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ABSTRACT
The problem of prediction in time series using nonparametric functional 
techniques is considered. An extension of the local linear method to regression 
with functional explanatory variable is proposed. This forecasting method is 
compared with the functional Nadaraya–Watson method and with fi nite-
dimensional nonparametric predictors for several real-time series. Prediction 
intervals based on the bootstrap and conditional distribution estimation for 
those nonparametric methods are also compared. Copyright © 2010 John 
Wiley & Sons, Ltd.
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INTRODUCTION

Prediction of future observations is an important problem in time series. Given an observed 
series Z1, Z2,  .  .  .  , Zn, the aim is to predict a future value Zn+l, for some integer l ≥ 1. A useful 
approach for the prediction problem is to consider that the series follows an autoregressive process 
of order q:

 Z m Z Z Zt t t t q t= ( ) +− − −1 2, , . . . , ε

where εt is the error process, assumed to be independent of the past of Zt, i.e., Zt−1, Zt−2.  .  .  . It is clear 
then that the fi rst task is to estimate the function m(⋅).

A classical approach to this problem consists in assuming that m(⋅) belongs to a class of functions, 
only depending on a fi nite number of parameters to be estimated. Examples of such classes are the 
well-known ARIMA models, widely studied in the literature (see, among many others, the books 
by Box and Jenkins, 1976; Brockwell and Davis, 1987; Makridakis et al., 1998). This problem can 
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also be addressed via nonparametric methods. These methods do not assume any functional form 
on m(⋅), but only impose regularity conditions on it.

Nonparametric regression estimation under dependence is a useful tool for forecasting in time 
series. Some relevant works in this fi eld include Györfi  et al. (1989), Härdle and Vieu (1992), Hart 
(1991, 1996), Masry and Tjostheim (1995), Härdle et al. (1997, 1998) and Bosq (1998). Other papers 
more specifi cally focused on prediction using nonparametric techniques are Carbon and Delecroix 
(1993), Nottingham and Cook (2001), Matzner-Lober et al. (1998) and Vilar-Fernández and Cao 
(2007).

The literature on methods for time series prediction in the context of functional data is much more 
limited. The books by Bosq (2000) and Ferraty and Vieu (2006) are comprehensive references for 
parametric (linear) and nonparametric functional data analysis, respectively. Applications of the FAR 
models (a functional version of the classical AR models) can be seen in Besse et al. (2000). Masry 
(2005) has proven asymptotic normality of the kernel regression functional estimator under depen-
dence, while Antoniadis et al. (2006) proposed a functional wavelet-kernel approach for time series 
prediction. Aneiros-Pérez and Vieu (2008) deal with the problem of nonparametric time series 
prediction using a semi-functional partial linear model.

In this paper we adopt a nonparametric view for the problem of time series prediction using 
functional data techniques. Specifi cally, a local-linear regression estimator for this problem is been 
proposed. This estimator is compared with the Nadaraya–Watson kernel estimator for the regression 
functional, as well as with the classical fi nite-dimensional versions of the Nadaraya–Watson and the 
local-linear regression estimator for the problem of time series prediction. These four methods are 
applied to three real-time series concerning electricity consumption, ozone concentration and air 
temperature.

The rest of the paper is organized as follows. The mathematical formulation of the nonpara-
metric prediction problem is presented in the next section. The third section contains details of 
the local-linear regression estimator for functional data and how to use it to construct point 
forecasts and nonparametric prediction intervals. A comparative empirical study of the new method 
and other nonparametric approaches is included in the fourth section, where some conclusions 
are drawn.

FORMULATION OF THE PROBLEM

Let us consider a continuous-time stochastic process, {Z(t)}t∈˙, observed for t ∈ [a, b), and suppose 
we are interested in predicting Z(b + r), for some r ≥ 0. Let us assume that Z(t) is (or may be) 
stational, with seasonal length τ and b = a + (n′ + 1)τ. In other words, we assume that the interval 
[a, b) consists of n′ + 1 seasonal periods of length τ of the stochastic process {Z(t)}t∈˙. For simplicity 
we will assume the following Markov property

