where in the
first stage a Hausman test is undertaken as a pretest for exogeneiggoéssor. His major finding
is that the two-stage test based on DWH-type test have arbitrary sizerelenge samples. In
fact, when the endogeneity between the structural and reduced foor &rlocal to zero of order
T2 whereT denotes the sample size, the Hausman pretest statistic converges to anabncen
chi-squared distribution. The non centrality parameter is small when theggtrefithe instruments
is small. In this situation, the Hausman pre-test has low power against logatides of the
pretest null hypothesis and consequently, with high probability, OL8¢baderence is done in the
second stage. However, the second stage OLS based t-statistic ofterotakery large values
under such local deviations. The latter causes size distortions in the tg@tstd. Hahn, Ham and
Moon (2008) consider the problem of testing the exogeneity of a subsattuded instruments.
They divide the excluded instruments from the structural equation into twiponents. The first
component is weak but exogenous, while the second is strong but ptiyantialid. They then test
the validity of the strong component using a modified Hausman-type test. Tiséstestic proposed
is valid despite the presence of the weak component.

However, neither Guggenberger (2008) nor Hahn et al. (2008)gw@ formal characterization
of DWH-type tests in presence of weak instruments. Furthermore, thesissiaged to estimation
are not addressed by these papers. For example, how do preti@stt@s based on exogeneity
tests behave when identification is deficient or weak? In particular, doalies pre-test estimators
based on exogeneity tests better perform (in term of bias and mean sguanethan usual IV
estimators when instruments are weak?

Doko and Dufour (2010) provide a finite-sample characterization of isteltition of DWH-
tests under the null hypothesis (level) and the alternative hypothesesrjpdiowever, the issues
related to estimation and the large-sample behaviour of the tests are nastsadtre

In this paper, we consider the problem of testing the exogeneity of inclietgdssors in the
structural equation. This problem is quite different and more complex ttstimgeorthogonality



restrictions of excluded instruments, as done by Hahn et al. (2008). oW\es fon large-sample
and study the behaviour of DWH- and RH-type tests including when ideniificégs deficient or
weak (weak instruments). Furthermore, we analyze the properties (fulasean squares errors) of
pre-test estimators based on exogeneity tests.

First, we characterize the asymptotic distribution of DWH and RH tests undeuthieypothe-
sis (level) and the alternative hypothesis (power). We show that DWiHR&ftests are asymptoti-
cally robust to weak instruments (level is controlled) and we provide assacgand sufficient con-
dition under which the tests have no power [similar to Doko and Dufour (@i@ Guggenberger
(2008)]. We find that exogeneity tests have no power when all instrunaeateeak. Moreover,
power may exist as soon as we have one strong instrument (partial icktidific

Second, we characterize the asymptotic bias and mean square erro8p28ILS and pre-test
estimators based on DWH and RH tests. We find that: (1) when identificatiofi¢sedé or weak
(weak instruments) and endogeneity is local to zée [the endogeneity between the structural
and reduced form errors converges to zero at r'ﬁtél as the sample size grows], OLS performs
(in terms of bias and mean square error) better than 2SLS [finding similaviet kknd Niemczyk
(2007)]; (2) pretest-estimators based on exogeneity tests have dieekoserall performance
compared with OLS and 2SLS estimators. Therefore, the recommendatiarggéGberger (2008)
to abandon the practice of pretesting may go too far.

We present two Monte Carlo experiments which confirm our theoreticaltseS he first exam-
ines the properties (size and power) of DWH and RH exogeneity testsseboad studies the bias
and mean square error of OLS, 2SLS and pre-test estimators basedgameity tests. Our results
indicate that: (1) over a wide range cases, including weak instruments ashetai® endogeneity,
ordinary least squares estimator (OLS) performs better than usual&Sin&ator; (2) pre-test esti-
mators based on exogeneity tests have an excellent overall perforrhance more preferable than
OLS and IV estimators.

We illustrate our theoretical results through two empirical applications: the neladbnveen
trade and economic growth [see, Dufour and Taamouti (2006), IrndnTanvio (2002), Frankel
and Romer (1999), Harrison (1996), Mankiw and al. (1992)] and tlikelyw studied problem of
returns to education [Dufour and Taamouti (2006), Angrist and Keu€P91), Angrist and Krueger
(1995), Angrist and al. (1999), Mankiw and al. (1992)]. The resuldécate that exogeneity tests
cannot reject the exogeneity of schooling, which suggest that insttsraemnpossibly weak in this
model [Bound, D. and Baker (1995)]. However, “trade share "@dogienousi.e., instruments are
not too poor as showed in the literature [Dufour and Taamouti (2006)].

The paper is organized as follows. Section 2 formulates the model studietiors3 studies the
asymptotic behaviour of the tests when identification is strong or deficiett ¢fadentification).
Section 4 examines their behaviour when identification is weak (weak I\€}idde5 presents the
pre-test estimators based on exogeneity tests and characterizes thgitagybehaviour, including
when identification is deficient or weak. Section 6 presents two Monte Caperienents (i) the
properties (size and power) of exogeneity; and (ii) the performariae émd mean squares errors—
MSE) of pre-test estimators. Section 7 illustrates our theoretical resultsgtmriovo important
applications. We conclude in Section 8 and proofs are presented in thendipp



2. Framework
We consider the linear structural model:

y = YB+Ziy+u, (2.1)
Y = Zilhi+2Z0M+V, (2.2)

wherey € RT is a dependent variabl¥,c R"*C is a matrix of (possibly) endogenous explanatory
variables(G > 1) Z; € Rk is a matrix of exogenous variableg; € RT** is a matrix of IVs,
U= (Up,...,ur) € RT andV = [vq, ..., vr]' € RT*C are disturbances3 € R®, yc Rk, M, €
R4*G and [T, € R**G unknown coefficients. LeZ = [Z; : Z,] andk = k; + k2. We assume that
the “instrument matrix”Z has full-column rank an#t; > G. The usual necessary and sufficient
condition for identification of this model is rafil2) = G. If rank(l12) < G, B is not identified and
the instruments are weak. However, some componerisidy be identified (partial identification)
even if this rank condition fails. We also suppose the&n be regressed dhyielding the following
equation:

u = Va+¢ (2.3)

wherea € R® is a vector of unknown coefficients,has mean zero, varianeg and uncorrelated
with V.
Let

M=M;=1-2(22)"17, Z=(21,2Z)], Mi=Mgz =1-2:(Z,21)" 7. (2.4)
Then,M; — M can be expressed as
M1 — M = M1Z5(ZpM1Z0) *Z6My = Z5(Z522) 23, (2.5)

whereZ, = M1Z, | Zy. LetZ =[Z1,Z5]. If we replaceZ by Z in (2.27) - (2.29), then the statistics
J6(1=1,2,3), 7 (1 =1,2,3,4) andZ ¢ do not change. Therefore, the orthogalization between
Z;1 andZ; has no impact on our results. To simplify the notatiéfsyill be used instead af, [see
for example, equation (2.21)].

We make the following generic assumptions on the asymptotic behaviour of wadbles
[where B > 0 for a matrixB means thaB is positive definite (p.d.), and-> refers to limits as
T — oo]:

1 / p | 2v O
ZIv e[V g]ﬁ{ 5 o |0 (2.6)
%z’[v e] 2o, (2.7)

1_,_p bR }
27755, = 2 IO 2.8
T o [ ZZZZl Zzz 28)



1 1
—=V'e S Sy,

y L
Nad FZ uV, el =[Sy, Sy, S,

vedS,, Sy, &, Sve] ~ N[0, Zg] ,S andS;, are uncorrelated,

w2 s3] 2]

Sw~N[0, 055, Su~NI[0,005,],
Sie ~N[0,0%%7], S ~N[0,0757],

(2.9)

(2.10)
(2.11)

(2.12)
(2.13)

Su is ak; x 1 random vectorgy is ak; x G random matrix matrixi = 1, 2), 2y is G x G positive

definite matrix, ands2 > 0.
From the above assumptions, we have

1_, » 1 / p o2 o
TZ’u—>O, f[u V]lu V]—>Z:{ 5 5 | >0
where
d=3va,0i=dxa+02,5=Sa+S=S(510)+S.
Furthermore,
1 P lo-p ¢ |2z O
?Z[u V e]-=0, TZZ—>Z_[ 0 5 >0,
1 L = =
7TZ[U7V7£]—>[S»US/78£]7
vedS,, S/, S, Sve] ~ N0, 25 ,S andS, are uncorrelated,
S _ | Sw s _ | Sw | S
SJ_|:SZU:|7 S/_[&\/]’ S$_|:SZS:|7
Su~NJ[0,0225], Se~NJ[0,0235],
where

_ —1s/
ZZz - ZZZ - ZZZZl Zzl ZZQZ]_‘

Under assumptions (2.6) - (2.7),

plimB = B+ (M33z, M2+ 5v) 715

T—o

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

(2.21)

(2.22)

and[? is consistent if and only i = 0, irrespective of the rank ofl. In particular, under lo-
cal alternative considered by Guggenberger (2008} [6o/+/T — 0 asT — o], B is consistent.



However,

~ Y' (Mg = MY 1Y/ (M —M)u
B IV (M~ Y] 2 0y~ = o || ZME o )
so, provided that the identification condition réfl) = G holds,
Y'(M{—M)Y Y'(M{—M)u
(1T) 255> 0, (1T) L) (2.24)
and _
plimB = . (2.25)

T—oo

Nevertheless3 does not generally converge fowhen rankll,) < G.

This paper focuses on both testing and estimation. First, we investigate thestargple prop-
erties of DWH and RH exogeneity tests, including when identification is deficieweak (weak
instruments). Second, we study the performance (bias and mean seguarses MSE) of pre-test
estimators based on DWH and RH exogeneity tests, allowing for the presfweak instruments.

From (2.14) - (2.15), the exogeneity assumptiolY @fan be expressed as

Ho: =0 < Ha:a=0. (2.26)

We consider the Durbin-Wu-Hausman (DWH) test statistics, namely thremusrof Hausman-
type statisticd.74,i = 1,2, 3], the four statistics proposed by Wu (1973j,1 = 1,2, 3, 4] and
Revankar and Hartley (1973, RH) test statistic. These statistics are diéfnequations (2.27) -
(2.29) below:

‘% = K (B - B)lzl_l(é - B)) | = 17 2a 37 4! (227)
A = TB-BYEB-B), =123, (2.28)
RA = KrYSRY, (2.29)

whereﬁ = (Y'M1Y)~1Y’Myy is the ordinary least squares (OLS) estimatoiBofB = Y (Mg —
M)Y]~1Y/(M; — M)y is the two-stage least squares (2SLS) estimatf,af; = (ko — G)/G, k2 =
(T—kl—ZG)/G, K3 = K4:T—k1—G, KR = (T—kl—kz—G)/kz, and

51=0%2A, 5,=03A, 53=0%A, 5,=06%A, (2.30)
51=0%20 - 6°Q7L, 5,=06%, 53=06%, (2.31)
N 1 B
k= ?Dlzz(z’lezz) 17,Dy, (2.32)
R
A 1 / - 1 !
Qy = TY (Mi—M)Y, Q= ?Y MY, (2.33)



A A oA 1
A=Q -0 d, D1= T MiMu,y (2.34)

32 = (y—YB)Mu(y—YB)/T, &2=(y—YB)Mi(y—YB)/T, (2.35)
52 = (y—YB) (M1 —M)(y—YB)/T = 52— &2, (2.36)
03=62—(B—BYA " (B-P)=6-5*(B—B) 5, (B-B). (2.37)
F2=(y—YBYM(y—YB)/T, 6&=yMgy/T, (2.38)

Mwmy =1 — MY (YM1Y)"Y'My, (2.39)

Note that6? is the OLS-based estimator of, 62 is the usual 2SLS-based estimatoragf (both
without correction for degrees of freedom), whﬁé, 6% and 6% may be interpreted as alternative
IV-based scaling factors.

The link between Wu7 -tests and Hausmag?’-tests and the regression formula of these tests
has been given in Doko and Dufour (2010). For example, we camabteatss = 5, and5, = 55,
S0 73 = (k3/T) % and 9 = (K4/T)#3. Sinceks/T = K4/T — 1 asT — 4o, T3 is asymptoti-
cally equivalent with772, and .7, is asymptotically equivalent with#3.

