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Abstract

This paper analyzes discriminatory ascending auctions where there are limited opportunities
to bid throughout the auction, and where rival bidder activity is not continuously monitored.
We characterize the theoretical properties of a Perfect Bayesian Equilibrium in which bids are
increasing in valuations. We analyze identification from data on bids and bidding times, and
develop a semiparametric estimator for the model. We apply the framework to a financial market
where state governments purchase certificates of deposits from banks by an auction mechanism
where bids are based on interest rate offers. Our data set covers the onset of the recession in
2008, allowing us to study the effects of the financial crisis on this local market. The estimated
monitoring costs that banks incur, together with the social losses induced by not invariably
funding the banks with the highest valuations, are indicative of market microstructure conduct
and performance in more general limit order market settings.

1 Introduction

This paper is a theoretical analysis and empirical application of discriminatory ascending auctions
with costly monitoring. In our framework there is a fixed finite time horizon for conducting the
auction, and bidders have limited opportunities to place and update their bids. Bids cannot be
withdrawn or reduced, and the next opportunity to revise old bids or place new ones is a random
event whose probability distribution is determined by the bidder’s monitoring choices. We charac-
terize symmetric pure strategy perfect equilibria, analyze identification for a cross section of auction
records on bidding, and develop a semiparametric estimator for such models. The model is applied
to a monthly financial market where the treasurers of state governments purchase from local banks
savings vehicles, certificates of deposit (CD), for unallocated state funds via a procurement auction
mechanism. We demonstrate an identification strategy, and develop an estimator. Our estimates
explain how local financial markets reacted to the credit crisis of 2008, focusing on changes in the
potential numbers of bidders, the distribution of their valuations, and how that affected their bid-
ding and monitoring behavior. Finally we estimate the welfare costs of using this particular trading
mechanism in the CD market, namely the value of resources used to identify the winners of the
auction plus the social surplus lost from selecting winners who have lower private values than those
who bid too little, or did not bid at all.
∗PRELIMINARY AND INCOMPLETE. PLEASE DO NOT QUOTE WITHOUT PERMISSION. We would like to
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The rules governing the auction and the main features of our data are described in the Section
2. Each month banks bid for state funds via an open cry multiunit online auction. Entry occurs
anonymously throughout the auction, and as it progresses nobody knows which bidders have dropped
out. Some banks submit bids above the reserve price at the beginning of the half hour auction period
and identical units are often sold at different prices. These institutional arrangements and stylized
facts cannot be reconciled to a Japanese auction, where the field of bidders is announced before
the auction begins, and bidders publically withdraw as the auctioneer increases the price until the
supply of units matches the demand by the bidders who are left, who all pay the same price. In
an ascending electronic auction where banks can bid at the final instant, standard auction theory
predicts that every bank would do that, snipe, to prevent other bidders from revising their own bids
in response. While some sniping occurs in our data, it is not unusual for winning bids to be made
well before the end of the auction. Bids above the reserve price are sometimes submitted near the
beginning of an auction, and they tend to increase with the lowest price necessary to win, further
evidence against the equilibrium outcome in sealed bid auctions, where bidders cannot react to each
other. Yet our data also exhibit bids that jump in a discrete manner, in contrast to an English
auction, where the auctioneer’s ask price increases incrementally.

To accommodate the peculiar features of our data, Section 3 develops a theoretical model esti-
mated in the latter parts of the paper. We treat the auction as a dynamic game where players with
private valuations have limited opportunities to place new bids, update stale bids by reacting to
the current lowest price in the money, and decide how closely to monitor proceedings. The player’s
monitoring choice determines the rate at which bidding opportunities arrive throughout the auction
game; a higher arrival rate is more costly to implement than a lower rate, and it can be revised
with each bid update. At his first bidding opportunity, the player knows the lowest price at which
he would win a unit if no other bids were placed throughout the auction, the on-the-money bid
(ONM). At that time, and all future bidding opportunities, he can pass (or not revise any previous
bid) bid ONM, or even higher, that is in-the-money (INM). If he receives another bidding oppor-
tunity later in the auction, he observes the updated ONM only if his current outstanding bid is
out-of-the-money (OUTM), that is less than ONM. We derive the first order conditions characterize
the optimal monitoring rates and interior INM bidding in perfect Bayesian equilibrium where bid-
ding that is increasing in valuations. Bidding is not strictly monotone in valuations, because players
with different slightly valuations would bid ONM in otherwise identical situations.

Identification is established in Section 5. We first show that the valuations of players bid INM
and therefore satisfy a first order condition in equilibrium are pointwise identified. Thus the highest
bid ever observed by a group of players in different auctions that are observed to make the same INM
bid in response to the same history up until that point, is a consistent estimate of their common
valuation. Second, we note that as soon as a player who previously bid INM falls out OUTM, he
will take the first opportunity to bid if at some later point in the auction he is observed to bid. This
establishes a simple set of sufficient conditions in which a bidder would bid if he or she could do
so, thus identifying the monitoring technology selected as a function of the history of the auction
(including the remaining amount of time to bid) and the previous INM bid which is a sufficient
statistic for the player’s valuation. In estimation we implement a maximum likelihood estimator
to recover the distribution of the duration times. Having identified both the valuation and the
choice of monitoring rate for INM bids, we now apply the first order conditions for the monitoring
choices to identify the marginal cost of increasing monitoring at the the player’s equilibrium choice.
Using Euler equation methods the cost technology is estimated in this third step. The final step
in identification, and estimation, is to recover the underlying distribution of player valuations, by
adjusting the truncated distribution of bidders who bid ITM at least once to account for players who
do not bid at all, and those who only bid ONM. This exercise in selection correction is accomplished
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by using the model structure to identify the sets of valuations that lead to players to stay out or
bid ONM.

As indicated above, estimation proceeds sequentially by forming sample analogues to their pop-
ulation counterparts exploited in identification. The estimated structural parameters are presented
in Section ??. Estimated monitoring costs account for about 5 percent of the estimated value of
trading. Our model degenerates to more standard first price sealed bid or Japanese button auctions
when monitoring costs are eliminated; which specialization applies hinges on whether or not players
always have an opportunity to respond to rival bids. In this important respect, monitoring costs are
shown to be a key feature for explaining the dynamic of bidding activity through the auction, the
initial burst, a lull in the middle and the most concentrated activity towards the end; the sealed bid
auction predicts all bidding takes place at the end of the auction, while in the Japanese auction the
time profile of increasing bids is indeterminate. Similarly the existence of monitoring costs also ex-
plains why some bids are INM well before the auction ends, a stylized fact that cannot be reconciled
with either specialization. Imposing the assumption of no monitoring costs and assuming a Japanese
auction format yields a valuation distribution that is first order stochastically dominated by the dis-
tribution estimated from our monitoring cost model, which in turn is stochastically dominated by
the valuation distribution estimated under the first price sealed bid assumption. Theoretically and
empirically, our model combines elements of the other two. Our estimates allow us to estimate the
effects of the financial crisis of late 2008. We find that liquidity dries up. Finally we compute the
social costs of this auction mechanism. Section 7 concludes, while an appendix contains details
about the estimation strategy and the asymptotic properties of the estimators properties.

Our study draws from both the theory of auctions and the econometric issues associated with
identifying and estimating auction models. Theoretical models that analyse jump bidding are,
amongst others, Hörner and Sahuguet (2007) and Avery (1998). Birulin and Izmalkov (2011) con-
sider English auctions with re-entry. There are a number of theoretical papers that deal with
ascending bidding models that are not strategically equivalent to a Japanese auction. For example,
Avery (1998) considers jump bidding models. Daniel and Hirshleifer (1998) consider auctions with
costly sequential bidding. The latter shows that in the absence of bidding costs an equilibrium can
exist where the transaction price is not equal to the second highest valuation. Birulin and Izmalkov
(2011) considers English auctions with re-entry. Estimation follows the spirit of indirect estima-
tion strategies such as Hotz and Miller (1993), Guerre, Perrigne, and Vuong (2000) and Manski
(1993). The literature on the structural estimation of auctions was initiated by the work of Donald
and Paarsch (1993), Elyakime, Laffont, Loisel, and Vuong (1994) and Guerre, Perrigne, and Vuong
(2000). Donald and Paarsch (1993) estimate auction models, where the underlying valuation dis-
tribution is parameterized and bidding strategies must be computed. Guerre et al. (2000) consider
two step indirect non-parametric estimators that can avoid the computation of strategies and the
specification of underlying valuation distributions.

The estimation of dynamic auctions is considered in Jofre-Bonet and Pesendorfer (2003) and
Groeger (2010). These papers consider repeated first price auctions in dynamic environments and
extend Guerre et al. (2000). Jofre-Bonet and Pesendorfer (2003) consider the effect of capacity
constraints on bidding. Groeger (2010) studies repeated first price auctions with endogenous par-
ticipation and synergies in participation. Our paper differs from the aforementioned papers in that
on the one hand we consider the auction as a dynamic game, but on the other hand we exclude
dynamic linkages between auctions. The presence of multiple units and the open cry format makes
this market differ from standard ascending auction models and existing multiunit auction mecha-
nisms in the literature. The literature on the empirical analysis of ascending auctions has mainly
made use of the Japanese button auction model to estimate underlying valuations. In this setting
the transaction price is the second highest valuation. One exception is Haile and Tamer (2003) who
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attempt to construct an incomplete model of ascending auctions that allows for a number of dif-
ferent equilibrium outcomes. The authors are able to provide informative bounds on the valuation
distribution.

2 Auctioning Certificates of Deposit

A Certificate of Deposit (CD) is similar to a standard savings account. The key difference is that
a CD has a specific, fixed term, usually three, six or twelve months. At maturity the money may
be withdrawn together with the accrued interest. Our application analyzes CD auctions in Texas
held by that state’s government. Prior to entering a CD auction a bank must undergo a pre-
qualification process. During this process the level of collateral a bank holds is ascertained. Texas
limits participation to local banks to ensure that tax money does not leave the state and can be
used to inject liquidity into the local economy. Participating banks compete to sell these savings
vehicles to the state treasurer through an on line auction. The money sold in these auctions from
state funds have no immediate purpose.1 This section is an overview of our data. We describe
the institutional setting and the auction mechanism; we provide several measures of the size of the
auctions, and present evidence illustrating the magnitude of the difference between the highest and
lowest winning bids. Then we summarize the main features of bids and their timing.