 Z b r Z b rZ t t a b

d

Z t t b b+( ) = +( )( ) ∈[ ){ } ( ) ∈ −[ ){ }, , , ,τ

By defi ning the functional data {(Xi, Yi)}n′
i=1, where Xi(t) = Z(a + (i − 1)τ + t) with t ∈ C = [0, τ), 

and Yi = Z(a + iτ + r) with r ∈ C, we may look at the problem of predicting Z(b + r) by computing 
nonparametric estimations, m̂(xn′+1), of the autoregression functional:



Functional Methods for Time Series Prediction

Copyright © 2010 John Wiley & Sons, Ltd. J. Forecast. (2010)
 DOI: 10.1002/for

 m E Yn n
x X x′+ =( ) = ( )

′+1 1  (1)

with functional explanatory variable, X, and scalar response, Y.
In practice, we typically only observe a discrete version of the functional data in s equispaced

instants (s ∈ ˘). More specifi cally, we only observe Xi(t) for t
j

s
= τ , with j = 0, 1,  .  .  .  ,

s − 1. In such a case, defi ning n = (n′ + 1)s, we may formulate the prediction problem in terms of a 
discrete-time process. Given the observed sample from the time series:

 
Z Z a Z Z a

s
1 2

1= ( ) = +( ), , . . . ,τ

 
Z Z a

n s s

s
Z b

s
n = + ′ + −( ) = −( )1 1τ τ

our aim is to predict

 
Z Z b r Z a

n s s l

s
n l+ = +( ) = + ′ + − +( )1 τ

with r
l

s
= −1τ , for some fi xed l = 1, 2,  .  .  .  , s.

LOCAL-LINEAR FUNCTIONAL PREDICTION

In this section we present the Nadaraya–Watson regression estimator for functional data and extend 
it to the local-linear estimator in the context of the functional explanatory variable. These two non-
parametric estimators are useful techniques for point forecasting based on the autoregression 
functional.

Two methods are also introduced to compute prediction intervals based on the two previous non-
parametric forecasts. One is based on a bootstrap resampling of the residuals and the other uses the 
conditional prediction distribution.

There are plenty of papers in the statistical literature that are concerned with the use of bootstrap 
methods for time series prediction. Among them we mention the works by Thombs and Schucany 
(1990), Breidt et al. (1995), García-Jurado et al. (1995) and Zagdański (2001).

Nadaraya–Watson estimator for the regression functional
Given the functional sample {(Xi, Yi)}n′

i=1, the Nadaraya–Watson (NW) kernel estimator evaluated at 
a given function u, m̂h,NW(u), is of the form

 ˆ ,, ,m W Yh h j j
j

n

NW NWu u X( ) = ( )
=

′

∑
1

 (2)
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where

 

W
K

K
h j

h j

h ii

n, ,NW u X
X u

X u
( ) = −( )

−( )
=

′∑ 1

and

 
K t

h
K

t

h
h( ) = ( )1

is the rescaled kernel function with bandwidth h > 0 and ⎪⎪ ⎪⎪ is a suitable seminorm in the functional 
space

 F = → ∈{ }f C f L: ;� 2

and u ∈ F (see Ferraty and Vieu, 2006, pp. 55–56, p. 223, for details on both the estimator (2) and 
the crucial role of the seminorm, respectively). The kernel K is a non-negative real-valued function
such that K t t( ) =

∞

∫ d
0

1 .

Local-linear estimator for the regression functional
In this section we propose a local-linear (LL) functional regression estimator for (1) at u. We extend 
the ideas in Fan and Gijbels (1996) to the case of functional data. First of all, we use a linear 
approximation of m in a neighbourhood of a given function u:

 m t x t t t
C

x u( ) + ( ) ( ) − ( )( )∫� β β0 d

for some β0 ∈ ˙ and β ∈ F. The constant β0 plays the role of m(u), while the function β is the 
gradient of m at the ‘point’ u.