Finite-sample distributions for all exogeneity test statistics with possibly weakahd non
Gaussian errors are available in Doko and Dufour (2010).

We distinguish two setups: (1), = 12 is fixed; and (2)1; = M9/+/T, wherel? =0 is
allowed (weak instruments). Section 3 below characterizes the limiting distrisuifaghe statistics
under the null hypothesig(= 0) and the alternative hypothes& £ 0) when[1, is fixed (.e. does
not depend on the sample size).

3. Asymptotic behaviour of exogeneity tests

In this section, we characterize the asymptotic behaviour of the statistics thedeull © = 0)

and the alternative hypothese®#£ 0) when parameters are fixed, so they do not depend on the
sample sizd'. We distinguish two cases for the reduced form paraméiers(i) 1, = ng, with
rank(12) = G (strong identification); and (iiT, = 12, with rank(119) < G (partial identification).

To recover partial identification setup, it will be useful to parameterize théeinas in Choi and
Phillips (1992):

y = V1B, +YBr+2Z1y+u, (3.1)
Y1 = ZilMa+2ZolM1+ Vo, (3.2)
Yo = Zill12+ Voo, (3.3)
where
My = MA, M=, My =T, (3.4)
My = [M=0,By=SB, By=7B, (3.5)
Y1 = YIS, Yo=Y Vo1 =V.S, Vo =V., (3.6)



and.v = [¥1, %] € 0(G), 0(G) denotes the orthogonal group Gfx G matrices,# : G x Gy
spans the null space 6fz, .71 : G x Gq, B, : G1 x 1 andf, : Gy x 1. The necessary and sufficient
condition for identification of3, is

rank(1z1) = Gy, (3.7)

wherefll,; is aky x G;. This can be seen easily by considering the reduced form for modet (3.1)
(3.6)

y = Zm+2Z;m+V (3.8)

whererm = M1131 + Mi2B,+ Y, ™ = 2134, andv = u+ V2184 +Vi2B8,. So, B, is identified if
and only if ranK/1,1) = Gs. Itis important to observe thg; andf3, are linear combinations of the
original coefficient3. The original coefficien is recovered by the equation

B = 1B+ 728, (3.9

Equation (3.9) can then be used to find the effect of partial identificatioim®m®entire vecto3.
Of course, if ranklT,) = G (strong identification), we have,f3, = 0 and.” = .71 = lg. Also,
if rank(l12) = 0 (complete non identification), we hav& 3, =0 and. = .2 = lg. So, the
above parametrization includes strong identification and complete non iddigifisatups as spe-
cial cases.

We assume thgk, is identified bu3, may not (partial identification),e.

rank(l"lgl) = G]_, rank(l"llz) < Gz. (310)

In particular, if ranKlM12) = 0, B, is not identified at all. Note that assumption (3.10) does not
constitute a restriction of the model. If assumption (3.10) fails, either the modd¢ngified or
absolutely not. Both setups are special cases of (3.1)-(3.6) and wélbeeared by our results.

From the above parametrization, the 2SLS estimatd@;aind 3, are defined by

Bi = (Y{EV) WEy, B, = (33%) Y3y, (3.11)
where

= Mi—M— (M1 —M)¥z[Y;(M1 — M)Yz] Y5 (M — M),
J = Mp—M—(Mp—M)Y1[Y](M; — M)Y1] Y] (M1 — M). (3.12)

Throughout the paper, the following definitions and notations will be used:

05 = 05+ S5 (25, Mo+ S )W T2V K, 1 (25, Mo+ S ) 25 S, (3.13)
Za=2a(Sw) = 251 (25 Mo+ Swv) W, (25, Mo+ S ) 25, (3.14)
3y =57,— 37, N9(N3 35,N9+ 5v) N 53, (3.15)



W = (37,Mo+Sv) 25 (222ﬂo+szv) (3.16)

By = (3z,Mo+ S )W (27 Mo+ S ), A =l — 552y 552, (3.17)

0%, = 03, = 6%, 0%, = 0%, 63, = 65, = 0%, 63, = 67, (3.18)

5%* _( 1/282Va+2 1/2525) Av( 1/282\/a+Z 1/2525) (3.19)

6% = 02— 28'%, (25, Mo+ S ) 25 152u

+S,55 222n0+szv)4<, ISV N2z, Mo+ Si)' S 1szu, (3.20)

Uy = —a 'M§Ay Moa = &' >, M50y Moy 1o, (3.21)

Av izaszvz 1/2AV 1/282\/&_—&32\, 5753 Swa, (3.22)
oF;

R =25"S( szvzz—zlsz\, 1szvzz—2, (3.23)

82 = 02+ NG (N3 37,19+ 5v) L6, (3.24)

05, = 02+ 555 S0 (S 25 ) 20 (S 25 S ) 1S 25 e > 0% (3.25)

Finally, for a random variabl€ whose distribution depends on the sample Jizahe notation

75 +o0 means thaP[{ > x] — 1 asT — o, for anyx. We will now characterize the behaviour of
the tests under the null hypotheslgs (section 3.1) and the alternative (section 3.2).

3.1. Asymptotic distributions under the null hypothesis

This subsection describes the asymptotic behaviour of DWH and RH tessthiechull hypothesis
0 =0, including when identification is deficient. Theor&m below shows that all exogeneity tests
are valid (level is controlled) even if parameters are not identifiable.

Theorem 3.1 ASYMPTOTIC DISTRIBUTIONS UNDERHp. Suppose the assumptiofisl) - (2.3)
and (2.6) - (2.13) hold, and letd = 0. If rank(19) = G, then

A5 x¥6),i=1,2,3, (3.26)
L L1, L .2
T —F (G, ka—G), %—>6X (G), T — x°(G),1 =34, (3.27)
L 1 2
R 5 Zxe). (3.28)
2
If rank(12) < G, then
1
A 5 =2 M8 S3d Sr Mo < X(G). 1 =12
u

M = X%(G), (3.29)



A5 FGk-G), %5 x0)

7 5 x2G), AmS ;ZJVB%’MJVB < x2(G), (3.30)

u

1
RN o x2(ko), (3.31)

where

N = Sya+ B LSSy [25 — Mar(M15157,Ma1) M M5]Soe
Mg, ~ N[Fa 0:%87Y,
B = SS[E5t — Maa(M15125, M) " 151 S 7%,

o =SBy =Sy (27— MalM5127,M21)  M3)S,

g2 is defined by(3.24), a= 5,16 and.#> is defined in(3.6) - (3.9).

In the above theorem, sinde= 0 if and only ifa=0, we first note that#g|s, ~ N[0, 02271] .
Second, when identification is strong, the asymptotic null distribution of atiexeity tests is free
of nuisance parameters (as expected). When identification fails, the tdyomull distribution of
A, T, 5 andi4 is still pivotal. However, the null distribution o3, 577 and.7% is asymptoti-
cally bounded by a central chi-square w@degrees of freedom. Overall, usual chi-square critical
values are applicable irrespective of the presence weak instruments sertke that the asymptotic
critical values obtained under the identification assumption provide bourels idbntification fails
[similar to Doko and Dufour (2010)]. We now study the properties of this tesder the alternative
hypothesis # 0.

3.2. Asymptotic power

We distinguish two cases for the characterization of the power of the t@sthe(parameter rep-
resenting the level of endogeneihyis fixed and different from zero; (ii) the endogeneity is local to
zero,i.e, 0 converges to zero at rae—: as the sample size increasés+ do/v/'T, d is given).
Theorem3.2below presents the results forfixed.

Theorem 3.2 NECESSARY AND SUFFICIENT CONDITION FOR CONSISTENCY Suppose the
assumptiong2.1) - (2.3) and (2.6) - (2.13) hold. If [T, = 19 is fixed, the necessary and sufficient
conditions under which DWH and RH exogeneity tests are consistBifeist 0, where a= 5, 16.
More precisely,

I 5 +00, G 5 +o0o, B 5 +00, (3.32)
fori=1,2,3 and =1, 2, 3,4, ifand only if[19a # 0.



Theorem3.2 above provides the necessary and sufficient condition for consjstéati DWH
and RH exogeneity tests whey is fixed. The result shows that exogeneity tests can detect an
exogeneity problem even if not all model parameters are identified, mo\pdrtial identification
holds. In particular, we have the following result when model parametergantified (strong
instruments).

Theorem 3.3 CONSISTENCY OF EXOGENEITY TESTS Suppose the assumptio(&1) - (2.3)
and(2.6) - (2.13) hold. If rank 1) = G, then all DWH and RH exogeneity tests are consistent.

Clearly, exogeneity tests may be inconsistent only when identification is ddfitdhen iden-
tification is strong, the tests always detect an endogeneity problem. Wewashow the following
result concerning the asymptotic behaviour of the tests vﬂﬁ: 0.

Corollary 3.4 ASYMPTOTIC POWER WHEN,a= 0. Suppose the assumptiof®sl) - (2.3) and
(2.6) - (2.13) hold and letrT, = 19 fixed. IfT,a= 0, and ranKr19) = G, then

A5 x3(G),i=1,2,3, (3.33)
L L1, L o
ASFGk—G), %= 2x'(G), T-x%G).1=34, (3.34)
L 1 2
AA = X (k). (3.35)
2
If Ma=0, and ranKr9) < G, then

A NG 3 S0 < X(O), 1 =12, 755 XH(G), (3.36)

u

A5 FGk-0G), %5 x0)

1

T = XG), KBS 2218539 5246 < x*(G), (3.37)
u
anw st x2(k2) (3.38)
k2 2)5 .

where&ﬁ, N8, Y2 and.«/ are defined in Theore® 1.

When ranl{l‘lg) =G, I‘Iga =0 if and only if & = 0. Hence, the null hypothesis is satisfied.
Since identification is strong, all DWH and RH statistics are pivotal. Howevieen rankri?) <
G, Mfa=0 does not entails thal = 0. The results of the above corollary indicate that when
identification is deficient and1a = 0, the asymptotic distribution of the statistics is the same
under the null hypothesi®(= 0) and the alternative hypothesis £ 0). Consequently, exogeneity
tests have no asymptotic power in this case.
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We now characterize the asymptotic distributions of the statistics tests wherndihgeseity is
local to zero & = 80/+/T) and rank/1?) = G (strong identification). The results are presented in
the following theorem.

Theorem 3.5 ASYMPTOTIC POWER WHEN ENDOGENEITY IS LOCAL TO ZERO Suppose that
the assumptiong.1) - (2.3) and(2.6) - (2.13) hold, and letd = do/+/T. We have:

A 5 XAG,pg,), 1=1,2,3, (3.39)
1
A = F(Gke—Gills,), 7= GX(G. s T = X*(G, ), | =3.4, (3.40)
a5 kiX2<k2, Vay): (3.41)
2

if rank(M1Y) = G, where

1 1. _

Mg, = —O0(M8 5,9+ 5) 2A5HM8 5,n9+ ) 5o,
u
1o pos o 105 sxls. 40,0 s_ [0 1

Vg, = ﬁc‘;o(”z 27,5 +2v) "My 27,25 27, ;M3 27,3+ 2v) "0 (3.42)
u

and
L1 , L
= 5 NS5 S Mo < X*(G),1=1,2, 5= X*(G), (3.43)

u

7 L FG k-0, %5 2x0)
1
T 5 XG), B 2218539 5246 < x*(G), (3.44)
u
L 1 2
R — k—x (k2), (3.45)
2

Where(fﬁ, N8B, S and ./ are defined in Theore® 1.

First, we note that when identification is strong, all exogeneity tests haveanompower against
local alternatives. However, the tests are not consistent whedeveY,/ VT =0, asT — +oo. If
dp # 0, the distributions of all exogeneity tests are non central chi-squaresewienon centrality
parameters are given in (3.42). Second, when identification is deficierdjstribution of the tests
remain the same as whén= 0. In this case, all tests have no power against local alternatives. So,
OLS procedure is used with a high probability in the second stage if oneauves-stage-test
based on a DWH or RH pre-tests. Unlike Guggenberger (2008), weesilirsSection 5 that this is
a good new in the view point of estimation. In fact, when identification is defigied endogeneity
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local to zero, OLS estimator is preferable to 2SLS. Since pre-test estinhatoage like OLS in this
case, they are also preferable to 2SLS. Clearly, the practice of piregtebould not be abandoned,
as recommended by Guggenberger (2008).

We now focus on weak instruments setup.

