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ABSTRACT

We investigate the finite-sample behaviour of the Durbin-Wu-Hausman (D#¥id) Revankar-
Hartley (RH) specification tests with or without identification. We consider tetapss based on
conditioning upon the fixed instruments and parametric assumptions on theutlistribf the er-
rors. Both setups are quite general and account for non-Gaussas. eExcept for a couple of
Wu (1973) tests and the RH-test, finite-sample distributions are not avaitatitesfother statistics
[including the most standard Hausman (1978) statistic] even when the an@fGaussian. In this
paper, we propose an analysis of the distributions of the statistics undreth@onull hypothesis
(level) and the alternative hypothesis (power). We provide a genbaasbcterization of the dis-
tributions of the test statistics, which exhibits useful invariance propeniésatkhows one to build
exact tests even for non-Gaussian errors. Provided such finitdesamethods are used, the tests
remain valid (level is controlled) whether the instruments are strong or Wieekcharacterization
of the distributions of the statistics under the alternative hypothesis cledryiexthe factors that
determine power. We show that all tests have low power when all instrumeniisedevant (strict
non-identification). But power does exist as soon as there is one stratingment (despite the fact
overall identification may fail). We present simulation evidence which confoundinite-sample
theory.

Key words: Exogeneity tests; finite-sample; weak instruments; strict exogeneity; skyodgror
family; pivotal; identification-robust; exact Monte Carlo exogeneity tests.

JEL classification: C3; C12; C15; C52.
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1. Introduction

A basic problem in econometrics consists of estimating a linear relationshig wieexplanatory
variables and the errors might be correlated. In order to detect agenelity problem between ex-
planatory variables and disturbances, researchers often applggereity test, usually by resorting
to instrumental variable (IV) methods. Exogeneity tests of the type profmsBdrbin (1954), Wu
(1973), Hausman (1978), and Revankar and Hartley (1973) (Fetitd®WH-and RH-tests) are
often used to decide whether one should apply ordinary least squit& 6r instrumental vari-
able methods. One key assumption of DWH and RH-tests however, is thebévailstruments are
strong. Not much is known, at least in finite-sample, about their behaviban identification is
deficient or weak (weak instruments).

In the last two decades, literature has emerged that has raised cowdérttse quality of in-
ferences based on conventional methods, such as instrumental \&&ablerdinary least squares
settings, when the instruments are only weakly correlated with the endagesgnessors. Many
studies have shown that even ex-post conventional large-samplexapations are misleading
when instruments are weak. The literature on the “weak instruments” prableww consider-
able. Several authors have proposed identification-robust proeethat are applicable even when
the instruments are wehkHowever, identification-robust procedures usually do not focugeen
gressor exogeneity or instrument validity. Hence, there is still a reasandortterned when testing
the exogeneity or orthogonality of a regressor.

Doko and Dufour (2008) studied the impact of instrument endogeneitynaieson and Rubin
(1949, AR-test) and Kleibergen (2002, K-test). They show that botkeguiures are in general
consistent against the presence of invalid instruments (hence invalicefbyfothesis of interest),
whether the instruments are strong or weak. However, there are chees t@st consistency may
not hold and their use may lead to size distortions in large samples.

In this paper, our focus is not on the validity of the instruments, as doneolap Bnd Dufour
(2008). We question whether the standard specification tests are validtéas@mple when: (i)
errors have possibly non-Gaussian distribution, and (ii) identification &kwen the literature,
except for Wu (197371, 2 tests) and the Revankar and Hartley (19%37-test), finite-sample
distributions are not available for the other specification test statistics [ingike most standard
Hausman (1978) statistic] even when model errors are Gaussian andrkifiddtion is strong. This
paper aims to fulfill this gap by simultaneously addressing issues related tesfamitele theory and
identification.

Staiger and Stock (1997) provided a characterization of the asymptotitdigin of Hausman
type-tests [namely?i, 7%, and.z73] under the local-to-weak instruments asymptotic. They showed
that when the instruments are asymptotically irrelevant, all three tests arelgaéti¢ controlled)
but inconsistent. Furthermore, their result indicates #fatand.7# are conservative. The authors

1seee.g. Nelson and Startz (1990a, 1990b); Dufour (1997); Bekker (19P#jllips (1989); Staiger and Stock
(1997); Wang and Zivot (1998); Dufour (2003); Stock, Wrightlavogo (2002); Kleibergen (2002); Moreira (2003);
Hall, Rudebusch and Wilcox (1996); Hall and Peixe (2003); DonaldNewey (2001); Dufour (2005, 2007).



observed that the concentration parameter which characterizes instrguadity depends on the
sample size and concluded that size adjustment is infeasible. In this pa&pargue that this type
of conclusion may go far. The local-to-weak instruments asymptotic assuateslitinstruments
are asymptotically weak. When the model is partially identified, the Staiger ank @1@97) weak
instruments asymptotic may lead to misleading results. This raises the followintgoguémw do
the alternative standard specification tests behave when at least onegstis strong?

Recently, Hahn, Ham and Moon (2010) proposed a modified Hausmanhiest can be used
for testing the validity of a subset of instruments. Their statistic is pivotal edem the instruments
are weak. The problem however, is that the null hypothesis in their staty/ttee orthogonality of
the instruments that are excluded from the structural equation. Thenstipedaposed by the authors
can be viewed as an alternative way to assess the overidentificationti@ssricypothesis of the
model [Hansen and Singleton (1982); Hansen (1982); Sargan )1888gg and Donald (1993);
Hansen, Heaton and Yaron (1996); Stock and Wright (2000); anthétgen (2005)]. So, the
problem considered by Hahn et al. (2010) is fundamentally differethiess complex than testing
the exogeneity of an included instrument in the structural equation, ashydnarbin (1954), Wu
(1973), Hausman (1978), and Revankar and Hartley (1973).

Guggenberger (2010) investigated the asymptotic size properties ofstdgetest in the linear
IV model, when in the first stage a Hausman (1978) specification test igtakee as a pretest
of exogeneity of a regressor. He showed that the asymptotic size equédecmpirically rele-
vant choices of the parameter space. He then concluded that the Hapseviast does not have
sufficient power against correlations that are local to zero when id=tidn is weak, while the
OLS-based-statistic takes on large values for such nonzero correlations. While wetdgues-
tion the basic result of Guggenberger (2010) in this paper, we obfeavdis framework is the
Staiger and Stock (1997) weak instruments asymptotic, hence does aohafr situations where
at least one instrument is strong. Hence, the conclusions by Guggeni2010) may be mislead-
ing when identification is partial. Doko and Dufour (2011) provide a garesymptotic framework
which allows one to examine the asymptotic behaviour of DWH-tests includires welsere partial
identification holds.

In this paper, we only focus on finite-sample and propose two setups &racthen used to
study the behaviour of the DWH and RH exogeneity tests. In the first seiassume that the
structural errors arstrictly exogenoud.e. independent of the regressors and the available instru-
ments. This setup is quite general and does not require additional assusrgrtithe (supposedly)
endogenous regressors and the reduced-form errors. In panrtihe endogenous regressors can
be arbitrarily generated by any nonlinear function of the instruments ahdaee-form parame-
ters. Furthermore, the reduced-form errors may be heterosceda@kticsecond setup assumes a
Cholesky invariance properfypr both structural and reduced-form errors. A similar assumption in
the context of multivariate linear regressions is also made in Dufour anidkg802); and Dufour,
Khalaf and Beaulieu (2010).

In both setups, we propose a finite-sample analysis of the distribution of steeueder the
null hypothesis (level) and the alternative hypothesis (power), with orowitidentification. Our



analysis provides several new insights and extensions of earlierdunese The characterization
of the finite-sample distributions of the statistics, shows that all tests are typiohllgt to weak
instruments (level is controlled), whether the errors are Gaussian of mistresult is then used to
develop exact identification-robust exogeneity (MCE) tests which didteen when conventional
asymptotic theory breaks down. In particular, the MCE tests are still apf@iesien if the distri-
bution of the errors does not have moments (Cauchy-type distributioexfonple). Hence, size
adjustment is feasible and the conclusion by Staiger and Stock (1997) nmaisleading. More-
over, the characterization of the power of the tests clearly exhibits the$abtt determine power.
We show that all tests have no power in the extreme case where all instruanentgak [similar
to Staiger and Stock (1997) and Guggenberger (2010)], but dogmaver as soon as we have one
strong instrument. This suggests that the DWH and RH exogeneity teststeah ale exogeneity
problem even if not all model parameters are identified, provided pargatification holds. We
present simulation evidence which confirms our theoretical results.

The paper is organized as follows. Section 2 formulates the model studeé&extion 4 de-
scribes the statistics. Sections 5 and 6 study the finite-sample propertiededtteith (possibly)
weak instruments. Section 7 presents the exact Monte Carlo exogeneify)(Md& procedures
while Section 8 presents a simulation experiment. Conclusions are drawntiarS8@@nd proofs
are presented in the Appendix.

2. Framework

We consider the following standard simultaneous equations model:
y=YB+Ziy+u, (2.1)

Y =211+ 2ol +V (2.2)

wherey € RT is a vector of observations on a dependent variable RT*€ is a matrix of obser-
vations on (possibly) endogenous explanatory variales 1), Z; € R"*k is a matrix of obser-
vations on exogenous variables included in the structural equation ogsntg.1),Z, € RT >k

is a matrix of observations on the exogenous variables excluded frontrtieusal equation,
u=(up,...,ur) € RT andV = |Vy, ..., Vr]' € RT*C are disturbance matrices with mean zero,
B € R® andy € Rk are vectors of unknown coefficientd; € RX*C andf1, € R*C are matrices
of unknown coefficients. We suppose that the “instrument matrix”

Z = [Z1 : Z,) e R"** has full-column rank (2.3)

wherek = k; + ko, and
T-ki—k>G, k>G. (2.4)

The usual necessary and sufficient condition for identification of this hiedenk(/1,) = G.



The reduced form fojy, Y] can be written as:
Y = ZiMm+2T0+V,Y =211+ 221+ V (25)

whererry, = y+ M3, =16, andv=u+Vp =|vi,...,vr]". If any restriction is imposed op
we see fromm, = M3 thatf is identified if and only ranl(12) = G, which is the usual necessary
and sufficient condition for identification of this model. When rénk) < G, 3 is not identified
and the instrument®, are weak.

In this paper, we study the finite-sample properties (size and power) stahdard exogeneity
tests of the type proposed by Durbin (1954), Wu (1973), Hausma8}1&7d Revankar and Hartley
(1973) of the null hypothesis ¢ E(Y’u) = 0, including when identification is deficient or weak
(weak instruments) and the errduis V] may not have a Gaussian distribution.