Given the sample {(Xi, Yi)}n′
i=1, defi ned above, we construct the LL estimator of β0 and β as the 

minimizers of

 Ψ β β β β0 0

2

1

, ,( ) = − + ( ) ( ) − ( )( )( )⎡⎣ ⎤⎦∫∑
=

′

Y t t t t Ki i
C

h i
i

n

X u d  (3)

with Kh,i = Kh (⎪⎪Xi − u⎪⎪), for a suitable seminorm ⎪⎪ ⎪⎪.
In order to minimize (3) with respect to β0 and β, we impose that the partial derivative with respect 

to β0 is zero:

 
∂
∂
Ψ
β

β β
0

0
1 1

0= ⇔ + ( ) ( ) − ( )( ) =
=

′

=

′

∑ ∫∑K K t t t t K Yh i
i

n

h i i
C

i

n

h i i, , ,X u d
ii

n

=

′

∑
1

 (4)
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and that the directional derivative of Ψ in the direction of any v ∈ F is also zero:

 

∂
∂

Ψ β β ε
ε

β
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0

0
0

1
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,

+( )
= ⇔ ( ) ( ) − ( )( )

+

= =

′
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v X u

v

K t t t t

K t

h i i
C

i

n

h i

d

(( ) ( ) − ( )( )( ) ( ) ( ) − ( )( )( )
=

∫ ∫∑
=

′

X u X u

v

i
C

i
C

i

n

h i i

t t t t t t t

K Y t

d dβ
1

, (( ) ( ) − ( )( )( )∫∑
=

′

X ui
C

i

n

t t td
1  

(5)

In order to solve in β0 and β the system of functional equations (4) and (5) for all v ∈ F, we fi rst 
write the unknown function β in terms of a basis, {ej(⋅)}j∈˘, of F, β λt tj jj

( ) = ( )
=

∞∑ e
1

, and apply
equation (5) for v = ek, k ∈ ˘. Thus we have the following system of infi nitely many linear 
equations:

 β λ0
1 1 1 1

K K a K Yh i
i

n

j
j

h i ij
i

n

h i i
i

n

, , ,
=

′

=

∞

=

′

=

′

∑ ∑ ∑ ∑+ =  (6)

 β λ0
1 1 1 1

K a K a a K Y a kh i ik
i

n

j
j

h i ij ik
i

n

h i i ik
i

n

, , , ,
=

′

=

∞

=

′

=

′

∑ ∑ ∑ ∑+ = =11 2, , . . .  (7)

where

 a t t t tij i j
C

= ( ) − ( )( ) ( )∫ X u e d

The system (6)–(7) can be written in a simpler way after introducing some new notation:
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1

= = ∈
=

′
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n

00
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0
1

= = ∈ =
=

′

=

′

=

′

∑ ∑ ∑, , ,, , ,for �

This gives the following linear system:

 b d kkj j
j

kλ
=

∞

∑ = =
0

0 1, , , . . .  (8)
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The solution of the previous system would give estimators of both m and the gradient of m at 

u: m̂h,LL(u) = β̂0 = λ̂0 and ˆ ˆ
,β λh j jj

t tLL( ) = ( )
=

∞∑ e
1 , respectively. Of course, in general it is not possible 

to fi nd an explicit solution of this infi nite linear system and truncation ideas can be applied to solve 
a fi nite system approximating (8). Fix some N ∈ ˘ and consider just the fi rst N + 1 equations in (8). 
This requires fi nding the solution λ̃k, k = 0, 1,  .  .  .  , N of

 
b d k Nkj j

j

N

kλ
=
∑ = =

0

0 1, , , . . . ,

Finally we obtain m̃h,N,LL(u) = β̃0 = λ̃0 and ˆ
, ,β λh N j jj

N
t tLL( ) = ( )

=∑ � e
1

. These are approximated 
solutions of (8), using only the fi rst N functions in the basis: e1(⋅), e2(⋅),  .  .  .  , eN(⋅).

Residual-based bootstrap prediction intervals (RBB)
In this subsection and the next one, we follow the lines of Vilar-Fernández and Cao (2007). For this 
reason we omit the details. The fi rst bootstrap method for interval prediction is based on resampling 
the residuals. A sketch of the algorithm follows.

1. Compute the residuals, ε̂j = Yj − m̂(Xj), using some global cross-validation bandwidth, where m̂(u) 
is either the NW or the LL estimator for functional data.

2. Use sε, the standard deviation of the ε̂j, to compute the smoothing parameter g
n

s=
′

⎛
⎝

⎞
⎠

4

3

1 5

ε.

