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Abstract

This paper introduces a new contest model with unobservable actions
in which the designer maximizes discounted aggregate effort by choos-
ing a starting time and a deadline. At the deadline, the contestant
who exerted most effort wins a prize, which consists of the endowment
of the designer and collected interest.

The contest has a unique Nash equilibrium. In the main model,
the designer should announce the contest immediately with a relative
short deadline to promote intense competition. I study the impli-
cations of different types of asymmetries, a different contest success
function and a different goal function of the designer.
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1 Introduction

In many (public) architecture, innovation and procurement contests, the de-

signer announces the contest along with the deadline and the winner prize.1

All contestants can exert effort between the announcement and the deadline,

at which the best-performing contestant receives the prize. While there is a

lot of recent literature on contests, the deadline—an important choice vari-

able of the designer—receives relatively little attention. Some contest models

such as all-pay auctions or Tullock contests do not model the time dimension

at all, while other contest models with unobservable actions abstract from

discounting and/or assume infinite or endogeneous deadlines.2

In this paper, I analyze the problem of an impatient contest designer who

maximizes discounted expected total effort by the contestants; effort is inter-

preted as a proxy for output/innovation. The designer has a fixed monetary

endowment available for the contest.3 He chooses when to announce the

contest and for how long to run the contest. At the deadline, the contestant

who exerted most effort wins the prize, i.e., the endowment and accumulated

interest; ties are broken randomly.

In the first step, I characterize the equilibria in a two-player contest

depending on the starting time/deadline combination in Propositions 1-3.

Proposition 1 determines combinations for which contestants exert effort dur-

ing the entire contest in equilibrium with probability 1, whereas Propositions

2 and 3 characterize equilibria for other regions of the parameter space.

Given the characterization for the contest game, I move to the problem of

the contest designer in Propositions 4 and 5. There are two mitigating effects:

a higher deadline increases expected effort, but due to the discounting, it also

reduces the valuation of the designer. The derivation shows that the increase

1 For a directory of major competitions in landscape architecture, urban planning,
design and other applications, see for instance http://www.competitions.org/ or
http://www.designboom.com/competition/.

2 For the former category, see, e.g., Tullock (1980), Hillman and Samet (1987), Hillman
and Riley (1989), Baye, Kovenock, and de Vries (1996), Konrad (2002), Siegel (2009a,b)
and Alcalde and Dahm (2010); for the latter category, see, e.g., Taylor (1995) and Seel
and Strack (2013, 2015).

3 This assumption is relaxed in Section 3.3.
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in expected effort due to a larger deadline is overcompensated by the increase

in the waiting time. Thus, the main model yields two strong predictions: (i)

it is always optimal to announce a contest immediately and (ii) the deadline

of a contest should be relatively short.

The remainder of the paper studies the robustness of the predictions to

changes in the main assumptions. By Propositions 7-9, the main predictions

extend to n symmetric players and to two players with different marginal

effort cost. In the latter case, the deadline helps to level the playing field as

in Che and Gale (1998), Kirkegaard (2012) and Siegel (2014).

The main results also extend to a Tullock lottery contest success function.

Thus, while leading to qualitative different types of equilibria in a static

setting, the two most commonly used contest success functions yield similar

predictions when taking the time dimension into account.

Both main predictions—the optimality of announcing a contest immedi-

ately and the relatively short deadline—do not extend if the designer maxi-

mizes highest discounted effort of one participant. In this case, an intermedi-

ate deadline is sometimes optimal for the designer. Intuitively, only one of the

contestants needs to increase his effort sufficiently in expectation compared

to a short deadline, which might happen with sufficiently high probability.

Finally, the main results extend to an impatient contest designer, but a very

patient contest designer might prefer not to announce the contest immedi-

ately and to have a larger deadline.

Related Literature

The model can be seen as a modified war of attrition with discounting and

a deadline.4 As in a standard war of attrition, the player who stays in

longer wins the prize and both players incur effort cost independently of the

outcome.

Compared to a war of attrition, however, the present paper reverses the

informational assumptions, i.e., no player can observe his rival. While a war

4 The war of attrition was introduced by Maynard Smith (1974) and has been exten-
sively studied since then; seminal papers include Hendricks, Weiss, and Wilson (1988),
Krishna and Morgan (1997) and Bulow and Klemperer (1999).
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of attrition captures applications such as animal conflicts (Maynard Smith,

1974, Bishop and Cannings, 1978) or price wars (Fudenberg and Tirole, 1986),

this model applies to procurement contests or design competitions, in which

research is conducted secretly and the progress of all participants is evaluated

at the deadline. For further applications, see also Taylor (1995).

The different informational assumptions lead to a reversed timing struc-

ture in equilibrium: players exert effort from a certain time onwards. Hence,

the player who starts earliest wins the game, whereas the player who per-

sists longest wins in a war attrition. The resulting payoffs are pay-your-effort

rather than incurring the effort cost of the player who resigns earlier. Finally,

differing from a war of attrition which has a myriad of asymmetric equilibria,

this model has a unique equilibrium. Thus, despite a similar game structure,

the different informational assumptions reverse many standard results of a

war of attrition.

For a fixed starting time and a fixed deadline, equilibrium behavior is

isomorphic to an all-pay auction with exponential bidding cost and a bid cap.

The designer’s choice of the starting time and deadline provides an additional

twist, since it determines the size of the bid cap and it endogenizes cost-prize

ratio in the isomorphic all-pay model.