3. Notations and definitions

Let B = (Y'M1Y)~1Y’Myy andB = [Y/(M; — M)Y]~1Y/(M; — M)y denote the ordinary least squares
(OLS) estimator and two-stage least squares (2SLS) estimafredpectively, where

M=M2Z)=1-2(Z2)"12, Mi=M(Z)=I-2(2121) 7, (3.1)
M1 —M = M1Z5(Z,M1Z5) ~1Z5M. (3.2)

LetV =MY, X =[Xy:V], Xo = [Y:2Zy], X = [X¢:V], X = [V : Z4], X = [X1: Zo] = [Y : Z], and
consider the following regression ofon the columns oY :

u=Va+e¢,

wherea is a G x 1 vector of unknown coefficients, argis independent o¥ with mean zero
and variances?. Define 8 = (B, y,d), 6, = (B, y,0), 6 = (b, y,a), whereb= B +a,
y=y—Mia, a= —la. We then observe that=Y +V, whereY = (I —M)Y =Y, andB =b

as soon ag = 0. From the above definitions and notations, the structural equation (2.1)ecan
written in the following three different ways:

y = YB+Ziy+Va+e =X60+e,, (3.3)
— YB+Ziy+Vb+e =X0, +e., (3.4)
= Yb+Ziy+2Za+e=X0+¢, (3.5)

where e, = P-Va+ €. Equations ?7)-(3.5) clearly illustrate that the endogeneity Ybfmay be
viewed as a problem of omitted variables [see Dufour (1987)].

Let us denote bf) : the OLS estimate of in (3.3), B0 : the restricted OLS estimate 6funder
a=0, in (3.3), 0, : the OLS estimate of,. in (3.4), 6, : the restricted OLS estimate 6f under
B=bin(3.4), @S . the restricted OLS estimate 6f underb=0in (3.4) or = —ain (3.3),5:



the OLS estimate of in (3.5), 50 : the restricted OLS estimate 6fundera = 0, and define the
following sum squared errors:

Sw = (y—Xw)(y—Xw),S(w) = (y—Xw) (y—Xw),

Sw) = (y-Xw)(y—Xw), YweRM2C (3.6)
Let

51 = 62A, 5,=03A, 53=0%A, 5,=06%A, (3.7)

51 = 820 -06%07E, 5,=5%A, 33=06%, (3.8)

SR = %Dlzz(z’zolzz)lngl, Dlz%MlliY, (3.9)

Qv = %Y’(Ml—M)Y, QLSZ%Y’Mlv,A:fz,gl—Qgsl, (3.10)

whered? = (y— YB)'M1(y—YB)/T is the OLS-based estimator o, 52 = (y—YB)'My(y —
Y[B)/T is the usual 2SLS-based estimatoragf (both without correction for degrees of freedom),
while 5% = (y - YB)' (M1 —~M)(y YB)/T = 8%~ 63, 65=06"—(B-BYAB-B)=5"-
F2(B — B) 55 LB - B) = (y=YB)M(y—YRB)/T, andd3 = yMgy' /T may be interpreted as
alternative IV-based scalmg factors; = (ko —G) /G, kK2=(T—-k1—2G)/G, K3=K4=T —ky —

G, andkr = (T —k; — ko — G) /ko. From (3.6) and (3.7)-(3.10), we can see that

SB) = S.(8.), S(Bo) =S.(8.0), S(B) = T52, S(Bo) = To2, S.(B)) =T&2.  (3.11)
Throughout the paper, we also adopt the following notations:

Co = (AL—A)A A=A, AL=[Y(Mi—M)Y] Y (M —M),  (3.12)

A = (YMY)"Y'My, 51:%M1M<M1_M)Y, Dlz%MlMMly, (3.13)
51 = (Vate€)Di(Va+e)Qut— (Va+e)Di(Vate)Qrd, (3.14)
Qv = Qu(UzV) = (H+V) (M—M) (U +V), (3.15)
Qs = Qus(HV) = (Up+V) Ml +V), (3.16)
Wy = v (U, PV, V)2 = (g +V)' DDy + V), (3.17)
Ws = Wis(fy, Mo, V, V)2 = (Uy +V)'Cu(py V), (3.18)
C. = Mi—Mi(Hp+V)Qus(p,V) H(Hp+V)' My (3.19)
D. = Mi—Mi(+V)Qu (U V) H(Hp+V) (M1 —M), (3.20)
Wi = wi(Hy, KoV, V)2 = (Uy +VE(Hy +V), (3.21)
W3 = WaHy, Mo, V, V) = (g +V)'[C. —C'ATICI (g + V), (3.22)
Wi = Wr(Uy, Ha, V, V)2 = (g +V)'[D1—Po,z,) (1 + V), (3.23)

C = Qu(HV)  (Hp+V) (M1—M) — Qus(ip,V) (1o +V)' M1, (3:24)



E = (Mi—M)[l = (U +V) Qv (V) "o +V) ] (M1~ M), (3.25)

O.)% = O.)3(I~ll, HZ)\7)\7)2: wiz\/v wézlz 004(#17 I‘l25\7’\7)2: O‘)ES7 (326)
— B L — 1 _
Mg, Ha Vo V) = Claf, Qv — fs@g]'C, (g, Hp, V, V) = w—IZVC’A 'c, (3.27)
— 1 _ - — 1 _
I_3(u17 Ho, Va \7) = KESC/A 1Ca ﬁ(ula Ilz,V’ \7) = JIZC,A lc ) | = 1a 27 37 4, (328)
— 1
,_R(I'lla u27va\7) = EPD1227 (329)
R

where for any matrix8, Ps = B(B'B) 1B’ is the projection matrix on the space spanned by the
columns ofB, andMg = | — Rs.

Finally, letC;; = IM1,Z,M1Z51, denotes the concentration factowe then havév;Z,/M,a = 0
ifand only ifCra=0, i.e. a= (Ig —C,,Cy)a*, whereC;; is any generalized inverse 6f;, anda*
is an arbitraryG x 1 vector [see Rao and Mitra (1971, Theorem 2.3.1)]. Let

N (Cp) = {WeR®: Cpw=0}, (3.30)

denotes the null set of the linear map BA characterized by the matri®,;. Observe that when
Z,M1Z; has a full column ranks, 4 (Cy) = {w € R®: M, = 0}. Hence, provided identification
holds,.#"(C;;) = {0}. However, when identification is weak or deficient, there exigt~ 0 such
thatwg € .4 (Cp).

Section 4 presents the DWH and RH test statistics.

4. Exogeneity test statistics

We consider Durbin-Wu-Hausman test statistics, hamely three versions datiisman-type statis-
tics .77, 1 = 1, 2, 3], the four statistics proposed by Wu (1973],1 = 1, 2, 3, 4] and the test statistic
proposed by Revankar and Hartley (1973, RH). First, we propogefizdi presentation of these
statistics that shows the link between Hausman-and Wu-type tests. Se@phwide an alterna-
tive derivation of all test statistics (including RH test statistic) from the red#af the regression
of the unconstrained and constrained models.

4.1. Unified presentation

This subsection proposes a unified presentation of the DWH and RH tisticta The proof of
this unified representation is attached in Appendix A.1. The four statistigoped by Wu (1973)
can all be written in the form

A = K|(B_[§)/ilil([§_[§)a | =1,234 (41)

11
2If the errorsV have a definite positive covariance matiy, then, >CrZ,, ? is often referred to as the concentra-

tion matrix. Hence, we referred @, as the concentration factor.



The three versions of Hausman-type statistics are defined as

A = TR-BEB-B), =123 (4.2)
And the Revankar and Hartley (1973, RH) statistic is given by:
R = KRylﬁRy. (43)

The corresponding tests rejecg hen the test statistic is “large”. Unlik&#gs7, 74, i=1,2, 3,
and 7,1 =1, 2,3, 4, compare OLS to 2SLS estimators @f They only differ through the use of
different “covariance matrices”. 77 uses two different estimators @flzJ while the others resort
to a single scaling factor (or estimator of). The expressions of théj,| = 1,2, 3,4, in (4.1)
are much more interpretable than those in Wu (1973). The link between WQ@)h®tations and
ours is established in Appendix A.1. We use the above notations to betteleseddiion between
Hausman-type tests and Wu-type tests. In particular, it is easy to seB;that, and 5, = 53, so
T3 = (K3/T)#2and Ty = (K4/T) 3.

Finite-sample distributions are available 6%, .7, and Z.7# when the errors are Gaussian.
More precisely, ifu ~ N[0, o?l7] andZ is independent af, then:

Fi~F (G, ko—G), F~F(G,T—k —2G), BH~Fks,T—k —k»—GC) (4.4)

under the null hypothesis of exogeneity. If furthermore, (&K = G and the sample size is large,
under the exogeneity &f, we have (with standard regularity conditions):

5 x46),i=1,2,3,F 5 x3(G),1 =3, 4. (4.5)

However, even when identification is strong and the errors Gaussidfiniteesample distributions
of 74, 1=1,2, 3 and, | = 3,4 are not established in the literature. This underscores the impor-
tance of this study.

4.2. Regression interpretation

We now give the regression interpretation of the above statistics. Frotioi®&¢ except for77,
IR,1=2,3, A,1=1,2, 3,4 andZ 7 can be expressed as [see Appendix A.2 for further details]:

Ay = T[S(Bo)—S(8))/S.(8)), 75 =T[S(Bo) — (8)]/S(Bo), (4.6)
7 = Kki[S(Bo) ~ (B)]/[S.(8)) — S(B)], T2 = ka[S(Bo) —S(B)]/S(B),  (4.7)
7 = KkalS(Bo) — (0)]/S.(80). Za = Kka[S(Bo) — S(B)]/S(B0). (4.8)
AA = Kr[S(60)—S(0)]/S(60), (4.9)

wheresg(é) = Tég. Equations (4.6) -(4.9) are the regression formulation of the DWH and RH
statistics. It interesting to observe that DWH statistics test the null hypothgsia+H 0, while RH



tests H : a= —la=0. If rank(1;) = G, a= 0 if and only ifa= 0. However, if rankIT2) < G,
a= 0 does not entath= 0. So, Hy C H{ but the inverse may not hold.

Our analysis of the distribution of the statistics under the null hypothesid)(lewe the alter-
native hypothesis (power), considers two setups. The first setilne istrict exogeneityi.e. the
structural errow is independent of all regressors. The second settipeisCholesky error family.
This setup assumes that the reduced-form errors belong to Choleskig$a

5. Strict exogeneity

In this section, we consider the problem of testing the strict exogeneityidd. the problem:

Ho : uisindependent ofY,Z] (5.2)
VS
Hy : u=Va+eg, (5.2)

whereais aG x 1 vector of unknown coefficients,is independent of with mean zero and variance
o2. Itis important to observe that equation (5.2) does not impose restrictivthestructure of the
errorsu andV. This equation is interpreted as the projectiomaf the columns o¥ and holds for
any homoscedastic disturbaneesndV with mean zero. Thus, the hypothesig ¢an be expressed
as

Ho : a=0. (5.3)

Note that (5.1) - (5.2) do not require any assumption concerning théidaat form of Y. So, we
could assume that obeys a general model of the form:

Y = 0(Z1,2,,V, 1), (5.4)

whereg(.) is a possibly unspecified non-linear functidi,is an unknown parameter matrix and
V follows an arbitrary distribution. This setup is quite wide and does allow onéutty several
situations where neith&f nor u follow a Gaussian distribution. This is particularly important in
financial models with fat-tailed error distributions, such as the Studdrtrthermore, the errors
andV may not have moments (Cauchy distribution for example).