3. Draw smoothed bootstrap residuals:

 ˆ ˆ , , . . . ,ε ε ξi I ii
g i B* = + =

where I U ni
d= ′{ }( )1, . . . , , ξi

d N= ( )0 1,  and B is the number of bootstrap replications.
4. Sort the bootstrap residuals: {ε̂*(i) : i = 1,  .  .  .  , B} and compute the 1 − α prediction interval:

 ˆ ˆ , ˆ ˆm mn B n BX X′+ ( )[ ] ′+ −( )( )[ ]( ) + ( ) +( )1 2 1 1 2ε εα α* *

Prediction intervals based on the conditional distribution (CD)
This method is based on estimating the conditional distribution function of Y⎪X=x. The basic ideas 
can be found in Cao (1999). For a given real value y, the conditional cumulative distribution function 
can be viewed as a regression function

 F y E Y yx X x( ) = ( )≤{ } =1

Consequently, the functional NW or LL estimators can be used to estimate this conditional dis-
tribution function. The prediction algorithm proceeds as follows.
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1. Use the sample {(Xj, Yj) : 1 ≤ j ≤ n′} to compute F̂(y⎪x) by means of the NW or the LL method. 
This function is smoothed again in the variable y.

2. The 1 − α prediction interval is (L, U), where

 
ˆ ˆF L F U

n nx x′+ ′+
( ) = ( ) = −

1 12
1

2

α α
and

EMPIRICAL STUDY

The two functional data nonparametric point forecast and prediction intervals are compared with 
their fi nite-dimensional counterparts. Specifi cally, these prediction methods are applied to three real-
time series concerning electricity consumption, ozone concentration and air temperature. As we will 
show later, these time series are seasonal and, for each one, we have 12 observations taken in equi-
spaced instants within each seasonal period. In this sense, we can consider that the length of the 
seasonal periods is τ = 12 (in some units).

For the fi nite-dimensional nonparametric approach we follow the procedure in Vilar-Fernández 
and Cao (2007). An important question in the fi nite-dimensional setting is how to select the 
autoregressor variables, (Zt−i1, Zt−i2,  .  .  .  , Zt−ip), for predicting Zt+l. We adopt the approach by 
Tjostheim and Auestad (1994). It consists in minimizing a nonparametric estimation of the fi nal 
prediction error.

Selection of the tuning parameters
In the functional data setup (as well as in the fi nite-dimensional case) there are several tuning para-
meters that need to be selected. We briefl y mention now some procedures to do this.

The Epanechnikov kernel is been used for the NW and the LL estimators. Cross-validation 
methods (see Rachdi and Vieu, 2007; Benhenni et al., 2007), expressed in terms of k-nearest neigh-
bours, are used for smoothing parameter selection. Global cross-validation is used for constructing 
the residuals corresponding to the RBB prediction intervals, and local cross-validation for 
computing the nonparametric point forecast and the estimation of the conditional distribution 
function.

Following the recommendations of Ferraty and Vieu (2006, p. 223), for choosing the seminorm 
in practical situations we base our choice on the smoothness or roughness of the explanatory 
curves. Specifi cally, when the curves are smooth we use the L2 norm of the qth derivative of the 
curve, ⎪⎪⎪⎪q

derivative, while for rough curves the seminorm is based on principal component analysis, 
⎪⎪⎪⎪q

PCA (q being the number of principal components). For the defi nition of this class of seminorms 
see Ferraty and Vieu (2006, p. 28–30). The Fourier basis is used in the LL functional estimator. The 
parameter q in the seminorm and the number of functions in the Fourier basis, N, are also selected 
by cross-validation. The parameter N is selected within {3, 5, 7}, while q was selected in the set 
{1,  .  .  .  , 12}, when the seminorm is based on principal components, and within {0, 1, 2} for the 
seminorm based on the qth derivative.

When the prediction horizon is larger than one, point forecasts are carried out in two different 
ways. The fi rst one is the direct method and consists of the approach mentioned in the previous 
section. The second alternative is the recursive method. It computes a one-ahead forecast and 
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includes it in the sample to perform again a one-lag prediction, as many times as needed. These two 
methods are compared in the empirical study.

Methods and error criteria
Four nonparametric point forecasts are computed: (a) a fi nite-dimensional NW forecast, (b) a fi nite-
dimensional LL forecast, (c) a functional NW forecast and (d) a functional LL forecast. These fore-
casts are performed using either the direct method or the recursive one.

