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1 Introduction

Let (Y,X) be a bivariate random vector taking values in Y ×X ⊆ R2 with joint distribution

F (y, x) =

∫ x

−∞
FY |X (y| x̄)FX (dx̄) , (y, x) ∈ Y × X , (1)

where FY |X is the conditional distribution function of Y given X and, henceforth, Fξ denotes

the marginal cumulative distribution function (cdf) of the generic random variable (r.v.) ξ.

This article is primarily concerned with nonparametric testing of the monotonicity of FY |X
with respect to the explanatory variable X. That is, the null hypothesis is

H0 : FY |X (y| ·) ∈M for each y ∈ Y , (2)

where

M = {m : X ⊆ R→ R s.t. m (x′) ≥ m (x′′) for x′ ≤ x′′}

is the set of monotonically non-increasing functions with support X . We consider omnibus
tests where the alternative hypothesis, H1, is the negation of H0. The discussion and results

below obviously apply to the monotonically non-decreasing case mutatis mutandi.

Testing monotonicity is interesting, first of all, because estimators of nonparametric

monotonic curves can be obtained without imposing smoothness restrictions. See e.g. Brunk

(1958) and the monograph by Barlow et al. (1972). The effi ciency of these isotonic estima-

tors can be improved when it is additionally known that the nonparametric curve is smooth.

See e.g. Mukerjee (1988) and Mammen (1991). A test for H0 has been recently proposed by

Lee, Linton and Whang (2009), LLW henceforth, which generalizes the test of monotonicity

for regression functions proposed by Ghosal, Seen and van der Vaart (2001). LLW offers a

fairly comprehensive account of motivations for testing H0 in economics research. See also

Matzkin (1994) for a survey on how the monotonicity restriction, amongst other shape re-

strictions, can be derived from an economic model and how these restrictions can be used

for identification and estimation of structural nonparametric curves.

The LLW and Ghosal, Seen and van der Vaart (2001) tests, as well as the vast majority of

existing monotonicity tests, rely on the assumption that the nonparametric curve is smooth

enough, and the tests are based on some kind of smooth nonparametric estimator of the first

derivatives. See also previous proposals by Schlee (1982), Bowman, Jones and Gijbels (1998)

or Hall and Heckman (2000). The performance of these tests depends on the satisfaction

of several assumptions on the nonparametric curve whose monotonicity is tested, as well

as other underlying nonparametric curves, despite the nuisance of a suitable choice of some
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smoothing parameter.

In this article, rather than looking at the first derivative of the curve, we pay attention

to its integral. To that end, we introduce the copula function

C (u, v) := F
(
F−1Y (u) , F−1X (v)

)
, (u, v) ∈ [0, 1]2 ,

where F−1ξ denotes the generalized quantile function, i.e. F−1ξ (u) := inf{t ∈ R : Fξ(t) ≥
u}, u ∈ [0, 1], associated to the cdf Fξ. We shall assume that FX is continuous, so that

FX(F−1X (v)) = v for all v ∈ [0, 1]. Hence, from (1) we can write

C (u, v) =

∫ v

0

FY |X
(
F−1Y (u)

∣∣F−1X (v̄)
)
dv̄, (u, v) ∈ [0, 1]2 .

Therefore, since F−1X is a non-decreasing function, we can characterize H0 as

H0 : C (u, ·) ∈ C for each u ∈ [0, 1] ,

where C is the set of concave functions.
The null hypothesis can be alternatively characterized using the least concave majorant

(l.c.m) operator, T say, applied to the explanatory variable coordinate. That is, the l.c.m
of C (u, ·) for each u ∈ [0, 1] fixed, T C (u, ·), is the function satisfying the following two
properties: (i) T C (u, ·) ∈ C and (ii) if there exists h ∈ C with h ≥ C (u, ·) , then h ≥
T C (u, ·). Henceforth, T C denotes the function resulting of applying the operator T to the
function C (u, ·) for each u ∈ [0, 1] . Thus, we can alternatively write H0 as