2.1 Auction format

Auctions take place each month, usually during the first week. Before the auction begins, the state
government announces a reserve interest rate, which determines the minimal acceptable bid. Bidding
takes place over 30 minutes. Banks can submit a succession of increasing bids on up to five separate
parcels, at different interest rates for different dollar amounts, The size of each parcel is a multiple
of $100,000, with a minimum is $100,000, and a maximum is $7million. The collateral of a bank
determines the upper limit on the sum of its parcel sizes. A bid for a parcel can be increased as
many times as the bank wants during the 30 minute period, but not decreased, and the size of the
parcel cannot be reduced either. The only information available to the bank throughout the auction
is whether its most recent bid on each parcel would win if no further bids were tendered by anybody,
equivalently whether which of their parcels are out of the money (OUTM) or not. Parcels are ranked
by the interest rate on the most recent bid; size does not affect ranking. When the auction ends, an
amount up to the total funds are dispersed to the banks offering the highest interest rates. Banks
pay the (most recent and highest) interest rate they bid on their winning parcels, and nothing on
parcels that lose. In the event of a tie for the lowest winning bid, the earliest order rate at that
interest rate is given precedence. Moreover if the parcel size of the lowest winning bid exceeds the
amount left for allocation, the bank is obliged to partially fill its order with the remaining funds.2
Summarizing, this is a discriminatory price, multiunit ascending auction in which banks receive
limited information about the status of their own bids throughout the bidding phase.

2.2 Auction Size

Our data set contains 140 CD auctions in Texas for the years 2006 through 2010. The majority
of auctions involve six month CDs. There are five auctions in our data set that are for 12 month

1There are a number of other states that use the same online auction platform, for example Idaho, Iowa, Louisiana,
Massachusetts, New Hampshire, Ohio, Pennsylvania and South Carolina. We focus on Texas sinceit is the most active
state.

2For example, if there is $700,000 to be allocated, but the lowest winning bid is for $1 million at an interest rate
of 10 percent, then the bank making that bid must issue a CD for $700,000 at the 10 percent rate.
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CDs. The amount to be auctioned is on average $76 million. The majority of auctions were for $80
million. Eleven auctions were for $50 million. Summary characteristics of the auction are displayed
in Table 1. There is a potential pool of 53 banks, and an average of 25 banks enter each auction.
With an average order comprising 1.6 parcels per auction, most banks only submit one parcel. Row
7 of the table, ”Number of Parcels”, shows that banks rarely increase or split parcels. For the most
part, each bank bids on a fixed amount of funds at a uniform interest rate, both of which vary by
bank. On average, 76 percent of participating banks win an award from a total of $75 million, and
their average award size is $4 million.

Table 1: Summary Statistics on Auctions
Mean Standard Deviation Min Max

Number of Banks who bid 24.500 6.498 9.000 41.000
Number of Bids Per Bank 8.006 13.348 1.000 139.000
Proportion of Bids In The Money (INM) 0.606 0.227 0.000 1.000
Proportion of Bids Out of The Money (OUTM) 0.293 0.216 0.000 0.745
Proportion of Final Bids OUTM upon Submission 0.060 0.052 0.000 0.265
Proportion of Bids On The Money (ONM) 0.201 0.137 0.000 0.553
Proportion of Winning Bids ONM 0.046 0.039 0.000 0.182
Proportion of Bids with Quantity Changes 0.003 0.027 0.000 0.500
Number of Parcels 1.601 1.026 1.000 5.000
Proportion of Banks who win 0.758 0.180 0.414 1.000
Annual Reserve Coupon Rate 2.193 2.107 0.060 5.300
Total Award Amount (millions dollars) 75.769 10.509 50.000 80.000
Award to Winning Bank (millions dollars) 4.125 2.744 0.100 7.000
MLT (dollars) 1803.217 6551.870 0.000 210000.000

The table shows that on average 61 percent of the bids are in-the-money (INM), in other words
so high that at least one previous lower bid would win if no further bids are tendered. Conversely
16 percent of the bids are out-of-the-money (OUTM); nothing is gained from making such a bid
aside from knowing that the bank must make a more attractive offer to win any award. This third
category of bids, accounting for the remaining 6.1 percent, are on-the-money (ONM), defined as the
lowest interest rate amongst those bids that would win if every bank stopped bidding at that point
in the auction.

The difference between INM and ONM bids is reflected in the normalized interest rate spread,
defined as the difference between the highest winning interest rate and highest losing interest rate,
all divided by the highest winning rate. The average normalized interest rate spread is 21 percent
and its standard deviation is 20 percent. The bottom rows of Table 1 summarise these results in
terms of dollar amounts. Another way of summarizing the different terms of trade auction is the
money-left-on-the-table (MLT), found by subtracting from interest payments winners promise the
amount of interest that would have been paid if the highest OUTM bid had used to a uniform
interest rate of auction winners. Table 1 shows the average MLT is $1,803 but has a standard
deviation more than three times as large, dictated in part by observations in the upper tail.

2.3 Bidding Patterns

Figures 1 through 5 amplify the importance of the three bidding categories by providing some simple
dynamics. Figure 1 plots each bid against the current ONM (that is the lowest bid that would win
an award if no more bidding took place). Thus, crosses on the 45 degree line represent ONM bids
the higher they are the further the auction progressed. Crosses to the right of the 45 degree line
represent INM bids and crosses to the left represent OUTM bids. The dotted lines indicate iso-times
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at the minutes indicated. By inspection, Figure 1 shows that At the beginning of the auction (when
ONM is at the origin), the dispersion of bids vertically arrayed is greater than at any other point
during the auction. From the scatter of points arrayed in vertical lines, we can see from Figure 1
that there are many bids in all three categories throughout the auction.

Figure 1: Submitted bid against lowest INM bid
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To help explain why we observe all three categories of bidding throughout the auction, we
separated ONM bids from INM bids (that are strictly greater than the interest rate necessary to
win an award if no further bids are submitted). Figure 2 shows that a preponderance of ONM bids
were preceded by slightly lower OUTM bids (those that cannot win an award given the current state
of the auction). In other words, if they had not already submitted an INM bid, banks ascertain the
current ONM bid by creeping up to it with a sequence of OUTM bids.
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Figure 2: ONM versus Previously Submitted Bids
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Figure 3: In the Money Bids versus Previously Submitted Bids
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Taken together Figures 2 and 5 illustrate a pronounced tendency for bidders who ultimately
place a bid that is ONM or INM to first determine where the boundary is by creeping to it with
incremental bids, and only then deciding how much to jump into the money, if at all.
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Figure 4: In the Money Bids versus Previously Submitted Bids Multi Parcel
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Figure 5: In the Money Bids versus Previously Submitted Bids Multi Parcel
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2.4 Submission Times

Data on bidding submission times also provides useful information about what type of model might
fit the data. In Figure 6 we provide the empirical distribution of submission times for all bids, all
first bids, all last bids, and for all winning bids. (The 30 minute auction period is divided into 3
minute intervals in the figure.) Most first bids are made before the 6 minute mark, and the convex
shape of the distribution of all bids betrays less activity in the middle of the auction than at either
end. This concentration is accentuated in last bids: more than half of all final bids are submitted
in the final two minutes of the auction, and more than 10 percent of them are made in the first two
minutes.

Sniping does not predominate bidding behavior of winning banks though. Figure 6 shows that
most winning bids have already been submitted by the 25 minute mark. The winning bid distribution
climbs to the 20th percentile within 6 minutes of the auction beginning but flattens between 9th
and of 24th minute. The fact that a winning bid is frequently submitted in the early stages of the
auction provides further evidence that some bidders do not win by incrementally increase their bids
as necessary but enter with a jump giving their rivals plenty of time to respond.

Figure 6: Empirical Distribution of Order Submission Times
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How quickly bidders respond to rivals by updating their previous bids reflects how intensively
they monitor the auction. However the average duration time between submissions by the same
bidder is a biased estimators of the expected length of durations between successive monitoring
opportunities, because bidders do not necessarily update their bids at every opportunity. But if a
bidder was pushed out of the money, had limited bidding opportunities to revise his previous bid,
and a sufficiently high valuation, he might increase his offer at the first available opportunity. That
motivates why we display duration times between a bidder being pushed out of the money to when
an updated bid restores him into the money relative to all bidders who fall out of the money.

Figure 7 shows four empirical distributions of reaction times. For every auction at 10, 15 and 25
minute mark into the bidding, we select all bidders who fall out of the money at some point within
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the preceding five minute window. We then form percentiles measuring the proportion of those
bidders who re-submit a new bid in the money within a given amount of time up to five minutes.

Figure 7: Empirical Distribution of Reaction Times
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This measure of monitoring intensity does not account for bidders who withdraw from the
auction because the lowest bids in the money have overtaken their gross value from winning since
their previous bids were placed, a factor that shifts all three curves to the left. Nevertheless it
is noteworthy that the distribution of reaction times at earlier points in the auction first order
stochastically dominate the distribution of reaction times at later points in the auction, suggesting
that bidders increase their monitoring as the auction proceeds. Reviewing the data on submission
times, it is implausible to argue that the final bid distribution in these auctions matches those we
would observe in a discriminatory first price sealed bid auction.

2.5 Summarizing the Data

From our discussion it appears the number of bidders is uncertain until the auction ends. Bidding
activity is most intense at the beginning and end of the auction (like a limit order market). Bids often
increase by more than the minimal amount required to stay in the money (in contrast to English
auctions). Winning bids are sometimes submitted early in the auction, and sniping (common on
eBay) is infrequent.

The interest rate spread of winning bids is notable (in contrast to Japanese auctions). Because
bidders leave money on the table, these auctions do not seem to belong to the broad class of auctions
Haile and Tamer (2003) investigate. In their analysis of ascending auctions Haile and Tamer (2003)
bound valuations (and their distribution) on the basis of two behavioral premises. First, players
never bid above their (private) valuations. Second, if the current high bid is below his valuation a
player will submit another bid. Because players in these auctions can bid essentially any real number
that exceeds their previous bid, it seems optimal to only bid ONM. In that case, all winning bids
pay the same price the two distributions of highest and lowest winning bids coincide. Furthermore,
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the distribution of lowest winning bids first order stochastically dominates the distribution of all
last (winning and losing) bids.

As can be seen in Figure 8 the distribution of lowest winning bids is first order stochastically
dominated by the distribution of the highest winning bids and the distribution of all last (winning
and losing) bids. This suggests that at least one of the two Haile and Tamer assumption is violated.
One reason why the second assumption might not hold is that opportunities to bid might be limited
by competing uses for a trader’s time (such as trading other financial securities or professional
duties).

Figure 8: Bid Distributions
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3 Model

Taken together our observations outlined in Section 2 motivate our model of auctions with bidding
frictions.