Section 5.1 studies the distributions of the statistics under the null hypothesB.(le

5.1. Pivotality under strict exogeneity

We first characterize the finite-sample distributions of the statistics unglenéluding when iden-
tification is weak and the errors are possibly non-Gaussian. Theorkeastablishes the pivotality
of all statistics.



Theorem 5.1 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Suppose the assump-
tions(2.1), (2.3) - (2.4) hold. Under H, the conditional distributions givefy : Z] of all statistics
defined by(4.1) - (4.3) depend only on the distribution of/a, irrespective of whether the instru-
ments are strong or weak.

The results of Theorers.1indicate that if the conditional distribution ¢éi/0,)|Y,Z does not
involve any nuisance parameter, then all exogeneity tests are typicallgtriabweak instruments
(level is controlled) whether the instruments are strong or weak. Moreesttegly, this holds
even if (u/oy)|Y,Z do not follow a Gaussian distribution. As a result, exact identificationsbbu
procedures can be developed from the standard specification tedicstati®n when the errors
have a non-Gaussian distribution (see Section 7). This is particularly inmparthnancial models
with fat-tailed error distributions, such as the Studeot-in models where the errors may not have
any moment (Cauchy-type errors, for example). Furthermore, thd pxacedures proposed in
Section 7 do not require any assumption on the distributidhafd the functional form of. More
generally, one could assume thbbeys a general non-linear model as defined in (5.4) and that
Vi,..., Vr are heteroscedastic.

Section 5.2 characterizes the power of the tests.

5.2. Power under strict exogeneity

We characterize the distributions of the tests under the general hypdhe3isAs before, we cover
both weak and strong identification setups. TheobePpresents the results.

Theorem 5.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Let the assumptions
(2.1) - (2.4) hold. If furthermore H in (5.2) is satisfied, then we can write

A = T(Va+e)(A—A) S (A —A)(Vate), (5.5)
#5 = T(Va+e)'Co(Va+e)/(Va+g)Di(Va+e), (5.6)
M5 = T(Va+e)Co(Va+e)/(Va+e€)Di(Va+te), (5.7)
J1 = Ki(Va+¢)Co(Va+¢)/(Va+e)' (Dy—D1)(Va+e), (5.8)
T = Ka(Va+¢€)Co(Va+e€)/(Va+e€) (D1 —Co)(Va+te), (5.9)
T3 = Ks(Va+€)Co(Va+e)/(Va+e)Di(Va+e), (5.10)
T = Ka(Va+¢€)Co(Va+e€)/(Va+e€)'Di(Va+e), (5.11)
RHA = Kr(Va+e)Po,z,(Va+e€)/(Va+e) (D1—Po,z,)(Va+e), (5.12)

whereZ;, Co, A1, D1, D1, Qv , Qis, A Kg, andk,, | = 1,2, 3, 4, are defined in Sectiod

We note first that Theorem 2follows from algebraic arguments only. S¥%,: Z] can be random
in any arbitrary way. Second, givel : Z], the distributions of the statistics only depend on the
endogeneitya. We Can then observe that the above characterization clearly ex(rﬂbitsAl)Va,



CoVa, D1Va, 51Va, Pb,z,Vaas the factors that determine power. As a result, Corofe@gxamine
the case where all exogeneity tests do not have power.

Corollary 5.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theorerb.2, all exogeneity tests do not have power if and ordf.a”(C;;). More precisely,
the following equalities:

A = Te(A—A) S AL—Ae, (5.13)
Mo = Te'Coe/€'Dig, 3 =TeCoe/e' D1t (5.14)
Ji = Ki€'Cog/€(D1—D1)e, T = K26'Coe /€' (D1~ Co)e, (5.15)
Tz = K3e'Coe/€'D1€, Tn = K4€'Coe /€' D€, (5.16)
RHA = Kr€'Po,z,€/€(D1—Po,z,)€ (5.17)

hold with probability 1 if and only if & .# (Cy), where 31, = 'D1eQ* — s’Dlsﬁfsl.

Whena e .4 (Cy), the conditional distributions of the statistics, gij#n Z], are the same under
the null hypothesis and the alternative hypothesis. Therefore, theanditonal distributions are
also the same under the null and the alternative hypotheses. This entailsetpatver of the tests
can not exceed the nominal level. This condition is satisfied wies 0 (irrelevant instruments),
and all exogeneity tests have no power against complete non identificatioodefl parameters.

We now analyze the properties of the tests when model errors belong keskhéamilies.

6. Cholesky error families

Let
U=[uV]=[Uy...,Ur], (6.18)

W =[v,V]=[u+VB,V] = W, Wo, ..., W] (6.19)
We assume that the vectdds= [u;, V/]’,t =1, ..., T, have the same nonsingular covariance matrix:

/
o2 o

ElUU,] =5 =
[UtU] 5 5

]>o, t=1,...,T, (6.20)

where 2y has dimensiorG. Then the covariance matrix of the reduced-form disturbaiges
%, V/]" also have the same covariance matrix, which takes the form:

oi+B'xp+2p'd B'5+9
Zvﬁ—l-a 2v

(6.21)

whereQ is positive definite. In this framework, the exogeneity hypothesis canfiressed as

Ho: 5 =0. (6.22)

10



Suppose that equation (5.2) holds, we can see from (6.20) that
d=2>va, oi=02+adxa=02+85,%. (6.23)
So, the null hypothesis in (6.22) can be expressed as
Hy:a=0. (6.24)

Assume that
W=JW,t=1...,T, (6.25)

where the vectowr) = veq\W, ... ,Wr) has a known distributiofiy andJ € RC+9*(G+1) is an
unknown upper triangular nonsingular matrix [for a similar assumption in theegbof multivariate
linear regressions, see Dufour and Khalaf (2002) and Dufour @@l0)]. When the erroif obey
(6.25), we say thaty belongs to the Cholesky error family.

If the covariance matrix dﬂ is an identity matriXg. 1, the covariance matrix o is

Q =EWW]=1JJ. (6.26)
In particular, these conditions are satisfied when
W N[O, Igye] t=1, ..., T. (6.27)
Since the) matrix is upper triangular, its inversie ! is also upper triangular. Let
P=(J7Y. (6.28)
Clearly,Pis a(G+1) x (G+ 1) lower triangular matrix and it allows one to orthogonaliizk:

PIIP=lg:1, (3I) *=PP. (6.29)

In (6.29),P’ can be interpreted as the Cholesky factokof!, soP is the unique lower triangular
matrix that satisfies equation (6.29); see Harville (1997, Section 14.5r8met.5.11). We will
find useful to consider the following partition &f:

(6.30)

P1 P

whereP;1 # 0 is a scalar ané; is a nonsingulaG x G matrix. In particular, if (6.26) holds, we
see [using (6.21)] that an approprid@enatrix is obtained by taking:

Pu = (02-08'5,%0)Y2=0:, PpiyPo=lg, (6.31)
P1 = —(B+2,9)(05—-8'%,'0) ?=—(B+a)o, " (6.32)

11



Further this choice is unique. From (6.32> only depends ondy and P13 + P =
—(5,16)0; = —ao; L. In particular, if5 = 0, we havePy; = 1/0y, Po1 = —3/0y andPyy B+ Py =
0.

If we postmultiply[y, Y] by P, we obtain from (2.5):

- +MpB -
VY] = [V, YIP = [YPu+ Y P, YBo = 71,25 | ¥ 1B M (6.33)
MBI
where
W=UP=[V,V]=W,..., W], W =%, V], (6.34)
V=VR1+VR =V, ..., ], V=VRa=M,...,Vr]". (6.35)
Then, we can rewrite (6.33) as
y = Zy(yPuu+ M)+ 2ZM{ +v, (6.36)
Y = ZiMPo+ZlPor+V, (6.37)
where
{ = BPu+Pou=—(5,10)/(0] - 8'5,'5)? = —ao; ™. (6.38)
SinceMZ = 0, we have
My = MV, MY =MV, (6.39)
My = Mi(py+V), MY =My (i, +V). (6.40)

where

u, = Mlzzl'IzZ:—aglMlzzl'lza,
Uy = MiZolMPs. (6.41)

Clearly, u, does not depend on the endogeneity paranmtelzglé. Furthermore{ =0< 0 =
a= 0 andu,; = 0. In particular, this condition holds undergHd = a = 0). If 1, = 0 (complete
non-identification of the model parameters), we haye= 0 andu, = 0, irrespective of the value
of 4. In this case,

My =MV, MY = MV, Myy = M1V, MY = M;V . (6.42)

We can now prove the following Cholesky invariance property of all tiesissics.

Lemma 6.1 CHOLESKY INVARIANCE OF EXOGENEITY TESTS Let

(6.43)

R 0
R— 11
R R
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be a lower triangular matrix such thatiR+# 0 is a scalar and R is a honsingular G< G matrix.
If we replace y and Y by,y=yRi1+YRs1 and Y. = YRy in (4.1) - (3.10), then the statistics H
(i=1,2,3),T (I =1,23,4) and RH do not change.

The above invariance holds irrespective of the choice of lower triangud#ix R. In particular,
one can choosk = P as defined in (6.28). We can now prove the following general theoretineon
distributions of the test statistics.

Theorem 6.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions (2.1) - (2.4) and assumptioif6.25), the statistics defined if4.1) - (3.10) have the following
representations:

A =TU +V'Ti (g, U, V) [y +V], 1=1,2,3,

qu - KI[U1+\7J/I_I(U17U27\77V)[U1+\7J7 I :17 27 37 47

RA = KrlHy +V'TR(Hy, Up, V) [y + V],

where[V, V], u;, U, are defined in(6.34) and (6.41), I;, I}, and /R are defined in Sectiod.

The above theorem entails that the distributions of the statistics do not depesiitherf3 or .

Observe that Theoref2follows from algebraic arguments only, Bg Z] and|v, V] can be random

in an arbitrary way. If the distributions & and[\7,\7] do not depend on other model parameters,
the theorem entails that the distributions of the statistics depend on model persaordy through
M4, andp,. Sincep, does not involve, i, is the only factor that determines powerpif # 0, the
tests have power. This may be the case when at least one instrumentgs(padial identification

of model parameters). However, we can observe that Wheta[T,a = 0, i, = 0 and exogeneity
tests have no power. We now provide a formal characterization of thef patrameters in which
exogeneity tests have no power.

Corollary6.3characterizes the power of the tests wahen. 4" (Cy).

Corollary 6.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theorens.2, if a € .4 (Cy), we haveu; = 0 and the statistics defined {4.1) - (3.10) have
the following representations:

A = TVL(Up VIV, i=1,2,3,% =KV (UG, | =1, 2, 3,4,
R = KRVFR([JZ,\T,V)\T

irrespective of whether the instruments are weak or strong, wﬁepez,\T,V) = I'i(o,uz,\T,V),
I_I(IJZa\TaV) = ﬁ(ovlJZ)\T’V)a rR(u27\TaV) = I_R(O7I~127\7>V)a Z = _(2\715)/(05 - 6/2\715)1/25 I_i7

[, andlg are defined in Sectiod
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First, note that whem € .4 (Cy), i.e. whenM;Z,[M,a = 0, the conditional distributions, given
Z andV of the exogeneity tests, only depend pyirrespective of the quality of the instruments.
In particular, this condition is satisfied whdéf, = 0 (complete non-identification of the model
parameters) od = a = 0 (under the null hypothesis). Singg, does not depend od or a, all
exogeneity test statistics have the same distribution under both the null hyisgthe- a= 0) and
the alternativéd # 0) whenac .4/ (Cy) : the power of these tests cannot exceed the nominal levels.
So, the practice of pretesting based on exogeneity tests is unreliable inghis ca
Theorenb.4characterizes the distributions of the statistics in the special case of GaeiIssis.