H0 : T C ≡ C. (3)

Obviously, the greatest convex majorant must be used for characterizingH0 in the monotoni-

cally non-decreasing case. Grenander (1956) found that the slope of the l.c.m of the empirical

distribution is the maximum likelihood estimator of a monotonic non-increasing probability

density. Chernoff (1964) applied Grenander’s ideas to the estimation of a mode and Prakasa

Rao (1969) to the estimation of an unimodal probability density. Brunk (1958) extended

this idea to estimating a monotonic (isotonic) regression function, see Barlow et al. (1972)

for a monograph on isotonic regression. These ideas are behind the classical DIP test of

unimodality proposed by Hartigan and Hartigan (1985). More recently, Durot (2003) has

used the difference between the empirical integrated regression function and its l.c.m. for

testing monotonicity of a regression curve in a fixed regressor set up with independent and

identically distributed (iid) errors. The fixed regressor assumption is rather restrictive and
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rules out most applications of interest in economics. Moreover, a naive application of Durot’s

(2003) method to stochastic regressors is not valid because the integrated regression function

is not necessarily concave or convex when the regression function is monotone.

Estimates of the l.c.m. of the copula process are used in this article for testing monotonic-

ity of cdf´s, only assuming continuity of the marginal distributions. Distinguishing features

of our approach are that the test’s critical values are pivotal under the null and the test is

invariant to any monotonic continuous transformation of the explanatory variable in finite

samples. The latter is a minimal requirement for any test of monotonicity.4 Our proposal

permits to relax different smoothness assumptions on the underlying nonparametric curves

imposed by LLW and related tests. In particular, continuity of the c.d.f. with respect to the

conditioning variable or the existence of conditional densities are not needed under the null

and fixed alternatives. The minimal continuity assumption on the marginal distributions is

satisfied in many relevant situations where the conditional distribution is discontinuous with

respect the explanatory variable. For instance, bimodality in marginal income distributions

is often explained because of different income distributions in two subpopulations, which can

be defined in terms of an explanatory variable (e.g. education) and some threshold. The

conditional distribution consists of a continuous distribution for each sub-population and

the marginal, obtained by integrating out the explanatory variable, is naturally continuous.

A mixture of two continuous distributions with mixing parameter a possibly discontinuous

function could model this situation. For examples in economics where densities may not

exists or are discontinuous see e.g. Chernozhukov and Hong (2004) and Zinde-Walsh (2008).

Finally, unlike with competing methods, the exact computation of our test is straightfor-

ward, its performance does not depend on the choice of a smoothing number and the test is

able to detect local alternatives that approach the null hypothesis at the rate n−1/2, with n

the sample size.

The rest of the article is organized as follows. Next section introduces the new test,

discussing its asymptotic behavior under H0 and local alternatives. The results of a Monte

Carlo study are summarized in Section 3. Last Section is devoted to final remarks, which

include extensions of the basic framework to testing the monotonicity of general conditional

moments and extensions with a vector of explanatory variables. For the multivariate case, we

consider monotonicity with respect to only one coordinate and the hypothesis of stochastic

semimonoticity, in the sense of Manski (1997). Proofs are placed in a technical mathematical

appendix at the end of the article.

4For instance, if X is total expenditure and Y is expenditure on food, our method delivers a test for
monotonicity of Engle curves that is invariant to whether X is measured in dollars or euros.