To rationalize the bidding behavior observed in the data we draw upon the stylized facts described
above and model the institution. The data exhibit heterogeneity in parcel size across banks, but
that banks rarely increase or split their parcels, so our model assumes the size of the parcel as
exogenous but heterogenous across banks. Since most banks bid on only one parcel within an
auction, the model assumes that each parcel is uniquely assigned to a bank; that is we ignore the
interdependence created by bidding on two or more parcels at once.3 Since banks with only one
parcel can and do creep up to the ONM interest rate with successive OUTM bids, and INM bids
are typically preceded by an ONM bid, our model assumes that the bank observes the ONM rate
whenever its previous bid is OUTM. Consistent with the institutional arrangments, the bank receives
no information when presented with an opportunity to update a bid that is INM, except that its
current bid is still INM. Thus data on OUTM bids are treated as a procedure for determining the
ONM rate, and play no further role in the theoretical or empirical analysis. Because the institutional
mechanism for updating a bid involves typing a few keystrokes on a computer, and banks creep up to
the ONM rate not seeming to economize on the number of bidding entries, our model also assumes
the act of bidding is not costly. Instead of continuously updating an ONM bid near the end of the
auction period, or sniping, more than half the winning banks submit their final bids long before
the auction ends: to accommodate these features of the data, the bidders in our model have only
imperfect monitoring capabilities. Intuitively there are competing uses for bank time; alternatives to
devoting attention to the auction and reacting immediately to changes in the bidding history of that
security, or being available to bid at the endpoint of the auction, include monitoring other securities
the bank trades in, seeking new clients, or engaging in administrative work. In the model monitoring
opportunities are modeled as random events, driven by a stochastic process that is controlled by the
bank at a cost.

Prior to the beginning of the auction, a price is set exogenously, players in this dynamic game
observe their private values and the size of their parcel. They individually and privately determine at
a cost their monitoring intensities, which will stochastically determine the arrival of their first bidding
opportunity after the auction begins. If and when a player receives his first bidding opportunity, he
observes the current ONM price, submits a bid, and chooses the intensity of the arrival rate for the
next bidding opportunity.4 He can either maintain the same level or increase it at future bidding
opportunities, and if he updates his previous bid from OUTM to INM he can reset the monitoring
rate too. The only new information a player receives at a bidding opportunity is the current ONM
price. The highest bids are fully filled first, and in the event of a tie, the earliest entry at the tied
rate is given priority; to fill out the total funds available, partial awards to the lowest winning bidder
are typical. If a player wins the auction, he pays his own final bid on each unit awarded.

- Time is continuous on the interval [0, T ] , or alternatively [0, T ), a distinction that is immate-
rial when monitoring costs per unit time are strictly positive, but is critical for determining
equilibrium outcomes for the specialization where there are no monitoring costs.

3It is straightforward to extend our theoretical model to accommodate banks that bid on one parcel, but notationally
cumbersome. In our empirical analysis we conduct our analysis on the full sample and also a restricted sample of
those banks bidding on just one parcel to test whether our results are sensitive to this assumption.

4If players had the choice of bidding or not at their first opportunity, everyone would do so. This is because their
valuations exceed the reservation rate,they might not have another opportunity, and no information is conveyed to
rivals by bidding at the reservation rate.
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- Total units awarded: The maximal total amount awarded to all the winning bidders in aggre-
gate is denoted by Q.

- Reserve price: A reservation price denoted by r0 is announced prior to bidding. At any given
time t ∈ [0, T ] during the auction, we denote by rt the price that the lowest winning bidder
would pay if no further bids are received in the auction. We call rt the ONM bid; bids above
rt are INM, and bids below rt are OUTM.

- Number of bidders: The players in the game are a set of potential bidders denoted I ≡
{1, ..., I}.

- Value and size of parcels: Player i ∈ I draws a single indivisible parcel of exogenous size,
denoted by qi ∈ [0, Q] , along with a private value vi ∈ [r,∞), independently and identically
from commonly known joint distribution Fq,v(.) prior to the beginning of the auction5.

- Action space: Player i ∈ I makes choices at the beginning of the auction, as well as at the
random times τ i1, τ i2, . . . , τ iρ where ρi indicates the total number of bidding opportunities
player i had in the auction. We denote his bid update at τ is by bis for s ∈ {1, . . . , ρi} and
set bi0 = 0. At the beginning of the auction the ith player selects a monitoring intensity for
his first bidding opportunity, denoted by λi0 ∈ [0,∞). For the sth monitoring time player i
updates his bid bis ∈ [bis−1,∞) and revises his monitoring intensity λis ∈ [0,∞).

- Monitoring times: The distribution of the first monitoring time is Poisson with parameter λi0.
Let ris denote the ONM rate at time τ is. (Thus if τ is = t then ris = rt.) Also let τ∗is denote the
time bs falls OUTM or T , whichever comes first.6 We assume players only have a chance to
update their bids and reset their monitoring intensities after their current bid falls OUTM; thus
if s < ρi then τ i,s+1 > τ∗is. Beginning at τ∗is the distribution of the (s+ 1)th monitoring time
is Poisson with parameter λis, a choice variable. That is given τ∗is < T, the random variable
τ i,s+1 has conditional probability density function λise

−λis(τ i,s+1−τ is)
/[

1− e−λis(T−τ∗is)
]
.

- Information: At his sth bidding opportunity, the information set of player i at time τ is includes
his valuation and parcel size (vi, qi) , plus past bidding times τ i,s−k, previous bids bi,s−k, and the
associated ONM rates ri,s−k for k ∈ {1, . . . , s− 1}. We consolidate our notation by expressing
the information of player i at τ is as his ∈ Hs for s ∈ {0, 1, . . . , ρi} , where hi0 ≡ (vi, qi) and:

his ≡ (vi, qi, {τ is′ , ris′}ss′=1)

for s ∈ {1, 3, . . . , ρi} . Thus ρi, the total number of bidding opportunities player i had in the
auction is only revealed at T .

- Monitoring costs: The per unit time cost of choosing monitoring intensity λis at time τ is is
defined on Λ by a convex increasing positive real valued mapping g (·) where g (0) = g′ (0) =
0. Monitoring costs begin at τ∗is and are incurred in the interval (τ∗is, τ i,s+1] implying total
monitoring costs associated with the bid at τ is are g (λis) (τ i,s+1 − τ∗is) .

- Award rules:Who wins an award, and what proportion of the parcel is filled, depends on all final
bids, parcel sizes, and final submission times. We denote this set of variables by l ∈ L where

5Kastl (2011) and Hortacsu and McAdams (2010) consider divisible good auctions where the number of units to
be bid on can be continuously controlled. In our setting we have discrete packages and we abstract from quantity
choices.

6Formally τ∗is ≡ min {t : rit > bis} if rT > bis, with τ∗is ≡ T otherwise.
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l ≡
{
biρi , qi, τρi

}I
i=1 and let Mi (l) : L→ [0, 1] denote the award to player i as a proportion of

his parcel size qi. Funds are allocated by price, ties being settled by time priority. Denote this
ordering by ” � ”. It is formally defined by two criteria. If bi > bj , then i � j. If bi = bj and
τ i < τ j , then i � j. The ordering is strict, because bids cannot arrive simultaneously, and if
the auction is filled there is exactly one bid bk for quantity qk that uniquely satisfies the two
inequalities:

qk +
∑
j∈I

1 {bj � bk} qj > Q >
∑
j∈I

1 {bj � bk} qj

Everyone ranked above Player k is fully funded, everyone ranked below k recieves nothing,
while k receives the residual at price bk as a partial award:

Mi (l) =



1 if
∑
j∈I

1 {bi � bj} qj < Q

0 if
∑
j∈I

1 {bj � bi} qj > Q

q−1
k

[
Q−

∑
j∈I

1 {bj � bk} qj

]
if i = k

- Payoffs: Player i pays qibiMi (b, q).The payoff to bidder i is:

qi (vi − bi)Mi (l)−
ρi∑
s=1

g(λiτs) |qi, vi (1)

Total auction revenue is:
R ≡

∑
i∈I

qibiMi (l)

In the special case where the submissions do not fill the total amount being auctioned,∑I
i=1 qi ≤ Q, then every submission is fully funded, Mi (l) = 1 for all i ∈ I, and total

auction revenue reduces to the sum of all final bids weighted by their quantities,
∑I
i=1 qibi.

- Strategy space: A strategy for player i, denoted by σi, is an initial monitoring choice, denoted
by λσi0 : H0 → [0,∞), plus at each monitoring opportunity s ∈ {1, 2, . . . , ρi}, a sequence of
bids, denoted by bσis : Hs → [bis−1,∞) where bi0 ≡ r, as well as monitoring rate adjustments,
denoted by λσis : Hs → [0,∞) .

4 Equilibrium

The existence of a symmetric Perfect Bayesian Equilibrium with monotone weakly increasing bidding
strategies can be established by extending the analyses of Athey (2001) and Reny (2011). This
section describes the main features of solving the optimization problem in equilibrium. To reduce
notational clutter we now drop i subscripts, for example setting τ is ≡ τ s and Ms (l) ≡ M (l). At
his sth opportunity to bid, the value function for the player is defined as:

Vs (hs) = max
{br,λr}ρr=s

Es

[
(v − bρ) qM (l)−

ρ∑
r=s

g(λr) (τ r+1 − τ r)
]

(2)

where T ≡ ρ+ 1, and the expectation Es [·] is taken conditional on the information set of player i,
that is hs ≡ his, over the final state of the auction, l. Similarly the program solved at the beginning
of the auction to determine the initial monitoring rate is given by:

V0 (h0) = max
λ0

[(
1− e−λ0T

)
V1 (h1)−

(
1− Tλ0e

λ0T − eλ0T
)
λ−1

0 g(λ0)
]
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The value function Vs (hs) has a recursive formulation. If τ∗s = T , the player receives a payout of
(v − bs) qM (l) , because bs is a winning bid. If τ∗s < T and the player does not increase his bid again,
bs becomes a losing bid; with probability e−λs(T−τ

∗
s) the player does not receive another opportu-

nity to bid and pays g(λs) (T − τ∗s). Otherwise the player pays g(λs) (τ s+1 − τ∗s) and has another
opportunity to bid and reset the monitoring rate at τ s+1 ∈ (τ∗s, T ). We rewrite (2) recursively as:

Vs (hs) = max
(b,λs)

{Es [I {b ≥ rT } (v − b)M (l) |b ] q − h (λs |hs, b) g(λs) + Es [I {s < ρ}Vs+1 (hs+1) |b ]}

where we show in the lemma below that:

h (λs |hs, bs ) = Es

[
I {b < rT }

{
λ−1
s + e−λs(T−τ

∗
s) (T − τ∗s) + T − τ∗s

eλs(T−τ∗s) − 1

}
|bs
]

(3)

is the expected amount of time the bank pays at rate g(λs) for monitoring. Note that whether
and when the player will have another chance to bid depends on the monitoring rate through the
expression:

Es [I {s < ρ}Vs+1 (hs+1) |b ] = Es

[
I {b < rT }

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) dτ s+1 |b
]

If the reservation price at τ s exceeds his valuation, the player stops monitoring the auction,
effectively dropping out of the auction. If not, he increases his bid in return for the possibility of
winning the auction. In this respect, bidding more closely resembles the Japanese auction rather
than the English, since players with valuations higher than the ONM, when ONM is higher than
their current bid are compelled to immediately update regardless of what other bidders do, as in an
English auction where players can wait until a later point in the auction to reveal themselves. If his
valuation is high enough, he solves a first order condition and bid INM, as in a first price sealed bid
auction, and otherwise bids the ONM rate ris, as in a Japanese or English auction. However the
equations determining the optimal behavior not only reflect the uncertainty about future bidding
opportunities, but also the effect of bidding on the future ONM rival bids, and hence the feedback
into future monitoring.

