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Abstract

We compare two contest. Decentralized in which there are several independent contests with

non overlapping contestants and Centralized in which all contestants �ght for a unique prize

which is the sum of all prizes in the small contests. We study the relationship between payo¤s

and e¤orts between these two contests.
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1. Introduction

Is it better to gather all rent-seeking activities in one place, say Washington D.C. or Brussels,

available to all citizens, rather than having them scattered all over US/EU and available only

to the local people? Shall research funds for, say, economics be allocated in a single large contest

available to all or shall they be allocated in several small contests only available to the local people?

These kind of questions arise again and again and they involve issues of e¢ ciency and fairness.

In this note we concentrate on an important aspect of the problem namely equilibrium payo¤s and

e¤orts spent by the contestants. E¤ort is sometimes socially valuable, such as when it is a proxy

of the quality of the job to be done by the contest winner, or is sometimes a waste from the social

welfare perspective, like rent seeking e¤orts aiming at a monopoly franchise. The e¤ect on e¤ort

of passing from a large contest to a several small ones is not obvious. On the one hand the small

contest has less competitors so individual e¤orts must increase. But on the other hand the prize is

now smaller which calls for less e¤ort.

In this note, we characterize the relationship of e¤orts in decentralized and in centralized con-

tests assuming the Contest Success Function (CSF) proposed by Beviá and Corchón (2015) which

generalizes Tullock CSF. We also �nd necessary and su¢ cient conditions for the contestants or the

contest organizer to prefer centralized or decentralized contests.

The only paper dealing with this problem is by Wärneryd (2001). He assumes a generalized

Tullock CSF and identical agents. Only our result on aggregate e¤ort (Proposition 2) is comparable

to the results obtained by him, see footnote 4.

2. The model

In a contest, m agents called contestants spend e¤orts (bids) denoted by Gi in order to win a prize

of value Vi. We consider two type of contests.

- Decentralized (D) k independent identical contests with n contestants each (thus m = n) and

a prize valued as Vi, i = 1; 2; :::; n.

- Centralized (C) A single contest which is the aggregation of k identical contests. There are kn

agents (thus m = kn) and a single prize valued as kVi, i = 1; 2; :::; kn.1

1We assume that the value of the prize in C is just the sum of the k prizes in D.
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A Contest Success Function (CSF) maps e¤orts of the agents into the probability that they

will obtain the prize (or her share of the prize). Let G = (G1; :::; Gm): In a previous paper we

introduced the idea of a notional CSF which maps G into real numbers (Beviá and Corchón (2015)).

We proposed the following notional CSF:

fi(G) = �+ �
Gi � s

P
j 6=iGj
m�1Pn

j=1Gj
; i 2 f1; ::;mg if

nX
j=1

Gj 6= 0; � 2 [0; 1]; � � 0. (2.1)

fi(G) =
1

m
if

mX
j=1

Gj = 0; i 2 f1; ::;mg: (2.2)

This (notional) CSF mixes proportional CSF (Tullock (1980)) and (relative) di¤erence CSF (Hir-

shleifer (1989), Baik (1998) and Che and Gale (2000)). To convert this notional CSF into a CSF

we �rst need that
Pm
j=1 fi(G) = 1. This is accomplished by the following condition:

1 = m�+ �(1� s) (2.3)

When s = � = 0, � = 1 we have the Tullock CSF and f(�) is non negative. When s 6= 0 or � 6= 0

non negativity is achieved when m = 2 by introducing max min operators as in Che and Gale

(2000) or for general m by introducing a rationing rule which mimics the working of the CSF, see

Beviá and Corchón (2015) for details. We show that in equilibrium there is no rationing so we

leave the details of the rationing scheme to the interested reader. Let h(�) the CSF derived from

(2.1) and (2.2) by taking into account that the range of such a function must yield probabilities.

Consider a game in which strategies are expenses and payo¤ functions are

�i = hi(G)Vi �Gi: (2.4)

Let Yi � Vi
Pm
j=1

1
Vj
: To simplify the presentation, we focus on Nash equilibria in pure strategies

in which all players exert a positive e¤ort, which is guaranteed if:

Yi > m� 1; i 2 f1; ::;mg; (2.5)

which holds in the symmetric case where all valuations are identical and thus Yi = m for all i and

when m = 2.2 Suppose a D contest with values (Y1; Y2; :::Yn). Then the corresponding values in

the D contest are (kY1; kY2; :::kYn). Thus, in a D and C contest (2.5) reads

Yi > n� 1; i 2 f1; ::; ng; (2.6)
2An identical assumption guarantees that when the CSF is of the Tullock type, all players are active in equilibrium,

see Franke et al. (2013), Theorem 2.2.
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Yi >
kn� 1
k

(2.7)

Note that (2.7) implies (2.6) so we will only use the former.

To prove the existence of a Nash Equilibrium, we need the following assumption.