4



2 Testing monotonicity of a conditional distribution

Given an idependent and identically distributed (iid) sample {(Yi, Xi) , i = 1, ..., n} , distrib-
uted as (Y,X) , the natural estimator of C (u, v) is

Cn (u, v) :=
1

n

n∑
i=1

1{FY n(Yi)≤u}1{FXn(Xi)≤v}, (u, v) ∈ [0, 1]2 , (4)

where, given a sample {ξi}
n
i=1 of a generic r.v. ξ, Fξn (·) := n−1

∑n
i=1 1{ξi≤·} is the sample

analog of Fξ. The process

Kn :=
√
n (Cn − C)

is the standard empirical copula process. Deheuvels (1981a, 1981b) first obtained the exact

law and the limiting distribution of Kn when Y and X are independent, see also Gänssler

and Stute (1987). In particular, Deheuvels (1981a, 1981b) proved that,

Kn →d K∞ on the extended Skorohod’s space in D [0, 1]2 ,

where K∞ is a “completely tucked”Brownian sheet, a continuous Gaussian process with

mean zero and covariance function

E (K∞ (u1, v1)K∞ (u2, v2)) = (u1 ∧ u2 − u1u2) (v1 ∧ v2 − v1v2) ,

for (ui, vi) ∈ [0, 1]2 , i = 1, 2. That is, K∞ is distributed as the product of two independent

standard Brownian Bridges in [0, 1] .

Notice that T Cn (u, ·) , taking u fixed, is the corresponding sample version of T C (u, ·) .
Omnibus tests of H0 are based on the empirical process

Tn :=
√
n (T Cn − Cn) .

The least favorable case (l.f.c) under the null hypothesis, which is the case closest to the

alternative, corresponds to the situation where X and Y are independent. In that case,

Tn ≡ T Kn−Kn, after taking advantage of the fact that T (Cn (u, v)− uv) = T Cn (u, v)−uv,
by well-known properties of the l.c.m operator. Hence, applying the continuous mapping

theorem, under the l.f.c.,

Tn →d T∞ on the extended Skorohod’s space in D [0, 1]2 ,

where T∞ := T K∞ − K∞. The stochastic process T∞ seems to be new in the literature.
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The properties of T∞(u, ·), with u ∈ [0, 1] fixed, have been studied by Groeneboom (1983),

amongst others.

Test statistics can be some suitable functional of Tn, like other tests based on empirical

processes. We propose to use the sup − norm, i.e the Kolmogorov-Smirnov criteria. That
is, the test statistic is

τn = ‖Tn‖∞ , (5)

where, henceforth, with some abuse of notation we denote by ‖·‖∞ the sup − norm in the

corresponding space of functions. For instance, for any generic function f : [0, 1]2 → R,
‖f‖∞ = sup(u,v)∈[0,1]2 |f (u, v)| . Notice that Tn is a positive function.
The test statistic is simple to compute and does not require numerical optimization. By

well-known results from the classical Kolmogorov-Smirnov tests, we compute τn as

τn = max
1≤i≤n

max
1≤j≤n

√
n

(
T Cn

(
i

n
,
j

n

)
− Cn

(
i

n
,
j − 1

n

))
,

where Cn (i/n, 0) ≡ 0. Hence, all that is needed in the computation of τn are the elements

Cn (i/n, j/n) and T Cn (i/n, j/n) . Computation of the elements Cn (i/n, j/n) is straightfor-

ward, and it can be done recursively once the covariates are ordered. To compute T Cn (i/n, ·)
for each i = 1, ..., n, one can use the Pool-Adjacent-Violators (PAV) algorithm described in

Barlow et al. (1972, p.13), which is already implemented in many statistical software pack-

ages such as R.

The results in Deheuvels (1981a, 1981b) and continuity of T imply that the finite sample
distribution of Tn is pivotal under the l.f.c and can be tabulated. Thus, a finite sample

test at the α − level of significance rejects H0 if τn > τnα, where τnα := inf{t ∈ R :

P (τn ≤ t| l.f.c.) ≥ 1 − α} is the (1− α) − quantile of τn in the l.f.c. Since τnα is diffi cult
to calculate analytically, it is approximated by Monte Carlo as accurately as desired. Table

I reports the approximated critical values of τn for different sample sizes based on 50,000

Monte Carlo simulations.

