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Abstract: A necessary and sufficient condition for dominant strategy imple-
mentability when preferences are quasilinear is that, for every individual i
and every choice of the types of the other individuals, all k-cycles in i’s allo-
cation graph have nonnegative length for every integer k ≥ 2. Saks and Yu
(Proceedings of the 6th ACM Conference on Electronic Commerce (EC’05),
2005, 286–293) have shown that when the number of outcomes is finite and
i’s valuation type space is convex, nonnegativity of the length of all 2-cycles
is sufficient for the nonnegativity of the length of all k-cycles. In this article,
it is shown that if each individual’s valuation type space is a full-dimensional
convex product space and a mild domain regularity condition is satisfied, then
(i) the nonnegativity of all 2-cycles implies that all k-cycles have zero length
and (ii) all 2-cycles having zero length is necessary and sufficient for dominant
strategy implementability.
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1 Introduction

New insights into mechanism design theory, particularly when types are mul-
tidimensional, have recently been obtained using graph theory and linear pro-
gramming. While the literature that uses these techniques focuses on obtaining
general results that are not restricted to particular applications of the mech-
anism design framework, the results that have been obtained can be used in
a wide variety of applications, such as auction design and the provision of
public goods.

One issue that has attracted considerable attention is the development
of necessary and sufficient conditions for dominant strategy implementabil-
ity of an allocation function that chooses an outcome based on the reported
type profile (a list of types, one for each individual) when the type space is
restricted. Outcomes may be purely public or they may have private com-
ponents. The starting point for this literature is a well-known necessary and
sufficient condition for dominant strategy implementability for an arbitrary
type space when utilities are quasilinear (linear in the payment) due to Rock-
afellar (1970) and Rochet (1987). Gui, Müller, and Vohra (2004) have provided
a graph-theoretic interpretation of this condition: for every individual i and
every choice of the types of the other individuals, all cycles with a finite num-
ber of arcs in a directed graph defined using the valuations of the outcomes by
individual i have nonnegative length. In other words, for every integer k ≥ 2,
any cycle with k arcs (a k-cycle) has nonnegative length.

It may be difficult to verify that this condition is satisfied if there are more
than a few possible outcomes. To help overcome this problem, Bikhchandani,
Chatterji, Lavi, Mu’alem, Nisan, and Sen (2006) have identified a fairly ab-
stract domain richness condition for which it is sufficient for dominant strategy
implementability that all 2-cycles have nonnegative length. For a given indi-
vidul i and given types of the other individuals, Saks and Yu (2005) have
shown that when there are a finite number of outcomes, if i’s set of possible
valuations for these outcomes is convex and if all 2-cycles in the corresponding
graph have nonnegative length, then all cycles with an arbitrary number of
arcs also have nonnegative length. Hence, the nonnegativity of all 2-cycles is
a sufficient condition for dominant strategy implementability when the Saks–
Yu assumptions are satisfied. Extensions and variants of Saks and Yu’s results
have been established by Archer and Kleinberg (2008), Ashlagi, Braverman,
Hassidim, and Monderer (2010), and Berger, Müller, and Naeemi (2009, 2010).

In this article, we strengthen the assumption of Saks and Yu (2005) that
the set of individual valuations is convex by requiring that it be a full-
dimensional convex product space. With the addition of a mild regularity
condition, we show that if all 2-cycles have nonnegative length when our do-
main restriction is satisfied, then in fact all cycles have zero length. In proving
this result, we identify and exploit some geometric properties of this problem.
An implication of this result is that all 2-cycles having zero length is necessary
and sufficient for dominant strategy implementability given our assumptions.
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In order to state our results more precisely, we need to distinguish between
the traditional concept of a type, here referred to as a characteristic type, and
a valuation type, which we define below. We consider a direct mechanism that
consists of an allocation function and a payment function. For each charac-
teristic type profile, these functions determine an outcome and a payment
(possibly negative) from each individual. The allocation function is dominant
strategy implementable if there exists a payment function such that reporting
one’s true characteristic type is always a dominant strategy in the resulting
direct mechanism.

We assume that the set of possible characteristic type profiles is the Carte-
sian product of the possible types for each individual and that for a fixed char-
acteristic type, utility is quasilinear. For a given individual i and given types
of the other individuals, following Gui, Müller, and Vohra (2004), we define a
complete directed graph called the characteristic graph whose nodes are the
possible characteristic types of individual i and the length (which could be
negative) of the directed arc joining type si to ti is the change in the valuation
of the outcome obtained by individual i when he is of type ti if he truthfully
reports ti instead of si. Note that the payments are being ignored in this con-
struction. In terms of characteristic graphs, the Rockafellar–Rochet Theorem
shows that an allocation function is dominant strategy implementable if and
only if for every individual i and characteristic types of the other individuals,
all k-cycles in the corresponding characteristic graph have nonnegative length
for every integer k ≥ 2.

When there are a finite number of outcomes, for a given individual i and
given characteristic types of the other individuals, we can equivalently describe
i’s characteristic type ti by the vector vti

in R
m whose jth component is the

value of the jth outcome when he is of type ti. Here, m is the number of
outcomes that are attainable for the possible reported types of individual i
given the characteristic types of the other individuals. This vector vti

is i’s
valuation type and the set of such types is i’s valuation space (which depends
on the types of the other individuals). Again following Gui, Müller, and Vohra
(2004), this set of valuation types can be used to define a new graph, the
allocation graph, whose nodes are the set of attainable outcomes and whose
directed arc from a to b is the infimum of the change in valuation for i of having
b instead of a over all characteristic types for him for which the allocation
function assigns b. The Rockafellar–Rochet Theorem can be restated in terms
of the nonnegativity of all k-cycles in these allocation graphs.

The result of Saks and Yu (2005) stated informally above assumes that
there are a finite number of outcomes and that, for each individual i, i’s
valuation type space is convex for any fixed types of the other individuals.
With these assumptions, they show that it is sufficient for the nonnegativity of
all k-cycles in i’s allocation graph that every 2-cycle has nonnegative length.
Thus, in view of the Rockafellar–Rochet Theorem, the nonnegativity of all
2-cycles in every allocation graph is necessary and sufficient for dominant
strategy implementability. This result is the Saks–Yu Theorem.
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We strengthen Saks and Yu’s convexity assumption by requiring that,
for every individual i and for every fixed types of the other individuals, i’s
valuation type space is a full-dimensional convex product space; that is, it is
the product of nondegenerate intervals of R. We also suppose that i’s valuation
type space satisfies a regularity condition that ensures that there exists an
open set of valuation types for i that results in a being chosen for each outcome
a that is attainable given the types of the other individuals. Our assumptions
are satisfied if i’s valuation type space is unrestricted. With our assumptions,
we show that if all 2-cycles in i’s allocation graph have nonnegative length,
then all k-cycles in this graph have zero length for every integer k ≥ 2. It
then follows from this result and the Rockafellar–Rochet Theorem that an
allocation function is dominant strategy implementable if and only if all 2-
cycles have zero length in every allocation graph obtained by selecting an
individual i and fixing the types of the other individuals, what we call the
zero-length 2-cycle condition.

An allocation function is an affine maximizer if it chooses an outcome that
maximizes an affine function of the individual valuations, where the weights
on the individual valuations are all nonnegative and not all zero. Affine max-
imizers with strictly positive weights are dominant strategy implementable.
When some of the weights are zero, whether an affine maximizer is dominant
strategy implementable depends on how ties are broken. Furthermore, for a
finite set of three or more outcomes, Roberts’ Theorem (see Roberts, 1979)
shows that being an affine maximizer is a necessary condition for an alloca-
tion function to be dominant strategy implementable when the valuation type
spaces are unrestricted and each outcome is chosen for some type profile.1 The
assumptions of Roberts’ Theorem imply the assumptions used here. Hence,
given Roberts’ assumptions, an allocation function is an affine maximizer if
and only if it satisfies our zero-length 2-cycle condition.

Dictatorial allocation functions and allocation functions for Vickrey (1961)
auctions are affine maximizers. We provide examples of a dictatorial decision
procedure and a Vickrey auction with a negative externality that satisfy our
assumptions about the valuation type spaces and confirm that our zero-length
2-cycle condition holds. The valuation type spaces for a standard Vickrey auc-
tion of an indivisible good are convex product spaces, but not full dimensional.
We show that, nevertheless, the zero-length 2-cycle condition is satisfied for
such an auction. We also provide an example of a multi-unit Vickrey auction
for two units of a homogeneous good in which each valuation type space is
convex, but is neither full dimensional nor a product space. In this example,
some 2-cycles have positive length.

An allocation function that is dominant strategy implementable satisfies
the revenue equivalence property if the payment functions that implement it
have the property that for each individual i, given the types of the other indi-
1 For graph-theoretic proofs of Roberts’ Theorem, see Lavi, Mu’alem, and Nisan

(2009).
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viduals, the implementing payment functions for i only differ by a constant.
Revenue equivalence was first analyzed by Myerson (1981) in his study of the
design of optimal auctions for a single good when the individual character-
stic type spaces are one-dimensional. Heydenreich, Müller, Uetz, and Vohra
(2009, Corollary 1) show that revenue equivalence is satisfied by an allocation
function that is dominant strategy implementable if and only if all 2-cycles
have zero length in every allocation graph. Thus, given our assumptions, our
zero-length 2-cycle condition is not only necessary and sufficient for domi-
nant strategy implementability, it is also necessary and sufficient for revenue
equivalence.

