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Abstract

In the context of dynamic factor models (DFM), it is known that,

if the cross-sectional and time dimensions tend to in�nity, the Kalman

�lter yields consistent smoothed estimates of the underlying factors.

When looking at asymptotic properties, the cross-sectional dimen-

sion needs to increase for the �lter or stochastic error uncertainty to

decrease while the time dimension needs to increase for the parame-

ter uncertainty to decrease. In this paper, assuming that the model

speci�cation is known, we separate the �nite sample contribution of

each of both uncertainties to the total uncertainty associated with

the estimation of the underlying factors. Assuming that the parame-

ters are known, we show that, as far as the serial dependence of the

idiosyncratic noises is not very persistent and regardless of whether

their contemporaneous correlations are weak or strong, the �lter un-

certainty is a non-increasing function of the cross-sectional dimension.

Furthermore, in situations of empirical interest, if the cross-sectional

dimension is beyond a relatively small number, the �lter uncertainty

only decreases marginally. Assuming weak contemporaneous correla-

tions among the serially uncorrelated idiosyncratic noises, we prove
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the consistency not only of smooth but also of real time �ltered esti-

mates of the underlying factors in a simple case, extending the results

to non-stationary DFM. In practice, the model parameters are un-

known and have to be estimated, adding further uncertainty to the

estimated factors. We use simulations to measure this uncertainty

in �nite samples and show that, for the sample sizes usually encoun-

tered in practice when DFM are �tted to macroeconomic variables,

the contribution of the parameter uncertainty can represent a large

percentage of the total uncertainty involved in factor extraction. All

results are illustrated estimating common factors of simulated time

series.

1 Introduction

Dynamic factor models (DFM), originally introduced by Geweke (1977) and

Sargent and Sims (1977), are designed to reduce the dimensionality of large

systems of multivariate time series by assuming that there is a small num-

ber of underlying states common to the variables in the system. The main

information contained in the variables is, consequently, summarized by the

underlying states or factors. DFM have been implemented with many di¤er-

ent goals; see Stock and Watson (2011) for a recent survey. In some cases, the

factors have a direct economic interpretation as in Stock and Watson (2010)

who �t a DFM to obtain common and regional factors of the building permits

of new residential units. Another popular implementation of DFM consists

on entering the estimated factors into fairly simple regression models to pre-

dict key macroeconomic variables as the Gross Domestic Product (GDP) or

in�ation; see Stock and Watson (2006) and Eickmeier and Ziegler (2008).

Dynamic factor models have also been implemented to obtain business cycle

indicators with the business cycle generally represented by the common com-

ponent of the series; see Artis et al. (2004), Arouba et al. (2009), Altissimo et

al. (2010) and Camacho and Perez-Quiros (2010), among others. DFM also

have a long tradition in the context of �nancial variables. In this context,
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Ross (1976) proposes the �rst theoretically grounded multifactor model in

asset pricing; see Chamberlain and Rothschild (1983). DFM have also been

�tted to represent comovements among the volatilities of di¤erent �nancial

assets as in Diebold and Nerlove (1989) and Harvey et al. (1994) who pro-

pose incorporating common factors in multivariate GARCH and Stochastic

Volatility models, respectively. There are also �nancial applications to �nd

common factors in interest rates of di¤erent maturities; see, for example,

Moon and Perron (2007) and Jungbacker et al. (2009). Recently, Timmer-

mann (2008) implements DFM to extract factors in order to forecast returns.

Finally, the recent �eld of macro-�nance has also relied on the estimation of

factors from bond yields in order to improve the performance of small-sample

structural macroeconomic models or from macroeconomic factors to estimate

the term structure; see, for example, Ang and Piazzesi (2003), Forni et al.

(2003) and Koopman and van der Wel (2011).

Looking at the wide range of applications described above, it seems ob-

vious that DFM play a central role in modern econometrics. Whatever the

application, the underlying factors are unobserved and need to be estimated.

Assuming that their number is known, the original procedure to extract

them from a set of observed variables was based on using the Kalman �lter

and smoothing algorithms after expressing the DFM as a state space model.

These algorithms require knowledge of the model parameters which, in prac-

tice, were estimated by Maximum Likelihood (ML) maximizing the one-step-

ahead decomposition of the log-Gaussian likelihood; see Engle and Watson

(1981) and Watson and Engle (1983) for some early references. However,

the maximization of the log-likelihood entails nonlinear optimization which

restricts the number of parameters that can be estimated and, consequently,

the number of series that can be handled when estimating the underlying

factors. Recently, Jungbacker and Koopman (2008) have proposed compu-

tationally e¢ cient procedures for the ML estimation of the parameters and

factors based on univariate Kalman �lter and smoothing (KFS) methods.