TABLE I ABOUT HERE

The asymptotic test rejects H0 at the α − level of significance if τn > τ∞α, where

limn→∞ Pr [τn > τ∞α| l.f.c.] = α. Next theorem justifies that the tests has the appropriate

level under the following mild condition.

Assumption A1: The sequence {(Yi, Xi) , i = 1, ..., n} is an iid sample, distributed as
(Y,X) . The cdfs FX and FY are continuous.
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Theorem 1 Under H0 and Assumption A1,

Pr (τn > τnα) ≤ α.

Moreover,

lim
n→∞

Pr (τn > τ∞α) ≤ α.

Next Theorem states that the proposed test is able to detect a large class of alternatives,

including local alternatives converging to the null at the parametric rate n−1/2. The following

assumption is needed to ensure the weak convergence of the empirical copula processes Kn

under general local alternative hypotheses; see Gänssler and Stute (1987).

Assumption A2: Under the local alternatives {(Yi,n, Xi,n) , i = 1, ..., n} is a sequence of
iid arrays for each n ≥ 1, with continuous marginal cdfs F (n)X and F (n)Y and a continuously

differentiable copula function.

Notice that in order to justify the behaviour of the test under general local alternatives we

do need more smoothness than assumed in Theorem 1. As discussed in Fermanian, Radulovic

and Wegkamp (2004, Theorem 4) Assumption A2 is minimal for weak convergence of the

copula process.

Theorem 2 Under the alternative hypothesis and Assumption A1,

lim
n→∞

Pr (τn > τnα) = 1.

If in addition, Assumption A2 holds, then for any β ∈ (0, 1) there is some γ > 0 such that

lim
n→∞

inf Pr (τn > τ∞α) ≥ β,

provided limn→∞ inf
√
n ‖T Dn −Dn‖∞ > γ, where Dn(u, v) = E[Cn (u, v)], with the expecta-

tion taken under A2.

Theorem 2 shows that our test is consistent against fixed alternatives and is able to detect

local alternatives of the form

H1n : T Dn (u, v) = Dn (u, v) +
a (u, v)√

n
, (u, v) ∈ [0, 1]2 ,

with a : [0, 1]2 → R+ such that ‖a‖∞ > γ. Note that these local alternatives are not neces-

sarily local to the l.f.c. but could be local to hypotheses where FY |X is strictly monotonic
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with respect to X. This consistency property against
√
n−local alternatives is not shared

by LLW’s test. Next section investigates the finite-sample properties of the proposed test.

3 Monte Carlo

We carried out a simulation study to demonstrate the finite-sample performance of the

proposed test, in comparison with LLW’s approach. For the sake of completeness we briefly

describe their test statistic. LLW’s approach is an extension of that by Ghosal, Seen and

van der Vaart (2001) to test for monotonicity in the whole conditional distribution rather

than just in the regression function. Their test is based on the U-process

Ûn(x, y) =

(
n

2

)−1 n∑
1≤i<j≤n

{1{Yi≤y} − 1{Yj≤y}}sgn(Xi −Xj)khi (x) khj (x) , (y, x) ∈ Y × X ,

where sgn denotes the sign function, kh`(·) = h−1k(X`− ·/h), k is a kernel function and h is

a bandwidth such that h → 0 as n → ∞. Notice that Ûn (x, y) estimates ∂FY |X (y|x)
/
∂x

times a positive function, see LLW. They consider the Kolmogorov-Smirnov criterion

Ûn = sup
(y,x)∈Y×X

Ûn(x, y)

cn(x)
,

for a suitable standardized factor cn(x) = n−1/2σ̂n(x). Their test rejects for large values of

Ûn. Notice that the values of the test statistic Ûn may change under monotonic continuous
transformations of the explanatory variable X, while τn is always invariant for each n.