In order to prove that all 2-cycles in i’s allocation graph have nonnegative
length, Saks and Yu (2005) use i’s allocation graph to define a new graph
with the same set of nodes for which the length of the directed arc from a
to b is the total change in i’s valuation along a particular kind of path in i’s
valuation type space. They show that under their assumptions, the length of
any directed arc in this new graph bounds from below the length of this arc
in i’s allocation graph and that the length of any k-cycle in this new graph
is zero, from which their theorem follows. In our proofs, we do not need to
consider this auxillary graph.

The plan of the rest of this article is as follows. In Section 2, we intro-
duce the model, the characteristic and allocation graphs, and the Rockafellar–
Rochet Theorem. In Section 3, we consider the Saks–Yu Theorem. Next, in
Section 4, we investigate the geometry of the partition of an individual’s val-
uation type space into regions that are allocated the same outcome. In Sec-
tion 5, we show that dominant strategy implementation is equivalent to our
zero-length 2-cycle condition when our assumptions on the valuation type
spaces are satisfied. In Section 6, we relate our analysis to the literature on
affine maximizers and present our examples. Finally, in Section 7, we offer
some concluding remarks.

2 Dominant Strategy Implementability and the
Rockafellar–Rochet Theorem

Let N be a finite set of n individuals and Ω be a finite set of outcomes. For
each i ∈ N , let T i denote the characteristic type space of individual i with
typical element ti. For now, no assumptions are made about the structure of
T i. The value of ti is private information. Let T−i = ×j∈N\{i}T

j denote the
characteristic type space of all individuals other than individual i. A charac-
teristic type profile is written as (ti, t−i) ∈ T i × T−i.

For each i ∈ N , let vi : Ω×T i → R be the valuation function of individual i.
This function assigns a value vi(a|ti) to each outcome a ∈ Ω and characteristic
type ti ∈ T i. Thus, an individual’s valuation of an outcome only depends on
his private characteristic type.
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A direct mechanism (G, P ) consists of an allocation function G : T i ×
T−i → Ω and a payment function P : T i×T−i → R

n. The function P may be
written as P = (P 1, . . . , Pn), where P i is the payment function for individual
i. For each type profile, G determines an outcome in Ω and P i specifies a
payment (which could be negative) from individual i.

An individual need not report his true type. Given the other individuals’
reported types t−i ∈ T−i, the utility of individual i with characteristic type
ti ∈ T i and reported type si ∈ T i is

vi(G(si, t−i)|ti) − P i(si, t−i).

Definition. An allocation function G is dominant strategy implementable if
there exists a payment function P such that for all i ∈ N and all t−i ∈ T−i,

vi(G(ti, t−i)|ti)−P i(ti, t−i) ≥ vi(G(si, t−i)|ti)−P i(si, t−i), ∀si, ti ∈ T i. (1)

In other words, an allocation function is dominant strategy implementable
if there exists a payment function for which each individual is at least as well
off reporting his true type than reporting any other type regardless of what
the other individuals report.

Given the allocation function G, for fixed i ∈ N and t−i ∈ T−i, the
characteristic graph TG(t−i) is the complete directed graph with nodes T i

and arc length

d(si, ti|t−i) = vi(G(ti, t−i)|ti) − vi(G(si, t−i)|ti) (2)

for the directed arc (si, ti) from si to ti.2 That is, d(si, ti|t−i) is the change
in i’s valuation if his true characteristic type ti is reported instead of the
characteristic type si given the reported characteristic types t−i of the other
individuals. This change in valuation is not the overall change in i’s utility
because the payments have not been taken into account.

For every integer k ≥ 2, a k-cycle in the characteristic graph TG(t−i) is
a sequence of k arcs (ti1, t

i
2), . . . , (t

i
k−1, t

i
k), (tik, ti1) whose length is defined to

be the sum of the lengths of the arcs in the cycle. That is, the length of the
k-cycle is d(ti1, t

i
2|t−i) + · · · + d(tik−1, t

i
k|t−i) + d(tik, ti1|t−i).3

Rochet (1987, Theorem 1) uses a theorem about subdifferentials of mul-
tidimensional convex functions due to Rockafellar (1970, Theorem 24.8) to
provide necessary and sufficient conditions for an allocation function to be
dominant strategy implementable. This result is known as the Rockafellar–
Rochet Theorem. Theorem 1 provides a statement of this theorem in terms of
characteristic graphs (see Vohra, 2011, Theorem 4.2.1).4

2 We exclude loops. That is, there are no arcs from a node to itself. The character-
istic graph, as well as the allocation graph defined below, were introduced by Gui,
Müller, and Vohra (2004). We adopt their terminology in calling (2) a “length”
instead of an edge weight even though it may be negative.

3 Note that because there are no loops, there are no 1-cycles.
4 When stating this theorem, it is common to assume that everybody has the same

characteristic type space, but as Vohra (2011, p. 38) notes, this is not necessary.
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Theorem 1. The allocation function G : T i × T−i → Ω is dominant strategy
implementable if and only if for every i ∈ N , t−i ∈ T−i, and integer k ≥ 2,
all k-cycles in the characteristic graph TG(t−i) have nonnegative length.

Given t−i ∈ T−i, let A(t−i) = {a1, . . . , am} be the finite set of m attainable
outcomes for the allocation function G. That is,

A(t−i) = {a ∈ Ω | G(ti, t−i) = a for some ti ∈ T i}.

The value of m may depend on the choice of t−i.
For all a ∈ A(t−i), let

Ra(t−i) = {ti ∈ T i | G(ti, t−i) = a}

be the set of characteristic types for i that induce outcome a using the al-
location function G when the other individuals’ types are given by t−i. By
construction, Ra(t−i) is nonempty for all a ∈ A(t−i).

For the characteristic graph TG(t−i), the corresponding allocation graph
ΓG(t−i) is the complete directed graph that has A(t−i) as the set of nodes
and �(a, b|t−i) as the length of the directed arc from node a to node b, where
for all distinct a, b ∈ A(t−i),

�(a, b|t−i) = inf
ti∈Rb(t−i)

[
vi(b|ti) − vi(a|ti)

]
= inf

ti∈Rb(t−i)

[
vi(G(ti, t−i)|ti) − v(a|ti)

]
.5 (3)

In this graph, the length (which could be negative) of the directed arc from
a to b is the infimum of the change in i’s valuation of having b instead of a
over the set of all of his characteristic types for which the outcome function
assigns b given t−i.

For any two nodes a and b in the allocation graph ΓG(t−i), a path from a
to b is a sequence of arcs (a1, a2), . . . , (ak−1, ak) for which a = a1 and b = ak.
For every integer k ≥ 2, a k-cycle in the allocation graph ΓG(t−i) is a path
with k arcs whose endpoints are both the same. That is, it is a sequence of
arcs (a1, a2), . . . , (ak−1, ak), (ak, a1). The length of a path or k-cycle is the
sum of the lengths of the arcs that comprise it.

The Rockafellar–Rochet Theorem can be restated using allocation graphs
by simply substituting the allocation graph ΓG(t−i) for the characteristic
graph TG(t−i) in the statement of Theorem 1.6

In order to analyze dominant strategy implementability, without loss of
generality, we can consider a fixed individual i ∈ N and fixed types t−i ∈ T−i

5 We adopt the convention that the infimum and supremum are equal to −∞ and
∞, respectively, when they are not finite. Our assumptions do not rule out the
possibility that �(a, b|t−i) = −∞. As shown by Mishra (2009) and Vohra (2011),
�(a, b|t−i) is finite for all a, b ∈ A(t−i) if (1) is satisfied.

6 This version of the Rockafellar–Rochet Theorem is stated without proof in Vohra
(2011).
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of the other individuals. To simplify the notation, we let v = vi, t = ti, T = T i,
and suppress the dependence of A(t−i), Ra(t−i), d(si, ti|t−i), and �(a, b|t−i)
on t−i. By fixing i and t−i, (G, P ) defines a single person mechanism (g, p)
with allocation function g : T → A and payment function p : T → R obtained
by setting

g(t) = G(t, t−i) and p(t) = P i(t, t−i), ∀t ∈ T.

Note that g is surjective. The corresponding characteristic and allocation
graphs are denoted by Tg and Γg, respectively.

For the mechanism (g, p), the dominant strategy implementability condi-
tion (1) simplifies to

v(g(t)|t) − p(t) ≥ v(g(s)|t) − p(s), ∀s, t ∈ T. (4)

It follows from (4) that if g is dominant strategy implementable and g(s) =
g(t), then p(s) = p(t) as well.

For the allocation function g, the Rockafellar–Rochet Theorem can be
restated as follows.

Theorem 2. The following conditions for the allocation function g : T → A
are equivalent:

(i) g is dominant strategy implementable;
(ii) for every integer k ≥ 2, all k-cycles in the characteristic graph Tg have

nonnegative length;
(iii) for every integer k ≥ 2, all k-cycles in the allocation graph Γg have non-

negative length.

Proof. The equivalence of (i) and (ii) follows immediately from Theorem 1 by
setting n = 1. We now show the equivalence of (i) and (iii).7

First, suppose that for every integer k ≥ 2, all k-cycles in Γg have nonneg-
ative length. Because there are a finite number of outcomes in A, there are a
finite number of nodes in Γg. Hence, because all cycles in Γg have nonnegative
length, by Vohra (2011, Corollary 3.4.2), for any two nodes a, b ∈ A, there is a
minimum-length (i.e., shortest) path from a to b. Fix a ∈ A. Let p̄ : T → R be
the length of a shortest path from a to g(t). We shall show that the mechanism
(g, p̄) satisfies the dominant strategy implementability condition (4).