4. Asymptotic behaviour of exogeneity tests when IV are asymptoti-
cally weak

In this section, we focus on weak instruments setup and characterizendngdog of DWH and RH
tests under the null hypothesid £ 0) and the alternative hypothesid # 0). Weak instruments
are characterized as in Staiger and Stock (19971, = 19/+/T whererllJ is ak, x G constant
matrix andl‘lg =0 is allowed. The subsection 4.1 studies the properties of the tests undettithe n
hypothesis.

4.1. Asymptotic distributions under the null hypothesis

Following Staiger and Stock (1997), weak instruments are charactenzibe lbocal to zero condi-
tion for the reduced form matrikis:

My=n2/VT, (4.1)

where 12 is ak, x G constant matrix andl1? = 0 is allowed. Theorem.1 below shows that all
exogeneity are valid when instruments are weak.

Theorem 4.1 AsYMPTOTIC DISTRIBUTION UNDER Hyp WHEN ASYMPTOTICALLY IV ARE
WEAK .  Suppose that the assumptiof®l) - (2.3) and (2.6)-(2.13) hold. If [T, = N9/v/T
(M2 =0is allowed, then under the null hypothesis= 0, all DWH and RH tests are valid (level is
controlled). In particular, we have

1= — .
A5 =S TaS < XP(G),1=1.2. 4 x*(G), (4.2)
u
L L1, L o L 1 = 2
u
L 1 2
AH = X (k). (4.4)

Sy is defined in(2.17) - (2.20), 2 and 3 are defined in(3.13) - (3.25).

We observe that when identification is weak (weak 1Vs), the statistics7,, 7, and .73 are
asymptotically pivotal under the null hypothes £ 0). However, the asymptotic distributions
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of 73, s and % depend on model parameters, but are bounded by a central che sgiaG
degrees of freedom. Hencés, 7 and.” are conservative [similar to Doko and Dufour (2010)].
We now study the properties of the tests under the alternative hypothgsis

4.2. Asymptotic power

We will now examine the properties of exogeneity tests under the alterngfpetesisd = 0. The
following theorem presents the results.

Theorem 4.2 ASYMPTOTIC POWER WHEN INSTRUMENTS ARE ASYMPTOTICALLY WEAK
Suppose that the assumptio(&1) - (2.3) and (2.6)-(2.13) hold. If [, = N9/VT (N2 =
Ois allowed, then, fori=1,2,3 and |=1, 2, 3, 4, we have

1 1= PN
S —(MBa—2715) Ay (Ma— 531%),1=1,2,3, (4.5)
i*
L Ki 13 13
G = ?(nga— 251Se) Bv(M3a—25"S), 1 =1,2,3,4, (4.6)
1 = = 1
RA 5 @(S&e - Zz_znga)/zz:zl(sk — 35, M9a) ~ EXZ(kZ, UR) (4.7)
&

wherepg = a1y 37, M%, k1 = (ko — G)/G, k2 =1/G andks = k4 = 1. Furthermore, we have,

Sy = Uliz*mé’a— 31%e) A (Mfa— 55"S) S < X2(G, y), i =12, (4.8)
IS = X*(G, 1), TilSv = F(G, ka—G; iy, Av), (4.9)

TS 5 X, Til 5 XA(G ). (410)

| S = §§<n§’a— 251e) v (MFa— 257 ) S < X2(G, 1), (4.11)

3%

S, S are defined in(2.17)-(2.20), 02, i =1,2,3 5|2*, l=1,2 3,4, andAy, U, Ay, are
defined in(3.13) - (3.25).

From the above theorem, we note that when identification is weak, exogéesstiydo not con-
verge under the alternative hypothedis: 0. The asymptotic distribution of the statistics converge
to finite non-degenerate distributions. Furthermore, the conditional limitingliions of .73,

T, Ta andZ s givenSy are noncentral chi-square distributions whifg follows a double non-
centralF-distribution. However71, %, and 23 are bounded upward by a non central chi square
distribution with G degrees of freedom and non centrality paramgter This suggests that exo-
geneity tests can have non zero power even in presence of weak idgiatifiqorovided the non
central parameters in the above theorem are different from zerowé&oan then characterize in
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Theorem4.3 below, the necessary and sufficient condition under which exogenestsy tave no
power when identification is weak.

Theorem 4.3 NECESSARY AND SUFFICIENT CONDITIONS FOR NO POWERUNder the assump-
tion of Theorena.2, the power of DWH and RH tests does not exceed the nominal levels if Bnd on
if [19a= 0. More precisely, we have undéila=0

15 o= :
A= 5 S 2%e < XP(G),1=1,2, 75 X¥(G). (412)
0%
L L1, L .o
ASFGk—G), %= X6, %= x(G), (4.13)
1l 5 o= 1
Ta= 7S 208 < XAG), AA = X (k). (414)
0%

wherea?,, =2 are defined in(3.13) - (3.25) and S in (2.17) - (2.20).

Observe that when‘lzoa: 0, the non centrality parameters in Theordi vanish so that the
statistics 773, 7>, J4 andZ.7¢ have central chi-square limiting distributions whifg is asymp-
totically distributed as a Fisher witlk, — G, G) degrees of freedom. Furthermog#], J# and. 73
are bounded by a central chi-square distribution vidttiegrees of freedom. Therefore, the asymp-
totic power ofs73, %, T4, 71 andZ s equals the nominal levels while those#f, 7 and. 73
cannot exceed the nominal level [similar to Doko and Dufour (2010)jtiG&e 5 below studies the
asymptotic behaviour of pre-test estimators based on DWH and RH tests.

5. Pre-test estimators based on exogeneity tests

An important and pratical problem in econometrics consists in using DWHRkihdype tests to
pretest the exogeneity of regressors to decide whether one sholydoagimary least squares or
instrumental variables methods for satistical inference. Although this pessgEms to be prevalent

in applied research, some authors, including Guggenberger (2088) shown that the two-stage
t-test procedure based on DWH-and RH-tests is unreliable from the @iet\qf size control when
endogeneity is local to zero of ord&r /2 and the instruments are weak. In both cases, exogene-
ity tests are inconsistent and the two-stagest procedure may be arbitrary size distorted. This is
showed by Guggenberger (2008), using some configurations of madaineters. Guggenberger
(2008) suggests to use a 2SLS batsezbt when instruments are strong and the identification-robust
procedures [Anderson and Rubin (1949, AR-test), KleibergenZ2Qaest), Moreira (2003, CLR-
test), projection-based techniques, see Dufour (1997, 2003),uD{@®05, 2006), split-sample
methods, see Dufour and Jasiak (2001)] when there are weak. Tgussa that the practice of
pretesting of the regressors should be abandoned. However, itdteaothow behave the pre-test
estimators when instruments are weak. The framework of Guggenb@@#8)(focuses in testing
and does not deal with estimation. The main objective of this section is to studyetieviour

of pre-test estimators based on exogeneity tests, including when identifiatieficient or weak
(weak instruments).
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We consider eight pre-test estimators associated to DWH and RH predéatdby equations
(5.1) - (5.3) below:

Bui = BUA<Cya ¢ +BLA>Cpn ¢]i=1,23, (5.1)
Bry = BLF<cgi s +BI[F>crr ¢l =123 4, (5.2)
B = BLURA <cChpa ) +BLURA > Chp g, (5.3)

(5.4)

where[3 and[B are the OLS and 2SLS estimatorghf1][.] is the indicator function and, ;_¢, i =
1,2,3,¢c5161=12 3,4, andcy 1 are the usual & quantile of the standard distributions
of DWH and RH statistics respectively. It is important to observe that thégsteestimators defined
by (5.1)-(5.3) are convex combinations of OLS and 2SLS estimators. €lghtallocated to each
estimator is determined by the outcome of the underline pre-test in the first stage

Lemmab.1 below characterizes the probability limit of OLS and 2SLS estimators Wheis
fixed.

Lemma5.1 LIMIT VALUES OF OLS AND 2SLSESTIMATORS. Suppose the assumptiofsl) -
(2.3)and(2.6) - (2.13) hold. If 1, is fixed, then

glimB — Bis=B+ (M5 M +3y)71s, (5.5)
glimﬁl = ﬁl,g|imﬁzzﬁz+=/’é, (5.6)
glimfs — By =B+ %M (5.7)

where

0if rank(ry) = G,
N = (5.8)
Sya+ BLS3S [25 1 — Mo, 27, Mon) 15, Spe if rank(Mz) < G,

NMalg, ~N[.Sa, 0287, 2 = fz’gzv[zzizl — Mo1(Myy 57, Mo1) "M Sov 2, - s defined in
(3.6)-(3.9) and a= 5, 15.

We make the following observations concerning Lengria
() From (5.7)-(5.8), we have

pimB = B+at A8 =B +. 72N (5.9)

T—oo
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Oifrank(z) = G,
wheref*=B+aand A=
B L3251 — Maa(M5157,Ma1) "1 M5)Sse if rank(Mz) < G.

Furthermore, by using the generalization of matrix inversion lemma [see Kylaval Sohie (1986,
Equation (1d))], we have

(v + M35, M) = 50— 5, (1 + 1555, M5, 1) T35, M5, (5.10)
so that
(My2z,M+3y) 10 = 5,105, (1+ My2g, M5, 1355, M,5, 16
= a- 5, (1 + M35, M5, 11325, Moa.
Thus (5.5) can be written as

pimB = B*— 5, + M35, M5, 1355 Mea (5.11)

T—o

(i) If r,a= 0, we have

pimB = B*=p+a plimp=p"+. 74, (5.12)
T—o0 T—o0
AMSEB) = plim[MSE(B)] = |a] = 8’573, (5.13)
T—o00

AMSEB) = glim IMSE(B)] = [la+ #248|| = |[al| + |- 728 + 28 S M5
= 85,204+ N Iy I oV + 28 So N, (5.14)

whereAMSE(é) is the asymptotic mean square erroréo& {[3, [3}. Hence OLS is always con-
sistent under the hypothesis of exogenedly= 0), but 2SLS may not provided identification is
deficient [rankl1,) < GJ.

Suppose that rarikl;) = G. Then, we havél,a = 0 if and only ifa= 0. By using (5.12), we
get

pimB = B, plimB =B, (5.15)

T—o00 T—o00

AMSEB) = AMSEp)=0. (5.16)

Both OLS and 2SLS estimators are consistent if strong is identification (astex}).

Suppose now that rafkl;) < G (i.e. identification is deficient or weak). Sindéa =0 =
a= 0, if endogeneity is presena & 0), OLS converges to a pseudo vafgie= 8 +a while 2SLS
converges t@” plus a non degenerate random variable. More interestingly, the pseiu®3/
is observationally equivalertb the true valug8. To see this latter point, consider equations (2.1)-
(2.3). From (2.2) and (2.3), we have=Y — Z;I1 — Z»l1, andu = Va+ €. Substituting these
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expressions in (2.1) gives
y = YB'+ZlMa+2Z1y +¢, (5.17)
whereB* =B +aandy* = y+Ma. If Ma=0, (5.17) becomes
y = YB ' +Z1y +¢, (5.18)

and [§* = ﬁ Clearly, the pseudo valug® is observationally equivalent to the true val@eThis
means that when identification fails, unlike 2SLS estimator, the inconsister@i®festimator is
not too problematic as one should think. Now, define

AMSEy s(8") = plim|B—B*| and AMSEy(8*)=plm|B—B*|.  (5.19)

T—o0 T—o00

If Mya =0, then we have
AMSEy 5(B*) = 0, AMSEy (8") = ||.724%] > 0. (5.20)

Hence, OLS is preferable to 2SLS if identification is deficient. Of coursd,7{-(5.20) remain
valid if I, = 0 (complete non identification ¢).

(i) If I,a # 0, then both OLS and 2SLS estimators are biased and their respective asymp-
totic biases and mean square errors (center@d)adre given by

pim (B —B") = —27"(0 + 25,12y ") 127, e,
AMSE)LS(B*) = a’%a, (5.21)

where? = M5z, Mp(1 + M5z, M5, N 715, 2(1 + My 35,5, 1) "534, M, and

piim(B—p") = 245", AMSBoLs(B") = 7248l (5.22)
So, unlike 2SLS, we observe that the asymptotic bias and mean squar@fe@®bS, centered
at 8%, depend on the degree of endogeneity Furthermore, sinc& > 0, AMSEky (") is a
nondecreasing and unbounded functionaofThis suggests that ifl,a £ 0 and endogeneity is
large, 2SLS is preferable to OLS.