Under H0, Ûn is asymptotically distributed as an extreme value random variable and the

level accuracy is poor in finite samples. To overcome this problem, LLW suggest to compute

critical values by an approximation to the asymptotic distribution, as in Ghosal, Seen and

van der Vaart (2001). We refer the reader to LLW’s article for an explicit expression of

the test’s rejection region. We report results using their choice for the kernel function, the

Epanechnikov kernel k(u) = 0.75(1− u2), and their bandwidth values h = 0.4, 0.5, 0.6 and

0.7. We denote their test by LLWn,h in our simulations.

We consider the following data generating processes (DGP). Let {εi}ni=1 be a sequence
of iid N(0, 0.12) random variables, and let {Xi}ni=1 be a sequence of iid U [0, 1] variables,

independent of the sequence {εi}ni=1. Then, the sample {Yi}
n
i=1 is generated according to:

N1: Yi = εi.

N2: Yi = 0.1Xi + εi.
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ALT1: Yi = Xi(1−Xi) + εi.

ALT2: Yi = −0.1Xi + εi.

ALT3: Yi = −0.1 exp (−250(Xi − 0.5)2) + εi.

ALT4: Yi = 0.2Xi − 0.2 exp (−250(Xi − 0.5)2) + εi.

Models N1 and ALT1 were considered in LLW, whereas the rest of models have been used

in the isotonic regression literature, see Durot (2003) and references therein. We compare

LLW’s test with ours. Table 2 reports the proportion of rejections in 1,500 Monte Carlo

replications of the two tests at 5% of significance under the six designs and with sample sizes

n = 50, 200 and 500. The results with other nominal levels were similar, and hence, they

are not reported.

TABLE II ABOUT HERE

The reported empirical sizes for τn are accurate for N1. In agreement with the results in

LLW, their test shows some underrejection for the l.f.c. in N1. The design N2 corresponds

to a data generating process in the null hypothesis but different from the l.f.c. Hence, as

expected, the proportion of rejection in N2 is small and converging to zero with the sample

size. As for the alternatives, none of the tests is uniformly better than the others. LLW’s

test performs best for the alternative ALT1, but our test outperforms theirs for ALT2-ALT4.

These alternatives suggest that our test based on τn can be complementary to LLW’s test.

In Figure 1(a) we plot the regression function corresponding to ALT4. We observe that this

alternative is relatively close to the null hypothesis.

To better understand the local power properties of our test, we consider the following

DGP:

ALT5: Yi = a1{Xi≤0.5}(Xi − 0.5)3 − exp (−250(Xi − 0.5)2) + εi,

where {εi}ni=1 and {Xi}ni=1 are as in the previous simulations. ALT5 represents a model on
the alternative hypothesis which becomes farther away from the l.f.c. as a → ∞. In Figure
1(b) we plot the regression function corresponding to a = 15. From this plot we observe that

this represents another alternative close to the null hypothesis.

Figure 1 ABOUT HERE
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In Figure 2, we plot the empirical rejection probabilities for ALT5, based on 1500 Monte

Carlo replications at 5% nominal level and sample size n = 300. Several remarks are in

order. On one hand, LLW’s test only has power against this alternative for low values of a

and low values of the bandwidth parameter. The proportions of rejections are very sensitive

to the bandwidth choice. On the other hand, τn performs best, particularly for moderate

values of a. For a = 15 none of the tests have power. In unreported simulations, we have

observed that, for n = 500 and a = 15, τn is able to detect this alternative, whereas the

LLW’s test shows a flat power at the nominal level.

Figure 2 ABOUT HERE

To summarize, these simulations suggest that the performance of our supremum statistic

is satisfactory, and compares favorably to the only competing alternative in LLW. Our test

does not require bandwidth choices and, hence, should be appealing to practitioners.

4 Final remarks and extensions

We have proposed a test for the monotonicity of a conditional distribution function, which

is pivotal under fairly primitive assumptions, without resorting to smooth estimators of

first derivatives. With slightly more efforts, our basic framework can be extended to other

interesting situations presented below.