Finally, the paper relates to a relatively novel literature on optimal dead-

lines started by Damiano, Li, and Wing (2012). They analyze a war of attri-

tion with private information and a common interest part and characterize

the welfare maximizing deadline. My focus, however, lies on the maximiza-

tion of expected total effort and expected maximal effort. Lang, Seel, and

Strack (2014) consider a stochastic contest model with discrete jumps and

without discounting. They provide a partial ranking of expected total effort.

The rest of the paper is organized as follows. Section 2 introduces the

model. In Section 3, I derive the equilibrium of the contest and the optimal

starting time/deadline combination for the contest designer. Section 4 is

devoted to different extensions of the main model. The results are discussed

in Section 5. Most proofs are relegated to the appendix.
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2 The Model

Consider a model with a risk-neutral contest designer and i = 1, 2 risk-neutral

contestants. The contest designer decides on the time T (starting time) at

which he announces the contest and on the time T (deadline) at which the

contest ends. She has an endowment P , on which she collects interest at the

interest rate r until the deadline T . At any point t ∈ [T , T ], each contestant

decides whether to exert effort eit = 1 or not to exert effort eit = 0. The effort

decisions of each player are unobservable to his rival. Exerting effort induces

a flow cost of c, while no effort induces no flow cost. The net present value

of total costs at time t = 0 is thus
∫ T
T
ceit exp(−rt)dt.5

At the contest deadline T , the designer pays P exp(rT ) to the contestant

who exerted most effort; ties are broken randomly. Thus, the net present

value of winning the prize is P . The contest designer chooses T and T to

maximize the expected discounted sum of efforts E[exp(−rT )
∑2

i=1

∫ T
T
eitdt].

I solve the contest using the Nash equilibrium concept, since no new infor-

mation about the rival’s strategy arrives over time.

3 Equilibrium Analysis

The goal of this section is to compute the optimal starting time/deadline

combination (T , T ) for the contest designer. To do so, I first derive different

categories of Nash equilibria in the contest depending on the parameters.

Secondly, I determine the expected aggregate effort for each equilibrium cat-

egory in closed form. This allows me to find the starting time/deadline

combination which maximizes aggregate effort in the last step. Superscripts

for the players are omitted whenever there is no ambiguity.

3.1 Nash Equilibria in the Contest

If a contestant exerts effort for a fixed amount of time, due to the discounting,

it is cheapest if he starts exerting effort as late as possible. This directly yields

5 Section 4.5 contains a detailed discussion about the implied assumptions on discounting
of the designer and the participants.
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the following lemma.

Lemma 1 (Delay). If a player exerts effort on some interval (s, s̃], then the

player also exerts effort for almost all t ∈ [s̃, T ].

Hence, the decision problem of each player reduces to finding a starting

time s ≥ T such that the player exerts effort at time t if and only if s ≤ t ≤ T .

The following lemma is a by now standard result in game theory with

a continuous state space and holds for all deadlines (the proof is omitted

since it directly follows from the arguments in Baye, Kovenock, and de Vries,

1996):

Lemma 2 (No Interior Mass Point). In equilibrium, no player starts with

strictly positive probability at a time T < s < T . At least one player starts

before time T with probability 1.

Lemma 3 (Zero Profits). Assume that exp(−rT )− exp(−rT ) > Pr
2c

. In any

Nash equilibrium, both players make zero profits.

In the following, I distinguish three different categories of deadlines and

derive the respective equilibria. Lemmas 2 and 3 are crucial steps in the

equilibrium characterization for intermediate and long deadlines.

Proposition 1 (Short Deadlines). Assume that exp(−rT )−exp(−rT ) ≤ Pr
2c

.

In the unique Nash equilibrium, both players always exert effort, i.e., s = T .

Proposition 2 (Intermediate Deadlines). Assume that
Pr
c
> exp(−rT ) − exp(−rT ) > Pr

2c
. In the unique Nash equilibrium, each

player randomizes his starting time s according to the cumulative distribution

function

F (s) =



2(1− c
Pr

(exp(−rT )− exp(−rT ))) for all 0 ≤ s < s̃

1− c
Pr

(exp(−rs)− exp(−rT )) for all s ∈ [s̃, T ]

1 for all s > T ,

where s̃ = −1
r

log(2 exp(−rT )− exp(−rT )− Pr
c

).
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Proposition 3 (Long Deadlines). Assume that Pr
c
≤ exp(−rT )−exp(−rT ).

In the unique Nash equilibrium, each player randomizes the starting time s

according to the cumulative distribution function

F (s) =


0 for all 0 ≤ s ≤ ŝ

1− c
Pr

(exp(−rs)− exp(−rT )) for all s ∈ (ŝ, T ]

1 for all s > T ,

where ŝ = −1
r

log(Pr
c

+ exp(−rT )).

For short deadlines, both players exert effort during the entire contest,

which is reminiscent of the equilibrium in a war of attrition with a short

deadline.

The equilibrium for intermediate deadlines is also similar to the sym-

metric equilibrium of a war of attrition with an intermediate deadline. More

precisely, the “early starters” in this game correspond to the players who per-

sist till the end in a war of attrition; see, e.g., Bishop and Cannings (1978) or

Hendricks, Weiss, and Wilson (1988). There is an interior interval in which

no player starts which corresponds to the interval in which no player resigns

in a war of attrition.

As in the case of intermediate deadlines, long deadline also lead players

randomize on an interval to make their rivals indifferent in equilibrium. In

the case of long deadlines, however, no player exerts effort throughout the

entire time interval [T , T ] with positive probability, since this is too costly.

This type of equilibrium does not arise in a war of attrition.

3.2 The Designer’s Problem

We can now tackle the designer’s problem: which starting time/deadline

combination maximizes expected discounted equilibrium effort?