Theorem 6.4 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Let the assumptions of
Theorem6.2 hold. If furthermore the normality assumpti¢6.27) holds and Z= [Z;, Z,] is fixed,
then

A = T+ VT, Hp, V) [y + V],

Ay = Ty +VTa(lg, U, UV [y +V] ~ Ty(V; V1) /@y(V, Va),
BNV ~ T/[1+k3F(T —ki—2G, G, Uz, v1)] < K;F(G, T —ky — 2G; vy, U2),
91|\7 ~ F(G, ko —G;vq, Ul),%NNF(G,T—kl—ZG;vl, U2),

Tz = Ka[Hy +VT2(Hy, 2, V. V) [y +V] ~ K291 (V, V1) /@5(V, V3)
TN~ Ka/[1+K;F (T —ki — 2G, G; Uz, v1)] < K3F (G, T —ky — 2G; vy, U2),
RAN ~ F(kp, T—k—G;Vg, UR),

where, (V; v1)|V = [y +V'C'A~IC[p; + V]|V ~ X2(G;va), (¥, Va)|V = [V ~ xH(T — ki —
G;v3), vi = piC'A™ICuy, v3 = pi(DD*)py, U1 = PIEH,, U2 = py(C. —C'AIC)yy, vR=
H1Pb.z, 11, Ur=H1(D1—Po,z,) Uy, K1 =TG/(T -k —2G), k3 = (T —ki —G)G/(T — k. — 2G).

The above theorem entails that giw_énthe statistics7:, %> and% 2 follow double noncentral
F-distributions, whileZ; and .73 are bounded by a double noncentratype distribution. How-
ever, the distributions a3, 475 and.771 cannot be characterized by standard distributions. As in

Theorem6.2, 1, is the factor that determines power. df # O, the exogeneity tests have power.
However, wheru,; = 0, all tests have no power as shown in Coroll&r§.

Corollary 6.5 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theorent.4, if a € .4 (Cy), we havev, = v3 = U1 = U2 = Vg = Ur = 0 so that

4 = TVI(Up, V)V, 5 = TV (o, V)WV~ Ty (V) 0o(V)
M~ T/(L+KF(T —ki—2G, G)) < KiF(G, T — ki — 2G),
T ~ F(G k—G), Z~F(G,T—k —2G),

Tz = KaVTa(p V)V Koy (V) /@5 (V),

T~ Ka/[1+KF(T —ki—2G, G)] < kK3F (G, T —ky — 2G),

RHA ~ Flko,T—k—G),
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whereg; (V) = @, (¥, 0), @,(V) = 95(V; 0), @y(V; V1), @4(¥; va), Fi(Hy, Hp, W,V ), | = 1,2 are defined
in Theorenb.4.

Observe that whea € .4"(C;), the non-centrality parameters in tRedistributions vanish. In
particular, under the null hypothesig hve havea= 0 € .4'(C;;) and all exogeneity tests are pivotal.
Furthermore, all exogeneity test statistics have the same distribution undedithgpothesis$ =
a = 0) and the alternatived(£ 0): the power of the tests cannot exceed the nominal levels.

We now describe the exact procedure for testing exogeneity even witsaassian errors: the
Monte Carlo exogeneity tests.

7. Exact Monte Carlo exogeneity (MCE) tests

The finite-sample characterization of the distribution of exogeneity test statistithie previous
section show that the tests are typically robust to weak instruments (leveiti®ibed). However,
these distributions (under the null hypothesis) of the statistics are notasthifdhe errors are
non Gaussian. Furthermore, even for Gaussian ervéts, 772, and.Z3 cannot be characterized by
standard distributions. This section develops exact Monte Carlo tests areiaentification-robust
even if the errors are non-Gaussian.

Consider again eq.(2.1) and assume that we test the strict exogen¢jtyenfthe hypothesis:

Ho : uisindependentdfy,Z]. (7.1)

If the distribution under iof u/ oy is given, the conditional distributions of exogeneity test statistics
given|Y, Z] are pivotal and therefore can be simulated [see The&rénLet

W € (A AR, =123 =123, 4}. (7.2)

We shall consider two cases: first, the suppokois continuous and second, the support may be a
discrete set.

We first focus on the case where exogeneity tests have continuousudistréh LetW, ..., Wy
be a sample oN replications of identically distributed exchangeable random variables with the
same distribution a#/ [for more details on exchangeability, see Dufour (2006)]. Defid&) =
(Wi, ..., WN)" and letWp be the value ofV based on the observed data. Let

~ NGy(x)+1

Pn(X) = N1 (7.3)
Gn(x) = Gn[x # (N)], (7.4)
where the survival functio®y is given by
b 7 (N = iﬂ[%zx]a (7.5)
=
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1c = 1 ifcondition C holds,

= 0 otherwise. (7.6)
Then, we can show that
Plpn(#0) <a] = W for 0<a <1, (7.7)

[see Dufour (2006, Proposition 2.2)], whdre] is the largest integer less than or equaktdSo,

Pn(Wo) < a is the critical region of the MC-test with leveHa andpy (Wo) is the MC-test p-value.
We shall now extend this procedure to the general case where the distribii the statistic

W may be discrete. Assume that(N) = (W, ..., Wy)' is a sequence of exchangeable random

variables which may exhibit ties with positive probability. More precisely

P(#;=#y)>0 forj#j' j,i'=1...,N. (7.8)
Let us associate each variabg, j =1, ..., N, with arandom variabl®j, j =1, ..., N such that
U, ..., % S w01), (7.9)

U(N) = (Uy,...,Un) is independent oV(N) = (W4, ..., Wy)" whereU (0, 1) is the uniform dis-
tribution on the interval0, 1). Then, we consider the pairs

%=%), i=1,....N, (7.10)
which are ordered according to the lexicographic order:
(W5, %) < Wy Uy ) <= Wi < Wy or (W) =Wy and% < Uj)}. (7.112)
Let us define the randomized p-value function as

. . NGy +1

Pn(X) = TNrl (7.12)
where the tail-area functioBy is given by
Gn(x) = Gn[x %, 7 (N), % (N)], (7.13)
and
- 1 N
Onx %, 7 (N),Z(N)] = § Zl]l[:Z]z(x,%)]’ (7.14)
=
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Up is aUu(0,1) random variable independent\W(N) andU (N). Then, we have

Plin(e) <o) = O ror 0<a<a, (7.13)

[see Dufour (2006, Proposition 2.4)]. Spn(Wo) < « is the critical region of the MC-test with
level 1— a and py(Wp) is the MC-test p-value.

The algorithni for computing the Monte Carlo exogeneity tests p-values in the continuous
distributions setup, is described as follows:

1. compute the test statisi'y based on the observed data;

2. generatd.i.d. variablesull) = | (1” ,uy j=1,... N, according to the selected
distribution—for exampleut(‘) ~N[0,1] forallt=1,...,T andj=1,...,N. Since the
distribution ofW under H does not involve eitheB or y, compute the pseudo-samples as
functions of the OLS estimatofs andy from the observed data, i.e.

v =B z2 0y t=1,.. T j=1,... N, (7.16)

given the observed dataandZ;;
3. compute the corresponding test statisfié$), j=1,...,N;

4. compute thé&/C p-value
Pvc = Pn[#0); (7.17)

5. reject the null hypothesisgat levelaq if puc < a1.

The following section present the Monte Carlo experiment.

8. Simulation experiment

In this section, we analyze the finite-sample behaviour (size and pow&Yi and RH tests
through a Monte Carlo experiment allowing for the presence of non @ausgors (Cauchy-type
errors). Two versions of the tests are considered: (i) the standard BNd RH tests [see Wu
(1973), Hausman (1978) and Revankar and Hartley (1973)]; antth¢iigxact Monte Carlo version
of these tests, namely MCE-tests.

Now, we consider the model described by the following data generating g0

Y=Y1B1+Y2Bo+u, (Y1,Y2) = (22121, 2Z20M22) + (V1,V2), (8.1)

3The algorithm can easily be generalized to discrete cases.
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whereZ; is aT x ky matrix of instruments such thad follow i.i.d N(O, I,) fort =1,..., T, IMx
and[1,;, are vectors of dimensidkg. We assume that

u=Va+¢&=Via; +Voar+¢, (8.2)

wherea; anda, are 2x 1 vectors anc is independent witlv = (V1,V2), Vi andV, areT x 1
vectors. Throughout this subsection, we consider two setup3t @nde; are independent such
that

Vi, Var) 29N (0, 0 and & "“'N(0, 1), foral t=1,...,T, (8.3)
0 1

(2) Vt andg; are independent such that

Vi, Vot~ i.i.d standard Cauchy distribution (8.4)
and & ~ iidstandard Cauchy distribution=1,...,T. (8.5)
We define
M31=n4,Co, M2 =n,Cy, (8.6)

wheren,; andn, take the value O (design of complete non identificatiof}, (design of weak
identification) or.5 (design of strong identification)Co,C;] is akz x 2 matrix obtained by taking
the first two columns of the identity matrix of order. Equation (8.6) allows us to consider partial
identification of B = (B4,B,)". In particular, if [,1 = 0 and 15,122 # 0, B4 is not identified
but B, is. The number of instruments varies in{5,10,20} and the true value of is set at
Bo = (2,5)'. Note that whem, andn, belong to{0, .01}, the instrument&, are weak and both
ordinary least squares and two-stage least squares estimaBars(@f 1) are biased and inconsistent
unlessa; = ap = 0. The sample size is fixed @t= 50. The endogeneity parameieis chosen such
that

a= (ag,a) € {(-20,0),(-5,5),(0,0),(.5,.2)",(100,100)} . (8.7)

From the above notations, the usual exogeneity hypothe¥issoéxpressed as
Ho:a=(a;,a) = (0,0)". (8.8)

The nominal level of the tests for the standard DWH and RH tests is 5%. Ebrvadue of
the parametea, we compute the empirical rejection probability of all test statistics. Wder0,
the rejection frequencies are the empirical levels of the tests. Howevenav 0, the rejection
frequencies represent the power of the tests. Section 8.1 presergsuhs for the standard DWH
and RH tests.
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8.1.

Standard exogeneity tests

For the DWH and RH standard tests, the number of replications is $¢t=all0,000. Table 1
presents the results when the errors are Gaussian while Table 2 contsi@$dhthe Cauchy-type
errors. In the first column of each table, we report the statistics, while ise¢bend column we
report the values df, (number of excluded instruments). In the other columns, for each value of
the endogeneity parameteand the quality of the instrumentg andn,, the rejection frequencies
at nominal level 5% are reported.