Our procedure can be extended to the case of nonparametric tests of the hypothesis

Hγ
0 : E (γ (Y,X)|X = ·) ∈M

for some given function γ : Y × X→R. This includes monotonicity tests for the regression,
conditional variances and other conditional moments. In this situation, tests are based on

continuous functionals of the empirical process

T γn :=
√
n (T Cγ

n − Cγ
n) ,

where

Cγ
n (v) :=

1√
n

n∑
i=1

(γ (Yi, Xi)− γ̄n) 1{FXn(Xi)≤v}, v ∈ [0, 1] ,

with γ̄n := n−1
∑n

i=1 γ (Yi, Xi). The l.f.c corresponds now to mean independence, i.e.

E (γ (Y,X)|X = ·) = E (γ (Y,X)) a.s. Similarly to our Theorem 1 and using standard

results in e.g. Stute (1997), it can be shown that if E (γ2 (Y,X)) <∞ and FX is continuous,
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under the l.f.c,

Cγ
n →d W

γ on the extended Skorohod’s space in D [0, 1] ,

whereW γ (v)
d
= B

(
τ 2γ(v)

)
−vB

(
τ 2γ(1)

)
, τ 2γ (v) := E

(
(γ (Y,X)− E (γ (Y,X)))2 1{FX(X)≤v}

)
,

v ∈ [0, 1] and B is the standard Brownian Motion on [0, 1] . The test statistic is τ γn := ‖T γn ‖∞ .
Also, note that, unlike τn, τ γn is in general no longer distribution-free under the l.f.c,

even asymptotically.5 However, the critical values of the test based on τ γn can be generally

approximated with the assistance of bootstrap using resamples {(Y ∗i , Xi)}n1 with Y ∗i = γ̄n +

Vi (Yi − γ̄n) for a sequence {Vi}n1 of iid variables with zero mean and unit variance, draw
independently of {(Yi, Xi)}n1 .
In some applications, we may be interested in testing monotonicity of FY |X on a strict

subset K ⊂ Y × X . Assume for simplicity that K = [ly, uy] × [lx, ux], and define S :=

[FY (ly), FY (uy)] × [FX(lx), FX(ux)]. To handle this case, we could use as test statistic τSn =

sup(u,v)∈S |Tn (u, v)| . Since the l.f.c in this case does not entail full independence of Y and

X, the test is not anymore distribution-free, even asymptotically, and some approximation

of the asymptotic critical values is needed. A convenient resampling process in this case is

the subsampling approximation, see Politis, Romano and Wolf (1999). In subsampling the

test statistic is computed over the
(
n
b

)
different possible subsamples of size b (taken without

replacement from the original data), and the empirical distribution of the resulting sample

of test statistics is used to approximate the original test statistic’s distribution. Theorem

4 in Fermanian, Radulovic and Wegkamp (2004) proves that, under Assumption A2, Kn

converges weakly to a Gaussian process with zero mean in D [S]. The limit distribution of

τSn under the l.f.c is absolutely continuous because it is a functional of a Gaussian process

whose covariance function is nonsingular, see Lifshits (1982). Hence, Theorem 2.2.1 of Politis,

Romano and Wolf (1999) justifies the validity of the subsampling approximation.

Another important extension is to allow for multivariate explanatory variables. Consider

a 1+d−valued vector of r.v.’s (Y,X) taking values in Y×X ⊆ R1+d, withX =
(
X(1), ..., X(d)

)
and X ≡ X (1) × ...×X (d) ⊆ Rd. We may be interested in testing monotonicity with respect
to a particular coordinate, the j − th say, i.e. testing that a partial effect for X(j) is always

negative, or positive. This hypothesis can be written, for a given j ∈ {1, .., d} , as

H
(j)
0 : FY |X

(
y|x(−j), ·

)
∈M for each

(
y,x(−j)