The necessary first order condition for an interior solution is:

(v − bs) q
∂

∂bs
Es [I {b ≥ rT }M (l) |bs ]− Es [I {b ≥ rT }M (l) |bs ] q

= g(λs)
∂

∂bs
h (λs |hs, bs )− ∂

∂bs
Es [I {ρ > s}Vs+1 (hs+1) |bs ] (4)

There are two differences between a sealed bid auction equilibrium and this ascending auction.
In a discriminatory multiunit auction the first order condition equates the expression on the left
side to zero. Here there are two additional effects that are captured by the expressions on the
right side of the equation. They stem from the fact that increasing the bid raises the threshold
for the OUTM rate, serving to postpone the next bidding opportunity, but also encourages a more
aggressive response from rivals, thus accelerating the increasing reservation rate. The first expression
on the right side is the effect of bidding on the expected length of time the monitoring cost is g(λs);
the second expression is the effect of bidding on the timing and hence the value of the state variables
for the continuation value Vs+1 (hs+1) .

When a player receives a bidding opportunity and has a valuation higher than ONM, he will
bid ONM if his valuation is sufficiently close. Consider the expected value of bidding at each of
the existing prices in the auction book and amongst this set of bids let b∗ denote the price which
maximizes expected revenue for a player with valuation v̂. Let b̂ denote the bid at which his first
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order condition is solved and suppose he is indifferent between bidding and at the price point b∗.
Since the player is indifferent between bidding either price:

E [M (hT , bτ ) |hj , b∗ ] v̂ − E

bτM (hT , bτ ) +
τ∑
k=j

g(λk) |hj , b∗


= E
[
M (hT , bτ )

∣∣∣hj , b̂] v̂ − E
bτM (hT , bτ ) +

τ∑
k=j

g(λk)
∣∣∣hj , b̂


Making v̂ the subject of the equation yields:

v̂ =
E
[
bτM (hT , bτ ) +

∑τ
k=j g(λk) |hj , b∗

]
− E

[
bτM (hT , bτ ) +

∑τ
k=j g(λk)

∣∣∣hj , b̂]
E [M (hT , bτ ) |hj , b∗ ]− E

[
M (hT , bτ )

∣∣∣hj , b̂] (5)

It is straightforward to show that if a player with valuation v̂ is indifferent between bidding b̂ and
b∗, then all players with valuations lying between v̂ and v∗ would bid b∗, where v∗ is the valuation
of a player who would solve his first order condition by selecting b∗. Since the price bid does not
change with valuations in this interval, it follows that the remaining players in the game cannot
fully deduce the valuations of the players who bid on price points. By way of contrast the valuations
of players who bid at isolated points are fully revealed because they uniquely satisfying a first order
conditions.

First order conditions also characterize his monitoring expenditure; spending more raises the
likelihood of having an opportunity to update the current bid. At that point he will also optimally
adjust or stop his monitoring of the auction book. Denote g′ (λ) ≡ ∂g (λ) /∂λ . By assumption
g′(∞) = ∞. Consequently the optimal choice of λ is found by solving its associated first order
condition given by:

h (λs |hs, bs ) g′ (λs) + h′ (λs |hs, bs ) g(λs)

= Es

[
I {ρ > s}

{
λ−1
s − (τ∗s − τ s) + (T − τ∗s)

eλs(T−τ∗s) − 1

}
Vs+1 (hs+1) |bs

]
(6)

where:

h′ (λs |hs, bs ) = −Es

I {b < rT }

 λ−2
s + e−λs(T−τ

∗
s) (T − τ∗s)

2

+eλs(T−τ∗s) (T − τ∗s)
2
(
eλs(T−τ

∗
s) − 1

)−2

 |bs
 < 0 (7)

is the marginal reduction in expected monitoring time paid at rate g(λs). Intuitively, the left side
of (6) is the marginal cost of increasing the monitoring rate, the difference between the product of
h (λs |hs, bs ) , the amount of time spent monitoring at λs and the increased cost per unit time g′ (λ),
and the expected marginal reduction in the amount of amount of spent h′ (λs |hs, bs ) multiplied by
the unit rate g(λs). On the right side sum is the effect on the value function Vs+1 (hs+1) through
the change in the state variables hs+1 induced by a higher probability and earlier opportunity to
bid. The first order condition for the initial monitoring intensity λ0 can be found by specializing
the equation above.

Lemma 1 below summarizes our discussion, and its proof we provide conditions for finding
the threshold valuation that separates boundary condition bidders from those solving a first order
condition, as a mapping of the ONM bid, the time remaining in the auction, and the quantity
bid. It also shows that optimal response in equilibrium does not depend on previous monitoring
opportunities, only the amount of time left in the auction.
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Lemma 1 A perfect Bayesian equilibrium exists where bids are monotone increasing in valuations.
There exists a mapping v : [0, 30] × R+ × R+ → [r0,∞) denoted by v (τ , r, q) and satisfying the
inequality r < v (τ , r, q) such that, for all s, if r ≤ v < v (τ s, rs, q) then the player bids r, if
v (τ s, rs, q) ≤ v then the player solves (23), and if v < r then the player drops out of the bidding.
When given the opportunity λs solves (6) .

There are two special cases that emerge from setting monitoring costs to zero. If the bidding
interval was [0, T ] as specified in our framework, then there would be no incentive to post a bid
before T and the auction would degenerate to a sealed bid first price auction. We would expect to
see (practically) all the final and winning bids placed in the very last instants of the auction, in stark
contrast to the results of Figure 4. Alternatively suppose the bidding interval was [0, T ) . In our
model this small change does not have any implications for the equilibrium bidding or monitoring.
However if there are no monitoring costs there are huge implications. Following the natural extension
of Haile and Tamer, bidding times are indeterminate, while there is jump bidding, it is never above
the reservation price, as shown in Figure 1, and a uniform price is paid by all winning bidders at
the end of the auction, so there is no money left on the table, as Table 1 shows. To summarize
the absence of impediments to bidding lead to very different equilibrium outcomes that depend
on a mathematical technicality that evaporates when monitoring costs are included, but neither
specialization can rationalize key features of the data that from the model at least seem perfectly
plausible. We conclude that this data should be modeled with an ascending auction mechanism
where there are monitoring costs, which is our justification for the identification and estimation
analysis that follows.

5 Identification and Estimation

The primitives of the model are the reservation price, r, the number of players I, the number of
units for sale, Q, the joint probability density function for the valuations of the players and their
demand quantities, denoted by f (v, q) , plus the monitoring cost rate function, g(λ). Given values
for these primitives, an equilibrium for the model generates a joint probability distribution for the
sequence of bids, monitoring rates and reservation prices, along with the identities of the bidders
(the participating players). The data set we analyze comprises records of many auctions in which
the initial reservation price r is recorded, along with the number of units for sale, Q,as well as the
bid sequence and the identities of the bidders, which allows us to construct the reservation prices.
We do not observe their monitoring choice sequences or I, the number of players. However it is
straightforward to show that with strictly positive probability, all the players bid. Consequently I
is identified, and is consistently estimated by the maximum number of players observed bidding in
one of the sampled auctions. This only leaves f (v, q) and g(λ) to identify. We follow a standard
assumption in the literature on structural estimation that the data for all the auctions are generated
by same equilibrium, that they have the same monitoring cost structure, and all valuations are drawn
from the same probability distribution.

We successively analyze, in four steps, the valuations of players who bid, their monitoring rates,
the probability distribution of valuations for all players whether they bid or not, and finally the
monitoring cost function. At each step we establish identification, and then show how the sample
utilized in estimation. Our estimators, which the Appendix describes in detail, are for the most part
constructed from sample analogs to the conditions and nonlinear regression functions that establish
identification.
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5.1 Identifying and estimating the valuations of players who bid

The valuations of players who quit the auction by bidding OUTM, and those of players who make
interior bidding choices INM are point identified. The valuations of players who are observed to
only bid ONM are not point identified, but their bids do provide information about the probability
distribution of valuations. and we show those valuations are bounded. Reweighting the distribution
formed from valuations of players who bid OUTM and/or INM at some point during the auction
with information about the quantiles of valuations for those bidding ONM, we obtain a consistent
estimator of the probability distribution of players who bid.

A player whose final bid is OUTM at the time he bids fully reveals his valuation. His behavior
is essentially identical to a player in a Japanese auction who quits before the auction is over. In
both settings as the price rises players stay in the auction until their valuations are reached, and
then immediately exit. In symbols:

vi = biρ if biρ < riρ (8)

.
Assuming interior bids are strictly monotone in valuations, it follows that for a given history

of identical interior bids (across different auctions) were induced by the same valuation. Therefore
the highest bid ever observed amongst this subset of players lower bounds their common valuation.
Since the lowest winning bid may be arbitrarily close to any valuation, we can show that the highest
winning bid observed amongst the subset converges from below to the common valuation. Let
bis ≡ b (his) denote an equilibrium interior bid by player i at t when his partial auction history is
his, meaning bis > ris. We let his′ � (his, bis) mean that for any time s ∈ (t, T ] , the partial history
hs succeeds ht or is a continuation of ht. Then:

vi = sup
hs�(ht,bit)

{b (hs) |ht, bit } if biρ ≥ riρ and bis > ris for some s ∈ {1, 2, . . . , ρ} (9)

Intuitively, given the opportunity, a player bids up to his valuation in an independent private value
ascending auction and quits if rit, the ONM bid, rises above it. So to prove this result we need to
show that with positive probability there are histories hs � (ht, bit) such that b (his) is arbitrarily
close to vi, say because with positive probability there are sufficiently many players with higher
valuations that would bid if they could.