Consider any two types s, t ∈ T . We have

p̄(t) ≤ p̄(s) + �(g(s), g(t))

because the length of a shortest path from a to g(t) cannot exceed the length
of a path from a to g(s) to g(t). It follows that

7 A somewhat different proof of this equivalence may be found in Mishra (2009,
Theorem 2).
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p̄(t) − p̄(s) ≤ �(g(s), g(t))
= inf

r∈Rg(t)

[v(g(t)|r) − v(g(s)|r)]

≤ v(g(t)|t) − v(g(s)|t),

thereby establishing (4).
Second, suppose that there exists a payment function p : T → A such that

(g, p) satisfies (4). Rearranging (4), we obtain

p(t) − p(s) ≤ v(g(t)|t) − v(g(s)|t), ∀s, t ∈ T. (5)

Consider any k-cycle (a1, a2), . . . , (ak−1, ak), (ak, a1) for an arbitrary integer
k ≥ 2. Let ak+1 = a1. Then, for all ε > 0 and all j = {1, . . . , k}, there exist
sε,j ∈ Raj such that

k∑
j=1

�(aj , aj+1) =
k∑

j=1

inf
t∈Raj+1

[v(aj+1|t) − v(aj |t)]

>

k∑
j=1

[
v(aj+1|sε,j+1) − v(aj |sε,j+1) − ε

]
. (6)

Noting that sε,k+1 = sε,1, it follows from (5) that

k∑
j=1

[
v(aj+1|sε,j+1) − v(aj |sε,j+1) − ε

]
≥

k∑
j=1

[
p(sε,j+1) − p(sε,j) − ε

]
. (7)

The sum on the right-hand side of (7) is −kε. Hence, (6) and (7) imply that

k∑
j=1

�(aj , aj+1) > −kε. (8)

Taking the limit as ε goes to 0 in (8) shows that the length of this k-cycle is
nonnegative. ��

3 The Saks–Yu Theorem

It may be computationally onerous to check that every cycle in either the
characteristic graph Tg or in the allocation graph Γg has nonnegative length
in order to determine if the allocation function g is dominant strategy imple-
mentable. It follows from the Rockafellar–Rochet Theorem that a necessary
condition for dominant strategy implementability is that all the 2-cycles have
nonnegative length. Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen
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(2006) and Saks and Yu (2005) have identified alternative restrictions on v un-
der which this 2-cycle nonnegativity condition is also sufficient for dominant
strategy implementability. Our results build on those of Saks and Yu.

The 2-cycle nonnegativity condition can be defined in either of our two
graphs. Below we shall show that these two definitions are equivalent. We
begin with the characteristic graph.

Definition. An allocation function g satisfies the characteristic graph 2-cycle
nonnegativity condition if

d(s, t) + d(t, s) ≥ 0, ∀s, t ∈ T, s 	= t. (9)

It follows from (2) that (9) is equivalent to

v(g(t)|t) − v(g(s)|t) ≥ v(g(t)|s) − v(g(s)|s), ∀s, t ∈ T, s 	= t. (10)

That is, the change in valuation obtained by replacing g(s) with g(t) is at least
as large for type t as for type s. For this reason, Bikhchandani, Chatterji, Lavi,
Mu’alem, Nisan, and Sen (2006) call this condition weak monotonicity.

We now define the corresponding condition using the allocation graph.

Definition. An allocation function g satisfies the allocation graph 2-cycle
nonnegativity condition if

�(a, b) + �(b, a) ≥ 0, ∀a, b ∈ A, a 	= b. (11)

Theorem 3 shows that these two 2-cycle nonnegativity conditions are
equivalent. In light of this equivalence, we shall simply refer to this condi-
tion as the 2-cycle nonnegativity condition.

Theorem 3. An allocation function g : T → A satisfies the characteristic
graph 2-cycle nonnegativity condition if and only if it satisfies the allocation
graph 2-cycle nonnegativity condition.

Proof. First, suppose the allocation rule g satisfies the characteristic graph
2-cycle nonnegativity condition (9) but that, by way of contradiction, there
exist outcomes â and b̂ in A such that �(â, b̂)+�(b̂, â) < 0. Using the definition
of � in (3), we can rewrite the last inequality as

inf
t∈Rb̂

[v(b̂|t) − v(â|t)] + inf
s∈Râ

[v(â|s) − v(b̂|s)] < 0.

Thus, there exist characteristic types ŝ ∈ Râ and t̂ ∈ Rb̂ such that

[v(b̂|t̂) − v(â|t̂)] + [v(â|ŝ) − v(b̂|ŝ)] < 0.

This inequality, however, contradicts (10), which is equivalent to the charac-
teristic graph 2-cycle nonnegativity condition (9).
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Second, suppose the allocation rule g satisfies the allocation graph 2-cycle
nonnegativity condition (11) but that, by way of contradiction, there exist
types ŝ and t̂ in T such that d(ŝ, t̂) + d(t̂, ŝ) < 0 or, equivalently, that

[v(b̂|t̂) − v(â|t̂)] + [v(â|ŝ) − v(b̂|ŝ)] < 0,

where â = g(ŝ) and b̂ = g(t̂). From this last inequality, it follows that

�(â, b̂) + �(b̂, â) = inf
t∈Rb̂

[v(b̂|t) − v(â|t)] + inf
s∈Râ

[v(â|s) − v(b̂|s)] < 0,

which contradicts the allocation graph 2-cycle nonnegativity condition (11).
��

Each characteristic type t ∈ T has associated with it a corresponding
valuation type vt = (vt

a1
, . . . , vt

am
) ∈ R

m, where vt
a = v(a|t) for all a ∈ A.

The jth component of vt is the value of outcome aj when individual i is of
characteristic type t. Individual i’s valuation type space (given t−i) is

V = {vt ∈ R
m | t ∈ T}.8

If characteristic types s and t have the same associated valuation type
v, there is then no loss of generality in identifying them (i.e., treating them
as being the same characteristic type). Henceforth, we assume that if s 	= t,
then vs 	= vt. With this assumption, there is a unique t ∈ T associated
with each v ∈ V. Hence, individual i can be equivalently characterized by his
characteristic type t or his valuation type v. Let tv denote the characteristic
type associated with v.

Saks and Yu (2005, Theorem 4) show that if the valuation type space V is
convex, then all k-cycles in the allocation graph Γg have nonnegative length if
Γg satisfies the allocation graph 2-cycle nonnegativity condition (11). By The-
orem 2, we thus have that the 2-cycle nonnegativity condition is necessary and
sufficient for dominant strategy implementability of g when V is convex. This
result, which is Theorem 1 in Saks and Yu (2005), is the Saks–Yu Theorem.

Theorem 4. If V is convex, then the allocation function g : T → A is domi-
nant strategy implementable if and only if the 2-cycle nonnegativity condition
is satisfied.

Note that the assumption that V is convex implicitly places restrictions
on the characteristic type space T . In particular, T cannot be discrete.
8 Note that V is a function of t−i because the set of attainable outcomes A may

depend on t−i.
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Fig. 1. Difference sets when m = 2.

4 Partitioning the Valuation Type Space

Recall that Ra is the set of characteristic types that the allocation function g
maps into outcome a. Because there is a bijection between the characteristic
type space T and the valuation type space V, the sets Ra for a ∈ A induce a
partition of V with each cell in the partition associated with the outcome as-
signed to valuation types in that cell. Our results are obtained by investigating
the geometry of this partition.

The valuation type space V is a subset of R
m. We first define some sets

on all of R
m and then later restrict them to V.

For all a, b ∈ A with a 	= b, the difference set for (a, b) is

Qab = {v ∈ R
m | va − vb ≥ �(b, a)}.

Qab is a closed halfspace. A valuation type v is in Qab if the change in valuation
for individual i of having object a instead of b is at least as large as the
infimum of the change in valuation of having b instead of a over the set of all
characteristic types for which the outcome function assigns a.

Difference sets are illustrated in Figure 1 for the case in which A = {a1, a2}.
In this case, the two difference sets are

Qa1a2 = {v ∈ R
2 | va2 ≤ −�(a2, a1) + va1}

and
Qa2a1 = {v ∈ R

2 | va2 ≥ �(a1, a2) + va1}.
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Qa2 ∩ Υ

−�(a1, a3) + v̄a3
����

−�(a2, a3) + v̄a3
�	

Qa3 ∩ Υ

Fig. 2. Difference sets when m = 3.

The boundaries of these two sets have slope equal to 1 and their vertical
intercepts are −�(a2, a1) and �(a1, a2), respectively. The 2-cycle nonnegativity
condition �(a1, a2) + �(a2, a1) ≥ 0 holds if and only �(a1, a2) ≥ −�(a2, a1).
Hence, if the 2-cycle nonnegativity condition is satisfied, Qa2a1 lies above
Qa1a2 and the interiors of these sets have an empty intersection.

For each a ∈ A, the difference set for a is

Qa =
⋂

b∈A\{a}
Qab.

Qa is the closed convex polyhedron obtained by intersecting the halfspaces
Qab for all outcomes b distinct from a. For the two-outcome case illustrated
in Figure 1, Qa1 = Qa1a2 and Qa2 = Qa2a1 .

For the case in which A = {a1, a2, a3}, cross sections of the difference sets
Qa1 , Qa2 , and Qa3 for a fixed valuation v̄a3 of the third outcome are illustrated
in Figure 2. Let

Υ = {v ∈ R
3 | va3 = v̄a3}.