Four types of prediction intervals (only using the direct method) are computed. These are the 
four combinations for the nonparametric method used for point forecast (NW or LL) and the basic 
procedure for constructing prediction intervals (residual-based bootstrap and conditional distribu-
tion). These four approaches are used for both fi nite-dimensional and functional autoregression 
estimation.

The nominal level for the prediction intervals is 95%. The number of bootstrap replications is set 
to B = 1000. A maximum horizon of s = 12 is considered.

The performance of the point forecasts is evaluated by excluding the last seasonal period (last 12 
observations) from the data, computing the point forecasts for these values and comparing the pre-
dicted values, ẑn(l), with the real ones, zn+l. Several error measures are considered. The root mean 
squared error:

 
RMSE = ( ) −( )⎡

⎣⎢
⎤
⎦⎥

+
=
∑1 2

1

1 2

s
z l zn n l

l

s

ˆ

the mean absolute error:

 
MAE = ( ) − +

=
∑1

1s
z l zn n l

l

s

ˆ

and the relative error:

 
RE =

( ) − +

=
∑1 1

1s

z l zn n

ll

s ˆ
σ̂

where σ̂ l
2 is the quasi-variance of {z(j−1)τ+l}n′

j=1.

Electricity consumption data
The fi rst dataset analysed consists of monthly electricity consumption in the USA during the period 
January 1972–January 2005 (397 months). The source of the data was the US Government (Depart-
ment of Energy), and they are available at the website http://www.economagic.com. The data are 
transformed using logarithms and then differentiated to eliminate the trend. The seasonal period for 
this time series is one year. This gives 33 curves (see Ferraty and Vieu, 2006, pp. 17–20, for details 
about this dataset). From Figure 1 we can observe that the functional data are quite rough curves. 
Thus we use the class of seminorms {⎪⎪⎪⎪q

PCA}12
q=1.
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Table I collects the point forecasting errors. Figure 1 shows some plots of the time series along 
time, the functional data and the best forecasts, for every type of model and estimator. In other words, 
for each kind of model (fi nite-dimensional or functional) and each kind of estimator (NW or LL), 
only the results corresponding to the best (direct or recursive) forecast are shown. Figure 2 reports 
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Figure 1. Time series and functional data (upper panels) together with the best forecast (differenced log) elec-
tricity consumption for each type of model and estimator (lower panels). Both the direct (D) and the recursive 
(R) method are combined with the Nadaraya–Watson (NW) and local-linear (LL) estimator
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the prediction intervals (only using the direct method) for the four nonparametric forecasts (NW and 
LL either fi nite-dimensional or functional) with the two possible methods for interval construction 
(RBB and CD).

From a graphical point of view, Figure 1 suggests that the nonparametric forecasts have a good 
behaviour, in the sense that the predictions follow the trend of the data. To compare quantitatively 
the different prediction methods used in this paper, we need to consider the information contained 
in Table I. On the one hand, this table shows that the LL forecast for functional data (direct version) 
beats the other nonparametric methods (either fi nite-dimensional or functional) for the analysed 
series. On the other hand, we should mention the problems in the use of the recursive method, 
because a poor prediction in a specifi c instant causes even worse predictions for future instants. In 
fact, the bad performance of the recursive LL functional predictor suggests that at any instant a poor 
one-ahead forecast is obtained.

Figure 2 reports results on the prediction intervals. From this fi gure, and focusing on each class 
of model (fi nite-dimensional or functional models), there are no large differences between the inter-
vals constructed by NW estimators and those constructed using LL. Nevertheless, prediction inter-
vals using the functional data approach are, generally speaking, more narrow than those using 
fi nite-dimensional models. In addition, functional LL–RBB prediction intervals are most of the time 
more accurate and narrow than the others.

Ozone concentration data
The second series collects ozone concentrations every second hour from 18 May 2005 to 29 June 
2005 (516 items of data) recorded in Getafe (Madrid, Spain). These data, published by the Autono-
mous Community of Madrid (Environmental Department), can be found at the website http://
gestiona.madrid.org/aireinternet. There exist a clear daily seasonality in this series, which gives 43 

Table I. Error criteria for the fi nite dimensional and 
functional models using Nadaraya–Watson (NW) and 
the local-linear (LL) forecasts with the direct (D) 
and recursive (R) approach for electricity consumption 
data