If players are observed to only bid ONM, then their point estimates are not point identified.
Denoting by v̂i the valuation of a player whose last or final ONM bid is observed riρ clearly v̂i ≥
rit otherwise player i would have bid less. But depending on the slope of the marginal benefit from
raising a bid at the ONM amount, players with valuations only slightly higher than rit, say v̂i, might
optimally bid rit. In that case, monotonicity implies every player with a valuation between rit and v̂
would bid rit in those circumstances too. These remarks also lead to a minimal bound on valuations
that are associated with bidding ONM. Valuations and final bids.

vi ∈ [biρ, ] where v̂i is the the valution of the ”relevant lowest FOC bid” (10)

How close are the bounds we would obtain from not putting any structure on the institutional
detail surrounding the bidding. Figure 10 compares the distribution of final bids with the distribution
of valuations estimated from our model for interior bids for data prior to 2008 and post 2008. These
distributions are based on the sample of interior bids.

By construction valuations obtained from interior bids are at least as high as their final bids
and typically higher, the valuation intervals obtained from ONM bids are lower bounded by the
bids, while final bids OUTM equal their valuations. For these reasons the estimated probability
distribution of valuations belonging of players who bid first order stochastically dominates the
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Figure 9: Valuation Distributions Using Close Bids, normalized by reserve coupon rate
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distribution of final bids. As a fraction of the final bid, the estimated mean valuation is XX higher
and the margin observed is YY.

5.2 Effect of auction format on estimated distribution of valuations

Thus far the estimation of valuations has not exploited the assumptions in the model about the
monitoring technology. Consequently the bidding strategies underpinning identification and estima-
tion are optimal for any nonanticipating times that stochastically determine the player’s sequence
of bidding opportunites. We now compare these estimates with those obtained from two alternative
auction formats. Both alternatives assume, contrary to the assumptions of our model, that at the
time players submit their final bid they know there will be no further opportunities to bid. In a
standard first price sealed bid (FPSB) auction there is a common reservation price and every player
believes all final bids are simultaneous. In a variation on the FPSB auction, each bidder knows ONM
when he submits his final bid, and recognizes the others may have opportunities to submit their
final bids after him. How are the estimates of valuations affected by these two different assumptions
about auction format?

5.2.1 Valuations implied by a first price sealed bid auction

Perhaps the simplest FPSB auction that might be broadly consistent with our institutional setting
is when players do not take account of the ONM price when submitting their final bid the end of
the auction, and treat all previous bids as uninformative, similar to Bajari and Hortacsu (2003).
Dropping the last two terms in (23) (because in this specialization bidders do not pay any monitor-
ing costs and know when they have no further bidding opportunities), and similarly dropping the
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subscipt on the expectations operator (since bidders don’t use any information about the partial
history of the auction when they make their final bid), the first order condition for bidders becomes:

(v − bρ) q
∂

∂bρ
E [I {bρ ≥ rT }M (l) |bρ ] = E [I {bρ ≥ rT }M (l) |bρ ] q (11)

and the resulting estimator is a straightforward application of the approach in Guerre et al. (2000).

Figure 10: Valuations compared to FPSB estimates, normalized by reserve coupon rate
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The distribution function estimated this way first order stochastically dominates the estimated
distribution from our specification in quite dramatic fashion. Valuations are implausibly estimated
orders of magnitude higher than the bids even though there are on average, more than twenty
bidders in each auction.

While this is an implausible result under the assumption of FPSB, it is easy to explain if our
original specification generates the data and the econometric specification is misspecified as FPSB.
The most obvious source of differences arise from the treatment of bids that are OUTM when
submitted. In the ascending auctions specification, the valuations equate with such bids, but in the
FBSB format the valuations are strictly higher than these OUTM bids. Similarly bids ONM are
matched to lower valuations in the ascending than the FPSB format, since in the former valuations
are are weighte Finally, in equilibrium the derivative of the probability of winning with respect to
the current bid averaged across partial histories hρ, that is ∂E [I {bρ ≥ rT }M (l) |bρ ] /∂bρ is lower
in a model if future bidding opportunities are uncertain than if players know they have reached
their opportunity to bid. Since there may be an opportunity to bid later on, lowballing can be
corrected at some future time before the auction ends if the ONM amount increases in the interim,
and also discourages rival bidders from raising the ONM price. The low derivative is complemented
by at least one additional term that separates the bid from its valuation in the first order condition;
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thus not all the difference between the quotient of the winning probability and its derivative can
be attributed to the difference between the bid and the valuation. (What is the size of the
difference when we substitute our estimates into the FOC? How far off zero are they?)

5.2.2 Valuations implied by a sequential auction

Our data show that, amongst winning bids, the later the player bids, the closer his bid is to the the
lowest winning bid, a finding at odds with the predictions of the FPSB auction format described
above. Taken together with such implausibly high valuations, it might seem reasonable to modify
the FPSB auction format to capture the possibility that bidders account for previous bids through
their effects on ONM, which can be deduced at the time players submit their (final) bids, as discussed
in Section 2. This model is similar in spirit to Daniel and Hirshleifer (1998). Suppose the timing
sequence when bidders make their final bids is exogenously determined. The first order condition
pertaining to this specialization is found by dropping the terms on the right side of (23); recognizing
that the bidding process in this specialization markedly differs from the process in the original
specification the subscript terms on the expectations operator are nevertheless left intact. Thus
the essential difference in the econometric specification between this specialization and the FPSB
amounts to the conditioning sets that affect the probability of winning and its derivative. Valuations
estimated by OUTM bidders are identical for the original and this specialization, thus removing one
of the distinctions of the FPSB. However the slope of the bid function is more similar to FPSB than
the original.

The empirical distribution of valuations under the assumption that the auction is FPSB first
order stochastically dominates the distribution of valuations generated by the ascending auction
with monitoring, and if we are to take it seriously, suggests that competitive forces play a very
small role in bidding. For example, valuations are a multiple of bids. Our description of the data
provide several reasons why the FPSB model is misspecified. In estimation we can factor out the
components that generate the misspecification using the first order condition for bidding (23) .

5.3 Monitoring choices of interior bids

Second we infer the monitoring rates from bidders whose bids fall OUTM. When reviewing a player’s
history within the data, we do not observe monitoring opportunities that the player decides not to
bid on. The identification strategy is isolate those phases in the history when we are certain the
player would bid if she could. Suppose the bid of player i at τ is falls OUTM at some later point
during the auction denoted by τ̂ is, and she subsequently raises her bid at τ i,s+1 > τ̂ is > τ is. The
latter bid shows her valuation can justify INM or ONM bids at τ̂ is. Thus by Lemma 1, in equilibrium
she bids at her first opportunity after falling OUTM. Extending this insight, once a bid falls OUTM,
the player takes her first opportunity to rebid so long as her valuation is INM, because choosing the
same monitoring rate and updating his bid to INM or ONM dominates passing. The per time cost
is the same, as are future bidding opportunities, but she gains from bidding if no further bidding
opportunities arrive and her revised bid remains ITM.

If the ONM price exceeds the ith player’s valuation vi when the auction ends at T , we define
Ti as the random time when the ONM price crosses her valuation, and otherwise we set Ti = T .
It follows from this discussion that the timing of the next bidding opportunity is governed by an
exponential hazard with rate λ (his) between τ̂ is and Ti if τ is = τ iρ and s is the last time i bids, and
between τ̂ is and τ i,s+1 if the player updates her bid. Identification of the parameter λ (his) for all
interior bids at τ is follows directly by obtaining a closed form solution from the score for this mixed
exponential density.

Lemma 2 For all his satisfying bi,s−1 < ris and v (τ s, rs, q) < v, the optimal monitoring rate solves:
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λ (his) = Pr {τ is < τ iρ |his }
Pr {τ is < τ iρ |his }E [τ i,s+1 − τ̂ is |τ is < τ iρ, his ] + Pr {τ is = τ iρ |his }E [Ti − τ̂ is |τ is = τ iρ, his ]

It can be

5.4 Distribution of valuations for actual and potential bidders

From the first two steps we infer the initial monitoring rates that determine whether a player ever
bids or not, and hence recover from the distribution of the selected players who bid the exante
unconditional distribution of valuations for all players. All players would bid in the auction if they
were confronted with the coupon reservation price of r0. The valuations of those bidding at the
reservation price are not uniquely identified since v (τ , r0, q) > r0. However monotonicity in the
first order condition guarantees the truncated distribution of bidders solving an interior solution
is identified. From the timing of first bids for those players with identical valuations we identify
the initial choice of the monitoring rate as a function of their valuation, denoted by λ0 (v) . Since
the selection rule and the truncation distribution of valuations for first bidders is identified, and
the truncated distribution covers the support of the underlying distribution of valuations down to
v (τ , r0, q), it follows that the latter is identified too.

Lemma 3 For all his satisfying bi,s−1 < ris and v (τ s, rs, q) < v, the optimal monitoring rate solves:
or taking limits we have:

Pr {v (τ , r0, q) < v ≤ vk} = E [I {v ≤ vk} /λ0 (v) ]
E [1 /λ0 (v) ]

where the expectation is taken over the truncated distribution.

Figure 11 depicts our estimates of the parent distribution from which the participating players are
drawn through their first bidding opportunity. The most noticeable features are that bids are made
on projects that, from a distributional perspective, first order dominate the untruncated valuations.

5.5 Monitoring costs

We also utilize our estimates of monitoring intensities and valuations to obtain estimates of the cost
function for monitoring from the Euler equations characterizing the first order condotions of the
interior solutions. The monitoring cost function, g (λ), is identified from the first order condition
for monitoring (6) . We exploit the fact that the expectations error, that is the difference between
the conditional expectation and its outcome, is orthogonal to the elements in the information set,
which can therefore be used as instruments in estimation. It follows directly from the definition of
the expected monitoring time at level λ, given by (3), its derivative (7) and (6) that:

Es

[
y − x1g

′ (λs) + x2g(λs) +
ρ∑

r=s+1
x3rg(λer) |bs

]
= 0 (12)

where:
y ≡ I {ρ > s}

{
λ−1
s − (τ∗s − τ s) + (T − τ∗s)

eλs(T−τ∗s) − 1

}(
v − beρ

)
qM (le)

x1 ≡ I {b < rT }
{
λ−1
s + e−λs(T−τ

∗
s) (T − τ∗s) + T − τ∗s

eλs(T−τ∗s) − 1

}
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Figure 11: Untruncated versus Truncated Valuation Distribution Pre and Post
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x2 ≡ I {b < rT }

 λ−2
s + e−λs(T−τ

∗
s) (T − τ∗s)

2

+eλs(T−τ∗s) (T − τ∗s)
2
(
eλs(T−τ

∗
s) − 1

)−2


x3r ≡ I {ρ > s}

{
λ−1
s − (τ∗s − τ s) + (T − τ∗s)

eλs(T−τ∗s) − 1

}
(τ r+1 − τ r)