In this diagram, Qa1 ∩ Υ is the intersection of

Qa1a2 ∩ Υ = {v ∈ Υ | va2 ≤ −�(a2, a1) + va1}

and
Qa1a3 ∩ Υ = {v ∈ Υ | va1 ≥ �(a3, a1) + v̄a3},

Qa2 ∩ Υ is the intersection of
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Qa2a1 ∩ Υ = {v ∈ Υ | va2 ≥ �(a1, a2) + va1}

and
Qa2a3 ∩ Υ = {v ∈ Υ | va2 ≥ �(a3, a2) + v̄a3},

and Qa3 ∩ Υ is the intersection of

Qa3a1 ∩ Υ = {v ∈ Υ | va1 ≤ −�(a1, a3) + v̄a3}

and
Qa3a2 ∩ Υ = {v ∈ Υ | va2 ≤ −�(a2, a3) + v̄a3}.

Let ∂S denote the boundary of set S. The intersections of Qa1a2 and
Qa2a1 with Υ do not depend on the choice of v̄a3 . Hence, for all v̄a3 , the
upward sloping parts of ∂Qa1 ∩Υ and ∂Qa2 ∩Υ have slope equal to 1 and are
contained in lines whose intercepts with the axes do not depend on v̄a3 . As
v̄a3 increases, the horizontal parts of ∂Qa2 ∩Υ and ∂Qa3 ∩Υ move up and the
vertical parts of ∂Qa1 ∩ Υ and ∂Qa3 ∩ Υ move to the right.

When there are more than three outcomes, the analogue of Figure 2 is
obtained by setting Υ = {v ∈ R

m | (va3 , . . . , vam
) = (v̄a3 , . . . , v̄am

)}. In this
case, the restrictions of the difference sets Qa1 and Qa2 to Υ have the same
shapes as shown in Figure 2. Provided that the 2-cycle nonnegativity condition
is satisfied, there is a single outcome ad∗ that maximizes both �(ad, a1) +
v̄ad

and �(ad, a2) + v̄ad
for d 	= 1, 2. The points in the vertical boundary of

Qa1 ∩ Υ all have first coordinate equal to �(ad∗ , a1) + v̄ad∗ and the points
in the horizontal boundary of Qa2 ∩ Υ all have second coordinate equal to
�(ad∗ , a2)+v̄ad∗ . Generically, the only other difference set that has a nonempty
intersection with Υ is Qad∗ . It has the same shape as Qa3 ∩Υ in Figure 2, with
points in its vertical boundary having first coordinate equal to −�(a1, ad∗) +
v̄ad∗ and points in its horizontal boundary having second coordinate equal to
−�(a2, ad∗) + v̄ad∗ . It is, however, possible that there is an ad̄ 	= ad∗ for which
Qad∗ ∩ Υ = Qad̄

∩ Υ . This happens when these sets are common boundary
points of Qad∗ and Qad̄

.
There is a close connection between the set of characteristic types Ta

that are allocated outcome a and the set Qa ∩ V. Except for possibly some
of the boundary points of Qa, the set of characteristic types associated with
valuation types in Qa∩V is Ra. More precisely, for every t ∈ Ra, the valuation
type vt is in Qa ∩ V. Moreover, if the allocation function satisfies the 2-cycle
nonnegativity condition, then for every v ∈ V that is in the interior Q◦

a of Qa,
the characteristic type tv is in Ra. Proofs of these results may be found in
Mishra (2009) and Vohra (2011), but for completeness, we include them here.

Theorem 5. For any allocation function g : T → A and any outcome a ∈ A,
(i) for every characteristic type t ∈ Ra, the valuation type vt is in Qa ∩V and
(ii) if g satisfies the 2-cycle nonnegativity condition, then for every valuation
type v ∈ Q◦

a ∩ V, the characteristic type tv is in Ra.
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Proof. (i) By definition, g(t) = a for any characteristic type t ∈ Ra. Therefore,

v(a|t) − v(b|t) ≥ inf
t∈Ra

[v(a|t) − v(b|t)] = �(b, a), ∀b ∈ A\{a}.

Hence, by the definition of Qa, we have vt ∈ Qa ∩ V.
(ii) Consider any valuation type v ∈ Q◦

a ∩ V. Because v ∈ Q◦
a, for the

characteristic type tv, we have

va − vb = v(a|tv) − v(b|tv) > �(b, a), ∀b ∈ A\{a}.

Because the allocation rule g satisfies the 2-cycle nonnegativity condition,
�(a, b) ≥ −�(b, a) for all b ∈ A\{a}. The last two inequalities then imply that

vb − va = v(b|tv) − v(a|tv) < −�(b, a) ≤ �(a, b), ∀b ∈ A\{a}.

Hence, v /∈ Qb ∩ V for any b ∈ A\{a}. Therefore, from part (i) it follows that
tv /∈ Rb for any b ∈ A\{a}. Consequently, tv must be in Ra. ��

An immediate implication of Theorem 5 is that for all a, b ∈ A, Q◦
a ∩

Q◦
b = ∅ if the 2-cycle nonnegativity condition is satisfied. Furthermore, if

v ∈ Qa ∩ Qb ∩ V, then va − vb = �(b, a) = −�(a, b).9

Our next theorem shows that the allocation function g satisfies a mono-
tonicity property when the 2-cycle nonnegativity condition is satisfied. Specif-
ically, if the valuation of the chosen outcome, say a, increases and the valu-
ation of no other outcome decreases, then no outcome b different from a can
be chosen unless b’s valuation also increases.

Theorem 6. If the allocation function g : T → A satisfies the 2-cycle nonneg-
ativity condition, then for every characteristic type t ∈ Ra and every valuation
type v′ ∈ V with v′ ≥ vt for which v′a > vt

a and v′b = vt
b, the characteristic type

tv
′
is not in Rb.

Proof. Consider any a ∈ A and t ∈ Ra. By Theorem 5, we have

vt
a − vt

c ≥ �(c, a), ∀c ∈ A\{a}.

Consider any b ∈ A\{a} and any valuation type v′ ∈ V with v′ ≥ vt for which
v′a > vt

a and v′b = vt
b. The preceding inequality then implies that

v′b − v′a < vt
b − vt

a ≤ −�(b, a).

By the 2-cycle nonnegativity condition, we thus have

v′b − v′a < �(a, b).

Hence, by Theorem 5, tv
′

/∈ Rb. ��
9 See Saks and Yu (2005, Proposition 5).
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5 Dominant Strategy Implementation and Zero Length
Cycles

In this section, we replace the Saks–Yu assumption that the valuation type
space V is convex with the more restrictive assumption that it is the product of
nonegenerate intervals, what we call a full-dimensional convex product space.

Definition. The valuation type space V is a full-dimensional convex product
space if

V =
∏
a∈A

〈La, Ua〉,

where for all a ∈ A, 〈La, Ua〉 is any type of interval of R with endpoints La

and Ua for which La < Ua.10

By construction, Qa ∩ V 	= ∅ for all a ∈ A. We henceforth assume that
Q◦

a ∩ V◦ 	= ∅ for all a ∈ A. We refer to this restriction as the interiority
assumption. This condition necessarily holds if V is open, which is the case if,
for example, V = R

m. If V is not open, because V◦ 	= ∅, requiring Q◦
a ∩V◦ to

be nonempty for all a ∈ A is a mild regularity condition.
As we have noted, Saks and Yu (2005) show that if an allocation func-

tion g : T → A satisfies the 2-cycle nonnegativity condition and V is convex,
then all k-cycles in the allocation graph Γg have nonnegative length. Our
main theorem shows that, in fact, all of these k-cycles have zero length if we
additionally assume that V is a full-dimensional convex product space and
Q◦

a ∩ V◦ 	= ∅ for all a ∈ A.

Theorem 7. Suppose that |A| ≥ 2. If (i) the allocation function g : T → A
satisfies the 2-cycle nonnegativity condition, (ii) the valuation type space V is
a full-dimensional convex product space, and (iii) Q◦

a ∩V◦ 	= ∅ for all a ∈ A,
then for every integer k ≥ 2, all k-cycles in the allocation graph Γg have zero
length.

We prove this theorem by a sequence of lemmas. Our first lemma shows
that our assumptions imply that all 2-cycles in Γg have zero length.11 Note
that all 2-cycles in Γg have zero length if and only if � is antisymmetric. That
is, �(a, b) = −�(b, a) for all a, b ∈ A.

Lemma 1. Under the assumptions of Theorem 7, all 2-cycles in the allocation
graph Γg have zero length.

10 We permit La to be −∞ and Ua to be ∞.
11 For the special case in which V is all of R

m, this lemma has also been established
by Lavi, Mu’alem, and Nisan (2009, Claim 8). Their Claim 8 is used to help
prove a version of Roberts’ Theorem. Although Roberts’ Theorem assumes that
the allocation function is dominant strategy implementable, this assumption is
not used in the proof of this claim.
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Proof. Consider any a, b ∈ A. We first prove that �(a, b)+ �(b, a) = 0 when Ua

and Ub are both finite. On the contrary, suppose that the sum of these lengths
differs from zero, which by the 2-cycle nonnegativity condition implies that
there exists an arbitrarily small δ > 0 such that

�(a, b) + �(b, a) ≥ δ. (12)

We assume that
Ua − �(b, a) ≤ Ub. (13)

This assumption is without loss of generality because if (13) does not hold,
then the 2-cycle nonnegativity condition implies that Ub − �(a, b) ≤ Ub +
�(b, a) < Ua, and we can reverse the roles of a and b.