Yi(�+ �) � �(m� 1 + s)(2�
m� 1
Yi

), i 2 f1; ::;mg: (2.8)

When all players have identical valuations, (2.8) is m � �(m�1+s). In Beviá and Corchón (2015)

we prove that a su¢ cient condition for (2.8) is � + � � 1: In the Tullock case (2.8) also holds.

Taking into account (2.3), (2.8) is

Yi � �(m� 1 + s)(m(2�
m� 1
Yi

)� Yi), i 2 f1; ::;mg: (2.9)

In Beviá and Corchón (2015) we proved the following:

Lemma 1. Under (2.5) and (2.8) there is a Nash Equilibrium (G�i )
n
i=1 such that:

G�i =
�(m� 1 + s)Vi

Yi
(1� m� 1

Yi
); i 2 f1; ::;mg; (2.10)

��i =
Vi
Yi
((�+ �)Yi � �(m� 1 + s)(2�

m� 1
Yi

)), m = n; kn: (2.11)

We proved Lemma 1 in Beviá and Corchón (2015) by constructing an auxiliary game in which

payo¤ functions are fi(G)Vi �Gi. This game has a unique Nash equilibrium characterized by �rst

order conditions (FOC) of payo¤ maximization:

�Vi

P
j 6=iGj(1 +

s
m�1)

(
Pm
j=1Gj)

2
� 1 = 0; i 2 f1; ::;mg: (2.12)

We showed that FOC hold with equality for all agents and so (2.12) yields (2.10). Thus if payo¤s

are non negative at (2.10) this is indeed an equilibrium. And the condition for this is (2.9).

We now study how equilibrium e¤ort changes when we pass from a small contest with n agents

to a large contest with kn contestants and � and s do not change.3 This is because � and s are

the two parameters that are relevant to determine equilibrium e¤ort, so we keep them constant to

isolate the e¤ect on equilibrium e¤ort of aggregating the contests. We assume that an equilibrium

exists in both the small and the large contest, which amounts to (2.8) with m = n; kn. Thus,

3 In other words, � is the only parameter that changes in order to maintain (2.3).
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Proposition 1. The e¤ort of contestant i in the C contest is larger than in the D contests i¤

knYi � n2k + 1 > s (2.13)

Proof: We have that

�(kn� 1 + s)kVi
kYi

(1� kn� 1
kYi

) >
�(n� 1 + s)Vi

Yi
(1� n� 1

Yi
), (2.14)

(kn� 1 + s)(1� kn� 1
kYi

) > (n� 1 + s)(1� n� 1
Yi

), (2.15)

Yi >
(kn� 1 + s)(kn� 1)� (n� 1 + s)(kn� k)

kn(k � 1) (2.16)

and the result follows.

With identical agents Yi = n and condition (2.13) is just s < 1. When agents are not identical

a su¢ cient condition for (2.13) is that s < 1 and i values the prize no less than the Yi that would

result if all agents were identical. Next we study aggregate e¤ort.

Proposition 2. Suppose � 6= 0. Aggregate e¤ort is larger in the C contest i¤ s < 1.

Proof: From (2.10), aggregate e¤ort is larger in the C contest i¤

�(kn� 1 + s)
k
Pm
j=1

1
Vj

>
�(n� 1 + s)Pm

j=1
1
Vj

(2.17)

And the result follows.

Note that when s = 0 (for example the Tullock contest) the C contest dominates the D contest

(as already point out by Warneryd (2001))4. This is because when we aggregate k decentralized

contests into a single centralized contests there are two e¤ects. The Competition E¤ect, namely

that the C contest has more competitors so individual e¤orts must decrease, and the Prize e¤ect,

namely that the C contest has a larger prize which calls for more e¤ort. When s = 0 the prize e¤ect

dominates the competition e¤ect. As s increases, e¤ort increases in the C and the D contests, but

the impact of s is larger in the D contest because s magni�es the competition e¤ect. We �nd that

at s > 1, the competitive e¤ect dominates.

Next consider a planner (or contest organizer) who can adjust parameters s and � and wants

to maximize e¤ort.5 Thus we have that:
4 In particular, Warneryd �nds that with identical agents and a generalized Tullock CSF, aggregate e¤ort is larger

in C contests than in D contests. This is because he assumes that fi(G) = 0 when Gi = 0 -which implies in our case

that (1� �)(m� 1) = s�- and that the CSF is independent of m, which implies � = 1 and thus s = 0.
5A planner interested in minimizing e¤ort will choose � = 0.
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Proposition 3. When valuations can take any value compatible with (2.5) and (2.9), the Tullock

CSF maximizes aggregate e¤ort. Any other CSF that maximizes aggregate e¤ort yields identical

e¤ort to the Tullock CSF. If the CSF is independent of m the Tullock CSF is the only CSF which

maximizes aggregate e¤ort.