Setting:

g (λ) =
K∑
k=0

θkλ
k

and substituting this parameterization for g (λ) into (12) we group terms in θk to obtain:

Es

{
y −

K∑
k=0

[
x1kλ

k−1
s + x2λ

k
s +

ρ∑
r=s+1

x3r (λer)
k

]
θk |bs

}
= 0

In this way we establish sufficient conditions under which g (λ) is identified within the class of analytic
functions, are that E [zz′] is invertible, where the K dimensional random variable z ≡ (z1, . . . , zK)
are instruments for this linear projection defined by its components:

zk ≡ Es

[
x1kλ

k−1
s + x2λ

k
s +

ρ∑
r=s+1

x3r (λer)
k |bs

]
Substituting out our estimates for v and λ we can estimate θ in the above directly. We now

report our estimates of the monitoring costs.
We first present estimation of the valuations. We sometimes find a number of negative interest

rates which we find implausible. We drop these estimates from the discussion. Then we present
our estimates of the costs of monitoring, found by computing the expected benefits of increasing
monitoring at any given point in the auction.
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Table 2: Monitoring Cost Estimates
Cost Function Parameters

(std. error)
Poly of degree 2 Poly of degree 3

Pre 2008

θ0 0.02 48.42
(0.00) (1.25)

θ1 coeff. on λ 8.98 3.74
(0.42) (0.47)

θ2 coeff. on λ.2 0.00 0.03
(0.00) (0.00)

θ3 coeff. on λ.3 -0.00
(0.00)

Post 2008

θ0 -0.17 52.37
(0.01) (0.93)

θ1 coeff. on λ 79.76 134.58
(0.53) (0.86)

θ2 coeff. on λ.2 -0.00 0.04
(0.00) (0.00)

θ3 coeff. on λ.3 -0.00
(0.00)

Table 3: Monitoring Costs over Realized Profits
∑τ

t=1 g(λt)
(v−b)M(b,hT )

Mean Standard Deviation Min Max

Pre 2008 Poly of Degree 2 0.03 0.19 0.00 4.87
Poly of Degree 3 0.02 0.13 0.00 3.27

Post 2008 Poly of Degree 2 0.14 1.07 0.00 36.28
Poly of Degree 3 0.23 1.83 0.00 62.38

6 Efficiency and Welfare

An important feature of this auction is the monitoring costs bidders pay to stay informed. It is
reflected in the raw data by the spread of winning bids, and the times at which winning bids are
submitted. In the equilibrium of our model the highest valuation players might not bid, and even if
they do, might not win the auction. Our structural estimates of monitoring costs are statistically
significant and quantitatively important. This section develops measures of the potential gains from
trading in this auction market and reports our estimates of how efficiently players in the auction
extract them.

6.1 Measures of Conduct and Performance

We use five measures of welfare to assess the auction format. Gross social surplus, the total value
of funding the best projects in the absence of monitoring costs, is a natural benchmark to begin the
comparisons. Then we derive the first best solution for a social planning problem, in which a team of
project managers with the same objective as the planner choose monitoring rates for their respective
projects, and if their projects become eligible for funding, they truthfully reveal the value of their
projects, so that the planner can fund those that maximize the aggregate value of the program.
Compared to the gross social surplus, the first best solution accounts for the monitoring costs of
making the market.

Then we compute the second best solution that arises when there is moral hazard, because the
social planner cannot observe monitoring effort and hidden information, because the planner cannot
observe the value of each project. The welfare difference between the two planning problems is,
loosely speaking, the cost of price discovery. We compare these three hypothetical scenarios with
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the current auction format to account for what happens to the gross total surplus.
Finally we compare the existing format with a discriminatory price sealed bid auction for eligible

projects. Modifying the existing format, this can be simply accomplished by hiding from players
whether their bids are in the money or not until after the thirty minute bidding period has elapsed.
The existing format encourages low valuation project managers to take an option by initially placing
low bids and effectively withdrawing from the auction if bids from higher valuation projects displace
them, but benefiting by winning if competition from rivals is lacking; a sealed bid auction may
reduce overall monitoring costs, by concentrating all monitoring to achieve eligibility in the first
(and only) bid, but lacks this dynamic feature.

6.1.1 Gross social surplus

The (expected) gross social surplus is found by selecting the K most valuable projects from the pool
of I projects whose valuations are drawn from the parent density function f (v) with cumulative
distribution function F (v). Denoting by mj,I the mean value of the jth least valuable project in a
pool of size I, it follows that the gross social surplus is:

I∑
j=I−K+1

mj,J =
I∑

j=I−K+1

I!
j! (I − j)!

∫
vF j−1 (v) [1− F (v)]I−j f (v) dv (13)

6.1.2 First best solution ot the planning problem

There are two factors that explain the difference between the gross social surplus and the welfare
obtained from the first best planning solution. First, the social planner incurs monitoring costs that
are a function of the valuations, paying λo (v) per unit of time while the project remains ineligible.
Thus g [λ (v)] is the expected monitoring cost of a project with value v, and:

I

∫
g [λ (v)] fλ (v) dv

is the total monitoring cost, the independently and identically distributed probability density func-
tion for the projects is denoted by fλ (v), the subscript λ indicating the effect of monitoring on the
projects tagged for possible funding. This density relates to fλ (v) , the density from which flagged
projects are drawn through a monitoring function λ (v) via the mapping:

fλ (v) = f (v)λ (v) /E [λ (v)] (14)

In the sorting phase the planner allocates the fixed amount of funds to the projects of highest value.
Suppose there are I projects of which J are identified by the planner, and a maximum of K can be
funded. We denote by λ (v) a monitoring function the planner might adopt, interpreting it as the
monitoring intensity undertaken by the project manager to seek to contact the planner as instructed.

Second, only J eligible projects, numbering K, can be funded from the total pool of I projects.
If J ≤ K then all the identified projects are funded, and the gross benefits are Jmλ, where mλ is
the mean value for eligible projects when the monitoring technology λ (v) is adopted. Alternatively
J > K and the planner selects the K most valuable projects for funding. Denoting by mλj:J the
mean value of the jth least valuable project, it follows that the gross expected benefits in this case
are:

J∑
j=J−K+1

mλj:J =
J∑
j=1

mλj:J −
J−K∑
j=1

mλj:J = Jmλ −
J−K∑
j=1

mλj:J
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where the mean of this distribution is then:

mλ ≡
∫
vfλ (v) dv (15)

and the mean of its jth order statistic (out of J) is:

mλj:J = J !
j! (J − j)!

∫
vF j−1

λ (v) [1− Fλ (v)]J−j fλ (v) dv (16)

Denoting by pλJ the probability that J projects are identified to the social planner for potential
funding, it now follows that the gross expected benefits to the social planner from selecting λ (v) as
a monitoring function are:

Jmλ −
I∑

J=K+1

J−K∑
j=1

pλJmλj:J

where:

pλJ = I!
J ! (I − J)!

[∫
exp (−λ (v)T ) f (v) dv

]J [
1−

∫
exp (−λ (v)T ) f (v) dv

]I−J
(17)

To solve the social planner’s problem we must relate the set of potential projects to the set
of identified projects through the monitoring technology. As before the unconditional probability
density function characterizing valuations is denoted by f (v).where the expectation is taken with
respect to f (v) .

6.1.3 Second best solution to social planning problem

From a social perspective this is a generalized moral hazard problem. A total of I players manage
one project each of heterogenous size q, exerting effort λ to make them eligible for funding by, and
then in a second stage making an offer through messages b to be selected for funding. The social
planner seeks to maximize the expected value from allocating total available funds Q to a subset of
eligible projects net of expected monitoring costs incurred by all players seeking eligibility. Players
personally and privately bear both the cost of monitoring their own projects and also the direct
benefits if funded, so neither the costs nor the benefits are observed by the social planner. The
planner only observes the field of eligible projects, recruited from an unobserved pool, the size of
each eligible project, q, the time the project became eligible for funding, τ , and the messages, b,
the player managing the eligible project sends about its value v. The dual challenge is to design a
transfer function c (q, τ , b) that motivates players to individually monitor their projects to ensure
optimal participation in the final allocation mechanism through their individual choices of λ, a moral
hazard problem, and to induce those players whose projects are identified as candidates for funding,
to reveal enough information about their own project valued at v to promote efficient allocation of
funding, a problem in hidden information.

Consider a social planner who can fully commit to a transfer function that might conceivably
punish players who report too early in the recruitment process for appearing to search too intensively
relative to the social optimum. Following Myerson, all Bayesian equilibrium outcomes of any game
induced by the mechanisms available to the social planner can be implemented by a direct mechanism
in which player is asked to reveal his type, and finds it optimal to be respond truthfully. In a direct
mechanism the space of signals is just the valuation space, and in equilibrium the best response is
to set b = v regardless of τ , the time the project is identified as a candidate for funding. Noting
that the same valuation leads to the same choice of monitoring but multiple values for τ , it follows
from the first order condition the player solves when revealing his valuation that the cross partial
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derivative of c (q, τ , b) with respect to its second two arguments is zero, or more generally that given
q, the mapping c (q, τ , b) is additive in b and τ , taking the form:

c (q, τ , b) = c1 (q, τ) + c2 (q, b)

The additivity in transfer functions breaks any strategic linkage between time spent monitoring
and bidding. It implies that this direct mechanism is renegotiation proof, and therefore can be
implemented sequentally by the social planner; no commitment is called for at the design stage.
Since project size is exogenous and the cost function associated with bidding does not depend on
τ ,the solution to the allocative direct mechanismit is for each funded project to pay a uniform price
per unit of the highest losing bid. This simple result is a well known transparent extension of the
ubiquitous second price auction. Thus:

c2 (q, b) =

To solve for the (second best) optimal transfer cost from monitoring we write down the expected
value to the player is:(

1− e−λT
)
E [M (l) vq − c2 (q, b)]−

∫ T

0
λe−λτ c1 (q, τ) dτ − g (λ)h (λ)

The first order condition for this problem is:

eλTE [M (l) vq − c2 (q, b)] +
∫ T

0
(λτ − 1) e−λτ c1 (q, τ) dτ = g′ (λ)h (λ) + g (λ)h′ (λ)

The objective of the social planner is the same in the first best problem as in the interim problem,
and the second stage of selecting the funded projects from the eligible set is also identical. The basic
difference is that in the first best solution the planner chooses monitoring as a function of valuation
and quantity, whereas in the second best solution, players choose monitoring as a function of their
valuation and quantity, and the only influence the planner can have in their choice is through a tax
on the speed at which they enter their orders. If all eligible projects were invariably funded, the bid
price would be the reservation rate, all three solutions would coincide, so the optimal congestion
transfer tax would be zero. Only when the number of eligible funds exceeds the the available funds
do the solutions diverge. In the first best solution, the planner economizes on the eligible number
of low valuation projects by monitoring them with low intensity. Compared to that solution, we
see that in second best problem this case the transfer function inducing monitoring serves two roles
pulling in opposite directions. As in the first best solution, players might be encouraged to monitor
so that the social planner can select from a broader range of projects and thus increase the value
of the selected bundle. However since c1 (q, τ) does not depend on v, encouraging all submissions
induces monitoring effort by low quality project managers too and contributes to a cost akin to
congestion when there are more candidate projects than than can be funded.