Consider any v ∈ Q◦
a ∩ V◦. By Theorem 5, the characteristic type tv is in

Ra. Because v ∈ Q◦
a ∩ V◦,

va − vb > �(b, a) (14)

and va < Ua. The latter inequality and (13) imply that

va − �(b, a) < Ub. (15)

Define the valuation type ṽ by setting

ṽa = va + ε, ṽb = va − �(b, a) + 2ε, and ṽc = vc, ∀c ∈ A\{a, b}, (16)

where ε > 0 is chosen to be sufficiently close to 0 so that both ṽ is in V and
δ > ε. Because va < Ua, (15) ensures that such a ṽ exists. Note that (14) and
(16) imply that ṽb > vb.

It follows from (16) that

ṽa − ṽb = �(b, a) − ε < �(b, a).

Hence, by Theorem 5, the characteristic type tṽ cannot be in Ra. From (12),
(16), and the assumption that δ > ε, we have

ṽb − ṽa = ε − �(b, a) ≤ ε + �(a, b) − δ < �(a, b),

and so by Theorem 5, tṽ cannot be in Rb. By construction, ṽ ≥ v, ṽa > va,
and ṽc = vc for all c ∈ A\{a, b}. Because tv ∈ Ra, Theorem 6 implies that tṽ

is not in Rc for any c ∈ A\{a, b}. We have shown that g does not assign any
outcome to tṽ, which is impossible. Therefore, �(a, b) + �(b, a) = 0.

If Ub = ∞, we do not need to assume (13) in order for (15) to hold, which
is all that is needed in order for ṽ to be in V.12 If Ub is finite, but Ua = ∞,
an analogous argument with the roles of a and b reversed ensures that the
requisite ṽ exists. ��

12 If Ub = ∞, (13) is satisfied if Ua is finite.
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Fig. 3. Illustration of the Proof of Lemma 1.

The proof of Lemma 1 is illustrated in Figure 3 for the case in which V is
compact. In this diagram,

Υ = {v̂ ∈ R
m | v̂c = vc, ∀c ∈ A\{a, b}},

for some fixed values of vc for c ∈ A\{a, b} that will be specified later. The
sets ∂Qab ∩ Υ , ∂Qba ∩ Υ , and V ∩ Υ are all independent of the valuations
chosen for the outcomes other than a and b. The upward sloping parts of
∂Qa ∩ Υ and ∂Qb ∩ Υ are contained in ∂Qab ∩ Υ and ∂Qba ∩ Υ , respectively.
By way of contradiction, we suppose that �(a, b) + �(b, a) > 0, which, by the
2-cycle nonnegativity condition, implies that ∂Qba ∩ Υ lies above ∂Qab ∩ Υ
when va is plotted on the horizontal axis and vb is plotted on the vertical axis.
Our interiority assumption ensures that (i) ∂Qab∩Υ intersects the right-hand
boundary of V ∩ Υ or (ii) ∂Qba ∩ Υ intersects the upper boundary of V ∩ Υ .
Without loss of generality, we consider case (i).

We choose v so that it is in Q◦
a ∩ V◦, which is possible by our interiority

assumption. The valuation vector ṽ differs from v only in the valuations of
outcomes a and b. It is chosen so that ṽa > va and ṽb > vb, and so that (ṽa, ṽb)
is not in either Qa∩Υ or Qb∩Υ , as shown in the diagram. Because v ∈ Q◦

a, by
Theorem 5, the characteristic type tv associated with v is allocated a. Because
ṽ is in neither Qa nor Qb, the same theorem implies that the characteristic
type tṽ associated with ṽ cannot be allocated either a or b. In moving from v
to ṽ, the valuations of a and b have increased with no change in the valuations
of the other outcomes. Hence, by Theorem 6, no outcome other than a or b
can be allocated to tṽ. We now have no outcome allocated to tṽ, which is



Dominant Strategy Implementation 19

impossible, and so we conclude that �(a, b) + �(b, a) = 0. Note that −�(b, a)
is the vertical intercept of ∂Qab ∩ Υ and �(a, b) is the vertical intercept of
∂Qba ∩Υ . When these two values concide, then so do ∂Qab ∩Υ and ∂Qba ∩Υ .

If there are only two outcomes, say a1 and a2, only the 2-cycle nonneg-
ativity condition and convexity of V are needed to conclude that �(a1, a2) +
�(a2, a1) = 0. This can be seen using Figure 1. Because V must intersect both
Qa1 and Qa2 , if, as shown in this diagram, �(a1, a2) + �(a2, a1) > 0, then V
must contain valuation vectors that are in neither of the two difference sets
when V is convex. But then some types are not assigned any outcome, which
is impossible.

If |A| = 2, the proof of Theorem 7 is complete. For |A| ≥ 3, we now show
that if the length of every 2-cycle is zero and the length of every 3-cycle is
nonnegative, then all k-cycles have zero length.

Lemma 2. If all 2-cycles in the allocation graph Γg have zero length and all 3-
cycles in Γg have nonnegative length, then for every integer k ≥ 2, all k-cycles
in Γg have zero length.

Proof. By assumption, any 2-cycle has zero length.
Consider any 3-cycle (a1, a2), (a2, a3), (a3, a1). Because all 3-cycles have

nonnegative length,

�(a1, a2) + �(a2, a3) + �(a3, a1) ≥ 0.

Because all 2-cycles have zero length, this inequality is equivalent to

−�(a2, a1) − �(a3, a2) − �(a1, a3) ≥ 0,

or, equivalently,
�(a1, a3) + �(a3, a2) + �(a2, a1) ≤ 0.

Because all 3-cycles have nonnegative length, the preceding inequality implies
that the 3-cycle (a1, a3), (a3, a2), (a2, a1) has zero length, which implies that
the original 3-cycle (a1, a2), (a2, a3), (a3, a1) also has zero length.

Induction is used to complete the proof. Consider any integer k ≥ 4
and suppose that any (k − 1)-cycle has zero length. Consider any k-cycle
(a1, a2), . . . , (ak−1, ak), (ak, a1). We now insert the 2-cycle (ak−1, a1), (a1, ak−1)
before the arc (ak−1, ak). This construction is illustrated in Figure 4 for the
case in which k = 4. The inserted 2-cycle has length zero. Thus,

�(a1, a2) + · · · + �(ak−1, ak) + �(ak, a1)
= [�(a1, a2) + · · · + �(ak−2, ak−1) + �(ak−1, a1)]

+ [�(a1, ak−1) + �(ak−1, ak) + �(ak, a1)] .

The first (resp. second) term in square brackets on the right-hand side of this
equation is the length of a (k − 1)-cycle (resp. 3-cycle). Both of these lengths
are zero. Hence, the length of the original k-cycle is also zero. ��
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Fig. 4. Inserting a 2-cycle into a 4-cycle.

To complete the proof of Theorem 7, it remains to show that the length
of any 3-cycle is nonnegative.13

Lemma 3. Under the assumptions of Theorem 7, all 3-cycles in the allocation
graph Γg have nonnegative length.

Proof. Consider any distinct a, b, c ∈ A. We first consider the case in which
Ld 	= −∞ for all d ∈ A\{c}. Let

v∗c = max
d∈A\{c}

[Ld + �(d, c)] (17)

and consider any
d̄ ∈ arg max

d∈A\{c}
[Ld + �(d, c)] . (18)

Because the 2-cycle nonnegativity condition is satisfied, �(d, c) is finite for all
d ∈ A\{c}. Thus, our assumptions ensure that such a d̄ exists and that v∗c
is finite. Note that for any v̄c with v̄c > v∗c , there exist v̄d for all d ∈ A\{c}
arbitrarily close to Ld such that v̄ ∈ Q◦

c and, hence by Theorem 5, that tv̄ ∈ Rc

if v̄ ∈ V.14 We must have v∗c < Uc, otherwise Q◦
c ∩V◦ = ∅. Furthermore, Lc <

v∗c , otherwise tv ∈ Rc for all v with vc > v∗c , which implies that Q◦
d ∩ V◦ = ∅

for all d ∈ A\{c}. Thus, Lc < v∗c < Uc.
We now show that

Ua − v∗c > �(c, a) and Ub − v∗c > �(c, b). (19)
13 For the special case in which V is all of R

m, Lavi, Mu’alem, and Nisan (2009,
Claim 9) show that a necessary condition for dominant strategy implementabil-
ity is that all 3-cycles have zero length. Our lemma is concerned with sufficient
conditions for dominant strategy implementabilty.

14 If Ld ∈ 〈Ld, Ud〉, v̄d can be chosen to be Ld.
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If the first inequality in (19) is violated, we have Ua − v∗c ≤ �(c, a). Because
Q◦

a ∩ V◦ 	= ∅, we must have

Ua − Ld > �(d, a), ∀d ∈ A\{a}. (20)

Thus, by choosing ε > 0 sufficiently small, there exists a valuation type ṽ ∈ V
defined by setting ṽa = Ua − ε, ṽc = v∗c − ε/2, and ṽd = Ld + ε for all
d ∈ A\{a, c} such that Ua − Ld > �(d, a) + 2ε for all d ∈ A\{a, c}. However,
we cannot assign any outcome in A to valuation type ṽ because

ṽc − ṽd̄ = v∗c − ε/2 − [Ld̄ + ε] < �(d̄, c), (21)

ṽa − ṽc = Ua − ε − [v∗c − ε/2] = Ua − v∗c − ε/2 < Ua − v∗c ≤ �(c, a), (22)

and

ṽd − ṽa = Ld + ε − [Ua − ε] = Ld − Ua + 2ε

< −�(d, a) = �(a, d), ∀d ∈ A\{a, c}, (23)

where the last inequality in (21) follows from (17), the last inequality in (22)
holds by supposition, the inequality in (23) follows from (20), and the last
equality in (23) follows because all 2-cycles have zero length. However, ṽ must
be assigned an outcome in A, so this contradiction shows that Ua−v∗c > �(c, a).
Similarly, we must have Ub − v∗c > �(c, b).