Estimator Error criteria

RMSE MAE RE

Finite-dimensional
NW-D 0.0277 0.0225 0.7326
NW-R 0.0281 0.0224 0.7208
LL-D 0.0381 0.0321 1.0313
LL-R 0.0426 0.0357 1.1538

Functional
NW-D 0.0315 0.0260 0.8241
NW-R 0.0343 0.0287 0.9377
LL-D 0.0269 0.0218 0.6863
LL-R 0.0764 0.0470 1.7574
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Figure 2. Prediction intervals corresponding to the (differenced log) electricity consumption data. They are 
based on both fi nite-dimensional (upper panels) and functional (lower panels) models. The Nadaraya–Watson 
(NW) and local-linear (LL) estimator are used for constructing the residual-based bootstrap (RBB) prediction 
intervals and prediction intervals based on the conditional distribution (CD). Only the direct (D) method is 
considered
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Figure 3. Time series and functional data (upper panels) together with the best forecast ozone concentration 
for each type of model and estimator (lower panels). Both the direct (D) and recursive (R) method are combined 
with the Nadaraya–Watson (NW) and local-linear (LL) estimator

curves (see Aneiros-Pérez and Vieu, 2008, for more information about this series). The smooth shape 
of the curves (see Figure 3) suggests use of the class of seminorms {⎪⎪⎪⎪q

derivative}2
q=0.

The point forecasting errors can be seen in Table II. Figure 3 collects some plots of the time series 
along time, the functional data and the best forecasts, for every type of model and estimator.
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Table II. Error criteria for the fi nite-dimensional and 
functional models using the Nadaraya–Watson (NW) 
and local-linear (LL) forecasts with the direct (D) and 
recursive (R) approach for ozone concentration data

Estimator Error criteria

RMSE MAE RE

Finite-dimensional
NW-D 13.9557 11.9029 0.5454
NW-R 13.5441 10.0406 0.4669
LL-D 12.7884 10.6460 0.4884
LL-R 15.0158 11.9409 0.5550

Functional
NW-D 10.9547 8.2943 0.3631
NW-R 14.3201 11.7257 0.5531
LL-D 14.3737 11.8001 0.5000
LL-R 10.3891 7.8917 0.3395

The discussion given in the previous example on the point forecast applies essentially for the 
ozone concentration data, as can be seen in Table II and Figure 3. The only difference is based on 
the fact that the recursive version of the LL functional predictor shows now a better behaviour than 
the direct version. This suggests that all the one-ahead forecasts involved in the recursive approach 
have a good performance.

For the sake of brevity, we omit the results for the prediction intervals. The conclusions are the 
same as those obtained from Figure 2.

Air temperature data
The Mabegondo data comprise the third time series we analyse. It is available at the website http://
www.meteogalicia.es (source: Xunta of Galicia). Air temperature was recorded every 2 hours at 
Mabegondo meteorological station (Mabegondo, Galicia, Spain) over the period 1 January–30 March 
2008. The seasonal period is one day (1092 items of data and 91 curves). As in the case of the ozone 
concentration data, we are in a situation in which the curves are smooth (see Figure 4). Thus we use 
the class of seminorms {⎪⎪⎪⎪q

derivative}2
q=0.

Table III reports the point forecasting errors. Figure 4 shows some plots of the time series along 
time, the functional data and the best forecasts, for every type of model and estimator. Both Table 
III and Figure 4 show poor behaviour of the fi nite-dimensional predictors. The good performance 
of the functional forecasts remains here (especially in the case of the LL forecasts). In addition, we 
observe in Table III similar values for the error criteria when the direct method or the recursive one 
is used in the LL functional forecasts. As in the previous subsection, we do not report results on the 
prediction intervals. In fact, the conclusions for the prediction intervals are similar to those presented 
for the electricity consumption data.

In summary, it is worth mentioning that the curves corresponding to the electricity data are rough, 
while those corresponding to both ozone concentration and air temperature data are smooth. On the 
other hand, we note that the curves corresponding to the last two datasets are more sparse than those 
corresponding to the electricity data. Thus the empirical study covers different situations that are 
common in practice.
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Figure 4. Time series and functional data (upper panels) together with the best forecast air temperature for 
each type of model and estimator (lower panels). Both the direct (D) and recursive (R) method are combined 
with the Nadaraya–Watson (NW) and local-linear (LL) estimator
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