We summmarize the results of this subsection in the following lemma.

Lemma 4 Full committment optimal interim efficient social planning problem can be implemented
by a direct mechanism. It decomposes into two transfer functions. The second is a standard auction,
and yields the optimal allocation amongst candidate players. The first is a tax or subsidy on the
time a project becomes a candidate for funding.

6.1.4 Comparison with a discriminatory price sealed bid auction

In equilibrium players disperse their monitoring efforts over the entire thirty minute auction period,
and funds are not automatically awarded to the highest valuation eligible projects. Within our
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framework, the monitoring effort of players could be concentrated into their first bidding opportunity,
and the loss from not funding the highest valuation projects could be eliminated by conducting
a discriminatory price sealed bid auction. These changes could be simply accomplished by not
revealing to players, until after the full thirty minute period has elapsed, whether their bids are
in the money or not. In this case individual monitoring would be a function of (v, q) alone rather
than successive values of rs as well, and the highest value projects would be selected from the set
of eligible ones. To compute the value of conducting a discriminatory price sealed bid auction, we
evaluate the social planner’s objective function when players solve their monitoring strategies in the
Bayesian Nash game for c1 (q, τ) = 0.

In the equilibrium of both formats there is congestion relative to the first best solution, in
the sense that all players pay monitoring costs but only some projeects are funded. Providing
some information to players about rival bids throughout the auction and allowing them to update
disperses monitoring costs and might reduce aggregate monitoring costs and perhaps encourage
players to monitor more closely when it is more socially valuable to do so. This might offset the
loss from not ranking projects in equilibrium strictly according to value, as happens in a sealed bid
private auction. Thus theory does not answer the question about which mechanism is more efficient;
this is an empirical matter.

6.2 Results

The sum of realized profits for auction l is:

Il∑
i

[vli − bli]M(bli)qli

We then compute what the potential profits could have been with knowledge on individual valua-
tions. We first determine which bidders should be in the money, rather than those who were found
to be INM by the mechanism. Let this updated INM indicator be denoted by M∗. Then the sum
of potential profits is given by:

Il∑
i

[vli − bli]M∗(bli)qli

For simplicity we assume that

λ(v) =
P∑
p=1

γpλ
p (18)

and that the social planner picks values of γp to maximize the expected social surplus. We first
present results on the quadratic information cost structure and a cubic λ(v) function. The γ pa-
rameters are shown in Table 5. These parameters can be used to generate the truncated valuation
distribution and can be compared to the selection the current auction mechanism induces. These
are shown in Figure 12 and Figure 13

The player’s monitoring choice determines the rate at which opportunities to bid arrive through-
out the auction game; a higher arrival rate is more costly to implement than a lower rate, and it
can be revised with each bid update. In this way we capture alternative uses of the player’s time,
such as monitoring other securities the player trades, seeking new clients, or conducting adminis-
trative duties for his or her employer. The players’ equilibrium choices of monitoring endogenize
the intensity of bidding activity throughout the auction. At the beginning of the game, bidding is
relatively frequent: until a player has made his first bid, the cost of losing an opportunity to bid is
zero from the auction, and we show that everyone who has has an opportunity to make an initial bid
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will take it; anticipating the value of the initial bid players choose a relatively frequent monitoring.
Having placed an initial bid, a player might not increase it at every opportunity he has, depending
on whether it is still in the money. For this reason players might economize on monitoring costs
after making their first bid. The rush of bids at the end, sniping, is a well understood response by
bidders trying to prevent being pushed out of the money from rival bids that arrive later but still
in time for the auction close. These collective choices are exacerbated by rational herd behavior.
Since players have rational beliefs about their rivals, they reduce their monitoring during the the
middle phase of the auction because fewer rival bids arise, compounding the reduced frequency of
bidding, but in the last minutes of the auction, anticipating that others will snipe, they increase
their monitoring as a defensive strategy, which in turn increases bidding activity.

The results are summarized in Table 4.

Table 4: Private and Social Surplus
Mean Standard Deviation Min Max

Pre 2008

Fraction of OTM bidders 0.78 0.28 0.00 1.00
who should be ITM∑Il

i=1 v
l
iM(bli) 3879765.57 593490.85 2429404.00 4323249.00∑Il

i=1 v
l
iM
∗(vli) 3902577.93 588256.22 2435750.00 4323249.00∑Il

i=1 v
l
iM(bli)∑Il

i=1 v
l
iM
∗(vli)

0.99 0.01 0.93 1.00∑Il

i=1 b
l
iM(bli) 3766933.11 578832.43 2391591.00 4269099.00∑Il

i=1 b
∗lM∗(vli) 3821871.43 571952.24 2381500.00 4244000.00∑Il

i=1 b
l
iM(bli)∑Il

i=1 b
∗lM∗(vli)

0.99 0.03 0.90 1.05

Post 2008

Fraction of OTM bidders 0.72 0.40 0.00 1.00
who should be ITM∑Il

i=1 v
l
iM(bli) 921950.19 912430.50 81315.00 3389840.00∑Il

i=1 v
l
iM
∗(vli) 944056.91 928547.94 81315.00 3414240.00∑Il

i=1 v
l
iM(bli)∑Il

i=1 v
l
iM
∗(vli)

0.98 0.03 0.88 1.00∑Il

i=1 b
l
iM(bli) 760673.91 844874.28 57999.00 3346376.00∑Il

i=1 b
∗lM∗(vli) 838595.40 893196.08 37200.00 3360000.00∑Il

i=1 b
l
iM(bli)∑Il

i=1 b
∗lM∗(vli)

0.95 0.20 0.52 1.56

Summaries on auction outcomes across all simulations output can be found in Table ??. To
compute summary statistics we first average outcomes over all simulations and then across auctions.

Table 5: Social Planner Solution
Pre 2008 Post 2008

γ1 -76.0917 0.1060
γ2 990.3128 -8.1834
γ3 15821.6614 105.4699
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Figure 12: Pre 2008: Comparison of Truncated Distributions from Social Planning Problem
(Quadratic Monitoring Costs)
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Figure 13: Post 2008: Comparison of Truncated Distributions from Social Planning Problem
(Quadratic Monitoring Costs)
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Table 6: Summary Statistics on Social Planner Simulation
Mean Standard Deviation Min Max

Pre 2008

Number of Bidders 47.8559 11.7195 18.1236 69.0202
Avg. Monitoring Cost 160.5146 76.6329 23.8342 327.7212
Across Bidders∑I

i=1 viMsp(vi) 6955082.1417 1316351.9872 3764680.7801 9887093.0367∑I

i=1
viM∗(vi)∑I

i=1
viMsp(vi)

0.5909 0.1582 0.2933 0.9730

Post 2008

Number of Bidders 18.1071 28.9460 0.0094 71.7114
Avg. Monitoring Cost 0.1234 0.2612 0.0000 1.1789
Across Bidders∑I

i=1 viMsp(vi) 1882073.5362 3027077.1545 96.2925 9246678.9770∑I

i=1
viM∗(vi)∑I

i=1
viMsp(vi)

0.3774 0.0936 0.1675 0.5012
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7 Conclusion

This paper constructs and estimates a multiunit ascending auction with costly monitoring. Our
modeling approach, estimation strategy and empirical findings establish that there is a role of
monitoring costs. Paradoxically the value of a trader’s time should be reflected by his inattention
to detail. We would expect large successful traders to lose more money in any one market than
their less successful rivals. Our estimation approach avoids computation of equilibrium strategies
and could potentially be adapted to other environments with even more complex strategy spaces.
We then apply the model to CD auctions held by State Treasurers to place unallocated government
funds in savings vehicles. Our data allows us to trace the effects of the 2008 recession. We find
that the distribution of interest rate valuations changes substantially after the crisis. In particular,
the variance of valuations increases substantially. This indicates that bidders were affected very
differently from each other by the recession.This paper contributes to understanding dynamic auction
mechanisms that do not conform to the Japanese auction idealization.

Finally our model and approach sheds some light on daily trading in limit order markets. Viewed
as an electronic limit order market, bidders compete by submitting limit buy orders before a seller
enters at a preordained moment and places market orders at . Both types of trading mechanisms
The general features of the data, in which order placement activity concentrated at the open and
close of trading. Both exhibit isolated limit orders as well as price points, prices where several orders
are inverted by placement time. As in our auctions activity is greatest at the beginning and end
of the trading period. Our model explains why when there is mutual verification of the monitoring
technology, traders tend to place orders at the beginning of the period to deter entry and at the end
to prevent responses. At the trading level our model explains why such clumping occurs.

8 Appendix A: Proofs

Lemma 5 A perfect Bayesian equilibirum exists where bids are monotone increasing in valuations.
There exists a mapping v : [0, 30] × R+ × R+ → [r0,∞) denoted by v (τ , r, q) and satisfying the
inequality r < v (τ , r, q) such that, for all s, if r ≤ v < v (τ s, rs, q) then the player bids r, if
v (τ s, rs, q) ≤ v then the player solves (23), and if v < r then the player drops out of the bidding.
When given the opportunity λs solves (6) .

Proof of Lemma 1. Existence from Athey and Reny.