Using the unique Nash equilibrium for any deadline, we can derive a

closed-form solution to the discounted total effort E(
∑2

i=1

∫ T
T
eit exp(−rT )dt)

for all three regions (short, intermediate, long) of the parameter space.
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For the case of Proposition 1, discounted total efforts are

2∑
i=1

∫ T

T

eit exp(−rT )dt = 2(T − T ) exp(−rT ) (1)

A closed-form solution for the aggregate discounted effort in the other

regions of the parameter space is presented in the appendix. The direct ap-

proach would be to maximize T and T on all three regions of the parameter

space in order to find local maxima and to compare them across regions.

This would, however, result in calculations which are difficult to handle an-

alytically for the latter two cases. Thus, a different approach is called for.

Using an argument from mechanism design, I first show that for any given

T , the optimal solution is to choose a T such that the resulting deadline is

short. In a second step, I derive a closed-form solution for the optimal starting

time/deadline combination (T , T ).

For T = 0 and a short deadline, the designer’s problem from Eq. (1)

reduces to maximizing the function 2T exp(−rT ). This function attains its

maximum at T ∗ = 1
r
.

If the maximum for a short deadline and T = 0 lies within the interior of

the parameter space for short deadlines, the local maximum is also the global

maximum, since the maximal possible effort (both players always exert effort)

is used in the maximization problem. Such an interior equilibrium exists if
Pr
2c
≥ 1 or Pr

2c
< 1 and

1− exp(−rT ) ≤ Pr

2c
. (2)

Transforming Eq. (2), I get T ≤ −1
r

log(1− Pr
2c

)

Hence, for Pr
2c
≥ 1, the global maximum is attained at T ∗ = 1

r
. In the

same way, for Pr
2c
< 1, the unique global maximum is attained at T ∗ = 1

r
if

T ∗ is attained for a short deadline, i.e.,

1

r
≤ −1

r
log(1− Pr

2c
).

Solving this equation, I get
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Pr

2c
> 1− 1

e
,

where e the Euler’s number. Summing up the two cases Pr
2c
≥ 1 and Pr

2c
< 1,

I obtain the following lemma:

Lemma 4. The unique global maximum is attained at an interior solution

for a short deadline and T = 0 if Pr
2c
> 1− 1

e
.

The result is intuitive, since for a high interest rate, the designer wants

to get the discovery quickly and is not too concerned about the quality.

Note that there is a qualitative difference in the equilibrium for short

and intermediate deadlines, i.e., for the latter, contestants do not spend full

effort with probability one. Thus, the effort for intermediate deadlines also

increases in T , but at a smaller rate than for short deadlines. The next

proposition shows that the increase in waiting time overcompensates the

increase in effort for intermediate deadlines for the contest designer. Thus,

it is always optimal to pick a short deadline.

Proposition 4 (Optimal Starting Time). (i) For Pr
2c
≥ 1 and any given T ,

T = 0 maximizes total expected discounted effort.

(ii) For Pr
2c

< 1 and T ≤ −1
r

log(1 − Pr
2c

), T = 0 maximizes total expected

discounted effort.

(iii) For Pr
2c
< 1 and any T > −1

r
log(1 − Pr

2c
), T = −1

r
log(Pr

2c
+ exp(−rT ))

maximizes total expected discounted effort.

Proof. The cases (i) and (ii) are trivial: both players exert effort throughout

the entire game (see equilibrium for short deadlines), i.e., effort is maximal.

For Case (iii), note that both players exert effort at any time after T in

equilibrium. In the following, I show that setting T as described in the propo-

sition yields the maximal possible discounted effort of any mechanism with

maximal transfer P , deadline T which respects the participation constraints.

Thereby, it is clearly also the optimal choice for the contest.

For T such that T > 0, let us maximize total effort subject to the par-

ticipation constraint, i.e., the sum of the effort costs should not exceed the
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prize. By Lemma 1, I only need to find the optimal starting times. Thus, I

get

max
s1,s2

(T − s1) + (T − s2)

subject to ∫ T

s1

c exp(−rt)dt+

∫ T

s2

c exp(−rt)dt ≤ P.

The solution to this problem is s1 = s2 = −1
r

log(exp(−rT )+ Pr
2c

), i.e., exactly

the starting time T .

Thus, to find the optimal (T, T )-combination for the designer, it remains

to find the optimal T . Note that if Pr ≥ 2c or Pr < 2c and T ≤ −1
r

log(1−
Pr
2c

), the optimization problem is max 2T exp(−rT ). On the other hand, for

Pr < 2c and T > −1
r

log(1 − Pr
2c

), the optimization problem is max 2(T −
T ) exp(−rT ). Plugging in the optimal T from Proposition 4 (iii), I obtain

max 2(T + 1
r

log(Pr
2c

+ exp(−rT ))) exp(−rT ).

Lemma 5. The function 2(T+ 1
r

log(Pr
2c

+exp(−rT ))) exp(−rT ) is decreasing

in T for all T ≥ −1
r

log(1− Pr
2c

).

Lemma 5 allows us to state the main characterization result for the contest

designer:

Proposition 5 (Optimal Starting Time and Deadline). In equilibrium, the

contest designer chooses the starting time T = 0. If Pr
2c
≥ 1− 1

e
, the optimal

deadline is T = 1
r
. If Pr

2c
< 1− 1

e
, the optimal deadline is T = −1

r
log(1− Pr

2c
).

Proof. By Proposition 4, the optimal starting time is T = 0 for cases (i) and

(ii). By Lemma 5, the payoff is decreasing in T for the parameters considered

in case (iii) of Proposition 4. Thus, the optimal T in this case is also chosen

such that the optimal T = 0. Since these cases contain all parameters, I

obtain T = 0.