Contrary to what we want to show, now suppose that �(a, b) + �(b, c) +
�(c, a) < 0. Let v̂ be defined by setting

v̂a = v∗c − �(a, c) + 2δ, (24)

v̂b = v∗c − �(b, c) + ξ, (25)

v̂c = v∗c + δ, (26)

and
v̂d = Ld + δ/2, ∀d ∈ A\{a, b, c}. (27)

Because Lc < v∗c < Uc, for δ > 0 sufficiently small, (26) and (27) imply that
Lc < v̂c < Uc and Ld < v̂d < Ud for all d ∈ A\{a, b, c}. Using (17), for δ > 0
and ξ > 0 sufficiently small, it follows from (24) and (25) that La < v̂a and
Lb < v̂b. Because all 2-cycles have zero length, (24) and (25) also imply that
v̂a = v∗c + �(c, a)+2δ and v̂b = v∗c + �(c, b)+ ξ. For δ > 0 and ξ > 0 sufficiently
small, it then follows from (19) that v̂a < Ua and v̂b < Ub. Hence, by choosing
δ > 0 and ξ > 0 sufficiently small with δ > ξ, it follows that v̂ ∈ V and

�(a, b) + �(b, c) + �(c, a) + 2δ − ξ < 0. (28)

We have

v̂a− v̂b = �(b, c)−�(a, c)+2δ−ξ = �(b, c)+�(c, a)+2δ−ξ < −�(a, b) = �(b, a),
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where the first equality follows from (24) and (25), the other two equalities
follow because 2-cycles have zero length, and the inequality follows from (28).
Thus, a cannot be chosen when v = v̂.

Because 2-cycles have zero length and δ > ξ, it follows from (25) and (26)
that

v̂b − v̂c = −�(b, c) − δ + ξ < −�(b, c) = �(c, b).

Thus, b cannot be chosen when v = v̂.
By (24) and (26),

v̂c − v̂a = �(a, c) − δ < �(a, c).

Thus, c cannot be chosen when v = v̂.
Finally, because 2-cycles have zero length, (17), (26), and (27) imply that

v̂d − v̂c = Ld − v∗c − δ/2 < Ld − v∗c ≤ −�(d, c) = �(c, d), ∀d ∈ A\{a, b, c}.

Thus, no d ∈ A\{a, b, c} can be chosen when v = v̂.
We have shown that no outcome in A can be chosen when v = v̂, which

is impossible. Thus, our supposition that �(a, b) + �(b, c) + �(c, a) < 0 is false.
Hence, �(a, b)+�(b, c)+�(c, a) ≥ 0, which completes the proof when Ld 	= −∞
for all d ∈ A\{c}.

If some, but not all, d ∈ A\{c} have Ld = −∞, the argument proceeds as
above with a finite value L̄d used instead of Ld for all d ∈ A\{c} for which
Ld = −∞, where L̄d is chosen to be sufficiently small so that d̄ still solves
(18) and (20) still holds. If Ld = −∞ for all d ∈ A\{c}, we then replace Ld

with a finite value L̄d for all d ∈ A\{c}, with L̄d chosen so that (20) still holds
and v∗c < Uc. The proof then proceeds as above. ��

The conclusion that the lengths of 3-cycles are zero follows from geometric
properties of the difference sets that can be most easily seen when there are
only three outcomes, say a1, a2, and a3, and the valuation type space V is
compact. Fix v3 at its lowest value L3 and let

Υ = {v ∈ R
3 | v3 = L3}.

Recall that if we increase v3, the left-hand boundary of Qa1 moves to the right
and the lower boundary of Qa2 moves up. Thus, our interiority assumption
implies that if we restrict attention to valuation vectors in Υ , then the vertical
part of the boundary of Qa1∩Υ must lie to the left of the right-hand boundary
of V ∩ Υ and the horizontal part of the boundary of Qa2 ∩ Υ must lie below
the upper boundary of V ∩ Υ , as illustrated in Figure 5. Because all 2-cycles
have zero length, in Υ , the upward sloping parts of the boundaries of Qa1

and Qa2 lie on a common line with slope equal to 1, the vertical parts of the
boundaries of Qa1 and Qa3 lie on a common vertical line, and the horizontal
parts of the boundaries of Qa2 and Qa3 lie on a common horizontal line.

Suppose that the kinks on the boundaries of Qa1 ∩ Υ and Qa2 ∩ Υ do not
coincide. Without loss of generality, we can suppose that the kink point for
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�(a3, a2) + L3

��

�(a1, a2) �(a3, a1) + L3

�

V ∩ Υ

�

Qa1 ∩ Υ

Qa2 ∩ Υ

Qa3 ∩ Υ

Fig. 5. 3-cycles with nonzero length.

Qa1 ∩ Υ lies up and to the right of the kink point for Qa2 ∩ Υ . As can be
seen from the diagram, there is a triangular region in Υ whose interior is not
in any of the three difference sets. Furthermore, either (i) the interior of this
triangular region has a nonempty intersection with V or (ii) the interior of
this triangular region lies below the lower horizontal boundary of V ∩ Υ . In
the latter case, we increase the value of v3 until the interior of this triangular
region intersects with the new cross section of V obtained by increasing v3

and define Υ using this new value of v3. Because Q◦
a3

∩ V◦ 	= ∅, such a value
of v3 must exist. In Figure 5, all of the triangular region lies in V ∩Υ , but this
need not be the case. Moreover, it is possible for Qa3 ∩ V ∩ Υ to be empty.
By Theorem 5, it now follows that the characteristic types that correspond to
valuation types in the intersection of the interior of the triangular region and
V are not allocated any outcome, which is impossible. Thus, the kink points
on the boundaries of Qa1 ∩ Υ and Qa2 ∩ Υ coincide, which implies that this
common point is also the kink point on the boundary of Qa3 ∩ Υ .

We now have a situation like that depicted in Figure 6.15 Because the
common boundary of Qa1 ∩ Υ and Qa2 ∩ Υ has a slope equal to 1,

�(a3, a2) + L3 = �(a1, a2) + �(a3, a1) + L3. (29)

Because all 2-cycles have zero length, � is antisymmetric. Hence, (29) is equiv-
alent to
15 If case (ii) in the preceding paragraph applies, then L3 is replaced with the value

of v3 used to ensure that the interior of the triangular region contains valuation
vectors in V.
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��

Qa1 ∩ Υ

Qa2 ∩ Υ

Qa3 ∩ Υ

Fig. 6. 3-cycles with zero length.

�(a1, a2) + �(a2, a3) + �(a3, a1) = 0.

That is, the 3-cycle (a1, a2), (a2, a3), (a3, a1) has zero length. The antisym-
metry of � then implies that the only other 3-cycle, (a1, a3), (a3, a2), (a2, a1),
also has zero length. Note that for the situation shown in Figure 5 (which we
have shown to be inconsistent with our assumptions), the right-hand side of
(29) is larger than the left-hand side, from which it follows that the length of
the 3-cycle (a1, a2), (a2, a3), (a3, a1) is positive and the length of the 3-cycle
(a1, a3), (a3, a2), (a2, a1) is negative.

If V is a full-dimensional convex product space and our interiority assump-
tion is satisfied, it follows from Theorems 2 and 7 that a necessary condition
for dominant strategy implementation of the allocation function g is that all 2-
cycles in the allocation graph Γg have zero length. By Theorem 4, if all of these
2-cycles have zero length, then g is dominant strategy implementable. Thus,
given our structural assumptions, we have identified a new necessary and suf-
ficient condition for dominant strategy implementability of g: all 2-cycles in
the allocation graph Γg have zero length. We combine this observation with
Theorems 2, 3, and 4 in the following equivalence theorem.16

Theorem 8. If (a) |A| = 1 or (b) |A| ≥ 2, the valuation type space V is a
full-dimensional convex product space, and Q◦

a ∩ V◦ 	= ∅ for all a ∈ A, then
the following conditions for the allocation function g : T → A are equivalent:

(i) g is dominant strategy implementable;

16 Theorem 8 is trivially true if |A| = 1.
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(ii) for every integer k ≥ 2, all k-cycles in the allocation graph Γg have non-
negative length;

(iii) for every integer k ≥ 2, all k-cycles in the characteristic graph Tg have
nonnegative length;

(iv) all 2-cycles in the allocation graph Γg have nonnegative length;
(v) all 2-cycles in the characteristic graph Tg have nonnegative length;
(vi) all 2-cycles in the allocation graph Γg have zero length.

A noteworthy feature of Theorem 8 is that all 2-cycles in the characteristic
graph Tg having zero length is not equivalent to the six conditions listed in this
theorem. In the characteristic graph, it is possible to have d(s, t) + d(t, s) > 0
for some s, t ∈ T even though �(g(s), g(t)) + �(g(t), g(s)) = 0 because, for
example, d(s, t) = v(g(t)|t)−v(g(s)|t) > 0, but there is some other type r ∈ T
for which g(r) = g(t) and d(s, r) = v(g(r)|r) − v(g(s)|r) < d(s, t). For the
equivalence between conditions (i) and (vi) to hold, it is essential that the
length of the directed arc from a to b in the allocation graph Γg is found by
taking the infimum of the gain in individual i’s valuation in going from a to
b over all characteristic types that result in b being chosen.