(iv) Finally, we note that[?1 is still consistent even if identification is deficient or weak,
while 3, is consistent only when IV are strong. Hence, the inconsistenfycaimes froms,.

We can state a similar lemma concerning the behaviour of OLS and 2SLS estimwatms
instruments are asymptotically weakl{ = ng/ﬁ ]. The results are presented in LemriB2
below.

Lemmab5.2 LIMIT VALUES OF OLS AND 2SLS ESTIMATORS WHEN INSTRUMENTS ARE
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ASYMPTOTICALLY WEAK. Suppose that the assumptiofisl) - (2.3) and (2.6) - (2.13) hold.
If 1, =r2/v/T, wherel1? is a k x G constant matriX/19 = Ois allowed, then

pimB = B~ (5.23)
T—ow
pimB = B +. 4V, (5.24)
T—o

where W, = (2,19 + S) 2125, + Sy ), A = WM (Z5M3 + Sov) 2.1 (Ses — 25,1152,
NP5, ~ NI=W (25,19 + S)' 25157, MF8, 02%; ] andB™ = B +a.

So, we see that the observations in LenBria(ii) still hold.
We can now prove the above results on the behaviour of pre-test essrdatored in (5.1)-(5.3).

Theorem 5.3 LIMIT VALUES OF PRE-TEST ESTIMATORS Suppose the assumptiafisl) - (2.3)
and(2.6) - (2.13) hold. If 1, is fixed, then

pim (B, —B*) = —prSyt(1+ M3z M54 555, Mat
T—o

(1= py) 215, (5.25)

where 7,4 is defined by(5.8). If M, = M12/+/T, then

pim(B, —B*) = (1—pyp) s, (5.26)

T—o00

WhereJi{pW is defined in Lemm&.2and

Py = IIMmP# <cy1¢] (5.27)

T—oo
and# € {Hi,TI,RH}, i=1,2,3,1=1,2 3 4.

We make the following remarks:

() whenTl; is fixed, if further,a = 0, we have

glim(ﬁw—ﬁ*) = (1 py) L2 L < SN, (5.28)
AMSE, (B*) = (1-py)*AMSEy(B*) < AMSEy (B"). (5.29)

In particular, when identification is deficient, the two-stage estimator is jtdfeto 2SLS. If1,a#
0, we havepy = 0 (consistency of DWH and RH tests) and

plim(B, —B") = L2/, (5.30)

T—o0

AMSE, (B) = AMSEy(B"). (5.31)
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So, pre-test estimators based on exogeneity tests behave like 2SLS2Sit8ds preferable to
OLS whenlT,a # 0 and endogeneity is large, pre-test estimators estimators are also lpieefera
OLS in this cases;

(i) if I, = ng/ﬁ (instruments are asymptotically weak), the results are simildija = 0.
Thus, pre-test estimators based on exogeneity tests are preferablesto 2S

Overall, pre-test estimators based on exogeneity have an excelleatrpanice compared to
OLS and 2SLS estimators.

Section 6 below presents the Monte Carlo experiment.

6. Monte Carlo experiment

In this section, we perform two Monte Carlo experiments. The first expetistedy the effects
of weak 1Vs on DWH and RH tests. In this experiment, we consider thre@:s€ty Strong iden-

tification of model parameters; (2) partial identification; and (3) weak ideatitin. The second
experiment analyzes the performance (bias and MSE) of the pre-iesatess based on DWH and
RH exogeneity tests. The framework of this experiment is similar to GugggehE008).

6.1. Size and power of DWH and RH tests

Consider the two endogenous variables model described by the folloatagydnerating process:
y=Y1B1+Y2Bo4+uU, (Y1,Y2) = (Z2l121,Z20M22) + (V1,V2), (6.32)

whereZ; is aT x kp matrix of instruments such tha follow i.i.d N(O, I,) fort =1, ..., T, IMx
and[1,, are vectors of dimensidkg. We assume that

u=Va+¢e=Via; +Voar+¢, (6.33)

wherea; anday are 2x 1 vectors anc is independent wittv = (V1,V,), Vi andV, areT x 1
vectors. Through this experiment,ande are drawn as

(Vag, Vo) A8 (o, [ é 2 } ) and & *'N(0,1), forall t=1,...,T. (6.34)
The above setup allows us to take into account situations wherég,, 3,)’ is partially identified.
In particular, if 121 = 0 and det15,/M22) # 0, the instrument&, cannot identifyB3,. However,3,
is identified. We define

21 =n1Co, M22=nyCu, (6.35)

wheren, andn, take the value O (design of complete non identificatiof}, (design of weak
identification) or.5 (design of strong identification)Co,Cy] is akz x 2 matrix obtained by taking
the first two columns of the identity matrix of ordks. The number of instruments varies in
{5,10,20} and the true value ¢8 is set a3, = (2,5)’. Itis worthwhile to note that when, andn,
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belong to{0, .01}, the instrument&, are weak and both ordinary least squares and two stage least
squares estimators @ in (6.32) are biased and inconsistent unless- a, = 0. The simulations

are run the sampl& = 500, and the number of replications = 10,000. The endogeneity is
chosen such that

a=(aj,a) € {(-20,0),(-5,5),(0,0),(.5,.2)",(100,100)} . (6.36)
From the above setup, the exogeneity hypothesi¥ fisrexpressed as
Ho:a=(a;,a) = (0,0)". (6.37)

The nominal level of the tests is 5%. For each value of the veGgtae compute the empirical
rejection probability of exogeneity test statistics. Whaesa: 0, the rejection frequencies are the
empirical levels of the tests. Howevergit£ 0, the rejection frequencies represent the power of the
tests.

The results are presented in Table 1 below. In the first column of the tabdlepert the statistics
while in the second column, we report the valuekofhumber of excluded instruments). Finally
in the other columns, we report for each value of the endogeaeityd instrument qualitieg; and
1, the rejection frequencies at nominal level 5%.

First, we note that all exogeneity tests are valid whether the instruments arg straveak. In
particular, 71, 9, J4, 543 andRH control the level while7, 74 and.>% are conservative when
IVs are weak. HoweverZs, Hi and.77% do not exhibit this problem when identification is strong
[see the columiias,az)’ = (0,0)" in Table 1 below].

Second, all exogeneity tests have a low power when Betand 3, are not identified even in
large-sample Nevertheless, when at least one compongrnisaélentified [Table 1 (continued)], all
exogeneity tests exhibit power.
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Table 1. Power of exogeneity tests at nominal level 8%; 2, T = 500

(al,az)’ = (720, O),

(alvaz), = (75*, 5),

(al7a2)/ = (0> O)I

(a]_,az)' = ('57 '2),

(a]_7 az), = (10Q 100)/

ko | =0 ny=01 n=5|n=0 n=0 n=5|n=0 n=.01 n=5|n=0 n=01 n=5|n=0 n=01 n=5
N2=0 N3=0 nNp=0 | =0 n=0 np=0]n=0 1np=0 1nNp=0|n,=0 1np=0 1np,=0]n=0 1np=0 1np,=0
Kz 5 5.24 6.23 100 5.12 5.35 100 5.06 4.76 4.73 4.8 4,98 94.91 491 5.96 100
T 5 4.66 91.92 100 5.11 27.86 100 5.11 4.91 4.43 5.35 5.09 100 4.92 98.13 100
T 5 0.02 13.61 100 0.04 0.51 99.98 0 0 0.99 0.02 0.03 99.45 0.01 19.26 99.99
T4 5 4.64 91.89 100 5.06 27.79 100 5.03 4.89 4.38 5.29 5.09 100 4.88 98.13 100
JA 5 0.02 13.26 99.93 0.04 0.45 99.86 0 0 0.64 0.02 0.03 98.25 0.01 18.87 99.88
5 5 0.02 13.72 100 0.05 0.53 99.98 0 0 1.01 0.02 0.03 99.46 0.01 19.39 99.99
I3 5 4.68 91.94 100 5.14 27.96 100 5.12 4.94 4.44 5.39 5.12 100 4.98 98.13 100
RA 5 4.76 100 100 5.04 45.45 100 5.02 5.02 4.74 5.05 5.59 100 5.34 100 100
1 10 5.26 6.71 100 5.46 6.32 100 5 5.37 4.96 5.16 5.15 100 5.23 7.52 100
T 10 4.63 86.64 100 4.75 30.49 100 4.84 5.6 491 4.74 5.53 100 491 95.81 100
T3 10 0.16 46.63 100 0.17 4.49 100 0.14 0.2 1.7 0.12 0.24 100 0.19 64.18 100
T4 10 4.62 86.63 100 4.7 30.45 100 4.84 5.57 4.9 4.68 5.48 100 491 95.81 100
4 10 0.15 45.96 100 0.17 4.26 100 0.14 0.2 0.92 0.12 0.23 99.99 0.19 63.68 100
R Z) 10 0.16 46.97 100 0.17 4.62 100 0.15 0.2 1.72 0.15 0.25 100 0.19 64.5 100
I3 10 4.68 86.67 100 4.77 30.55 100 4.87 5.65 4.93 4.78 5.56 100 4.96 95.83 100
RA 10 4.7 100 100 4.5 67.61 100 5.01 5.44 4.89 4.78 5.69 100 4.85 100 100
1 20 5.07 10.67 100 5.27 8.1 100 4.84 5.15 5.03 4.82 5.45 100 4.99 11 100
T 20 5.07 86.47 100 5.17 31.8 100 4.79 5.3 5.07 5.16 5.51 100 4.87 93.16 100
T3 20 1.2 79.4 100 1.38 17.44 100 1.1 1.46 2.87 1.22 1.52 100 1.28 89.05 100
T4 20 5.03 86.43 100 5.13 31.71 100 4.78 5.23 5.06 5.14 5.46 100 4.87 93.16 100
JA 20 1.16 79.11 100 1.28 17.08 100 1.03 1.42 1.44 1.11 1.43 100 1.2 88.91 100
5 20 1.21 79.52 100 1.43 17.58 100 1.13 1.48 2.91 1.26 1.56 100 1.32 89.1 100
I3 20 5.08 86.49 100 5.22 31.83 100 4.83 5.33 5.13 5.17 5.54 100 4.88 93.16 100
RA 20 5.27 100 100 5.06 86.37 100 5.01 5.07 4.99 4,97 5.84 100 5.26 100 100
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Table 1 (continued). Power of exogeneity tests at nominal level®%2, T = 500

(al,ag)’ = (720,0)’

(alv a2), = (757 S)I

(al7a2)/ = (07 O)I

(a1,82)" = (5,.2)