Lemma 6 For all his satisfying bi,s−1 < ris and v (τ s, rs, q) < v, the optimal monitoring rate solves:

λ (his) = Pr {τ is < τ iρ |his }
Pr {τ is < τ iρ |his }E [τ i,s+1 − τ̂ is |τ is < τ iρ, his ] + Pr {τ is = τ iρ |his }E [Ti − τ̂ is |τ is = τ iρ, his ]

Proof of Lemma 2. The mixed probability distribution for λ (his) is given by the formula:

Lemma 7 For all his satisfying bi,s−1 < ris and v (τ s, rs, q) < v, the optimal monitoring rate solves:
or taking limits we have:

Pr {v (τ , r0, q) < v ≤ vk} = E [I {v ≤ vk} /λ0 (v) ]
E [1 /λ0 (v) ]

where the expectation is taken over the truncated distribution.
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Proof of Lemma 3. More specifically, let Ti denote the random time that player i has his first
opportunity to bid when his initial monitoring rate is λ0 (vi). Then:

lnTi = − lnλ0 (vi) + ηi

where ηi has a Type 1 extreme value distribution. Suppose vi is drawn from a finite set {v1, . . . , vI}
Suppose momentarily that the support of parent population of the truncated population, ranked
from the lowest to the highest, is {v1, . . . , vI} with probabilities {q1, . . . , qI} , and that in the trun-
cated population the probabilities are {p1, . . . , pI} . Then:

pi = qiλ0 (vi)∑I
j=1 qjλ0 (vj)

That is:
pi

λ0 (vi)
= qi∑I

j=1 qjλ0 (vj)

But: ∑I

i=1
pi

λ0 (vi)
=
∑I

i=1
qi∑I

j=1 qjλ0 (vj)
= 1∑I

j=1 qjλ0 (vj)

implying:
qi =

(
pi

λ0 (vi)

)/∑I

i=1
pi

λ0 (vi)
and more generally for any vk:

Pr {v ≤ vk} =
{∑k

i=1

(
pi

λ0 (vi)

)/∑I

i=1
pi

λ0 (vi)

}
or taking limits we have:

Pr {v ≤ vk} = E [I {v ≤ vk} /λ0 (v) ]
E [1 /λ0 (v) ]

where the expectation is taken over the truncated distribution.
The monitoring cost function, g (λ), is identified from the first order condition for monitoring

(6) . We exploit two features of this equation, Since the optimal choices of λr at r ≡ τ (m) and λs at
s ≡ τ (m+1) satisfy the monitoring FOC we can first difference to obtain:

g′(λs)
(T − s)e

λs(T−s) − g′(λr)
(T − r)e

λr(T−r)

=
{

Er1 [bM (l)]− btEr0 [M (lt)]
−Es1 [bM (l)] + bsEs0 [M (ls)]

}

−v
{

Er1 [M (l)]− Er0 [M (lt)]
−Es1 [M (l)] + Es0 [M (lt)]

}
Er1

[∑τ

k=m+1
g(λ(k))

]
− Es1

[∑τ

k=m+2
g(λ(k))

]
But:

Er1
[∑τ

k=m+1
g(λ(k))

]
− Es1

[∑τ

k=m+2
g(λ(k))

]
= g(λs) + εs

where εs is orthogonal to (hr, v, λs). Consolodating we have:

vy1s − y0s = g(λs)− g′(λs)A2s + g′(λr)A1r + εs (19)
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where:

y0s = Er1 [bM (l)]− btEr0 [M (lt)]
−Es1 [bM (l)] + bsEs0 [M (ls)]

y1s = Er1 [M (l)]− Er0 [M (lt)]
−Es1 [M (l)] + Es0 [M (ls)]

A1r = eλr(T−r)

(T − r)

A2s = eλs(T−s)

(T − s)

In this way we establish that g(λ) is identified within the class of analytic functions.
More generally g(λ) can be modelled as depending on the amount of time left in the auction. For

example suppose that monitoring costs are paid per unit time until the next monitoring opportunity,
or the auction ends, whichever comes first. We write:

g (λ, s) ≡ h (λ)
∫ T−s

0
tλ exp (−λt) dt

= h (λ)
{
− [t exp (−λt)]T−s0 +

∫ T−s

0
exp (−λt) dt

}

= h (λ)
{ 1
λ
−
(
T − s+ 1

λ

)
exp [−λ (s− T )]

}
= h(λ)A3

Given that we now have estimated λ and valuations, we can now use:

vy1s − y0s = g(λs)− g′(λs)A2s + g′(λr)A1r + εs

To estimate the parameters of the monitoring cost function as a simple regression instrumenting for
λs using previous λs. We then apply a two stage least squares estimator. To be more precise we
assume that:

h(λ) = h(λ; θ) =
P∑
p=1

θpλ
p

It follows then that: We can then re-write:

vy1s − y0s =
P∑
p=1

θp
[
λps

(
A3s −A4sA2s − pλ−1

s A3sA2s
)

+ pλp−1
r A1rA4r + λprA1rA3r

]
+ εs (20)

where A4 is the derivative of A3.
Substituting out our estimates for v and λ we can estimate θ in the above directly.

9 Appendix B: Estimation

In this appendix we describe in detail the estimators and their asymptotic properties. Our esti-
mators are based on the conditions and nonlinear regression functions that establish identification.
We now turn to the four separate steps comprising estimation, which may be loosely described as
successively estimating the valuations of players who bid, their monitoring rates, the parent ditri-
bution of valuations for all the players in the game whether they bid or not, and the cost function
for monitoring bids.
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9.1 Valuations

First we estimate the valuations of players who quit the auction by bidding OUTM, and the valua-
tions of players who make interior bidding choices INM. This only leaves players who are observed to
always bid ONM, and we show those valuations are bounded. Reweighting the distribution formed
from valuations of players who bid OUTM and/or INM at some point during the auction with infor-
mation about the quantiles of valuations for those bidding ONM, we obtain a consistent estimator
of the probability distribution of players who bid.

The nonparametric estimator for E(M(bτ j , hjτj )|hjs, bjτ j ) is the Nadaraya-Watson estimator.
See Pagan and Ullah (1999) for a discussion of the properties of these estimators. Similar, estimators
have been used by Hotz et al. (1994) for optimal choice probabilities. The estimator is defined as:

M̂(x) =
∑L
l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
M(hT , bljt)∑L=1

l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
where x = (b, h,R, q) and KX is a multi dimensional kernel and ξ is the bandwidth.We use a product
kernel for the conditioning variables. We estimate E[bjτM(hT , bjτ )|hτ j , bτ j ] by:

M̂b(x) =
∑L
l=1
∑N1
j=1KX

(
(x− xltj)/ξx

)
bljtM(hT , bljt)∑L=1

l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
As noted before we require the derivatives of the above objects. To estimate these derivatives we
simply differentiate the above estimators with respect to the current bid (which is a conditioning
variable in the conditional expectation). This approach is described in Härdle (1992) and Pagan
and Ullah (1999). Details can be found in the appendix. Bandwidths are selected using a rule of
thumb as discussed in Bowman and Azzalini (1997).

9.2 Estimating the parent distribution of valuations

The last two steps use the estimates of the first but are otherwise separate from each other. The
initial monitoring rates that determine whether a player ever bids or not is the selection mechanism
for bidding. Since we have inferred from the second step, and can associate each first bid with
a valuation, or at least a band of valuations, we can recover from the distribution of the selected
players who bid the probability distribution of valuations for all players.

9.3 Estimating monitoring costs

Here we describe how our point estimates of monitoring intensities and valuations are used in
conjunction with the Euler equations that characterize the first order conditions for bidding and
monitoring to estimate the monitoring cost function.

First order condition for bidding The bidding FOC is:

(v − b) q ∂
∂b
Es [I {b ≥ rT }M (l) |b ]− Es [I {b ≥ rT }M (l) |b ] q

= g(λs)
∂

∂b
h (λs |hs, b)− ∂

∂b
Es [I {ρ > s}Vs+1 (hs+1) |b ]
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Now consider:

Es [I {ρ > s}Vs+1 (hs+1) |b ]

= Es

[
I {b < rT }

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) dτ s+1 |b
]

= Pr {b < rT |hs, b}
∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) fτ∗s |b<rT ,hs (τ∗s |b) dτ s+1dτ
∗
s

≡
[
1− FrT |hs (b)

] ∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) fτ∗s |b<rT ,hs (τ∗s |b) dτ s+1dτ
∗
s

where FrT |hs (b) is the probability distribution function for rT conditional on hs and fτ∗s |b<rT ,hs (τ∗s |b)
is the probability density function for τ∗s conditional on the event that rτs < b < rT . Differentiating
with respect to b yields:

∂

∂b

[[
1− FrT |hs (b)

] ∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) fτ∗s |bh (τ∗s |b) dτ s+1dτ
∗
s

]

= −frT |hs (b)
∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1) fτ∗s |bh (τ∗s |b) dτ s+1dτ
∗
s

+ Pr {b < rT |hs, b}
∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1)
∂fτ∗s |bh (τ∗s |b)

∂b
dτ s+1dτ

∗
s

+ Pr {b < rT |hs, b}
∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s)
∂Vs+1 (hs+1)

∂b
fτ∗s |bh (τ∗s |b) dτ s+1dτ

∗
s

where frT |hs (b) is the probability density or derivative for FrT |hs (b) evaluated at b. Now consider
the other two expressions. First:∫ T

τs

∫ T

τ∗s

λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1)
∂fτ∗s |bh (τ∗s |b)

∂b
dτ s+1dτ

∗
s

=
∫ T

τs

∫ T

τ∗s

[
λse
−λs(τs+1−τs)

1− e−λs(T−τ∗s) Vs+1 (hs+1)
∂fτ∗s |bh (τ∗s |b) /∂b
fτ∗s |bh (τ∗s |b) dτ s+1

]
fτ∗s |bh (τ∗s |b) dτ∗s

= Es

[
I {ρ > s}Vs+1 (hs+1)

∂fτ∗s |bh (τ∗s |b) /∂b
fτ∗s |bh (τ∗s |b) |b

]

Also define:
WT = I{bρ ≥ rT }(v − bρ)M(l)q

and let fWT |hs+1,b (W |hs+1, b) denote the density function for WT condtional on (hs+1, b) . Then:

Vs+1(hs+1) = Es+1

WT −
ρ∑

s′=s+1
h(λs′ |hs′ , bs′)g(λs′)


=

∫ (v−b)q

0
WfWT |hs+1,b (W |hs+1, b) dW − Es+1

 ρ∑
s′=s+1

h(λs′ |hs′ , bs′)g(λs′)
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But:

∂

∂b
Es+1[WT |hs+1] = ∂

∂b

∫ (v−b)q

0
WfWT |hs+1,b (W |hs+1, b) dW

=
∫ (v−b)q

0

[
W
∂fWT |hs+1,b (W |hs+1, b)

∂b

]
dW − (v − b) qfWT |hs+1,b [(v − b) q |hs+1, b ]

= Es+1[WT

∂fWT |hs+1,b (WT |hs+1, b) /∂b
fWT |hs+1,b (WT |hs+1, b) |hs+1]− (v − b) qfWT |hs+1,b [(v − b) q |hs+1, b ]

where we should recognize that fWT |hs+1,b [(v − b) q |hs+1, b ] may have mass (which adds a couple of
terms). Similarly for all s′ ∈ {s+ 1, . . . , ρ} we have:

∂

∂b
Es [h(λs′ |hs′ , bs′)g(λs′) |b ]

= Es

[{
h′(λs′ |hs′ , bs′)g(λs′) + h(λs′ |hs′ , bs′)g′(λs′)

} ∂fλs′ |bh (λs′ |b) /∂b
fλs′ |bh (λs′ |b)

]
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