When our structural assumptions on the valuation type spaces are satis-
fied, we can use Theorems 2 and 8 to provide a new necessary and sufficient
condition for an allocation function G : T i×T−i → Ω to be dominant strategy
implementable, a condition we call the zero-length 2-cycle condition.

Definition. An allocation function G satisfies the zero-length 2-cycle condi-
tion if for every i ∈ N and t−i ∈ T−i, every 2-cycle in the allocation graph
ΓG(t−i) has zero length.

To state our result formally, for every i ∈ N , t−i ∈ T−i, and a ∈ A(t−i),
let V(t−i) and Qa(t−i) be i’s valuation space and the difference set for a
conditional on the characteristic types t−i of the other individuals.

Theorem 9. Suppose that for all i ∈ N and all t−i ∈ T−i for which |A(t−i)| ≥
2, the valuation type space V(t−i) is a full-dimensional convex product space
and Qa(t−i)◦ ∩ V(t−i)◦ 	= ∅ for all a ∈ A(t−i). Then, the allocation function
G : T i × T−i → Ω is dominant strategy implementable if and only if the zero-
length 2-cycle condition is satisfied.

6 Affine Maximizers

If we consider all of the outcomes in Ω, individual i’s valuation type space is

Vi = {(vi(a1|ti), . . . , vi(aM |ti)) ∈ R
M | ti ∈ T i}.

where M = |Ω|. Vi is unrestricted if Vi = R
M .

The allocation function G : T i ×T−i → Ω is nonimposed if G(T i ×T−i) =
Ω and it is an affine maximizer if there exist n nonnegative numbers
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w1, . . . , wn, not all of them equal to zero, and M numbers Ka, a ∈ Ω, such
that

G(ti, t−i) ∈ arg max
a∈Ω

⎡
⎣ n∑

j=1

wjv
j(a|tj) + Ka

⎤
⎦ , ∀(ti, t−i) ∈ T i × T−i. (30)

The affine maximizer G in (30) is unresponsive to irrelevant agents if for all
i ∈ N for which wi = 0, G(si, t−i) = G(ti, t−i) for all si, ti ∈ T i and all
t−i ∈ T−i. That is, any individual with zero weight has no influence on the
outcome, even as a tie breaker.

Mishra and Sen (2011) show that if G is an affine maximizer that is un-
responsive to irrelevant agents, then it is dominant strategy implementable.
Roberts’ Theorem (Roberts, 1979, Theorem 3.1) shows that being an affine
maximizer is necessary for G to be dominant strategy implementable if there
are at least three outcomes, each individual’s valuation type space is unre-
stricted, and G is nonimposed. These results are summarized in Theorem 10.17

Theorem 10. (a) If an allocation function G : T i×T−i → Ω is an affine max-
imizer that is unresponsive to irrelevant agents, then G is dominant strategy
implementable.

(b) Suppose that there are at least three outcomes in Ω, Vi is unrestricted
for all i ∈ N , and G : T i × T−i → Ω is a nonimposed allocation function. If
G is dominant strategy implementable, then G is an affine maximizer.

If all of the valuation type spaces Vi are unrestricted, then the assump-
tions of Theorem 9 are satisfied. Hence, it follows that if the assumptions of
part (b) of Theorem 10 are satisfied, then the allocation function G is an affine
maximizer if and only if the zero-length 2-cycle condition is satisfied.18

17 Carbajal, McLennan, and Tourky (2011) provide an alternative sufficient condi-
tion for an affine maximizer to be dominant strategy implementable to the one
used in Theorem 10.(a). They also provide an example showing that an affine
maximizer need not be dominant strategy implementable, which is contrary to
what is claimed by Roberts (1979, Theorem 3.3). Their example is not unrespon-
sive to irrelevant agents. Extensions of Theorem 10 may be found in Carbajal,
McLennan, and Tourky (2011) and Mishra and Sen (2011).

18 For all a, b ∈ Ω, all i ∈ N , all ti ∈ T i, and all (ti, t−i) ∈ T i×T−i, let Δi(a, b|ti) =
vi(a|ti) − vi(b|ti) and let P (a, b) be the set of vectors of valuation differences
(Δ1(a, b|t1), . . . , Δn(a, b|tn)) corresponding to the characteristic types (ti, t−i) for
which a is chosen by G. In their proofs of part (b) of Theorem 10, Roberts (1979)
and Lavi, Mu’alem, and Nisan (2009) investigate the geometric structure of the
P (a, b) sets. Claim 2 in the latter article shows that P (a, b) ∪ −P (b, a) = R

n

and that P (a, b) and −P (b, a) have disjoint interiors. Two implications of these
observations are: (1) for fixed t−i ∈ T−i, the infimum of Δi(a, b|ti) in the set of
valuation differences (Δ1(a, b|t1), . . . , Δn(a, b|tn)) that are in P (a, b) is �(a, b|t−i)
and (2) �(a, b|t−i) = −�(b, a|t−i). Thus, with the assumptions of part (b) of
Theorem 10, the zero-length 2-cycle condition is necessary for G to be dominant
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A dictatorial allocation function is an affine maximizer in which only one
weight in (30) is non-zero. Consequently, it is also dominant strategy imple-
mentable if it is unresponsive to irrelevant agents. In Example 1, we confirm
that such a dictatorial allocation function satisfies our zero-length 2-cycle
condition when the assumptions of Theorem 9 are satisfied.

Example 1. A dictator chooses one of his best alternatives from Ω, where
|Ω| = m ≥ 2. For simplicity, suppose that the cost of each alternative is zero
(e.g., the alternatives are candidates for an election). For concreteness, let
person 1 be the dictator. To ensure that the allocation function is unresponsive
to irrelevant agents, we assume that ties are broken according to a fixed strict
ranking of Ω. For all i ∈ N , let T i = R

m and assume that vi(a|ti) = tia for
all a ∈ A and all ti ∈ T i. The allocation function G : T 1 × T−1 → Ω chooses
the alternative a from Ω that maximizes t1a, with ties broken as described
above. A payment function that implements G is the one in which payments
are always set equal to zero.

For any individual i 	= 1, for all t−1 ∈ T−1, A(t−i) only contains a single
alternative, the one chosen by the dictator. Therefore, there are no 2-cycles in
any of i’s allocation graphs. For individual 1, A(t−1) = Ω for all t−1 ∈ T−1.
For all t−1 ∈ T−1, V1(t−1) is unrestricted and Qa(t−1) = {v1 ∈ R

m | v1
a ≥

v1
b ,∀b 	= a} for all a ∈ A(t−1). The interiors of V1(t−1) and Qa(t−1) have a

nonempty intersection. Therefore, the assumptions of Theorem 9 are satisfied.
Because a is chosen whenever t1a − t1b > 0 for all alternatives b different from a
no matter how small the values of t1a− t1b are, for all t−1 ∈ T−1, �(a, b|t−1) = 0
for all distinct a, b ∈ Ω and, hence, all 2-cycles in the allocation graph ΓG(t−1)
have zero length.

The allocation function for a Vickrey (1961) auction is an affine maximizer
in which the weights in (30) are all equal. As a consequence, it is dominant
strategy implementable. In Examples 2–4, we consider three different Vickrey
auctions. In Example 2, one unit of a good that creates a negative externality
is auctioned. In this example, the type spaces satisfy the assumptions of Theo-
rem 9, and we confirm that the zero-length 2-cycle condition is satisfied. While
sufficient, the assumptions of Theorem 9 are not necessary for the zero-length
2-cycle condition to hold. This observation is illustrated in Example 3, which
considers a standard Vickrey auction of a single unit of an indivisible good.
In this example, while the valuation types spaces are convex product spaces,
these sets are not full dimensional. Example 4 shows that the zero-length
2-cycle condition is not necessary for dominant strategy implementability if
the assumption in Theorem 9 that all of the valuation type spaces are full-
dimensional convex product spaces is replaced with the weaker assumption
that they are convex. In this example, two units of a good are auctioned to
individuals who place a higher value on the first unit received.

strategy implementable. One of our main contributions has been to show that
this condition is also sufficient.



28 Cuff, Hong, Schwartz, Wen, and Weymark

Example 2. There is one unit of an indivisible good to be allocated to one of
two individuals. Possession of the good creates a negative externality for the
other individual. Let a (resp. b) be the outcome in which individual 1 (resp.
2) gets the good. Thus, N = {1, 2} and Ω = {a, b}. Let T 1 = R+ × R− and
T 2 = R− × R+. For i = 1, 2, individual i’s characteristic type is T i = (tia, tib).
Define individual 1’s valuation function v1 : Ω×T 1 → R by setting v1(a|t1) =
t1a and v1(b|t1) = t1b for all t1 ∈ T 1. Similarly, individual 2’s valuation function
v2 : Ω × T 2 → R is given by v2(b|t2) = t2b and v2(a|t2) = t2a for all t2 ∈ T 2.
Thus, t1a and t2b are the benefits of being allocated the good, whereas |t1b | and
|t2a| are the externality costs incurred if the good is allocated to the other
individual.