To prove the second part of the statement, recall that the payoff is increas-

ing for short deadlines until T = 1
r
. Thus, T is either the interior maximum
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T = 1
r

if Pr
2c
> 1− 1

e
or the corner solution T = −1

r
log(1− Pr

2c
) which is the

maximal T such that T = 0.

Thus, the model yields a very strong prediction about the optimal contest

starting time and deadline: it is always optimal to start the contest without

any delay and the deadline of the contest should be short enough such that

both contestants choose to exert effort in the entire contest.

3.3 Variable Prize

So far, we have assumed that the endowment of the contest designer is fixed.

While this covers applications in which a principal endows the designer with a

certain budget, there are other cases in which the designer cannot only choose

the starting time and deadline, but also the prize. While the previous analysis

only requires the goal function to be some monotone increasing function of

the expected discounted effort, the specific form is needed to derive a closed-

form solution in this section. I consider the following problem:

G(T , T, P ) = maximize
T ,T,P

exp(−rT )E(
2∑
i=1

∫ T

0

etidt)− P. (3)

The following proposition fully characterizes the optimal contest:

Proposition 6. Suppose the contest designer maximizes Eq. (3).

(i) If c ≥ 1, P = 0 is optimal.

(ii) If c < 1, the optimal solution is given by P = (1− exp(c− 1))2c
r

, T = 0

and T = 1−c
r

. The resulting profit of the designer is 2
r
(exp(c− 1)− c) > 0.

Proof. Proposition 5 shows the optimal starting time and deadline for every

given prize. Thus, taking the resulting values as given, it remains to find the

optimal prize. Plugging T = −1
r

log(1− Pr
2c

) and T = 0 into Eq. (3) yields

G(P ) = −2

r
log(1− Pr

2c
)(1− Pr

2c
)− P.
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The first-order condition is

dG(P )

dP
=

1

c
(1 + log(1− Pr

2c
))− 1 = 0,

which reduces to P = (1− exp(c− 1))2c
r

.

Thus, P is positive if and only if c < 1 (the fact the P is the maximum

follows directly from the second-order condition or a sign test). This estab-

lishes Part (i) of the proposition. For Part (ii), we plug the value for P back

into the expression for T to obtain T = 1−c
r

. Plugging P and T into the goal

function, I get G = 2
r
(exp(c− 1)− c) > 0.

Intuitively, the principal does not treat the prize as given anymore, but

bears the cost of a prize increase himself. Thus, he has to balance the higher

induced effort against the cost of providing a higher prize. If effort costs are

too high as in (i), a contest with a positive prize results in negative profits,

i.e., P = 0 (no contest) is optimal. If a contest yields positive profits, by

Proposition 5, the resulting optimum always results in an interior solution

for a short deadline, since T < 1
r
.

3.4 Relation to the All-Pay Auction

Suppose players are restricted to choose optimally, i.e., they choose a starting

time s and they only exert effort between s and T . The resulting reduced-

form game for a fixed deadline and a fixed prize is isomorphic to an all-

pay auction with a cost function c(x) = c
∫ x

0
exp(−r(T − t))dt, where a bid

x = T − s corresponds to a starting time s and a bid cap at x̄ = T − T .

Differing from the standard all-pay auction model, however, the choice of

a starting time, deadline and prize affects both the cost structure and the

maximal feasible bid. These effect are driven by the discounting. Hence,

the paper gives a microfoundation for bid caps and—more importantly—

it allows us to analyze the effects of discounting which are absent in the

standard static setting as well as in previous dynamic models which abstract

from discounting.

12



4 Extensions

In this section, I want to understand how robust the optimal contest starting

time and deadline are to different changes in the model.

4.1 More Players

Consider the above model with n symmetric players i = {1, 2, . . . , n} and

suppose that in case of a tie, all players with the highest effort win with

the same probability. Proposition 4 and 5 directly extend to n players by

replacing 2 by n. Proposition 2 and 3 do not extend in a straightforward

way. In these cases, there is a multiplicity of equilibria in which some players

do not exert any effort with probability one.6 However, using the n-player

version of Proposition 4 and 5, we can compare the maximal expected efforts

for different number of players. This results in the following proposition.

Proposition 7. The maximal discounted effort which a contest designer can

generate increases in the number of contestants.

Thus, in principle it is best for the contest designer to invite as many

participants as possible with the maximal T which still leads to the short

deadline equilibrium. This finding differs from the seminal paper by Che and

Gale (2003) who conclude that, in many instances, it is optimal to restrict the

contest to two participants. However, it needs to be taken with a grain of salt,

since especially for a large number of players, the homogeneity assumption is

quite strong. Therefore, I consider different types of heterogeneity in the next

sections. For tractability, I henceforth restrict attention to the two players.

4.2 Asymmetric Cost Functions

As in the baseline model, two players compete for the prize as described in

Section 2. Differing from that model, however, I now assume that players

have different flow costs, without loss of generality, c1 < c2.

6 A full characterization of these equilibria does not seem to deliver additional insights
and is therefore beyond the scope of this paper.
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By the proof of Proposition 1, there is a unique equilibrium in which both

players exert effort during the entire contest (see Proposition 1) if this leads

to a (weakly) positive payoff for both players. If this condition is satisfied for

player 2, then it also satisfied for player 1 who has lower flow costs. Thus,

we obtain:

Proposition 8. Assume that exp(−rT ) − exp(−rT ) ≤ Pr
2c2

. In the unique

Nash equilibrium, both players always exert effort, i.e., s = T .