From the results of the tables, we then observe that:

1.

all DWH and RH tests are identification-robust (level is controlled) wdrethe errors are
Gaussian or not;

. for Gaussian errors [setup (8.3%, %2, 74, 743, andRH control the level while7s, 77 and

J?5 are conservative;

. for Cauchy-type errors [setup (8.5)], unlike the previous casaldition t0.73, 571 and.7%,

71 is also conservative when identification is deficient. The results are theaamesetup
(8.3) for %, 94, 73, andRH,;

. all exogeneity tests exhibit power even if not all parameters are identfrevided partial

identification holds. Hence, the results of Staiger and Stock (1997) aggeaberger (2010)
may be misleading;

. when identification is completely deficiente. n, = n, = 0 (irrelevant instruments), all

DWH and RH tests have no power whether the errors are Gaussian [gimibér to Staiger
and Stock (1997) and Guggenberger (2010)];

. in terms of power comparisowzz dominatess and % dominatess#; irrespective of

whether identification is deficient or not. In the same way,dominates T, .74 dominates
1 and.Z; dominates §.
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Table 1. Power of exogeneity tests at nominal level 8%; 2, T =50

(al, 8.2)/ = (—207 0)/

(a1,8)" = (=5,5)

(al,az)’ = (07 0)/

(al,az)’ = (.5, .2)/

(a1,a2)’ = (100, 100/

k1 ny=0 ny=01 ny=5|\n,=0 n=01 nu=5{n,=0 =01 ny=5|n=0 ny=01 ny=5{n,=0 n;,=.01 n;=5
N2=0 nN,=0 NnNy=0|nN=0 1ny=0 1Ny=0]np,=0 1nNy=0 1nNy=0|n=0 1nNy=0 1ny=0|n,=0 np,=0 1n,=0
TN 5 4.98 4.6 65.81| 5.26 4.92 70.9 4.87 5.06 5.24 5.09 4.84 19.85| 4.94 4.18 70.09
) 5 4,98 24.92 100 5.04 6.77 100 4.96 5.38 5.26 4.87 4.61 53.19| 4.91 76.71 100
T3 5 0 0.19 97.93 | 0.02 0.05 97.85| 0.02 0.03 0.59 0.03 0 29.02 | 0.01 5.83 97.93
7 5 4.64 24.07 100 4.67 6.29 100 4.63 491 4.93 451 4.42 52 4.62 76.25 100
JA 5 0 0.09 9253 | 0.01 0.02 91.83| 0.01 0.02 0.26 0 0 17.97 0 3.59 92.48
W2 5 0.01 0.25 98.09| 0.03 0.05 98.02 | 0.02 0.04 0.74 0.04 0 31.42 | 0.02 6.89 98.14
W %) 5 5.34 25.73 100 5.33 7.19 100 5.27 5.72 5.56 5.18 4.92 5441| 5.31 77.11 100
R | 5 4.84 45.25 100 5.36 7.83 100 5.04 5.2 4.9 4.88 473 41.31| 5.02 100 100
A 10 4.9 3.95 98.38 | 4.92 5.34 98.93 | 4.82 481 5.25 4.88 5.22 34.18| 4.91 3.28 99.23
D 10| 5.01 17.5 100 5.19 6.2 100 5.16 4.88 5.07 477 5.45 54.24 4.8 50.74 100
T 10| 0.35 1.88 100 0.38 0.29 100 0.3 0.33 1.47 0.36 0.3 43.01| 0.22 14.7 100
T 10| 4.65 16.77 100 4.75 5.73 100 4.78 4,55 4.72 4.45 5.02 52.81| 4.46 50.05 100
J4 | 10| 0.16 1.05 99.31| 0.18 0.14 99.22 0.2 0.14 0.49 0.14 0.14 28.92 0.1 9.88 99.25
J% | 10| 0.46 2.3 100 0.48 0.42 100 0.38 0.43 1.76 0.46 0.39 4554 | 0.33 16.85 100
% | 10| 5.32 18.11 100 5.43 6.56 100 5.46 5.18 5.41 5.06 5.75 55.31| 5.12 51.25 100
% | 10| 5.17 57.58 100 4.83 7.62 100 4.83 5.34 4.97 4.93 5.41 345 4.57 100 100
A 20| 4.93 2.26 99.8 4.94 4.64 99.78 4.9 5.02 5.07 5.02 4.93 394 5.02 1.5 99.96
2 20| 4.75 8.97 100 4.9 5.54 100 5.09 5.32 4.99 4,95 4,94 4934 | 4.92 17.32 100
T 20| 1.95 3.73 100 1.82 2.01 100 2.1 2.02 2.79 2.01 1.95 44.9 1.94 9.2 100
Ty | 20| 4.43 8.42 100 451 5.21 100 4,74 5.04 4.61 4.63 4.57 47.89| 4.52 16.45 100
4 | 20| 1.08 2.43 99.89| 1.13 1.08 99.82| 1.13 1.2 1.03 1.08 1.21 29.88| 1.15 6.44 99.7
J | 20| 2.32 4.37 100 2.26 2.6 100 2.67 2.57 3.28 2.46 2.48 47.46 | 2.33 10.39 100
J% | 20| 5.15 9.36 100 5.25 5.73 100 5.4 5.68 5.41 5.23 5.18 50.31| 5.23 17.76 100
x| 20| 4.88 79.08 100 5.03 8.36 100 5.38 5 5.21 5.07 5.04 24.88 5.3 100 100
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Table 1 (continued). Power of exogeneity tests at nominal levelG%2, T =50

&

(a]_, 8.2)/ = (—20, 0)/

(al, az)/ = (—57 5)/

(a1,8)" = (0,0)

(al,ag)’ = (.5, .2)/

(al,az)’ = (IOQ 100)/

n1=0 n;=01 n

ni=0 n;=.01 n;=.

1=5|n=0 n=01 n=5|{n=0 n=01 n=5{n=0 n=01 ny=.5 <

n,=5 n,=5 n,=5|n,=5 n,=5 »=5|1NnN,=5 n,=5 nN,=5|n,=5 n,=.5 >=.5|N,=5 n,=5 n,=.

A 5 4.73 15.16 81.58| 69.69 68.76 78.22| 4091 5.26 5 8.01 7.48 24.2 63.6 65.14 78.0.
) 5 5.1 37.9 100 100 100 100 551 5.29 5.2 12.95 12.42 64.31| 100 100 100
T3 5 0.63 18.25 98.68| 98.15 98.26 98.50| 0.75 0.85 0.83 3.82 3.47 42.79 | 97.43 97.09 98.5
Ta 5 4.77 36.89 100 100 100 100 5.06 4.98 478 | 12.24 11.72 63.06| 100 100 100
4 5 0.27 10.48 90.44 92 92.3 92.20 | 0.39 0.29 0.32 1.93 1.69 2439 | 924 91.95 92.1:
5 5 0.77 20.16 98.82| 98.33 98.43 98.52| 0.87 0.96 0.99 4.44 4.08 45.64 | 97.59 97.31 98.6
¥4 5 5.48 38.88 100 100 100 100 5.83 5.64 541 | 13.39 12.95 65.44| 100 100 100
R | 5 5.13 28.27 100 100 100 100 4.77 5.13 5.17 9.81 10.28 50.59| 100 100 100
1 | 10| 5.8 26.81 99.76 | 98.81 99.17 99.56| 5.26 5.3 486 | 11.05 11.61 43.71| 99.12 99.28 99.7
Jp | 10| 5.29 41.58 100 100 100 100 4.92 5.19 5.07 | 13.49 14.75 66.24| 100 100 100
Tz | 10 1.7 311 99.98 | 99.97 99.99 100 1.58 1.6 1.88 7.75 8.29 57.52| 100 100 100
Js | 10| 4.96 40.35 100 100 100 100 4.57 4.87 4.67 | 1281 14 65.15 100 100 100
24 | 10| 0.73 18.21 98.22| 99.08 98.98 98.9 0.55 0.5 0.48 3.34 3.88 32.85| 99.28 99.26 98.2
5 | 10 2 33.67 99.98 | 99.98 100 100 1.88 2.03 2.31 8.65 9.3 60.4 100 100 100
3 | 10| 5.61 42.64 100 100 100 100 53 5.53 5.38 | 14.05 15.32 67.3 100 100 100
XA | 10| 5.24 24.16 100 100 100 100 4.92 5.07 511 8.55 8.94 43.87 | 100 100 100
g | 20| 5.12 27.67 99.96| 99.45 99.48 99.62| 4.86 4.91 4.29 | 10.45 10.95 41.15| 99.91 99.9 99.9:
J | 20| 5.06 34.7 100 100 100 100 4.93 4.77 4.3 11.85 12.03 51.76| 100 100 100
T3 | 20| 297 30.26 100 100 100 100 3.2 2.88 2.74 9.14 9.14 47.52| 100 100 100
Ia | 20 4.7 33.32 100 100 100 100 4.57 4.45 3.97 | 11.13 11.34 50.35| 100 100 100
J4 | 20 1.2 17.73 99.24| 99.93 99.91 990.93| 1.1 1.03 0.72 4.51 4.53 27.81| 99.77 99.81 98.7'
Ho | 20| 3.59 32.57 100 100 100 100 3.65 3.39 3.27 | 10.24 10.25 50.07| 100 100 100
3 | 20| 5.32 35.69 100 100 100 100 5.25 5.06 455 | 1242 12.55 52.91| 100 100 100
X | 20 | 5.46 16.17 100 100 100 100 5.2 4.64 4.82 7.45 7.45 26.62 | 100 100 100
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Table 2. Power of exogeneity tests at nominal level 5% with Cauchy efots2, T =50

(al, 8.2)/ = (—207 0)/

(a1,8)" = (=5,5)