When there are negative externalities, a Vickrey auction mechanism is
defined as follows.19 The allocation function G : T 1 × T 2 → Ω is

G(t1, t2) =

{
a if t1a − t1b ≥ t2b − t2a
b if t1a − t1b < t2b − t2a

and payment function P : T 1 × T 2 → R
2 is

P (t1, t2) =

{
(t2b − t2a, 0) if t1a − t1b ≥ t2b − t2a
(0, t1a − t1b) if t1a − t1b < t2b − t2a.

Each person has an adjusted value for the good given by t1a − t1b for person 1
and t2b − t2a for person 2. Individuals bid their adjusted values and the good
is awarded to the highest bidder (with a tie broken in favour of individual
1) with the winner paying the second-highest bid (in this case, the other
person’s bid) and the loser paying nothing. Note that G chooses the outcome
that maximizes the sum of the valuations.

For any t2 ∈ T 2, A(t2) = {a, b}. We have

�(a, b|t2) = inf
t1∈Rb(t2)

[v(b|t1) − v(a|t1)] = inf
t1b−t1a>−[t2b−t2a]

[t1b − t1a] = −[t2b − t2a]

because Rb(t2) = {t1 ∈ T 1 | t1a − t1b < t2b − t2a} and we have

�(b, a|t2) = inf
t1∈Ra(t2)

[v(a|t1) − v(b|t1)] = inf
t1a−t1b≥t2b−t2a

[t1a − t1b ] = t2b − t2a

because Ra(t2) = {t1 ∈ T 1 | t1a − t1b ≥ t2b − t2a}. Thus, the only 2-cycle
in the allocation graph ΓG(t2) has zero length. Similarly, for any t1 ∈ T 1,
A(t1) = {a, b} and the only 2-cycle in ΓG(t1) has zero length.

For all t2 ∈ T 2, V1(t2) = R+ × R−, Qa(t2) = {(v1
a, v1

b ) ∈ R
2 | v1

a − v1
b ≥

t2b − t2a}, and Qb(t2) = {(v1
a, v1

b ) ∈ R
2 | v1

a − v1
b ≤ t2b − t2a}. V1(t2) is a

full-dimensional convex product space. Furthermore, the interiors of Qa(t2)
19 See Jehiel, Moldovanu, and Stacchetti (1999) for an analysis of auctions when

there are externalities.
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and Qb(t2) both have a nonempty intersection with the interior of V1(t2).
Similar computations show that for all t1 ∈ T 1, V2(t1) is a full-dimensional
convex product space and that the interiors of Qa(t1) and Qb(t1) both have
a nonempty intersection with the interior of V2(t1).

Example 3. We now consider a standard Vickrey auction of a single unit of an
indivisible good with two bidders and no externalities. The sets N and Ω are
defined as in Example 2. Let T 1 = T 2 = R++ (the set of positive numbers).
Define individual 1’s valuation function v1 : Ω×T 1 → R by setting v1(a|t1) =
t1 and v1(b|t1) = 0 for all t1 ∈ T 1. Similarly, individual 2’s valuation function
v2 : Ω × T 2 → R is given by v2(b|t2) = t2 and v2(a|t2) = 0 for all t2 ∈ T 2.

The allocation and payment functions and the arc lengths for the Vickrey
auction when there are no externalities are obtained by replacing t1a−t1b with t1

and t2b−t2a with t2 in Example 2.20 Because �(a, b|t2) = −t2 and �(b, a|t2) = t2,
the only 2-cycle in the allocation graph ΓG(t2) has zero length. Similarly, for
any t1 ∈ T 1, the only 2-cycle in ΓG(t1) has zero length.

For all t2 ∈ T 2, V1(t2) = R++×{0} and for all t1 ∈ T 1, V2(t1) = {0}×R++.
While these valuation type spaces are convex product spaces, they are not
full dimensional. Although the type spaces do not satisfy the assumptions of
Theorem 9, nevertheless, the zero-length 2-cycle condition is satisfied.21

Example 4. There are two units of an indivisible good to be allocated to two
individuals. Let a be the outcome in which individual 1 gets both units, b be
the outcome in which each individual gets one unit, and c be the outcome
in which individual 2 gets both units. Thus, N = {1, 2} and Ω = {a, b, c}.
For i ∈ N , let T i = {ti ∈ R

2
++ | ti1 > ti2}. Individual 1’s valuation function

v1 : Ω × T 1 → R is defined by setting v1(a|t1) = t11 + t12, v1(b|t1) = t11,
and v1(c|t1) = 0 for all t1 ∈ T 1. Similarly, individual 2’s valuation function
v2 : Ω×T 2 → R is defined by setting v2(a|t2) = 0, v2(b|t2) = t21, and v2(c|t2) =
t21 + t22 for all t2 ∈ T 2. Thus, each individual places a lower marginal valuation
on receiving a second unit of the good than on the first.

When there are two units of a good to be allocated, a multi-unit Vickrey
auction is defined as follows.22 The allocation function G : T 1 × T 2 → Ω is
20 Because the good always has positive value, for every i ∈ N and every ti ∈ T i,

A(ti) = {a, b}. If we permit individuals to assign a zero value to winning the good,
then A(t2) = {a} when t2 = 0 because individual 1 wins the object no matter
what his valuation is. To simplify the discussion, we have ruled this possibility
out by assuming that the object always has value to either individual.

21 It is straightforward to generalize Examples 2 and 3 to more than two individuals.
When there are n individuals, there are n alternatives in Ω because the good can
be given to anyone. However, assuming that ties are broken by a given priority
order of the individuals, for any fixed t−i, there are only two outcomes in A(t−i),
the one in which individual i wins the good and the one in which the winner is
the person with the highest (adjusted) valuation in t−i.

22 See Krishna (2002, Section 12.1) for a detailed discussion of multi-unit Vickrey
auctions.
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G(t1, t2) =

⎧⎪⎨
⎪⎩

a if t12 ≥ t21
b if t11 ≥ t22 and t12 < t21
c if t11 < t22

and the payment function P : T 1 × T 2 → R
2 is

P (t1, t2) =

⎧⎪⎨
⎪⎩

(t21 + t22, 0) if t12 ≥ t21
(t22, t

1
2) if t11 ≥ t22 and t12 < t21

(0, t11 + t12) if t11 < t22.

As in Examples 2 and 3, ties are broken in favour of individual 1. In this
auction, individual i submits two bids, ti1 and ti2, with ti1 indicating how much
he is willing to pay for one unit of the good and ti2 indicating how much
more he is willing to pay for a second unit. His highest bid must exceed the
other individual’s lowest bid to win a first unit and his lowest bid must exceed
the other individual’s highest bid to win a second unit, with ties broken as
described above. In effect, each individual faces two prices in this multi-unit
Vickrey auction, a price equal to the other individual’s lowest bid for the first
unit and a price equal to the other individual’s highest bid for the second.

For concreteness, consider individual 1 and any t2 ∈ T 2. First, note that
A(t2) = {a, b, c}. We have

�(c, a|t2) = inf
t1∈Ra(t2)

[
v1(a|t1) − v1(c|t1)

]
= inf

t1∈Ra(t2)

[
t11 + t12 − 0

]
= 2t21

because the lowest that t12 can be and still have individual 1 win both units
is t21 and t11 can be chosen to be arbitrarily close to t12. We also have

�(a, c|t2) = inf
t1∈Rc(t2)

[
v1(c|t1) − v1(a|t1)

]
= inf

t1∈Rc(t2)

[
0 − t11 − t12

]
= −2t22

because individual 2 wins both units whenever t22 exceeds both t11 and t12,
which can be arbitrarily close to each other. Thus,

�(c, a|t2) + �(a, c|t2) = 2(t21 − t22) > 0.

Similar reasoning shows that

�(b, a|t2) = t21, �(a, b|t2) = −t21, and �(b, a|t2) + �(a, b|t2) = 0

and
�(b, c|t2) = −t22, �(c, b|t2) = t22, and �(b, c|t2) + �(a, c|t2) = 0

Therefore, one 2-cycle in the allocation graph ΓG(t2) has positive length and
the other 2-cycles have zero length.

For all t2 ∈ T 2, V1(t2) = {v1 ∈ R
3 | 2v1

b > v1
a > v1

b > 0 and v1
c = 0}.

While V1(t2) is convex, it is not a product set, nor is it full dimensional, so
Theorem 9 does not apply.
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7 Concluding Remarks

For given types of the other individuals, we have shown that by requiring
an individual’s valuation type space to be a full-dimensional convex product
space and by adopting a mild domain regularity condition, the 2-cycle non-
negativity condition is sufficient for all k-cycles in his allocation graph to have
zero length, not just to have nonnegative length, as is the case in Saks and
Yu (2005). Furthermore, given our assumptions, the zero-length 2-cycle con-
dition is necessary and sufficient for dominant strategy implementability of
the allocation function G. As noted in Section 1, it follows from the analysis
in Heydenreich, Müller, Uetz, and Vohra (2009) that this condition is also
necessary and sufficient for the revenue equivalence property to be satisfied.

The full dimensionality, convexity, and product space structure of valua-
tion type spaces are used in a number of steps in our proof that the 2-cycle
nonnegativity condition is sufficient for all k-cycles to have zero length. How-
ever, as our discussion of the standard Vickrey auction in Example 3 shows,
these assumptions are not necessary for this condition to hold. While it is an
open question to what extent our assumptions can be relaxed and still have
the 2-cycle nonnegativity condition imply that all k-cycles have zero length,
as the multi-unit Vickrey auction in Example 4 demonstrates, this implication
need not hold if valuation type spaces are only assumed to be convex, as in
Saks and Yu (2005).
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