(a]_, az)/ = (10Q 100)'

ke | 13=0 n=01 nm=5{nm=0 m=.0 n=5|n=0 m=01 n=5|mn=0 n=0 nmn=5{m=0 n=01 n=5
MN2=5 Np=5 MNp=5|Np=5 MNp=5 Np=5|Np=5 Np=35 Np=5]|MNp=5 Np=5 Np=5]|MN=5 nNp=5 1nNp=35
T 5 4.72 5.64 99.56 5.1 5.28 99.49 5.17 5.04 5.33 5.25 4.95 57.68 5.07 5.33 99.57
T 5 4.59 90.91 100 4.96 64.46 100 5.26 4.94 5.02 5.34 5.79 99.35 5.32 94.61 100
T 5 0.82 27.15 100 0.91 9.89 100 0.84 0.92 4.31 0.78 0.99 99.18 1.04 30.41 100
T 5 4.55 90.9 100 4.91 64.42 100 5.25 4.9 5 5.33 5.79 99.35 5.26 94.59 100
A 5 0.75 26.34 100 0.8 9.38 100 0.74 0.8 4.21 0.63 0.87 99.16 0.87 29.62 100
Pz 5 0.84 27.37 100 0.95 10.1 100 0.86 0.94 4.36 0.81 1.03 99.21 1.06 30.64 100
Pz 5 4.63 90.94 100 5 64.52 100 5.29 4.98 5.04 5.38 5.82 99.35 5.35 94.64 100
RH 5 4.7 100 100 4.98 99.1 100 5.07 5 4.86 5.54 6.46 97.45 5.41 100 100
7 10 5.19 7.33 100 4.93 6.55 100 4.83 4.97 5.13 5.2 4.85 91.46 5.19 7.75 100
T 10 5.31 86.33 100 5.32 50.06 100 4.99 4.95 4.87 5.28 5.7 99.56 4.99 91.52 100
T3 10 1.59 61.19 100 1.58 21.63 100 1.42 1.69 4.34 1.63 1.96 99.39 1.61 69.56 100
T 10 5.3 86.32 100 5.29 49.98 100 4.96 4.94 4.83 5.24 5.66 99.55 4.94 91.51 100
A 10 1.45 59.83 100 1.43 20.57 100 1.22 1.44 4.21 1.46 1.67 99.36 1.41 68.37 100
I 10 1.62 61.44 100 1.63 21.73 100 1.44 1.71 4.38 1.69 2.01 99.41 1.62 69.85 100
Pz 10 5.36 86.34 100 5.35 50.17 100 5.02 5.02 4.92 53 5.75 99.56 5.01 91.54 100
x4 | 10 4.44 100 100 5.06 98.91 100 5.34 4.9 4.84 5 5.95 95.38 5.01 100 100
7 20 5.11 7.85 100 4.94 6.22 100 4.93 5.05 5.35 5.1 5.02 94.32 5.25 8.1 100
T 20 5.42 76.16 100 4.85 30.65 100 4.76 5.25 5.59 5.02 491 98.81 5.24 84.89 100
T3 20 2.77 70.09 100 2.59 20.47 100 2.56 2.77 4.9 2.67 2.84 98.6 2.84 80.64 100
T 20 5.39 76.12 100 4.84 30.55 100 4.73 5.2 5.57 5 4.89 98.8 5.2 84.85 100
A 20 2.65 69.59 100 2.4 19.9 100 2.36 2.57 4.76 251 2.61 98.52 2.68 80.17 100
I 20 2.85 70.24 100 2.64 20.63 100 2.58 2.83 4.93 2.7 2.88 98.62 2.85 80.7 100
gz 20 5.43 76.19 100 4.88 30.7 100 4.78 5.31 5.6 5.04 4.92 98.82 5.25 84.92 100
XA | 20 5.19 100 100 4.61 94.7 100 4.66 5.12 5.32 5.03 5.29 86.39 5.59 100 100




6.2. Performance of OLS, 2SLS and two-stage estimators

Consider now a single simultaneous equations system described by theriglDGP:
y=YB+u, Y=2l+V, (6.38)

wherey andY areT x 1 random vector$G = 1), Z, is aT x ky matrix of instruments such that

Zx MN(O, Ii,), t =1, ..., T, andr, is a vector of dimensiok, with 1, = #ECHC’ whereC is

ako x 1 vector of ones ang? is a concentration parameter. As in Guggenberger (2008), we cover
several values ofi? : u? < {0; 13; 200; 613; 1000; 1 000,000} where the values ofi® less than

613 correspond to those in Hansen, Hausman and Newey (2008Y. frmoework, small values of

u? (sayu? < 613) depicted cases where the IV are weak so that the parameter o$tiftésenot
identified or weakly identified. The correlation betweeandV is set ap € {0, .05, .1, .5, .6, .95}

and the true value g8 equals 1 We takek, = 5 instrument¥, so, both 2SLS and OLS estimators
have finite moments. The sample sizeTis= 500 and the number of replicationsNs= 10,000

The results are presented in Tables 2- 3 above.

In the first column of the tables, we report the different estimators while ingbend, we report
the concentration parameteu$ which represents the quality of the IV. Finally, the other columns
report the correlatiop between the errors and (possibly) endogenous regressors.

Our major findings can be summarized into two points: (1) over a wide rarggs canclud-
ing weak 1V and moderate endogeneity, OLS performs better than 2Sldmfisimilar to Kiviet
and Niemczyk (2007)]; (2) pretest-estimators based on exogeneitydmaggcellent overall per-
formance compared with usual IV estimator. This suggests that the pratpoetesting based on
exogeneity tests is not to bad (at least in the viewpoint of estimation) as clayn@ddgenberger
(2008).

1The choices ok, = 10, 20 lead to the same conclusions.

23



Table 2. Relative bias of OLS and two-stage estimators compared with 28|3S5d.0

| Estimators (w2, p—] 0O .05 1 5 6 95 |
0 -0.07 0.83 1.06 1.00 1.00 1.0
13 0.35 1.48 1.01 1.02 0.99 1.0
200 0.11 1.19 1.26 1.09 1.08 1.0
MCO 613 0.14 1.14 1.44 1.26 1.26 1.2
1000 -0.10 1.36 1.58 1.44 1.45 1.4
2000000 | 0.83 -83.23 43.87 132.32 135.86 105.40
Pre-tests 0 -0.02 0.84 1.06 1.00 1.00 1.0
two-stage 13 0.38 1.46 1.01 1.02 1.00 1.0
200 0.15 1.19 1.25 1.09 1.08 1.0
A 613 0.18 1.13 1.42 1.24 1.24 1.2
1000 -0.04 134 1.55 141 1.42 1.3
2000000 | 0.83 -72.44 28.59 1.00 1.00 1.0
0 -0.02 0.84 1.06 1.00 1.00 1.0
13 0.38 1.46 1.01 1.02 1.00 1.0
200 0.15 1.19 1.25 1.09 1.08 1.0
T 613 0.18 1.13 1.42 1.24 1.24 1.2
1000 -0.05 1.34 1.55 1.40 1.41 1.3
2000000 | 0.83 -67.81 20.37 1.00 1.00 1.0
0 -0.07 0.84 1.06 1.00 1.00 1.0
13 0.35 1.48 1.01 1.02 0.99 1.0
200 0.11 1.19 1.26 1.09 1.08 1.0
) 613 0.14 1.14 1.44 1.25 1.25 1.2
1000 -0.09 1.36 1.58 1.43 1.44 1.4
2000000 | 0.83 -67.81 20.76 1.00 1.00 1.0
0 -0.02 0.84 1.06 1.00 1.00 1.0
13 0.38 1.46 1.01 1.02 1.00 1.0
200 0.15 1.19 1.25 1.09 1.08 1.0
T 613 0.18 1.13 1.42 1.24 1.24 1.2
1000 -0.05 134 1.55 1.40 1.41 1.3
2000000 | 0.83 -67.81 20.37 1.00 1.00 1.0
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Table 2 (Continued). Relative bias of OLS and two-stage estimators codnale2SLS for

B =10
| Estimators (w2, p—] 0O .05 1 5 6  .95]
0 -0.07 0.84 1.06 1.00 1.00 1.00
13 0.35 1.48 1.01 1.02 0.99 1.00
200 0.11 1.19 126 1.09 1.08 1.09
4 613 0.14 1.14 144 125 125 1.26
1000 -0.09 1.36 158 143 144 140
2000000 | 0.83 -67.81 20.37 1.00 1.00 1.Q0

0 -0.07 0.84 1.06 1.00 1.00 1.00

13 0.35 1.48 1.01 1.02 099 1.00

200 0.11 1.19 126 1.09 1.08 1.09

I 613 0.14 1.14 144 125 125 1.26
1000 -0.09 1.36 158 143 144 140
2000000 | 0.83 -67.81 20.37 1.00 1.00 1.00

0 -0.02 0.84 106 1.00 1.00 1.00

13 0.38 1.46 1.01 1.02 1.00 1.00

200 0.15 1.19 125 1.09 1.08 1.08

H 613 0.18 1.13 142 124 124 124
1000 -0.09 134 155 140 141 1.36
2000000 | 0.83 -67.81 20.37 1.00 1.00 1.00

0 -0.02 0.84 106 100 1.00 1.00

13 0.38 1.46 1.01 1.02 1.00 1.00

200 0.15 1.19 125 109 1.08 1.08

% 613 0.18 113 142 124 124 124
1000 -0.05 1.34 155 140 141 1.36
2000000 | 0.83 -75.52 30.16 1.00 1.00 1.Q0
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Table 3. Relative MSE of OLS and two-stage estimators compared with 23135$dl0

| Estimators (w2, p—] 0 05 1 5 6 95 |

0 0.01 0.01 0.04 043 052 0.7
13 0.01 0.01 0.04 044 052 07
200 001 001 004 048 058 1.0
MCO 613 001 002 004 126 071 1.0

1000 001 019 005 068 083 1.1
2000000 | 0.89 1.01 1.38 10.87 13.63 24.24

Pre-tests 0 0.01 0.02 0.04 041 0.49 0.6

two-stage 13 0.01 0.02 0.04 041 050 0.6
200 0.01 0.02 0.04 0.46 0.56 1.0
T 613 0.01 0.02 0.04 124 067 09
1000 0.01 020 0.05 0.63 0.77 1.0
2000000 | 0.85 0.88 091 1.00 1.00 1.0

200 001 002 004 046 055 1.0
) 613 0.01 0.02 004 124 066 0.9

1000 0.01 020 005 062 075 1.0
2000000 | 0.84 0.84 081 1.00 100 1.0

0 0.01 0.01 004 043 051 0.7
13 0.01 0.01 0.04 043 052 0.7
200 0.01 0.01 004 048 058 1.0
T3 613 001 002 004 125 071 10
1000 0.01 0.02 005 067 082 11
2000000 | 0.84 0.84 081 100 100 10

0 001 002 004 041 049 0.6
13 0.01 0.02 004 042 050 0.6
200 0.01 0.02 0.04 046 058 0.9
I 613 0.01 0.02 004 124 066 0.9
1000 001 020 005 062 075 1.0
2000000 | 0.84 0.84 081 100 100 1.0

0 0.01 0.02 004 041 049 0.6
13 001 002 004 042 050 0.6
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Table 3 (Continued). Relative MSE of OLS and two-stage estimators cothpéte2SLS for
B =10

| Estimators [ Wil p—] 0 05 1 5 6 .95

0 0.01 0.01 0.04 043 051 0.7
13 0.01 0.01 0.04 043 052 0.7
200 0.01 0.01 0.04 048 058 1.0
JA 613 001 002 004 125 0.71 1.0
1000 0.01 0.02 0.05 0.67 082 1.1
2000000 | 0.84 0.84 0.81 100 1.00 1.0

OO W ONPF

0 0.01 0.01 004 043 051 0.71

13 0.01 0.01 0.04 043 052 0.72

200 0.01 0.01 0.04 048 058 1.08

I 613 0.01 0.02 0.04 125 0.70 1.08
1000 0.01 0.02 0.05 0.67 0.82 115

2000000 | 0.84 0.84 0.81 1.00 1.00 1.00

0 0.01 0.02 0.04 041 0.49 0.68

13 0.01 0.02 0.04 042 050 0.69

200 0.01 0.02 0.04 046 055 1.09

A3 613 0.01 0.02 0.04 124 0.66 0.94
1000 0.01 0.20 0.05 0.62 0.75 1.02
2000000 | 0.84 0.84 081 1.00 1.00 1.00

0 0.01 0.01 0.04 041 049 0.6
13 0.01 0.02 0.04 042 050 0.6
200 0.01 0.02 0.04 046 055 1.0
R A 613 0.01 0.02 004 124 066 0.9
1000 0.01 020 0.05 0.62 0.75 1.0
2000000 | 0.85 090 0.94 100 1.00 1.0

OO WY
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7. Empirical illustrations

This section illustrates the behaviour of exogeneity tests through two empigphtations related
to important issues in macroeconomics and labor economics literature: thenrdlatiween trade
and growth [see, Dufour and Taamouti (2006), Irwin and Tervio 220Brankel and Romer (1999),
Harrison (1996), Mankiw and al. (1992)] and the widely studied prolbdémeturns to education
[Dufour and Taamouti (2006), Angrist and Krueger (1991), Artggisd Krueger (1995), Angrist
and al. (1999), Mankiw and al. (1992)].