For intermediate and long deadlines, I derive the equilibrium distributions

in the appendix. Using these distributions, I show that the main result

continues to hold in the presence of asymmetric cost functions in the following

proposition.

Proposition 9. In equilibrium, the contest designer chooses the starting time

T = 0. If Pr
2c2
≥ 1 − e, the optimal deadline is T = 1

r
. If Pr

2c2
< 1 − e, the

optimal deadline is T = −1
r

log(1− Pr
2c2

).

Intuitively, for short deadlines, the equilibria are not changed. For inter-

mediate and long deadlines, player 1 randomizes in the same way as before

(with c = c2). Player 2, however, uses a lower average effort than before.

Since even for the higher effort levels derived in Proposition 2 and 3, there

is a short deadline which dominates both intermediate and long deadlines,

the main result continues to hold for intermediate and long deadlines with

asymmetric cost functions.

4.3 Tullock Lottery Contest Success Function

So far, I have assumed that the player who exerts most effort wins the con-

test with probability 1. I now extend the analysis to a Tullock lottery con-

test success function, i.e., each player’s probability of winning the contest

is proportional to his share in the total effort (with the convention that the

probability is 1
2

if total effort is 0).

Recall that, due to the discounting, the optimal decision of a player re-

duces to finding a starting time si ≥ T such that eti = 1 if and only if t ≥ si.
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The optimization problem of player i is thus:

max
si

P
T − si

2T − si − sj
−
∫ T

si

c exp(−rt)dt

The first derivative of this function is

dΠi

dsi
= P

sj − T
(2T − si − sj)2

+ c exp(−rsi).

Note that as si decreases, the increase in winning probability becomes

smaller and the marginal cost increases. Thus, there is a unique solution

to the above equation. If T = 0, always effort by both players is the Nash

equilibrium if nobody profits by increasing his starting time7:

dΠi

dsi
(s1 = 0, s2 = 0) = P

−T
(2T )2

+ c ≤ 0,

i.e., if P
cT
≥ 4.

If always effort is not the Nash equilibrium, I obtain the symmetric Nash

equilibrium by setting

dΠi

dsi
(s1 = s2 = s) = P

s− T
(2T − 2s)2

+ c exp(−rs) = 0

which yields

exp(−rs)(T − s) =
P

4c
.

Thus,

s =
rT −W (P exp(rT )r

4c
)

r
,

where W denotes the Lambert W Function.

A few remarks are in order. First, differing from the all-pay contest

success function, for a Tullock lottery contest success function, there always

exists a symmetric pure-strategy equilibrium in which both contestants exert

effort after a certain starting time. Thus, a restriction on T (weakly) reduces

7 Existence and uniqueness of all equilibria in this section follows from Theorem 1 in
Szidarovszky and Okuguchi (1997).
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effort. Hence, without loss of generality, I henceforth set T = 0. Second, I

only need to compare the effort on two intervals:

For T ≤ P
4c

, the effort of each contestant is T , while for T > P
4c

, the effort

of each contestant is T − s =
W (

P exp(rT )r
4c

)

r
.

For the first interval, I obtain T ∗ = 1
r

as before. For the second inter-

val, one has to maximize
W (

P exp(rT )r
4c

)

r
exp(−rT ). The first derivative of this

function is

−
r exp(−rT )W (P exp(rT )r

4c
)2

W (P exp(rT )r
4c

+ 1)
< 0,

since W (x) > 0 for all x > 0. Thus, it is never optimal to choose T > P
4c

.

Summing up, I obtain the following proposition:

Proposition 10. The optimal starting time is always T = 0. The optimal

deadline is T = 1
r

if 1
r
< P

4c
and T = P

4c
otherwise.

While the exact parameters differ slightly, the optimal equilibrium for a

Tullock contest success function is qualitatively the same as for the all-pay

contest success function. More precisely, the optimal contest length is either

in the interior of the parameter space for short deadlines or at the upper end

of that parameter space.

4.4 Different Goal Functions of the Contest Designer

The related literature focuses on two different goal functions of the contest

designer, maximizing expected total effort as analyzed in the main part and

maximizing the expected maximum effort; see, for example, Taylor (1995),

Moldovanu and Sela (2001), or Seel and Wasser (2014). Thus, I now consider

a contest designer who maximizes exp(−rT ){E(max{
∫ T
T
et1dt,

∫ T
T
et2dt})}. By

the next proposition, short deadlines need not be optimal in this case:

Proposition 11. Choosing T = 0 and T such that the resulting deadline is

short is not necessarily maximizing the discounted expected maximum effort

exp(−rT ){E(max{
∫ T
T
et1dt,

∫ T
T
et2dt})}.
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The proof in the appendix constructs a counterexample. While for the

parameters Pr
2c
≥ 1, the proof of the main result directly extends, there are

other parameters for which the equilibrium construction in Proposition 2

yields a higher expected maximum effort. In the counterexample, there is

a high probability that at least one of the contestants spends the maximal

possible effort.

4.5 Different Discount Factors

Up to now, I have assumed that the discount rate of the contest designer

from receiving the output triggered by the efforts satisfies δ = 1
1+r

.