(al,az)’ = (07 0)/

(al,az)’ = (.5, .2)/

(a1,a2)’ = (100, 100/

k1 ny=0 ny=01 ny=5|\n,=0 n=01 nu=5{n,=0 =01 ny=5|n=0 ny=01 ny=5{n,=0 n;,=.01 n;=5
N2=0 nN,=0 NnNy=0|nN=0 1ny=0 1Ny=0]np,=0 1nNy=0 1nNy=0|n=0 1nNy=0 1ny=0|n,=0 np,=0 1n,=0
AN 5 4.96 4.94 4.9 4.98 4.95 5.14 5.19 5.23 4.97 5.1 5.34 5.23 5.01 4.83 6.66
) 5 5.08 8.58 59.38| 5.48 6.02 2451 | 5.46 5.38 5.29 5.15 4.97 5.54 5.32 44.68 81.16
T3 5 0.05 0.08 491 0.02 0.03 0.65 0 0.03 0.05 0.02 0.01 0.02 0.01 1.62 8.71
7 5 4.82 8.08 58.8 5.19 5.62 23.87| 5.14 5 4.9 4,75 4.63 5.14 5.01 44 80.76
JA 5 0.04 0.02 3.26 0.01 0 0.33 0 0.01 0.02 0.01 0 0.01 0 0.91 6.2
W2 5 0.07 0.11 5.86 0.05 0.04 0.81 0 0.05 0.05 0.02 0.03 0.03 0.02 2.02 9.95
Wi 5 5.41 9.01 59.84| 5.81 6.38 25.21| 5.67 5.7 5.64 5.49 5.23 5.77 5.57 45.34 81.48
R | 5 5.13 12.29 82.91| 5.61 6.79 40.66 | 6.04 5.98 5.93 4.88 4.43 5.06 6.12 68.34 96.73
A 10| 5.61 4,79 5.07 4.97 5.2 4.63 4.83 5.48 4.7 5.04 5.08 5.22 5.09 2.95 3.24
) 10| 5.42 6.48 38.72| 5.53 5.41 9.28 4,79 5.17 4.81 4.92 4.94 5.14 5.01 22.57 54.36
T 10| 0.39 0.44 10.96 0.3 0.3 0.8 0.31 0.28 0.32 0.34 0.28 0.19 0.38 3.53 18.51
T4 10| 5.08 6.09 38.06| 5.24 5 8.86 4.45 4.87 4.46 4.61 4.63 4.83 4.69 21.74 53.51
J4 | 10| 0.17 0.17 7.6 0.11 0.13 0.42 0.16 0.08 0.09 0.14 0.17 0.09 0.14 2.06 13.04
J% | 10| 0.49 0.65 1256 | 0.46 0.42 1.11 0.4 0.38 0.45 0.44 0.39 0.33 0.51 4.19 20.96
% | 10| 5.61 6.8 39.32 5.8 5.64 9.66 5.01 5.42 5.05 5.19 5.2 5.43 5.33 23.16 55.1
*# | 10| 6.09 11.71 81.63| 6.41 5.77 22.73| 5.06 4.67 4.98 4.22 4.63 4.77 3.86 62.53 96.32
A 20| 5.27 5.02 3.63 4.64 4.63 4.35 4.96 5.27 5.09 4.77 5.16 4.85 51 3 2.55
2 20| 5.34 5.4 13.09| 4.94 4.9 6.76 4.85 5.06 4.98 4,76 5.26 4,98 4.84 8.73 18.56
T 20| 2.03 2.16 6.97 1.8 1.77 2.45 1.95 2.09 1.87 1.91 2.19 1.88 2.06 3.74 11.08
J4 | 20| 5.03 5.13 12.58 4.6 4.57 6.42 4.47 4.68 4.67 4.48 5.01 4.7 457 8.2 18.04
J4 | 20| 1.21 1.25 4,78 1.05 1.01 1.61 1.14 1.19 1.06 0.94 1.35 1.09 1.26 2.42 8.21
J5 | 20| 254 2.62 8.03 2.27 2.25 3.25 2.3 2.62 2.33 2.35 2.56 2.4 2.43 4.38 12.28
J5 | 20| 5.72 5.69 13.49| 5.14 5.12 7.07 5.21 5.4 5.29 5.04 55 5.27 5.08 9.06 19.12
X | 20 6.3 9.15 75.83 | 4.05 4.15 23.42| 6.55 6.42 6.83 5.49 5.03 5.27 5.01 54.94 94.83
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Table 2 (continued). Power of exogeneity tests at nominal level 5% witblGaerrorsG =2, T =50

(a]_, 8.2)/ = (—20, 0)/

(al, az)/ = (—57 5)/

(a1,8)" = (0,0)

(al,ag)’ = (.5, .2)/

(al,az)’ = (IOQ 100)/

ke | 1,=0 n;=.01 n=5|n=0 n=01 n=5|n=0 =01 ny=5|n,=0 n=01 nNy=5|n;=0 nNy=01 ny=2=
n,=5 n,=5 n,=5|n,=5 n,=5 »=5|1NnN,=5 n,=5 nN,=5|n,=5 n,=.5 >=.5|N,=5 n,=5 n,=.

A 5 521 4.86 4.43 4.53 5.03 4.65 4.88 4.42 4.88 531 5.16 5.05 4.64 4.66 5.31
) 5 451 7.01 52.88 | 22.05 22.32 33.84| 4.83 4.77 5.01 5.02 4.91 552 | 77.26 77.11 78.1:
T3 5 0.01 0.01 3.51 0.72 0.6 1.47 0.01 0.01 0.04 0.01 0.06 0.02 8.81 9.01 10.2°
Ta 5 4.24 6.6 52.29 | 2141 21.56 33.16| 4.42 4.5 4.7 4.64 4.63 5.07 | 76.83 76.71 7.7
4 5 0 0 2.22 0.42 0.21 0.95 0 0 0.01 0 0.02 0.01 6.38 6.37 7.38
5 5 0.04 0.01 4.22 0.89 0.75 1.74 0.02 0.03 0.05 0.02 0.06 0.03 | 10.02 10.14 115
H3 5 4.84 7.31 53.53| 22.61 22.8 34.49| 5.19 5.08 5.42 541 5.24 5.77 77.6 77.53 78.6.
R | 5 4.36 8.62 77.57| 37.03 36.83 53.81| 5.32 5.34 5.36 5.03 5.29 546 | 96.24 96.42 97.6
S | 10| 472 4.97 4.34 4.87 5.41 5.3 5.2 5.3 5.16 4.89 4.93 4.7 5.07 4.59 4.81
Jp | 10| 4.53 6.71 36.17| 13.87 13.91 17.44| 494 5.01 511 511 5.14 5.15 | 49.25 49.57 52.8
I3 | 10| 0.23 0.49 10.23 16 1.95 3.09 0.34 0.34 0.27 0.27 0.34 0.31 | 16.39 15.82 18.7
Js | 10| 4.16 6.3 353 | 13.24 13.31 16.82| 4.65 4.68 4.7 4.77 4.73 4.85 | 48.54 48.81 52.0
24 | 10| 0.08 0.25 7.01 0.9 1.04 1.86 0.12 0.19 0.15 0.08 0.09 0.11 | 12.12 11.64 13.8
>, | 10| 0.34 0.75 11.8 2.03 2.38 3.62 0.44 0.43 0.35 0.42 0.49 0.41 | 18.12 17.91 20.7
3 | 10| 491 7.18 36.81| 14.51 14.37 18.09| 5.17 5.45 5.45 5.37 5.44 5.46 | 49.86 50.25 53.4
X | 10 | 4.94 9.41 78.79 | 34.19 33.03 45.3 5.36 4.98 5.44 511 5.01 546 | 95.77 95.26 97.2
A | 20| 4.83 4.39 2.6 4.31 4.21 3.47 4.85 5.12 4.67 4.66 4.85 5.05 2.26 2.19 1.79
F | 20| 461 4.6 13.11| 6.41 6.08 6.78 4.65 4.85 4.95 4.56 4.7 5.13 | 18.38 17.85 18.4.
T3 | 20| 2.04 1.85 6.7 2.6 2.54 3 1.69 1.99 1.9 1.88 2 2.23 11.17 10.59 10.6.
Ja | 20| 4.21 4.34 12.41| 6.09 5.79 6.48 4.27 4.57 4.73 4.23 4.4 4.8 17.78 17.22 17.8
J64 | 20| 112 1.16 4.61 1.59 1.55 1.66 1.01 1.07 1.12 1.08 1.15 1.35 8.44 7.93 7.45
Ho | 20| 2.44 2.2 7.67 3.04 3.12 3.52 2.16 2.48 2.39 2.26 241 2.76 | 12.37 11.67 12.0.
3 | 20| 4.86 4.93 13.56| 6.75 6.36 7.23 4.93 5.17 5.26 4.85 4.97 5.5 19.04 18.46 18.9
X | 20| 6.64 9.64 75.85| 18.22 18.08 33.69| 531 5.11 5.31 4.38 4.64 4.93 94.4 94.26 96.0




We now focus on the exact Monte Carlo exogeneity tests.

8.2. Exact Monte Carlo exogeneity (MCE) tests

In this we present we study the properties of the exact tests following toheitalyg described in
Section 7. The DGP is the same as described above except for the distriblutiee errors. We
consider three types of errors: Gaussian, Cauchy and Student.s Balliepresent the results for
M = 99 replications.

We note that unlike the standard exogeneity tests, the level is controlled asal ,cas expected.
Furthermore, the power of all tests has improved, in particular in Caudhgardent distributions
setups (Tables 4-5). As the standard versions of the tests, the MCExXk#tigsepower provided
the partial identification. But power do not exist when all instruments awkwén addition, we
observe that all MCE tests perform better (in terms of power) in Gauses@S@dent distributions
setups than the Cauchy distribution one.

Overall, our results clearly suggest that finite-sample improvement ofatdesdogeneity tests
is feasible, whether the errors are Gaussian and the identification is siramgf. Hence, the
conclusion by Staiger and Stock (1997) that size adjustment is infeasiblbemaisleading.
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Table 3 . Power of MCE tests with Gaussian errors

(al, 8.2)/ = (—207 0)/

(a1,a2)

(_57 5)/

(al,az)’ = (07 0)/

(3.17a2)/ = (.5, .2)/

(a]_, 3.2)/ = (100, 100)/

k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
TN 5 5 7 30 4 4 41 4 5 5 12 9 13 77 78 81
) 5 5 8 100 5 6 99 5 4 5 13 7 23 100 100 100
T3 5 3 9 93 3 4 95 4 3 4 12 8 22 91 94 89
7 5 5 8 100 5 5 99 5 5 5 13 7 23 100 100 100
JA 5 4 9 91 3 4 94 4 4 4 12 9 22 91 93 89
W2 5 4 9 93 3 4 95 4 5 5 12 8 22 91 94 89
W %) 5 5 8 100 5 6 99 5 5 5 13 7 23 100 100 100
R | 5 5 18 100 5 6 100 5 5 5 13 9 23 100 100 100
A 10 4 7 55 4 3 50 4 5 5 6 5 17 97 95 95
D 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
T3 10 4 5 99 4 3 99 3 4 3 5 7 20 99 98 97
T4 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
J4 | 10 3 5 99 3 3 98 3 4 3 6 7 21 99 98 96
I | 10 4 5 99 4 3 99 4 3 4 5 7 22 99 98 97
% | 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
%A | 10 5 16 100 5 6 100 4 5 4 6 13 24 100 100 100
A 20 5 6 33 4 5 68 4 5 4 6 7 10 88 83 90
) 20 5 7 80 5 7 99 5 4 5 6 8 12 92 84 93
T3 20 4 7 82 3 4 99 3 3 3 5 8 10 94 88 93
Ta | 20 5 7 80 5 6 99 4 5 4 6 8 12 92 84 93
J4 | 20 3 6 81 4 4 99 3 3 3 6 7 10 94 89 93
It | 20 3 7 82 3 4 99 3 3 3 5 8 11 94 88 93
I | 20 4 7 80 5 6 99 5 5 5 6 8 12 92 84 93
XA | 20 5 6 100 4 7 100 3 5 4 12 13 12 100 100 100
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Table 4 . Power of MCE tests with Cauchy errors