7.1. Trade and growth

The trade and growth model studies the relationship between standanda@éind openness. The
recent studies in this issue include Irwin and Tervio (2002), FrankelRomer (1999), Harrison
(1996), Mankiw and al. (1992) and the survey of Rodrik (1995).r&f/eany studies conclude that
openness is conductive to higher growth, there is no evidence camgé¢ne effect of openness on
income. Estimating the impact of openness on income through cross-cowgreggsien often raises
the problem of finding a good proxy for openness. Frankel and R@880) argue that trade share
(ratio of imports or exports to GDP) which is the commonly used indicator of mgesshould be
viewed as endogenous variable, and similarly for the other indicatorsasutfade policies. So,
instrumental variables method should be applied for estimating the income-¢latienship. The
equation studied is

Yi = A+ BTri + yiNi + V,Af + i, (7.1)

wherey; is log of income per capita in countryTr; the trade share (measured as a ratio of imports
and exports to GDP)); the logarithm of population, andir; the logarithm of country area. Since
the trade shar&r; may be endogenous, Frankel and Romer (1999) used an instrumsiructed

on the basis of geographic characteristics. The first stage equatimefistyi

Tri = a+bX + c1N + CAr +vi, (7.2)

whereX; is a constructed instrument from geographic characteristics. In thig,papeause the
sample of 150 countries and the data include for each country: the trade ish1985, the area
and population (1985), per capita income (1985), and the fitted trade €hatrumenf). In this
application, we focus on testing whether trade share is exogenous inlodgever, it is not clear
how “weak "instruments are in this model. In fact, the F-statistic in the first seegyession (7.2)
is around 13 [see Frankel and Romer (1999, Table 2, p.385)], whighindacate a possible weak
identification problem [ Staiger-Stock(1997)]. Dufour and Taamou®@@roposed to use directly
identification-robust procedures to draw inference on the coefficeémi®del (7.1). The projection
approach shows that there is a slight difference between the usual\@b/te confidence sets and
the 95 % AR-based confidence sets of the coefficients of the structuratien (7.1). The 95 %
IV-type confidence interval for the trade share coefficieti®1,3.95, while the corresponding
95 % AR-based confidence sefi884,4.652. However, since all the confidence sets are bounded,

°The data set and its sources are given in the Appendix of Frankel ameéiR1999)
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we do not have a serious problem of identification in this model. We providdtamative way
to access whether the instrument used is weak by examining the behavibWidfand # .77
statistics. For example, if the test for exogeneity based on these statisticsataeject trade share
exogeneity, this may indicate that instrument are not “very poor ”. Notdlieanodel contains only
one endogenous and one excluded instrument, HeneeG, and the statistid; is not considered
in this application because it is identically zero. Table 4 below summarizes thiestrds the first
column of the table, we report the statistics while in the second and third columengport the
sample values and the sample p-value of these tests. In the other columapoviéire Monte Carlo
tests p-values for two data generating process where the disturhaamedrawn from normal and
Cauchy distributions.

Table 4. Tests for exogeneity of trade share in trade-income relation

Statistics| Sample valug Sample p-value (%) MC-test p-value MC-test p-value
(normal distribution)| (Cauchy distribution)
RBA 3.9221 4.95 5.02 2.74&
A 2.3883 12.23 6.15 2.93
K2 2.4269 11.93 6.12 2.94
I 3.9505 4.67 5.49 2.85
D 3.9221 4.95 5.49 2.85
T3 2.3622 12.43 6.12 2.94
I 3.8451 4.99 5.49 2.85

Note - : Hg is rejected at nominal level = 5%.

First, we note from Table 4 tha¥3, 7,, 7, andZ .77, reject trade share exogeneity whilé,
6, and 73, cannot reject the null hypothesis. When we run exact Monte Carlo festSgdussian
and Cauchy type errors), we see that all statistics strongly reject thade exogeneity at level 5 %,
which means that the quality of the instrument is not too poor in this model as opt@dfour and
Taamouti (2006) . Our results also underscore the difference betwxaehMonte Carlo exogeneity
procedures and earlier procedures.

7.2. Education and earnings

This application considers the well known problem of estimating returns twegidn. The literature
in this issue includes Angrist and Krueger (1991), Angrist and Kru€t@95), Angrist and al.
(1999), Bound et al. (1995). The equation studies is a relationshipavtheldog weekly earning is
explained by the number of years of education and several otherat®egmfage, age squared, year
of birth, ...). Since education can be viewed as an endogenous variable, Amgtistaeger (1991)
used the birth quarter as an instrument. The basic idea is that individualfttbe first quarter of
the year start school at an older age, and can therefore dropteucampleting less schooling than
individuals born near the end of the year. Consequently, individuals détothe beginning of the
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year are likely to earn less than those born during the rest of thé.yidawever, it is well known
that the instruments used by Angrist and Krueger (1991) are weakxquhaires very little of the
variation in education; see Bound et al. (1995). So, standard N\dbafrence is quite unreliable.
As showed in this paper, DWH or RH tests for the exogeneity of educationeatl to accept the
null hypothesis of exogeneity of this variable. The model considereceisfsgd as:

kg

y = Bo+BlE+_Ziini+Ua (7.3)
ko B k1
E = ”szi"izi*.zl‘pi)”v’ (7.4)

wherey is log-weekly earningsk is the number of years of education (possibly endogenos),
contains the exogenous covariates (age, age squared, 10 dummiéshfaf lyear). Z contains
40 dummies obtained by interacting the quarter of birth with the year of birth.idmbdel, 3,
measures the return to education. The data set consists of the 5% puxiargle of the 1980 US
census for men born between 1930 and 1939. The sample size is 32B&9aiions. We test the
exogeneity of education in this model using DWH and RH statistics. The resalsuenmarized
in Table 5. As showed in this table, all exogeneity tests cannot reject tlyeeeity of “education
"even at level 15%. This is true for earlier versions of the tests or the MGE.

The results can be interpreted as follow: (a) either the instruments arg stnsheducation
is effectively exogenous, (b) or education is endogenous but theinsitts are too poor and the
tests fail to detect that education is endogenous. Moreover, it is walhdected that the generated
instruments obtained by interacting the quarter of birth with the year of birthvaek, see e.g.,
Bound et al. (1995). So, our interpretation in (b) matter with these ohis@nga

Table 5. Tests for exogeneity of education in income-education equation.

Statistics| Sample value] Sample p-value  MC-test p-value MC-test p-value
(normal distribution)| (Cauchy distribution)
R .6783 .93986 .6590 .9451
JA4 1.337 24757 2474 .2488
) 1.337 24756 2474 .2488
3 1.3492 .24542 2474 .2488
AN 2.0406 16111 .2302 .2308
D 1.3491 .24543 2474 .2488
T3 1.3369 . 224757 2474 .2488
T 1.3491 .24543 2474 .2488

30Other versions of the IV regression take as instruments interactions lmeth@birth quarter
and regional and/or birth year dummies.
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8. Conclusion

Exogeneity tests of the type proposed by Durbin (1954), Wu (1973)sidan (1978) (DWH) and,
Revankar and Hartley (1973) (RH) are built on the prerequisite of hastirong IVs. Not much is
known about their behaviour of such tests when identification is weak.pEpier proposes a large-
sample analysis of the distribution of these tests under the null hypothes§ fdad the alternative
hypothesis (power). Two main contributions is established.

First, the characterization of the large-sample distribution of the test statistias shat DWH-
and RH-type tests are typically robust to weak IV. We provide a providecassary and sufficient
condition under which the tests have no power. In particular, the testsnogpewer when all IV
are weak [similar to Guggenberger (2008)]. But, power does exist@sas we have one strong V.
The conclusions of Guggenberger (2008) focus on the case whéveasie weak (a case of little
practical interest).

Furthermore, we present simulation evidence indicating that: (1) Over arafidge cases, in-
cluding weak IV and moderate endogeneity, OLS performs better than PEShfilar to Kiviet
and Niemczyk (2007)]; (2) pretest-estimators based on exogeneity tastsah excellent overall
performance compared with OLS and IV estimators. We illustrate our thedregmats through
two empirical applications: the returns to education and the relation betweknana economic
growth. We find that exogeneity tests cannot reject the exogeneity obbia, indicating that IVs
are possibly weak in this model [Bound et al. (1995)]. However, “trsttre "is endogenouse.
IVs are not too poor [similar to Dufour and Taamouti (2006)].
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APPENDIX

A. Proofs

PROOF OFTHEOREM3.1  Assume thad = 0. Then, we have = 3,25 = 0. We shall distinguish
two cases: (A)T, = 12 wherellJ is ak, x G constant matrix with ranks; and (B) 1, = 19,
rank(19) < G.
(A) Suppose first thaltl, = ng, with rank(l'lg) = G (strong identification). Then, we have:
On 2 nYzzng, Qs % Y sz md+ 5y, (A1)
YuTE6=0YMuTLE5=0 (A.2)

From (A.1) - (A.2), we get

6%/T = @0/T =uu/T —(UMY/T)QZY'M/T) > (A3)
F2/T = Uu/T—2(UMY/T)Q (Y (My—M)u/T)
(U (Mg —MY/T)QAY (M —M)u/T) & o2, (A.4)

Moreover, we can writ% as

Y = Z Zyu V'V Zu V'e
o pal gy YV sy L omal  peet Ve

VoL . RELAV: SV Vol REE v, Slv: &

whereZ, = MyZ, andy = My +(Z,21) 12} Z5M,. SincelTy > Moy = MMy + 55,137,719, itfollows
that

(A.5)

Yu | = —
— .S+ MY Su+ Sve. A.6
ﬁ - 0151u 2 SZu S\/s ( )
Thus, we get
Y'Mwu Y (Y’Zl> <z’lzl>‘1z'1u
VT VT T T VT
L (M8 + MY Sou+ Sve) — Mo1Sw = M9 Sou+ Sve, (A7)
——Y'(M; —M)u= 2= 22) 5 n9s,. A8
We can then observe that
~ ~ A Y’Mlu A Y/(Ml—M)U L
\/-T(B—B) :Qleﬁ—lelT — LI’]T’ (Ag)
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& > 034n, An = (M3 £7,M19) " — (N3 27, + 5,) i =1,23,

where _ _
W= (N9 37,719+ 3v) (11 Spu+ Sve) — (11§ 57,719) 1115 Sy,
so that 1
A=VT(B—BYaVT(B—B) = Wy 'y i=1.23.

Sincea = 0, we haveo? = 02, hence

e
[ My Seu tSve ] ~N [0, 025 .

9 Spy
where 5 . v .
ngsz;ng — ngszng
This entails
w NN{O o2(NY 5Nt — (5 + MY 55 no)*l]}:N(o 02An)
m » Oulllly 27,117 v 1Tl 27,117 =N\, 044m),
hence

5 x2(G),i=1,2,3.
Applying the same arguments as above, we get

L 1

75 X0, A LX) = 34, and g S LX),
2

We now derive the distribution df;.. We can write

_k-GT(B—ByA*B-B)

7
! G T52

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

andT(fS — ﬁ)’A*l(B — B) L WA W, ~ 02x%(G). Furthermore, becauga is orthogonal @7y,

we can observe that
T2 =U((M{—M)—R)u=U(M;—M)u—uRu,
whereY = (M; — M)Y. Thus, we have
~ L - 1= -~ _ -
T3] = SuZ5'Su—SuM3(M3 27,M9) 1 Sy

5 <—1/2 - -1/2g
= S5, —P(PP) P35 %Sy,,
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whereP = Zl/z

—1/2

12 and the matrixy — P(P’P)~1P’ is idempotent with rank, — G. Furthermore,
Sou ~ N[0, Iy,], henceT &2 5 02x?(k, — G). Moreover, we can writd §2 = u'(My —
M)MY(Ml —M)uandT(B— [A3)’A* (B —B) = UAzu, where
1 A A g A A g
g = = (MY Qg =Y QAT QY ML= Q)
is symmetrlc idempotent andlz((M1 — M)MgMz) = (M1 — M)Mg (Mg — M))Az = 0. This en-

tails thatTo andT(B B)’A (B [3) are independent, hence asymptotically independent and
distributed as? with k, — G andG degrees of freedom respectively. Consequently,

F5F(G k—G). (A.20)

(B) Suppose now thaffl, = 12, where (12) < G. We shall only prove the validity of#3. The
validity of other statistics can be proved in a similar way. We recall that

T(B—B)az (B -B), (A.21)

wheresi; ! = #ﬁ‘l with A = f)l(,l — Qljsl andQ,sandQy are defined in (2.33).
Using (3.9), we can now write equation (A.21) as

A= (B~ B)— S1(By— Ba) — F2(Bs— Byl "[(B—B) — 1(B— B) — 72(B— By, (A.22)
= (Bo—Bo) iy S2(By— By) —2l(B—B) — #1(By~ Byl 72(B,—~ Bo)
+{(B~B) ~ 1By~ B (B~ B)~ S1(B1—By)]  (A23)
where ® = &[(Y/(My — M)Y)~% — 1(Y'MyY/T)~Y]. We first find the limit of &. Since
(Y'M Y/T)*l %, (M9 55,19 + 5v) %, hence, we havé (Y'M;Y/T) 1 2 0. Itis also easy to see
that62 = 02 We now focus onY’(M; —M)Y]~L. We have

y’Y/(Ml—M)YY = [iﬁ](Ml_M)[Yl Yz]