If the contest designer is less patient, i.e., δ < 1
1+r

, the qualitative results

of the paper continue to hold. Intuitively, a short deadline becomes even

more attractive, since the contest designer urgently needs the output. On

the other hand, if the contest designer is more patient, i.e., δ > 1
1+r

, the

results might break down. Keeping the duration of the contest constant,

a later starting time means lower costs for the same prize (both discounted

back to T = 0). In turn, this implies that contestants exert effort for a longer

time period in equilibrium. In the main model, the computation shows the

this effect is more than offset by the fact that the designer has to wait longer

for the output. But clearly, if the patience of the designer is sufficiently high,

the effect of lowering costs for the contestants becomes dominant. Hence,

choosing T = 0 with T such that the resulting deadline is short no longer

ensures the equilibrium which generates the highest discounted effort.

For the contestants, I have also assumed that their effort costs shrink

at the discount rate. There are several reasons why (perceived) effort costs

are decreasing over time such as technological progress, a lower opportunity

cost in the future since other projects have upcoming deadlines which require

effort now, or behaviorally, simple procrastination. The main results continue

to hold as long as effort costs shrink, but at most at the speed of the discount

rate. If effort costs shrink faster than the discount rate (e.g., due to fast

technological progress), a larger deadline might be optimal.
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5 Conclusion

The main model has yielded two strong predictions: (i) A contest designer

designer chooses to announce the contest immediately and (ii) a relatively

short deadline is optimal. Both predictions are not obvious, since both a

longer deadline and a later starting time (for a given contest length) lead

to higher effort. However, this effect is dominated by the impatience of the

contest designer. The findings are robust to changes in the number of players

and asymmetric marginal cost functions in the two-player case. Moreover,

they also extend if the contest designer is more patient.

Another main finding is the similarity of the equilibrium structure for

the optimal contest with an all-pay contest success function and the optimal

contest with a Tullock lottery contest success function. This is in sharp

contrast to the standard models, in which all-pay contests induce mixed

equilibria and Tullock lottery contests induce pure equilibria. Thus, making

the timing structure explicit entails a closer connection between the models.

In accordance with previous literature, a contest designer who is only

interested in the effort of one contestant might lead to different results type

of effort-maximizing equilibrium.

More generally, reversing the main informational assumptions of a war

of attrition changes payoffs and optimal behavior. While a war of attrition

typically has a multiplicity of equilibria, the present model yields a unique

prediction. For some, yet not all deadlines, the construction is reminiscent

of the symmetric equilibrium of a war of attrition. Moreover, the unique

equilibrium allows for comparative statics in the discounted effort due to

changes in the starting time and deadline.

6 Appendix

Proof of Lemma 3. There exists no equilibrium in which both players start

with probability 1 at s = T , since this would lead to negative profits.

By Lemma 2, the supremum of the starting times contained in the ran-

domization of one player loses with probability 1. By continuity, this player,

without loss of generality player 2, gets a payoff of zero.
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By standard arguments, both players randomize with a positive density

on the same intervals (otherwise, one player could increase his starting time

on that interval and obtain the same winning probability at a lower cost).

Case 1: Exactly one player starts with positive probability at s = T .

In this case, there exists an ε > 0 such that the rival does not start in

an interval (0, ε) with positive probability, since starting at 0 would increase

the expected payoff. Hence, the first player has an incentive to start at ε
2

instead of s = 0, since both starting guarantee him to win with probability

1, but the latter one induces a higher cost. This contradicts the equilibrium

assumption.

Case 2: Both players start with positive probability m ∈ (0, 1) at s = 0.

This entails F1(0) > F2(0), since player 1 has a higher equilibrium profit.

By the argument in Case 1, there exists an ε > 0 such that no player starts

with positive probability in (0, ε). Since both players randomize both positive

density on the same intervals, I can define the infimum of starting times above

0 which are contained in the randomization of both players by s̃. Both players

are indifferent between starting at 0 and at s̃, which leads to a contradiction,

since the gain of player 2 from starting at 0 instead of s̃ is higher, because

F1(0) > F2(0).

Case 3: No player starts with positive probability at s = T .

Player 1 receives positive profits by the lowest starting time contained in

the support of his randomization. Thus, player 2 also receives positive profits

by using the lowest starting time in the randomization of player 1, since it

guarantees him to win with probability 1 incurring the same cost as player

1. This contradicts the equilibrium assumption.

Proof of Proposition 1. Existence: If both players exert effort during the

entire game, both win the prize with probability 1
2
. For any (pure strategy)

deviation, a player wins the prize with probability 0, since the rival exerts

more effort in this case. Thus, the best possible deviation is to exert no effort

at all, which leads to a payoff of 0. The equilibrium payoff is thus greater or
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equal to the payoff from the best deviation if

P

2
−

∫ T

T

c exp(−rt)dt ≥ 0 .

Solving this equation, I get

exp(−rT )− exp(−rT ) ≤ Pr

2c
.

Uniqueness: There exists no equilibrium in which a player starts at a

time T < s < T with positive probability by Lemma 2. Towards a contra-

diction, consider an equilibrium in which at least one player does not start

at s = T with probability 1. Then, by Lemma 2, the lowest bid of one player

loses with probability 1, i.e., at least one player, say player i, makes zero

profits .

I distinguish two cases:

1. Player j 6= i starts at time t = T with probability 1. As I have argued in

the existence part, it is not optimal for player i to use a strategy which starts

with positive probability in (T , T ) against the strategy of player j. Thus,

the remaining candidates for an equilibrium strategy of player i place mass

m ∈ [0, 1) at s = T (full effort) and 1−m at s = T (no effort). Note that no

effort leads to strictly lower payoff for player i if exp(−rT )−exp(−rT ) < Pr
2c

.

Thus, in this case, m = 1 (full effort) is a profitable deviation.