)
∈ Y×X (−j)

5An important example for which the asymptotic distribution-free property still holds is when γ (Y,X)
is binary. Under the l.f.c, the model is conditionally homoskedastic, and a suitable standardization of τγn
becomes asymptotically distribution-free. As an application of this situation, consider Aguirregabiria’s (2010)
structural model of dynamic discrete choice. His identification strategy requires agents’choice probabilities
that are strictly increasing in a covariate.
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where we use the notation x(−j) to denote the subvector of x =
(
x(1), ..., x(d)

)
that excludes

x(j) and X (−j) =
∏d

6̀=j,`=1
X (`) its corresponding support. Hence, H(j)

0 can also be expressed

as (3), in terms of the multivariate copula function

C (u,v) := F
(
F−1Y (u) , F−1

X(1)

(
v(1)
)
, ..., F−1

X(d)

(
v(d)
))
, (u,v) ∈ [0, 1]1+d ,

where F is the joint distribution of (Y,X) and v =
(
v(1), ..., v(d)

)
. In this situation, T (j)C

denotes the function obtained by applying the l.c.m. operator T (j) to the function C, for
each

(
u,v(−j)

)
∈ [0, 1]d fixed. Given a random sample {Yi,Xi}ni=1 , Xi =

(
X
(1)
i , ..., X

(d)
i

)
, C

is estimated by its sample analog, as in (4),

Cn (u,v) :=
1

n

n∑
i=1

1{FY n(Yi)≤u}

d∏
`=1

1{
F
X(`)n

(
X
(`)
i

)
≤v(`)

},

resulting in the extension to the multiple explanatory variable case of the test statistic in (5)

τ (j)n :=
∥∥T (j)n

∥∥
∞ ,

where T (j)n :=
√
n
(
T (j)Cn − Cn

)
. The computational burden increases with the number

of explanatory variables considered. The test statistic is not distribution free when d > 1

under the l.f.c., which consists now of the conditional independence between Yi and X
(j)
i ,

given X(−j)
i . However, the test can be implemented with the assistance of the subsampling

method described above.

The extension to testing stochastic semimonoticity in the sense of Manski (1997) is also

straightforward. The stochastic semimonotonicity hypothesis with d explanatory variables

is stated as

H̄
(d)
0 : FY |X (y| ·) ∈ M̄(d) for each y ∈ Y,

were

M̄(d) =
{

m : X ⊂ Rd → R s.t. m (x′) ≥ m (x′′) if x(j)′ ≤ x(j)′′ for all

j = 1, ..., d and x′ =
(
x(1)′, ..., x(d)′

)
, x′′ =

(
x(1)′′, ..., x(d)′′

)
∈ X

}
.

It is straightforward to prove that H̄(d)
0 can be alternatively written as

H̄
(d)
0 : T (j)C ≡ C for each j = 1, ..., d,
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which suggests that one can use the following test statistic,

τ n = max
1≤j≤d

τ (j)n .

The asymptotic critical values of τ n can be approximated using the subsampling procedure

discussed above. These extensions to multivariate explanatory variables naturally apply to

stochastic semimonotonicity of general conditional moments.

5 Appendix: Proofs of the main results

Proof of Theorem 1: Define Gn = Cn − C. Then, by definition of l.c.m the function

T Gn(u, ·) +C(u, ·) is above Cn (u, ·) and is concave in v, for each u ∈ [0, 1] , under H0, since

both T Gn(u, ·) and C(u, ·) are concave for each u ∈ [0, 1]. Hence, T Gn + C is uniformly

above T Cn. Thus, under H0,

Tn =
√
n (T Cn − Cn)

≤
√
n (T Gn −Gn) (6)

: = T̃n

When C(u, v) = uv, it holds that T Gn(u, v) = T Cn (u, v)−uv, (u, v) ∈ [0, 1]2 , by well-known

properties of the l.c.m operator. So (6) becomes equality. Hence,

Pr (τn > τnα) ≤ Pr (τ̃n > τnα | l.f.c) ≤ α,

where τ̃n :=
∥∥∥T̃n∥∥∥

∞
, and

lim
n→∞

Pr (τn > τ∞α) ≤ lim
n→∞

Pr (τ̃n > τ∞α | l.f.c) = α,

where the last equality follows from the continuous mapping theorem.