Proof: Looking at (2.10) the planner will make �(m� 1 + s) as large as possible, compatible

with the su¢ cient condition of equilibrium (2.9). This condition can be written as

1 � �(m� 1 + s)(m( 2
Yi
� m� 1

Y 2i
)� 1), i 2 f1; ::;mg: (2.18)

So now we have to see the maximum value of the term m( 2Yi �
m�1
Y 2i
)� 1 because this will serve as

the bound for �(m� 1+ s). The maximum value of this term occurs when Yi = m� 1 which yields

m(
2

m� 1 �
1

m� 1)� 1 =
m

m� 1 � 1 =
1

m� 1 (2.19)

and then the maximum value of �(m � 1 + s) equals m � 1. This happens for the Tullock CSF.

Finally when �(m� 1 + s) = m� 1 independently of m, � = 1 and s = 0:

Two remarks are in order. Firstly, the optimality of the Tullock CSF is relative to the family

of CSF that arise from the notional CSF (2.1) and (2.2). This leaves out important CSF like the

all pay auction. Secondly, the Proposition deals with a large domain of valuations. Therefore

for smaller domains, the Tullock CSF may be not optimal. Indeed when the planner knows that

valuations are identical (but unknown to her) she chooses the largest �(m� 1+ s) compatible with

m � �(m� 1 + s) which is m. For instance � = s = 1. This implies �i = 0 and

G�i =
V

m
. (2.20)

This e¤ort is the maximum e¤ort compatible with individual rationality, i.e. �i � 0. Thus in this

case the planner will choose the same (�rst best) e¤ort in both the C and the D contest. Thus,

Proposition 4. When all valuations are identical an e¤ort maximizing planner chooses � and s

such that �(m� 1+ s) = m. This implements �rst best e¤orts (2.20) without knowledge of V (but

the planner knows that all valuations are identical). E¤orts in C and D contests are identical.

We study the winners and losers when we pass from a D contest to a C contest. When e¤ort

is a social waste both the social planner and all contestants agree on a contest with � = 0 (a pure
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lottery) in which contestants make zero e¤ort in C and D. But when e¤ort is socially valuable, the

wishes of the social planner and the contestants may be opposite because for the contestants the

less e¤ort they make the better they are. We now show that when agents have di¤erent valuations

it may be possible that the wishes of the social planner and those of a group of agents coincide.

Proposition 5. Suppose � 6= 0 and s � 1. Agent i prefers the D contest i¤

Yi 2 (n�
r
1� s
k
; n+

r
1� s
k
) (2.21)

If � 6= 0 and s > 1 all contestants prefer the C contest.

Proof: From (2.11) and (2.3), payo¤s are larger in the D contests than in the C contest i¤

1 + �(s+ n� 1)
n

Yi��(s+n�1)(2�
n� 1
Yi

) >
1 + �(s+ kn� 1)

n
Yi��(kn�1+s)(2�

kn� 1
kYi

) (2.22)

which after some manipulations becomes

Y 2i � 2nYi �
1� s
k

+ n2 < 0 (2.23)

The left hand side of (2.23) is a convex function with a unique minimum at Yi = n. At this value,

the left hand side of (2.23) is (s � 1)=k. Thus if s > 1 (2.23) never holds. If s < 1 the inequality

holds between the two roots for which the left hand side of (2.23) is zero. These two roots are

n�
r
1� s
k
; (2.24)

and the result follows.

Thus, if contests are very competitive (s > 1) all agents prefer the C contest. An intuition

of why this is so is obtained assuming that all contestants have identical valuations. In this case

individual e¤ort is larger in the C contest i¤ s < 1 (see Proposition 1). Since the expected revenue

from the prize is the same in C and D, individuals prefer the contest in which they do the less e¤ort.

When s < 1 and all agents are identical, Yi = n so all contestants prefer the D contest. But when

s < 1 and agents have di¤erent valuations, those with low and high valuations prefer the C contest

and agents with intermediate valuations prefer the D contest. This is reminiscent of "Ends against

the middle" (Epple and Romano, 1996) or the "coalition of extremes" in United States Congress

(Hussey 2008). The following example illustrates this phenomenon.
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Example 1. Take n = 3; k = 2, s = :9; and � = :5. Valuations are V1 = 28:6
39 ; V2 =

11
13 ; V3 = 1

which yield Y1 = 2:6; Y2 = 3:0 and Y3 � 3:545. You can check that (2.5) and (2.8) hold so an

equilibrium exists. According to (2.21), agents with Y 0s = 2:6 or 3:5455 prefer the C contest and

agents with Y 0s = 3 prefer the D contest. Indeed in the D contests ��1 = :0955; ��2 = 0:1457,

��3 = 0:229 and in the C contests �
�
1 = 0:1015; �

�
2 = 0:1434, �

�
3 = 0:239. It is illuminating to look

at equilibrium e¤orts: agents with lower valuations make less e¤ort in the C contests (:03200) than

in the D contests (:09438) so the e¤ect on payo¤s rely on pure luck: the value of the term �V1 is

identical in the C and the D contests, :23222 (� in C is 0:15833 and in D is 0:31667). Agents with

intermediate valuations make more e¤ort in the C contest (0:1387) than in the D contests (0:1363).

But the probability that these agents win are 0:333 in the D contests and 0:265 in the C contests.

Thus they pay dearly their attempt to compete with agents with larger valuations in the C contest.
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