It remains to rule out a different equilibrium in the boundary case

exp(−rT )−exp(−rT ) = Pr
2c

and m < 1. Compare the payoff of player j from

s = T to s = T − ε:

Πj(s = T − ε)− Πj(s = T ) = (1−m− ε)− (1− m

2
− 1

2
) =

1−m
2
− ε .

Thus, for any m ∈ [0, 1), there exists an ε > 0 (e.g., ε = 1−m
4

), such that

starting at s = T−ε is strictly better for player j than starting at s = T . This

contradicts the initial assumption that player j starts at T with probability 1.
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2. Player j 6= i starts at time t = T with a probability less than 1.

Recall that player i makes zero profits for his supposed equilibrium strategy.

Consider the deviation which starts at time t = T for player i. This strategy

guarantees a winning probability above 1
2
, since player j does not start at

time t = T with probability 1. Hence,

Πi(s = T ) >
P

2
−

∫ T

T

c exp(−rt)dt ≥ 0 ,

i.e., player i has a profitable deviation.

Proof of Proposition 2. If a player does not start at s = T with positive

probability, the other player can start at s = T and make positive profits

which violates Lemma 3. Hence, both players have to start at s = T with

positive probability. This entails zero profits if∫ T

T

c exp(−rt)dt = P (
F (T )

2
+ 1− F (T )) = P (1− F (T )

2
) .

Thus,

F (T ) = 2(1− c

rP
(exp(−rT )− exp(−rT ))).

Since a player who starts at s > T can only win against players who start

above T , no player starts for s ∈ (T , s̃), since

P (1− F (T ))−
∫ T

s

c exp(−rt)dt ≤ P (1− F (s))−
∫ T

s

c exp(−rt)dt < 0.

For s ∈ [s̃, T ], the zero profit condition implies

P (1− F (s))−
∫ T

s

c exp(−rt)dt = 0 .

Rearranging, I obtain

F (s) = 1− c

rP
(exp(−rs)− exp(−rT )) . (4)
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Proof of Proposition 3. By Lemma 3, both players make zero profits. More-

over, they randomize with positive density on the same intervals. This

uniquely determines the equilibrium distributions by Eq. (4). No player

has an incentive to start at s < ŝ, since the costs exceed the prize in this

case.

Equilibrium Efforts for Intermediate and Long Deadlines

To obtain the values for intermediate deadlines, I derive expected efforts

for the case considered in Proposition 2:

E(
2∑
i=1

∫ T

T

eit exp(−rT )dt) =

2 exp(−rT )(2(1− c

rP
(exp(−rT )− exp(−rT )))(T − T ) +

∫ T

s̃

f(t)(T − t)dt)

Note that ∫ T

s̃

f(t)(T − t)dt =
c

p

∫ T

s̃

exp(−rt)(T − t)dt

Integration by parts yields:

c

Pr
[(2− exp(−rT )− Pr

c
)(T +

1

r
log(2− exp(−rT )− Pr

c
)− 1

r
) +

1

r
exp(−rT )]

Thus, the expected discounted sum of efforts which the designer collects for

intermediate deadlines is given by

Π(T ) =
∑2

i=1

∫ T
0
eit exp(−rT )dt =

2 exp(−rT )(2(1− c
rP

(exp(−rT )− exp(−rT )))(T − T )

+ c
Pr

[(2− exp(−rT )− Pr
c

)(T + 1
r

log(2− exp(−rT )− Pr
c

)− 1
r
)

+ 1
r

exp(−rT )]) .

It remains to consider the discounted sum of efforts for the equilibrium for
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long deadlines which I derived in Proposition 3:

Π(T ) =
∑2

i=1

∫ T
ŝ
eit exp(−rT )dt

= 2 exp(−rT )(T − 1
r

+ c
Pr

(T exp(−rT ) + 1
r

log(Pr
c

+ exp(−rT ))(Pr
c

+ exp(−rT ))))

Proof of Lemma 5. We have to show that the function

Π(T ) = 2(T +
1

r
log(

Pr

2c
+ exp(−rT ))) exp(−rT )

is decreasing in T for all T ≥ −1
r

log(1− Pr
2c

).

The first derivative of this function (dropping the 2 which is irrelevant

for the sign of the derivatives) is given by

dΠ(T )

dT
= exp(−rT )(1− exp(−rT )

Pr
2c

+ exp(−rT )
− rT − log(

Pr

2c
+ exp(−rT ))).

This derivative is negative if and only if the second term

g(T ) = 1− exp(−rT )
Pr
2c

+exp(−rT )
− rT − log(Pr

2c
+exp(−rT )) is negative. Since it is not

straightforward to see this from the equation, I proceed in two steps: First,

I show that g(T ) is negative at the minimal value of T . In the second step,

g(T ) is shown to be negative for all T above the minimal value.

Step 1: At T = −1
r

log(1− Pr
2c

), the equation reduces to

(1− Pr

2c
)(
Pr

2c
+ log(1− Pr

2c
)) < 0.

Step 2: The derivative of g(T ) is given by

dg(T )

dT
= r[−1 + exp(−rT )(

Pr
2c

(Pr
2c

+ exp(−rT ))2
+

1
Pr
2c

+ exp(−rT )
)].

Rearranging, we obtain

dg(T )

dT
= r[−1 +

exp(−rT )Pr
c

+ exp(−2rT )

exp(−rT )Pr
c

+ exp(−2rT ) + (Pr
2c

)2
] < 0.
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Also note that

d2Π

dT 2
= exp(−rT )(

dg(T )

dT
− rg(T )).

Towards a contradiction, suppose that g(T ) ≥ 0 for some T > −1
r

log(1−
Pr
2c

). Then, since g(T ) is continuous and g(−1
r

log(1− Pr
2c

)) < 0, g(T ) = 0 for

some T and Π(T ) is increasing in a neighborhood of T .