Proof of Theorem 2: Assumption A1, Glivenko-Cantelli’s theorem and the continuous

mapping theorem imply ‖Cn − C‖∞ →a.s. 0 as n → ∞. Likewise, ‖T (Cn − C)‖∞ →a.s. 0

as n → ∞, since by well-known properties of the l.c.m operator, there exists a constant A

such that ‖T (Cn − C)‖∞ ≤ A ‖Cn − C‖∞ . Hence, under fixed alternatives, ‖T Cn − Cn‖∞
converges to ‖T C − C‖∞ > 0. Hence, τn diverges to +∞, and the test is consistent.

13



To prove the second part of the theorem, we note that, uniformly,

Tn =
√
n (T Dn −Dn) +

√
n (T Cn − T Dn − Cn +Dn)

=
√
n (T Dn −Dn) +OP (1).

The OP (1) term follows from the weak uniform convergence of
√
n (Cn −Dn) . To see this

convergence, notice that by Example 2.11.8 in van der Vaart and Wellner (1996, p. 210) the

standard bivariate empirical process

αn (y, x) =
1√
n

n∑
i=1

[
1{Yi,n≤y}1{Xi,n≤x} − E

(
1{Yi,n≤y}1{Xi,n≤x}

)]
,

converges weakly in D [−∞,∞]2 . Now, the weak convergence of
√
n (Cn −Dn) follows from

the functional delta-method as in Fermanian, Radulovic and Wegkamp (2004, Theorem 3).
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Table I
Simulated Critical Values of τn based on 50000 MC simulations.

α/n 10 25 50 100 200 500 1000
0.10 0.759 0.783 0.792 0.800 0.806 0.811 0.811

0.05 0.791 0.840 0.848 0.861 0.864 0.870 0.872

0.01 0.885 0.947 0.970 0.980 0.980 0.988 0.993

Table II
Rejection Frequencies at 5%. 1500 MC simulations.

Model n τn LLWn,0.4 LLWn,0.5 LLWn,0.6 LLWn,0.7

50 0.045 0.020 0.024 0.032 0.034

N1 200 0.056 0.027 0.028 0.031 0.033

500 0.048 0.036 0.043 0.045 0.044

50 0.004 0.004 0.003 0.003 0.006

N2 200 0.000 0.000 0.004 0.012 0.023

500 0.000 0.000 0.002 0.012 0.044

50 0.511 0.672 0.742 0.764 0.749

ALT1 200 0.997 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000

50 0.436 0.121 0.190 0.264 0.325

ALT2 200 0.911 0.550 0.760 0.862 0.920

500 0.999 0.949 0.994 0.999 1.000

50 0.090 0.048 0.062 0.061 0.054

ALT3 200 0.281 0.259 0.238 0.227 0.201

500 0.744 0.648 0.609 0.570 0.512

50 0.012 0.014 0.016 0.019 0.032

ALT4 200 0.170 0.022 0.016 0.014 0.010

500 0.806 0.052 0.021 0.008 0.008

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
­0.2

­0.1

0

0.1

0.2

0.3

x

re
gr

es
si

on

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
­2

­1.5

­1

­0.5

0

x

re
gr

es
si

on

(b)

Figure 1. Regression functions for alternatives ALT4 (top panel) and ALT5 (bottom panel)

with a = 15.
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Figure 2. Rejection probabilities for ALT5 as a function of a. 1500 Monte Carlo

simulations. Sample size n = 300.
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