- [ Y/(M1—=M)Y1 Y{(M1—M)Y> ] (A.24)
Ys(M1—=M)Y: Ys(Mi—M)Yz2 |’ '
So, the partitioned inverse of’Y'(M; — M)Y.# can be written as
Py P
LN (M -M)Y] Ly = [ - 21} A.25
[Y' (M1 —M)Y] Py Pop (A.25)

where

P o= [Y{(M1—M)Y1—Y{(M1—M)Yo(Y3(M1— M)Y2) 1Yo (M1 = M)Ye] %, (A.26)
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Py = —(Y3(M1—M)Yo) 1Y5(My— M)Y1Pyy, (A.27)
P = (Y3(Mi—M)Yo) 14 (Y3(M1 — M)Y2) Y5 (Mg — M)Y1Pyy
Y[ (M1 — M)¥2(Yz(M1 — M)Y2) 2. (A.28)

However, we have
Yi{(My =ML/ T B 115,57 M1, V(M — M)Yy/T £ 0, (A.29)

Y (ML—M)Y2 5 Sy 57167, V(ML — MYV /VT 5 7S a1 (A30)

So, we get
TRy & Pu = [M5127,Ma1— MarSv 2(-3Sy 25 Sov - 72) 73S Maal ™, (A31)
TY?Ry 5 521:_(y2’§zvzz:zls_zvy2)*1y2’§,zvn21ﬁll, (A.32)
P = Poo= (525 S ) "+ (H5S 25 S )
% S3Sy AP Ty Sy S2( S5 Sy 25 Sv 5) *. (A.33)

Hence, we have

0 0
0 P»

L

Y (M—M)Y]™t = y[ }y’:yzﬁzzyg. (A.34)

Furthermore, unded = 0, we haveB — B - 0, and using (3.11), we can show that

Bi—B1 B 0.Y5(Mi—MuL A4S, 521S, (A.35)
Y/ (M1 —M)u —
ﬂlﬁ) 5 M5S. (A.36)
So, we have
Bo—By — B LSS5t Maa(M5:57, M) 1) Su = g, (A.37)

where # = 5”2’§N[ZZ:21 — Ma1(Myy 27, M21) M5, Spv#2. Moreover, because from (2.3) we have
Su = Sva+ S, we easily get

N = F3at B 1S5S (25} — Mar(51 27, Mar) 1] Soe. (A.38)

UnderHp : 6 = 0, Ag|g, ~ N[0, 02%]. Hence, we have’2.1g|s, ~ N[0, 02« 1], where
o 1= 9%"17;: GxG. From (A.37), we get

o = Sy[E3t—Maa(M3Zz,Ma1) 3]y

35



Now, using Anderson (2003, Theorem A.3.3 and Theorem A.3.4), wevcide P>, as

[Y3(M1 — M)Yz — Yz(Mg — M)Ya(Y{ (Mg — M)Y1) 71Y] (Mg — M)Yo]

Po =
= (Yvu)thz =Py, (A.39)
And by noting tha(.75P.%3) = (2% 1.75) " = o/, we have
1
P ?Jgﬂgﬂyy@ (A.40)
&
Since.%>.4gs,, ~ N[0, 027 1], we get
L1 _ 2
I — G—g,/i/B’YZ’dYZ,/VB\SN ~ X“(G). (A.41)
Because the conditional null distribution does not depend neithéz\/qrwe have
= X¥(G), (A.42)
and.# still is valid even if identification is deficient.
We will now focus ons#4 and.7#4. First, we note that
6.2
Hp = —5 3, (A.43)
o}
whered? 2 02 and
~ du UMY ~ ~ A~
5 = w2 (B—B)+(B—B)QsB-P)
L 2= 02+ M. Sy(NY 55, N0+ 5y) e Ss > 02, (A.44)
Hence 1 1
75 ?mgyz’dyy@ < Mg S5 SN x2(G). (A.45)
u &
Second, using (2.31), we can easily show that LA %d, so that
(A.46)

1 1
A o WS SoNe < 3 NS4l Fah o~ X7(O).
u &

By using the relations betweefffi and 7%, we get the results fo’,, 73 and ;. Finally, by
following the same steps as féf3, we get the results fog; and% .57 . Clearly, all exogeneity tests

are valid even if identification is deficient.
O
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PROOF OFTHEOREM 3.2 (A) Suppose thafl, = ng with rank(l'lg) = G. From the proof of

Theorem3.1, we have
Ov > n9szn8, O nd sz N+ 5y, (A.47)
Y'M Y'(My—M
wop 5 YM MU g (A.48)
T T )
62 = Uu/T—(UMY/T)Q (Y Mu/T)
2025 (NY 5502+ 5v) 16 = 62, (A.49)
2 = Wu/T—2UMY/T)O Y (M —M)u/T)+
(U (Mg —M)Y/T)QH(Y (ML —M)u/T) & o2, (A.50)
so that we get
(B—B) = Q& (Y'Mw/T) — QMY (M —M)u/T) B (M9 529+ 5,) %5,  (A51)
& > 0%An, Ap=(NMY5z09) - (N9 579 +5) Li=23, (A52)
& > S, Zan = 0479 25,097 - 643 =5, M9 + 5v) Y, (A.53)
whereo’ = a2 anda$ = G2. Let first focus ons#, i = 1, 2, 3. We recall that’7 is defined as
3 (A.54)

A =T(B-B)&™(B-B)

and from (A.51)-(A.53), we have
= s 4= n 1 . e
(B-BY&HB-B) = 58(MF52M3+5) M 8q (NG 52N3 + 5y)18,1=2.3

i
b 8'(N9 5,19+ %) 5 NY 5,9 + 5) 718, (A.55)

(B—PB)a*(B—p)
Using Doko and Dufour (2010, Lemma A.1), we have
Apt = (N3 52M9) 5,1 (N§ 5213 + 5), (A.56)
hence
&' (M 529 + %) 1Az (M3 5213+ ) ~'6
(A.57)

= &Ng 5 3(N3 52n3) =z, 1 (MY 5213) + N3 52137113 52M3a.

If I‘lgayé 0, then the RHS of (A.57) is positive and we havleb 4o for i =2, 3. The same
decomposition applies i{l andH; 5 oo, By the same way, we also g'étb +oforl=1,2 3,4
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andRH 5 +oo.

Now, suppose thdida= 0, i.e. a= 0, because rarfk1) = G. This entails thad = 0 (remem-
ber thata = 2\716). So, the null hypothesis of exogeneity is satisfied and all test statistigsrcmn
to non degenerate random variables as given in The8r&m

Overall, the testsl;, T andRH are consistent if and only iﬂga;«é 0.

(B) Suppose now thafl, = ng with rank(ﬂg) < G. We shall only focus ons#. The proof
is similar for the other statistics. Let writ&#3 as

Ay = T[(ﬁ—ﬁ)—}fs—ﬁﬂm.v— ) HB-B) - (B-Bl/E*
= T(B-B)(Qy' — Q) (B B)/*+T(B—BY(Qy' — Q) (B~ B)/6

—2T(B—P) Q' ~ Qi) (B—B)/&™ (A58)
We now study the asymptotic behaviour of the three terms in (A.58). First, we ha
B Y'MY/T) LY M/T) & (55,19 + 5v) 718,

62 2 g2=02-8(NY35N0+3v)713, (A.59)

and from (A.35)-(A.40), we have

TB-B)(Ont - O B-P)/0> 5 LM A Sat, (A.60)
2B-B) (Ot - 0D P16 S SSMEEL M85 e St (AGD)

Moreover, using (A.59) and the equality
Qv - Q! Qv (Qus— Q) 1Ls

(N9 27,M2) 5,4 (N8 27,M2 + 3v), (A.62)

lo |l

if M9a+ 0, we get

(B—B) (Ot~ Q&) B -B)/6% 5 &N 57,19+ 5v) (1S 57,M19) 5,25/ 5%
= (M3 =2M) 5, +16] 117 22M3a/a3,  (A.63)

However, we have
a[(Nd =Nz,  +16) 7Ny 57M3a/a2 > 0

if and onlya ¢ Ker{[(M >2M9)%,* + 16711 5213}, Ker(L) denotes the null space spanned by
the columns of the matri. Becausd (13 >2M9)5,* +1g]~* and =7 are nonsingular, we then
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have
Ker{[(NY 2N) 5,1 + 16711 5219} = Ker(MY 32M3) = Ker(119).
So, the last term in (A.63) is positive if and onlyaf¢ Ker(I19), i.e., M2a# 0. In this case, we get
T(B—B) (2~ Q) H(B~B)/6> 5+ (A.64)
which entails that73 RNy

Suppose now thd@da = 0. We have

~ ~ ~ ~ ~

T(B—B) ('~ ) (B B)/6* = (B—BY(Tow) *~ 0. T HB-B). (A6
(A.66)

Since B — B 2 (NY3zM9 + 5) 18 and [(TOY) 1 - 10 H) 1 5 o, where o/ =
(yzpzzyzl)_l = yg%_lyzl, we get
P A1 A1/ 2 L 1 _
T(B—BY( @'~ Q) WB-B)/6* = 0857, +5v) " x
u
ng sz N9+ 3y)713. (A.67)

—~

Thus from (A.60)-(A.61), we find

1
5’(ngzzzn2+zv) Lot (N9 37,N9+ 3) 16 + S M8 S4 S2 N

U

5'(MY sz, N9+ 3) Lot oM. (A.68)

L
B - =
3 o3
2
03
With a little manipulation, we get

1 /
Ay 5 S [Sate— (955,184 50) 48| of [ 7206 — (NG Z,M8+5) 23] (A69)

u

From (A.38), we have

SoN|G 7, ™~ 0:.%2% L5 =N[5, 10, 0255517,

N[a,
#5775 = {SylEgt - MalM5y 2 M) *MylS} =7 (AT0)
It follows that

02
Mz = —5X(G; Ha), (A.71)

u
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wherep, = 58'[5,1 = (MY 57,19+ &) Yo~ [5,1 — (MY 27,19+ 5y)~1]5. From Doko and
Dufour (2010, Lemma A.1), we have

S =509+ 5) "t = (N 5,19+ 5v)"Y(NY 5,19) 5% (A.72)

Sincel9a = 0, this entails that
1 _ 1 - _
Uy = ﬁa’(ngzz—zn%zv) YN 57,n2) 5yt =X (N9 52,19+ 3y) 71 x
&

nd 57 Mda=0,
05 = 05-8(MY35,N3+5) 6 =02+ (5,1~ (M9 25,M3 + 5v) 18
= 02498 (N9 5z,N2+3) "N 57,M%a = o2,

wherea= 3,16 ando? = 02+ 6'5,15. Hence 43 L X2(G). And 74 is not consistent. A similar
result holds for the other statistics.
Overall, exogeneity tests are consistent if and only3a # 0.
d

PROOF OFTHEOREM 3.3  For anya # 0, we have rank1;) = G if and only if [,a # 0 if and
only if DWH and RH tests are consistent.
O

PROOF OFCOROLLARY 3.4 The proof follows directly from those of Theore8nl and Theorem
3.2 O

PROOF OFTHEOREM3.5 Suppose thad = 8o/v/T and/T, = M2 is fixed. (A) If rank 119) = G,
From (A.1)-(A.8), we have

Ov 2 ndszn? Qs> nysznd+ sy, (A.73)
/ / .
Y M]_U _p)o, Y (Ml M)U _p)07 (A74)
T T
62 = Uu/T — (UMY /T) O (Y M/ T) B a2, (A.75)
&2 = Uu/T = 2(UM1Y /T) QA (Y (ML — M)u/T) + (A.76)
+(U (M —M)Y/T)QAY (M —M)u/T) 5 02, (A.77)
Y'Mu 0= Y,(Ml_M)u L n0c
MY Spu+ Sve + 80, ———2= = NI Sy, A.78
\/'T — Iy Sou+Sve 0 \/'T — Il Su ( )
Since we have L L
A =VT(B—B)&VT(B-B), (A.79)
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and
VT (B—B) = Qrd (YMwy/VT) = QM (Y' (M1 — M)u/VT)
= (N9 5213+ 5) XY Sou+ Sve + 8o) — (M 5219 7119 Sy, (A.80)
& > 02An, An = (N9 55,09 1 — (MY 57,09+ 5)7, 1=1,23 (A.81)
So, following (A.13)-(A.15), we find
L
S = X*(G, Us,), (A.82)
wherep s, = Uiaag(ngzz—zn% Sv) AR (MY 2z,M3 + 5v)~80. By the same way, we can show
that

1
To = SX*(GoHsy) T = X*(Go s, | =34 A5 F(G ke~ G fg).  (A83)

For the statisticZ.7, its denominatog u'Mxu converges tas3. Its numerator is

1, 1u’sz_2<z_’sz_2>‘1z_’qu
ZU(My, —Mgu= = —2 Chia Chia el A.84
k2 ( X1 X) k2 \/—T T \/-T ( )
Moreover, we have
ZMx,Zo p o, _ _
2 = b 55 =37, — ZZ (N7 25 M)+ 3y) 'Y 55,
ZMxu  Zu  ZjMhY (Y’M1Y>1Y’M1u
VT VT T T VT
b Sy 57, N2(MY 5519+ 5v) (11 Sou+ Sve + Bo)
~ N[=Z5n2(ng £ 19 + 5) "0, 053],
Thus, L
RA = =X (ke V), (A.85)
2

wherevs, = 2 80(M15 27,17 + =) 17 27,52 57 M9(M9 55, M9+ 5y) L.