However, in this case d2Π
dT 2 < 0, since dg(T )

dT
< 0 and −rg(T ) ≈ 0. Thus,

Π(T ) is decreasing in the neighborhood of T which yields a contradiction.

Hence, g(T ) < 0 and dΠ
dT
< 0 for all T ≥ −1

r
log(1− Pr

2c
).

Summing up, the first derivative is negative for all T ≥ −1
r

log(1 − Pr
2c

),

i.e., the payoff decreases in the deadline.

Proof of Proposition 7. For a given number of players n and knowing that

T ∗ = −1
r

log(1− Pr
nc

), the discounted sum of efforts is

Π(n) = nT ∗ exp(−rT ∗) = n(−1

r
log(1−Pr

nc
))(1−Pr

nc
) = log(1−Pr

nc
)(
P

c
−n
r

).

Taking the derivative of the above expression with respect to the number

of players and simplifying, I obtain

dΠ

dn
= − P

nc
− 1

r
log(1− Pr

nc
).

This expression is larger than zero if and only if −Pr
nc
− log(1 − Pr

nc
) >

0, which holds for all considered parameters, i.e., Pr
nc
∈ (0, 1). Thus, the

discounted sum of efforts is increasing in n.

Proof of Proposition 9. The proof is split up into two steps. Step 1 derives

the starting time distribution for intermediate and long deadlines as two lem-

mas. The second step uses the lemmas and the findings for symmetric cost

functions to establish the result.
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Step 1: I first derive the equilibrium distributions for intermediate and long

deadlines. In both cases, I omit the uniqueness part in the proof, since

it follows the same lines as in the case of symmetric cost functions: first,

establish that the payoffs of both players are fixed in equilibrium. Then find

the unique distributions which yield these payoffs for any starting time in

the support and lower payoffs for other starting times.

Lemma 6. Assume that Pr
c2
> exp(−rT ) − exp(−rT ) > Pr

2c2
. In the unique

Nash equilibrium, players randomize their starting times according to the

cumulative distribution functions

F1(s) =



2(1− c2
Pr

(exp(−rT )− exp(−rT ))) for all 0 ≤ s < s̃

1− c2
Pr

(exp(−rs)− exp(−rT )) for all s ∈ [s̃, T ]

1 for all s > T

and

F2(s) =



2( c1
c2
− c1

Pr
(exp(−rT )− exp(−rT ))) for all 0 ≤ s < s̃

c1
c2
− c1

Pr
(exp(−rs)− exp(−rT )) for all s ∈ (s̃, T )

1 for all s ≥ T ,

where s̃ = −1
r

log(2 exp(−rT )− exp(−rT )− Pr
c2

).

Proof. Note that Π1(s) = P (1 − c1
c2

) for all s ∈ [s̃, T ) and smaller otherwise

and that Π2(s) = 0 for all s ∈ [s̃, T ] and smaller otherwise. Since each bid

contained in the randomization of each player is an optimal strategy against

the rival’s distribution, the strategy profile is a Nash equilibrium.

Lemma 7. Assume that Pr
c2
≤ exp(−rT ) − exp(−rT ). In the unique Nash

equilibrium, players randomize their starting times according to the cumula-
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tive distribution functions

F1(s) =


0 for all 0 ≤ s ≤ ŝ

1− c2
Pr

(exp(−rs)− exp(−rT )) for all s ∈ (ŝ, T ]

1 for all s > T

and

F2(s) =


0 for all 0 ≤ s ≤ ŝ

c1
c2
− c1

Pr
(exp(−rs)− exp(−rT )) for all s ∈ (ŝ, T )

1 for all s ≥ T ,

where ŝ = −1
r

log(Pr
c2

+ exp(−rT )).

Proof. Note that Π1(s) = P (1 − c1
c2

) for all s ∈ [s̃, T ) and smaller otherwise

and that Π2(s) = 0 for all s ∈ [s̃, T ] and smaller otherwise. Since each bid

contained in the randomization of each player is an optimal strategy against

the rival’s distribution, the strategy profile is a Nash equilibrium.

Step 2: In Lemma 6 and 7, the distribution of player 1 stochastically

dominates the distribution of player 2, i.e., we can bound the expected effort

of player 2 by expected effort of player 1. For all deadlines, player 1 uses the

same equilibrium distributions as in the symmetric setting (with c2 = c) and

for short deadlines, both players use the same equilibrium distributions as in

the symmetric setting. Thus, Proposition 5 remains valid.

Proof of Proposition 11. Let r = 0.01, P = 2, C = 1 and T = 0. Then,

for short deadlines, the maximum is obtained at the corner solution T =

−100 log(0.99). At this value

max exp(−rT ){E(max{
∫ T

T

et1dt,

∫ T

T

et2dt})} = T exp(−rT ) ≈ 0.995.

Suppose that T̃ = −100 log(0.989) instead. Plugging into Proposition 2,

the probability that at least one player exerts the maximal effort is F (0)2 +
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2F (0)(1−F (0)) = 0.99. In the following, we ignore the 0.01-probability case

in which no player exerts the maximal effort; including it would increase ex-

pected maximal effort even further. Thus, for deadline T̃ = −100 log(0.989),

we obtain:

max exp(−rT̃ )E(max{
∫ T̃

T

et1dt,

∫ T̃

T

et2dt}) > 0.99 exp(−rT̃ )T̃ > 1.08 > 0.995.

Thus, the expected discounted maximal effort for an intermediate dead-

line is higher than for the maximal short deadline.
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