(al,ag)’ = (—207 0)/ (al,az)’ = (—5, 5)/ (al,az)’ = (07 0)/ (3.17a2)/ = (.57 .2)/ (al,az)’ = (100, 100)/
k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
N 5 4 7 27 4 9 17 2 4 3 6 5 5 38 41 40
) 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
I3 5 4 5 38 5 5 20 5 3 3 7 4 4 50 50 50
7 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
Wil 5 4 5 38 4 5 20 5 5 3 7 3 4 47 51 49
W) 5 4 5 38 4 5 20 5 3 3 7 4 4 50 50 50
W4 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
R | 5 5 7 82 5 5 47 5 5 5 8 6 6 95 96 98
A 10 3 2 24 5 8 10 3 5 4 4 6 5 34 36 37
D 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51
T3 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
T4 10 5 3 37 5 6 15 4 3 5 6 9 4 55 54 51
4 | 10 4 4 34 4 3 14 4 2 4 4 7 4 43 52 41
I | 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
I3 | 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51
x| 10 5 7 82 4 5 37 4 4 5 7 10 7 96 96 93
N 20 5 6 11 4 7 6 4 4 4 6 6 4 9 12 10
D> 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
T3 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
T 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
70 | 20 5 8 15 4 8 8 3 5 4 4 5 5 14 17 12
I | 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
I3 | 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
XA | 20 4 6 73 5 10 31 5 4 5 5 7 8 98 94 98
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Table 5 . Power of MCE tests with Student errors

(al,ag)’ = (—207 0)/ (al,az)’ = (—5, 5)/ (al,az)’ = (07 0)/ (3.17a2)/ = (.57 .2)/ (al,az)’ = (100, 100)/
k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
TN 5 3 6 24 6 7 33 5 4 4 7 7 9 75 68 63
) 5 5 7 97 4 5 92 5 4 5 10 10 10 98 100 99
I3 5 4 4 86 6 6 72 4 3 3 10 8 6 89 82 90
7 5 5 7 97 4 5 92 5 5 5 10 10 10 98 100 99
Wil 5 3 4 86 6 6 71 3 3 4 10 8 6 87 82 90
W) 5 4 5 86 6 6 72 4 3 3 10 8 6 89 82 90
W4 5 5 5 97 4 5 92 5 4 4 10 10 10 98 100 99
R | 5 5 7 100 4 8 100 5 5 4 12 12 10 100 100 100
A 10 2 6 18 3 5 29 4 5 4 5 2 4 52 62 59
D 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93
T3 10 4 5 83 5 2 77 5 4 3 6 3 8 84 86 88
T4 10 4 7 90 5 5 82 5 3 5 6 4 8 90 90 93
4 | 10 3 6 82 5 2 78 4 3 3 6 3 8 82 86 88
I | 10 4 6 83 5 2 77 3 3 4 6 3 8 84 86 88
I3 | 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93
x| 10 3 7 100 5 8 99 5 4 4 6 7 10 100 100 100
N 20 4 6 15 4 10 15 5 4 5 5 4 4 50 51 55
D> 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73
T3 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
T 20 5 8 65 5 10 44 5 5 4 5 6 6 64 60 73
70 | 20 4 5 65 4 11 48 3 3 2 5 7 4 64 61 74
I | 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
I3 | 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73
XA | 20 5 7 100 5 14 98 4 4 5 5 9 5 100 100 100




9. Conclusion

This paper develops a finite-sample analysis of the distribution of the sthbdabin-Wu-Hausman
and Revankar-Hartley specification tests under both the null hypotHesiegeneity (level) and the
alternative hypothesis of endogeneity (power), with or without identifinafi@ur analysis provides
several new insights and extensions of earlier procedures. Thaotdidzation of the finite-sample
distributions of the statistics under the null hypothesis shows that all testgpacally robust to
weak instruments (level is controlled). We provide a characterization gidher of the tests that
clearly exhibits the factors that determine power. We show that exogensiisyhiave no power in
the extreme case where all IVs are weak [similar to Staiger and Stock (1&@9¥)Guggenberger
(2010)], but do have power as soon as we have one strong instrurAsrd. result, exogeneity
tests can detect an exogeneity problem even if not all model parameteigeatified, provided
partial identification holds. Moreover, the finite-sample characterizatidheo@listributions of the
tests allows the construction of exact identification-robust exogeneity dests in cases where
conventional asymptotic theory breaks down. In particular, DWH and Rk$ t@re valid even
if the distribution of the errors does not have moments (Cauchy-type distribdor example).
We present a Monte Carlo experiment which confirms our finite-sampleyth&be large-sample
properties of the tests and estimation issues related to pretesting are exaniwéa iand Dufour
(2011).
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APPENDIX

A. Notes

A.1. Unified formulation of DWH test statistics

We establish the unified formulation of Durbin-Wu statistics in (4.1) - (3.10Wwels as the three
versions of Hausman (1978) statistic. From Wu (1973, Egs. (2.1), )2(286), (3.20)),T;,
| =1, 2, 3, 4 are defined as

S = Ki1Q'/Q1, 72 =K2Q"/Q2, 71 = K3Q"/Q3, T2 = K4Q" /Qu, (A1)
Q= (b—b) [(YAY) L~ (YAY) ™ (b —by), (A2)
Q = (Y-Y)A(y-Yk),Q=Q-Q", (A.3)
Q = (Y-Yb)A(y—Yh),Qs= (y—Yhk) Ay - Yhp), (A.4)

b= (YAY) YAYi=12 A =My, A =M— M, (A.5)

whereb; is the ordinary least squares estimatoBofandb, is the instrumental variables method
estimator of3. So, from our notationdy; = B andb, = f3
So, from (3.8) - (3.10), we have

=T(B-B)YA Y B-B)=T&%B—-B) S (B B), (A.6)
leTai, Qs— T2, Qu=T&?, (A7)
Q=Q-Q =T&>-T(B- B) YB-B)=T8% (A.8)

so thatJ], can be expressed as:

T = k(B-B)EHB-B), 1=1,234, (A.9)

wherek;, and 5, are defined in (4.1)-(3.10). The formulation in (A.9) shows clearly the link
between Wu (1973) tests and Hausman (1978) test.

A.2. Regression interpretation of DWH test statistics

Consider Equations() - (3.5). First, we note that ¢fandHy, can be written as

Hp : RE=0< Rb=a,
Hh ¢ RO,=0& RO, =p-—a,

whereR = [ le } andR, = [ lc 0 —Ig |.By definition, we haved, = [Bl V,b] and
~/

y’ whereB andy are the 2SLS estimators @f and y andB andy are the OLS
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estimators of3 andy based on the following model:
y = YB+Zy+uY =2,

with [T = (22)~1Z'Y. So, we can observe that

_ B
RO = [l 0 —le || ¥ |=B-b
b
R — ()A(le) AOA (X/X)flz ()A(i;(l)*l A?
0o (VV) |’ 0 V) 1|
KR = vy vz, | _ | M Mg
e I ZY 7z Ma; Mpp |

whereMy; = [(YY) = Y'Z1(Z,21)"2Z,¥] " = [Y'M1¥] T = [Y/(My —M)Y] 2. So,

|V|11 M12 0 |G Mll
(X'X)'R, = M21 M2z 0 0 | = Ma1
0 0 (vVv)! —lg VA
R*()A(’f()*llﬁ = M11+(\7’\7)71
[ B-B M1y L
b.0-06, = | y-7 | = Moa1 M1+ (V'V)™ 1] " (b—B)
| B-b (Vv)-t
Hence, we get
~ ~ ~1 1.

B—B = MM+ (V) (b—B) =My M1+ (VV) ™1 74,
wherea’= B—B is the OLS estimate a from (3.3). We see from (A.10) that

d=b-PB = [Mu+® V) YMEB-B)
= {[Y'(M=M)Y]"+ (V) 1Y (ML~ M)Y](B - B).

Sb.0)-88.) = (RO [RER)R] ' (RE
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(A.11)



= (b B){[Y/(Ml—M)le+<0’\7>*1}‘l” B)
= (B—B)]Y'(My—M MIYI{Y' (M1 —M)Y] ™ +(VV) ) x

Y/ (M= M)Y](B — B) = (B — B)My! [Ma1+ (YMY) Y] M (B — B)
= (B—BYMy [Maz+ (YMY —MH Y ME(B - B). (A.12)

Now, we can apply the following lemma which proof is straightforward and,tiseomitted.
Lemma A.1 Let A and B be two nonsingularsr matrices. Then

Afl_ Bfl —

Furthermore, if B- A is nhonsingular, then A—Blis nonsingular with

At-BHt = AB-AB=A+AB-A A=AA T+ (B-A 1A
= B(B-A!A=BB-AB-B=B|(B-A1-B1B
= AA-ABIA)1A
= B(BAB-B) !B

By settingA = M{ll andB =Y’M;Y in (A.12), and applying LemmaA.1, we get

~ ~

S(B.0)-S(8.) = (B—B)M [Mm(YMlY Mn UMLB-B
= (B-BYAA T+ (B-AAB-B) = (B~ B)(B-l AYHYB-B)
= (B-B){IY'(M—M)Y]™? <YM1Y> BB -B)
1

= ZB-BIOy - OB B = (B-BYANB-B).  (A13)

whereQy = 1Y'(M; —M)Y andQs = 1Y'M,Y. Note also that

S(6.0)—S(0.) = SBo)—S(B)=aN'MxV]a, (A.14)
whereMy = | — B = | — X(X'X)~1X’, X = [Y, Z3, V]. Moreover, from (3.11), we have
S8) = T82 Bo) =To2 S.(8°) =T52. (A.15)

Hence, except foH;, the other statistics can be expressed as:

Ay = T[S(6o) -

/S <é> A =T[S(Bo) — S(0)]/S(Bo) , (A.16)
T = Ki[S(Bo)—S(8)]/[S.(8

0 —Se(8)], 7 = k2[S(Bo) —S(B))/S(B),  (A17)
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Z = Kka[S(Bo) — (8))/S.(80), Ta = ka[S(Bo) — (8)]/S(o), (A.18)
RA = Kr|SBo)—S(6)]/S(60), (A.19)

Equations (A.16) - (A.19) are the regression interpretation of DWH andfatistics.