(B) Suppose now that ra(ﬂﬂg) < G. Sinced — 0 asT — +o, we can observe that equa-
tions (A.22)-(A.42) still hold so that we have

5 x3(G). (A.86)

By proceeding as in Theorefl, we get the results for the other statistics.
O
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PROOF OFTHEOREM4.1 Assume tha® = 0. Under the assumptions of the model andlif =
ng/v/T wherely is ak x G constant matrixfIY = 0 is allowed), then we have

TOy = W = (3,719 + S ) 25157 M5 + Swv), Qs B 3y, (A.87)
1 — —
?Y’Mlu—p> 5=0,Y'(My—Mu > (22,9 + ) 25 S, (A.88)
62 = Uu/T — (UMY /T)QE(YM/T) B 02— 8'5,15 = 02, (A.89)
B—B=(TQv) ™' (M1 —M)u> & (57,13 +S) 55 S (A.90)

Thus, we get

- vu _UuMpY =~ ~ A~
52 =

L oL 1, 4.
— =2 (B_B)+(B_B)/QLS(B_B)—>Eﬁa i—>§%17|:1,2,
T T o;
wherea? = 08+ S, 251 (22,13 + S ) K, T2V K, (22,715 + S ) 25 ' Sou, S0 that
L 1= <
jﬁ_) ﬁSZUZASZw I = 17 27
o-U
whereZa = 522,19 + Sw)®, (22,715 + S ) 25" Sincea > o, we have
15 i~
’% < ?SZUZASZw I = 17 2.
u

BecauseS, andSy are independent wheh= 0, it follows that
55,713+ Sv) 251 Suls,, ~ N(0, 03H,), (A.91)

whereW; is defined in (A.87). Hence,
la s 2
S SuTaSuls, ~ X*(G),
u

andH; < x4(G), i = 1,2. FurthermoreS; > %W\fl, which entails thaHs|s,, L X2(G), i.e.

Hs L Xx?(G). By the same way, we can also show that

ASFGl—C), %==XG), %=X (G). (A.92)
1l = 1

Ts = SIS < X°(G), and ZA = X k) (A.93)
u
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PROOF OFTHEOREM4.2  Suppose thall; = 12/+/T wherel12 = 0 is allowed. Then we have

TOy = W = (5719 + S ) 57137, M9+ Sw), Qs B 3y | (A.94)
1 L o
?Y’M1U—p> 3#0,Y (M1 —M)u= (55,19 + S ) 5 S, (A.95)
62 = Uu/T — (UMY /T)Q Y M/T) B 02— 8'5, %6 = 02, (A.96)
B-B = (TQv) ™Y (Mi—Mu-S K 55N +Sy) 55 S (A.97)
~ vu UMY » ~ A
5 = =22 (B-P)+(B-B)s(B-P)
o 1. .
L &2 = Lo2wli=123 (A.98)

whereo?, = 03, = 32, 03, = 02 and
62 = 05-28'K (253 + ) 25 S
+Su 25 (25 M0+ S )W, 5 K (28 + Swv) 25 S

Furthermore, we have

B-pB QUMY /T) — (T Q)2 (Mg —M)u

= -8+ S ) 55 S (A.99)

By noting thatSy, = Syva+ S = Sv 5, 16+ S, we easily get

B—B = S/0-W Sz +Sw) 5 S a0 — W (S5, M0+ S ) 35S

= WA (250 + ) 25 S
whereAy = W, — (27,19 + §zv)’ZZ:215_zv = (ZZ—ZI7§+S_2\/)’I'I§J anda=>,14. So,

L 1 -1& =15, ) i
A5 5 (M9a— 5715 ) By (MFa— 57/S). 1= 1,23,

I

whereo?, = 03, = 62, 03, = 02, andly = (57, M9+ S ) K, 1 (Zz, M9+ Sv)'. Moreover, Sy ~
N(0, 0257,) andS; is independent witls, whend = 0. Thus

— 1
HalS 5 xP(G. ), by = a N5 A T3a. (A.100)
&

SinceTs = (k3/T)H2, Ts=(Ka/T)Hzandks/T =k4/T =(T—-G)/T — 1 asT — +oo, it follows
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that

L1 s s
T = Ff(nga— 551%e) by(Ma—251S),
L 1 1S 1S
Tn = @(nSa— 551%e) by(Ma—55"S). (A.101)
By conditioning onS/, we get
TS = X2(G, py). (A.102)
Moreover, by noting that plirtG3) = plim (62) = o2, we also find

T—oo T—o

1
5 (Ma— 55'S ) Ay (MYa— 351S) and 75| Spv = X(G by

727 526

Furthermore, we can see that

T3 = U (M1~ M)Mg(M1 — M)u 5 S,(55 Sy S (A.103)
where the limit term in (A.103) can be written as
§2u(ZZ:21 o ZzizlAVZZ:Z:L)S_ZU — ( 1/232\/8.—1—2 1/2825) Av( 1/282Va+ Z 1/2825)

wheredy; = Iy, _22:21/2AVZZ:21/2 is symmetric idempotent with rarks — G. So, we havé'&f\s_zv L
02x?%(k— G, Av), where

Av 7a$\,z 2ps l/zszva_—aSN 57y s3hSva

—1/2

Further, we havely (Z; AVZ_l/Z) AVZZizl —AVZZizlAVZZizl and sinceAVZZizlAV = Ay, it fol-

lows thatAy ( Z—Zl/ZAVZZzl/Z) = 0. So, conditionally or$», the quadratic forms
(252 Sva+ 35 7S ) (55 *Sa+ 35 7S) and(Mfa— 5515 ) Ay (Mfa— 551 Se)

are independent and distributed as noncentral chi-squares. Thus

TS 5 F(G, ka—G; py, Av). (A.104)
For the statistidRH, the denominator is

1
—UMgu=

1 - — — —
= = (UMx,u— UMy, Zo(Z,Mx, Z2) ~1Z,Mx, ) , (A.105)

=
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where
Lum = LM TuMyy (M) M B 02— 87518 = o2
T U = _I_U 1U—TU 1Y( 1Y) iU—0y—02y70=0g,
1 S SN 515 P
and ?(u My, Z2(ZMx, Z2)~Z;Mx,u) — 0

underd = 0. So, we find%u’M)zu L ag. For the numerator, we have

(A.106)

1 1 UMy Zo [ ZoMx. Zo\ L ZLMy. u
EU/(Mxl—Mi)U - 1 ( 2" 21" )

Tk VT T VT

ZMqZo _ ZHpMZy  ZHMiY (Y'MY\ T ymZ, M7
Moreover, 2312 = 202 2L (Y '¥'1Y> YMZ P, 5 because™Z P 0. Now, we have

Z;M,u  Zhu  ZHMgY <Y’M1Y)1Y’M1u

VIVT VT LT T

Zu Zv
vxhereﬁ = %
Sy . Hence we have

> — — , -1, >
500+ L S+ Syn s, (YY) Y P s 5 and 20 b s 0t

1 L1 o= s
k—zu’(Mxl —Mg)u— ?2(828 — 57,M8) 551 (Se — 23,139) ,

thus

L

= 1= 1
RA (See — 2,1138) 25,1 (Soe = 27,1133) ~ (- X* (k2 KR

kzO'g
pp = angsznda
O

PROOF OF THEOREM 4.3  Let [19a = 0 in the proof of Theorend.2 above. Then, we have
My = Ay = Ug = 0. Further, we can observe that

G2=05 = 02+S:2 S (SvZ S) 5 (S ES ) TS 2SS (A107)
> g2 (A.108)

and the matri>€Z:21 — ZzizlAVZZ:zl is positive semi-definitd,e.

1

1 IR _1 1 1
S -Gt = 57kl 350 0350557 >0, (A.109)

_1 _1
wherely, — 25 2Ay 25 ? is idempotent of rank, — G. Then, the results of Thoerem3follow. [
2“7, Z
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PrROOF OFLEMMA 5.1 Assume thafl; is fixed. We have

ﬁ} = (Y/M1Y/T):1(Y/M1Y/T)=B+(Y'M1Y/T)’1(Y’M1U/T) (A.110)
B = SB1+72B,
= B+ ANEY/T) HYEWT)+ % (Ysd¥) " 1(Ysdu), (A.111)

Wherefj’1 andfﬁ’2 are defined in (3.11). SincéM;Y /T LA M553,M>+ 2y andY'Myu/T 25, we
have

BB (MzzM+5v)7 18 (A.112)
irrespective of whether rariki;) = G or not. We now focus ofi. From (A.29)-(A.37), We have
YiEYi/T 2 115,55 Mo, Y{EWT 2 0, (A.113)

and we have
B,—B, >0, (A.114)

irrespective of whether raiikl,) = G or not. Forﬁz, we distinguish 3 cases:

(i) if rank(,) = G, B reduces tg8, and we have8 > B.

(ii) if rank (IT2) < G, (A.113) still holds and we have; (Y,EY:/T) 1(Y,Eu/T) 2. 0. Furthermore,
from (A.29)-(A.37), we have

S5(Y3%) (Y330 > S5 M, By 5 Byt S, (A115)
where_4g is given by (A.37). From (A.111), we get
B> B+ M. (A.116)

31 is always consistent even if identification is deficient wt)ﬁgeis consistent only when identifi-
cation is strong.
By putting (i)-(ii) together, we have

B LB+ 724, (A.117)
where
Oifrank(z) = G,

SN = (A.118)

SoB Sy 55— MMMy 57, Mor) T3S
if rank(2) < G,
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where from (A.70), we have

SoMlgy7 ~ N[&'S, 0% {Szv — [Mo1(M157,Mo1) 1n§1]§2\,}71], (A.119)

or equivalently
Mgy ~ N[535,18, 02271, (A.120)
O

PROOF OFLEMMA 5.2  Suppose thafl, = ng/ﬁ (asymptotically weak instruments). We have
Y'M1Y /T LA 2y andY’'Muu/T LAY} Hence, we have

BEB+50=B+a=p" (A.121)

Now, we have

™

= [Y/(Mi=M)Y] "Y' (M1 —M)y
= B+[Y (M —MY] Y (M —M)u. (A.122)

Moreover, from (A.94)-(A.95), we have

Y(Mi—M)Y = TOy 54,
W (57,118 +S)' 25 (ZZZHZ +Sw), (A.123)

Y(Mi—Mu = (3519 +Sy)' 25 S
= Wa+t (25 +Sv) 251 (S — 55,154 (A.124)
Thus
B—p B W, (A.125)
where QY = W, H(5z,09 + §zv)'zZ:21(§zg — 37,M%a), and AY|g, ~ N[-W,1(Z5N2 +
Sw)' 25127, M3a, 02K, .
O

PROOF OFTHEOREM5.3 Theoremb.3follow from the definition of pre-test estimators given by
(5.1) - (5.3) and the results of Lemrbal and Lemméb.2 O
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