B. Proofs

PrRooOF oOFLEMMA 6.1 Note first that

B = B+[Y(Mi—MY] Y (Mi—M)u=B+A,
Ar =Y (M1 — M)Y] "Y' (My — M), (B.1)
B = B+(Y'MY) W Mu=B+Au, A= (YMY) Y M (B.2)
B-B = (Ai—A)u, (B—BYA™ (B~ B)=uCou, (B.3)

with Co= (Kl — Al)/AAfl(Kl — Al). We also have

) = B, (B.4)
) = Mu—MYAU=Mu—MMYAu= MMy, myU, (B.5)

WhereB_l =M — P(leM)Y = M]_(l — P(leM)Y) = MlM(leM)Y7 and

- 1 — A 1

5% = = 'MiMy,_myyu=UDiu, &°= ?u’MlMMlyu =uDsu, (B.6)
- ~ o — 1

7 = §%°—6%°=U(D1—Diu= ?u’(Ml—M)M(MrM)Yu, (B.7)
- 1

% = ?U/MlMMNU—U/CoU: u' (D1 —Co)u. (B.8)

Now, from (B.1) - (B.8) and the definitions of the statistics, we get:

M = TUCou/uDiu=T(u/0y)'Co(u/oy)/(u/oy)'Di(u/ay), (B.9)
M = TUuCou/UDiu=T(u/0y)'Co(u/oy)/(u/ay)'Di(u/ay), (B.10)
Fi = Ki(u/0y)'Co(u/0y)/(u/0u) (D1~ D1)(u/0u), (B.11)
Fo = Kz(u/ou)'Co(u/ay)/(u/0y) (D1—Co)(u/0u), (B.12)
Tz = Ka(u/0y)'Co(u/0y)/(u/Tu)D1(u/ay), (B.13)
Ts = Ka(u/0y)'Co(u/0u)/(u/0u)'Di(u/0u) (B.14)

Under H,, Y is independent afi, and if further the instrumen& are exogenous, the conditional
distribution, given)? of all statistics in (B.9) - (B.14) depend only on the distributiorugb, irre-
spective of whether identification is strong or weak. The same result fmidgi. By observing
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that 1 (My, —Mg) = Po,z,, Z# can also be expressed as:
ARAH = Kr(U/0y)Po,z,(u/00) /ke/(u/Tu)' (D1~ Pb,z,)(u/0w). (B.15)

Thus, under Ij, the distribution ofZ 77, given)?, only depends on/g,, whether RankT,) = G
or not. O

PROOF OFLEMMA 6.1 Consider the identities expressingf,i =1,2, 3, 9,1 =1,2, 3 4, and
X7 in (B.9)-(B.15). Under H, we haveu =Va+ ¢ and the results of Theorem2follow. [

PROOF OFLEMMA 6.1 Suppose tha € .4 (C;;). Then, we can show that

(AL—A)Va = 0,CoVa=0,DVa=0,DVa=0, (B.16)
MxVa = DjVa=0,MgVa=D;Va—Pp,zVa=0, (B.17)

whereA_l, A1, Co, D1, andD; are defined in (B.1)-(B.8) and (B.15).
To simplify, let us prove tha@l — A1)Va= 0. First, note thaV =Y — Z;I1; — Z,I, so that
(A1 —A1)Va= [AY — ArY — (A1 — A1) (Z1l1 + ZolMo)]a. SinceArY = Ig = ArY, hence we have

(AL —A1Va= —[(A1 — A1) (ZsTy + ZoTp)]a = — (A — A1) Zolha, (B.18)

becaused;Z; = A;Z; = 0. Now, we observe thatMi — M)Z, = M1Z,, hence(A; — A1)ZolM.a =

(O — O 3H)M1ZMza, which equals zero if and onM; ZoM,a = 0, i.e. M15Z,M1Z2Tpa or equiv-
alently,a € .4 (Cy). So, we have e .4 (Cy) if and only if (A; — A1)Va= 0. The proof is similar
for the other identities in (B.16)-(B.17). Thus by substituting these identitieh@ofiem5.2, we

get the results of Corollary.3.

Suppose now that (5.13)-(5.17) hold. It is easy to see from Thebr2that this equivalent to

(AL—A1)Va=0,CoVa=0, D;Va= 0, DVa=0, P,z,Va=0 (B.19)

with probability 1. However, we know that (B.19) holds if and onlgif .4 (C;;). Hence the result
follows. O

PrROOF OFLEMMA 6.1 To simplify the proof, let us focus oszz. We recall that

A =T(B-B)EMB-B), (B.20)
where = (Y'M1Y)~2Y'May, B = [Y'(M1—M)Y]2Y'(My— M)y, £5 = &%((Y'(My—M)Y/T) "1~
(Y'MyY/T)"Y, and 6% = (y— YB)'Ma(y—YB)/T. Let us replace/ andY by y, = yRi1+Y R
andY, = YR in (B.20). Then, we get:
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where[?*, [3*, 55, and 63 are also obtained by replaciygy y. = YRi1+ Y R andY by Y, =
Y R,. Now, we have:

Y/M1Y, = RoY'M1Y Rz = RoY'M1Y Roz, Y/ M1y, = Roo(Y/M1yRi1 4+ Y'M1Y Ror) (B.22)

so that we get:

A~

B. Ry2 (Y'M1Y) L (RyD) Ron(Y'MayRi1 +Y' MY Rep) = RoH(BRu1+ Roa)

B, = (Y.(Mi—M)Y,)"Y/ (M1~ M)y, = Ry} (BRu1+Rea), B, — B, = Ryz (B — B)Rus.

Furthermore, we also have

!

(Y[ (M1 —M)Y./T) ™ = (VM1 /T) "t = Ryy [(Y/ (M1 = M)Y/T) " — (YM1Y/T) ] (Ry3)
and, sinceéR;1 > 0, we get

(B, —B.) [(Y. (M1~ M)Y,/T) = (/MY /T) Y (B, - B.)
<~ BY [(Y My —=M)Y/T) 2= (YMyY/T) ] 1 (B-B).

By the same way, we find

—YB., = YRu+YRa2—YRea[ReoY (Mi—M)YRe] Y RMi(yRi1+Y Reo)
— YRu+YR2—YBRi—YRa= (Y- YB)Ru.
62 = (yo—YB,)Mi(y.—YB,)/T =Ry (y—YB)Mi(y—YB)/T = R, 62

Hence, from (B.21), we can see that

M = R%(B BY [(Y/ (ML~ M)Y./T)" L~ (Y/MyY./T) Y (B - B) /RE, 62
T(B-py o

,1 ~ ~
"(My— M )Y*/T)-l—az(vglvllY*/T)‘l} (B—B)
— (B.23)

and the same invariance holds for the author statistics so that Lé&xirfalows. O

PROOF OFTHEOREMG6.2 Let us replace by y andY by\?in the expressions of the statistics. By
Lemma6.1, we can write:

A = T(B.—B)MB.—B.)i1=123, (B.24)
% = K|(B*_B ),il_*l(B*_B*)vl :13 27 374a (825)
R = KR)_/'i*RY, (B.ZG)

whereB,, B, 5., 5. andZ,g are the correspondents Bf B, 5 and3; defined in (4.2)-(3.10).
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From (6.40) and by observing that alt¥, = 0, we have
My = MV, MY =MV, Myy=Ma(;+V), MY =My (i, +V), (B.27)

wherep; = M12,MM>{ = usz‘le and t, = M1Z2lM7P,,, where{ = BPi1+ P>1. From (B.27), we
get:

Y (Mi—M)Y = (V) (My— M) (g + ), Y M1 = (o V) My +7),  (B.28)

YMiY = (Hp+V)'Mi(pp+V) = Qus(pp,V), (B.29)
Y (ML=M)Y = (Up+V) (ML—M) (i +V) = Qu (U, V), (B.30)

so that3, = Qus(tp, V) (Hp+ V) Mr(ty +V), B. = Quv (V) "tz +V) (Mg — M) (1 + V),
and B, — B, = C(u; + V), whereC = -le(llzlv)_l(ﬂz +\7):(M1 — M) — Qus(ip,V) (1 +
V)'M;i. Moreover, we haved? = 1(y— YB,)Mu(y — YB,) = L(py + V)/Ci(ly + V) =
%WES(U17N27V7W7 g2 = %(}7— ?ﬁ*)lMl(y— VE*) = %(“1 + V)'D.Di(py + V) =
L0, (g, 12,V V), with C. = [I — Mu(k, + V)Qus(Hp,V) My + V)]My and D, =

[ =M1(ty+V) Qv (U2, V) (U +V) (M1 — M)|M;. Hence, we get

il* = wlz\/ (ula“27\77\7)Q|V (u27\7)_l_wES(ulvuZava\BQLS(IJZV)_l’
- 1 — - 1 —
m = fwlz\/ (M1, H2,V,V)A, mg, = waS(UI’HZ?VvﬂAa (B.31)

whereA =C'C = Q (Up, V)™t — Qus(Up, V)L If T —ky —k > G, thenA > 0, thus
=Ty + VT (g, o, V) [y V], 1=1,2,3.
whererl;(Hy, uz,\T,\7), i=1,2, 3 are defined in Theore®2 Since7, = (K4/T).743, we find
Ta = Ka[lty + V' T3(Hy, 1, V.V ) [y + V] (B.32)

In addition, 6% = 62 — 6%(B, — B.) (i) *(B, — B.) and &% = wlq(Hy, kp,V,V) — (Hy +
V)'C'AIC(y 4 V) = (Uy + V) (C. —C'A~IC) (g +V) = wh(lq, Uy, V,V) = w3, hence, we find

T = Sl +TCACluy +7]. (8.33)
2

In the same way, we also get:

Ki _ K
T o= Sl +VCATC +V], 1 =132 = ;E[uﬁW%g[uﬁvl
| R
wherew?, | =1, 3 andw? are defined in Section 3. O

PROOF OFLEMMA 6.1 Setll,a= 0 in the above proof of Theoret2and Corollary6.3follows.
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PROOF OFTHEOREM®6.4 From Theoren®.2, we have

T = K[y VT (Mg, U, VoV [y + V], 76 = T [y + VT T (g, 1 V.V ) [ 4V,

RA = Kr[Hy+V]'TR(Hy, Mo, V,V ) [y +V],

foralll =1,2,3,4 and alli = 1, 2, 3, wherel} (1, Uy, V, V), Fi(Uy, MoV, V), TR(HUy1, Ha, V, V),
M4, Uy, K| @andkr are defined in Section 3.

Assume that is fixed. Under the normality assumption (6.2f), + Vv is independent of/
andp; +V[z ~ N(uy, 1). SinceC'A~1C, is symmetric idempotent of rar®, C andA are defined
in Theorem6.2, we have (u; +V)’C'’A~1C(u; + V)|V ~ x3(G, v1), wherev; = p}C'A~'Cp;.
By the same way, the denominator 6§ (without the scaling factor) i, +V)'E(u, + V)|V ~
x%(k2 — G, v1), whereE defined in Section 3 is symmetric idempotent of réak- G, and with
U1 = p4Ep,. Furthermore, we haviC'A~1C)E = 0, hence

TV ~F(G, k2 —G;v1, U1). (B.34)

By the same way, we get:
TV ~F(G, T —ky —2G; vy, Up), (B.35)

whereu, = ) (C, — C'A~1C) ;. Now, from the notations in Theoref2, we can write:

Ty = Ka/(1+ (B.36)

)
Ko T’
and since%|V ~ F(G, T —ky — 2G; V1, Uo), we have%|\7~ F(T —ky — 2G, G; U, V1) so that

— 1
TalV ~ Ka/[1+ K—F(T—kl—ZG, G; U2, V1)) (B.37)
2
Note also thatv’s > w3 entails that
TulV < §<u1+v7’C’A‘lc<ul+®|\7 = K37V ~ K3F (G, T —ki — 2G;vy, U2), (B.38)
2

wherekz, Ka, K5 are given in Theorerb.4. For 73, we note that its numerator and denominator
are such that

(U1 +V)CATIC( + V)|V ~ X3 (Giva), Wiy = (W1 +V)'DLD.(ky+Y)
~ X(T—ki—G;vs), (B.39)

wherevz = DD, ;. SinceD,D.(C'A~1C) # 0, 73 does not follow necessaryradistribution.
By the same way, we get the results ##b, 773 andZ 77 . O
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