Alternatively, the EM algorithm allows to maximize the likelihood function
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of very large DFM; see Shumway and Sto¤er (1982) and Watson and Engle

(1983) who propose the use of the EM algorithm in the context of state-

space models. Other alternative procedures that allow to deal with the large

systems of variables often available in practice without imposing restrictions

on the speci�cation of the idiosyncratic noises, have been proposed; see, for

example, Kapetanios and Marcelino (2009) who propose a computationally

heavy subspace algorithm that allows the factors to be estimated without

specifying and identifying the full state-space model. These computational

di¢ culties have limited the implementation of KFS procedures to extract

the factors in favour of Principal Components (PC) procedures that require

weak cross-correlations of the idiosyncratic noises; see, for example, Stock

and Watson (2002) and Forni et al. (2000, 2005). Due to its wide popularity,

PC has been extended in several directions. For example, Breitung and Ten-

hofen (2011) and Choi (2012) propose using Generalized Least Squares (GLS)

procedures to estimate the factors in the presence of heteroscedastic noises

while Bai and Ng (2004) and Lam et al. (2011) propose procedures to deal

with nonstationary systems. Finally, Doz et al. (2011) propose combining

the Kalman �lter and PC approaches by �rst extracting the common factors

by PC, then estimating the DFM parameters by Ordinary Least Squares

(OLS) implemented to the extracted factors and, �nally, using the smooth-

ing algorithm of the Kalman �lter with the estimated parameters to extract

the factors.

In spite of the computational burden involved in the estimation of the

DFM parameters, the Kalman �lter has several advantages when imple-

mented to extract the factors. First, it allows to handle data irregularities,

as mixed frequencies or missing data. Second, it can be implemented in real

time as individual data are released; see Stock and Watson (2011). Third,

it provides a framework for incorporating restrictions derived from economic

theory; see Doz et al. (in press). Fourth, the Kalman �lter is more e¢ cient

than PC for a �exible range of speci�cations that include non-stationary

DFM and idiosyncratic noises with strong cross-correlations. Finally, it al-
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lows obtaining uncertainty measures associated with the estimated factors

when the cross-sectional dimension is �nite. In contrast, PC procedures al-

low to handle systems with a large number of variables and do not rely on

parametric assumptions on the dynamics of the factors and idiosyncratic

noises. However, it is important to point out that the �nite sample perfor-

mance of the PC estimator is poor when the explanatory power of the factors

does not strongly dominate the explanatory power of the idiosyncratic noises;

see Onatski (in press). Further, Stock and Watson (2002) also �nd deteri-

oration in PC performance when the idiosyncratic noises have strong serial

correlations and to a less extend when there is heteroscedasticity or when

the serial correlation of the factors is large.

Regardless of the procedure used to extract the common factors, the lit-

erature dealing with their statistical properties has focused on asymptotic

results obtained when both the cross-sectional and time dimensions of the

system tend to in�nity. The temporal dimension needs to go to in�nity for the

estimates of the unknown parameters or coe¢ cients of the model to converge

to their population counterparts while the cross-sectional dimension needs

to go to in�nity for the uncertainty associated with the extraction procedure

itself to decrease towards zero. In the context of PC, Stock and Watson

(2002) show that the estimated factors are consistent while Bai (2003) de-

rives their asymptotic Mean Square Error (MSE) which could be used as an

approximation of the �nite sample MSE. More recently, Choi (2012) derives

the asymptotic distribution of a Generalized Principal Component estimator

with smaller asymptotic variance. When the factors are extracted using the

Kalman �lter, Doz et al. (2011, in press) show that the smoothed estimates

are consistent in stationary DFM when the true parameters are substituted

by either OLS or QML estimates.

Given that both PC and the Kalman �lter factor estimates are consistent

as the cross-sectional dimension increases, including all available variables in

the system seems to be a natural choice. Consequently, there is an increas-

ing literature using DFM that incorporates a large number of variables; see,
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among many others, Stock and Watson (2002) �tting a DFM to a system

consisting of 132 variables, Forni et al. (2003) who incorporate 447 variables,

Amengual and Watson (2007) with 124 variables, Eickmeier (2009) with 173

variables, Altissimo et al. (2010) with 145 variables or Gupta and Kabundy

(2011) with 267 variables. In contrast, several authors argue that, in real

life problems, introducing many variables is not always a good strategy. For

example, Bai and Ng (2002) and Watson (2003) show that the predictive

precision of the common factors extracted using PC implemented to real and

simulated data, does not increase when increasing the cross-sectional dimen-

sion beyond 40 or 50 variables, respectively. Later, Boivin and Ng (2006)

point out that, in the context of predicting US GDP, if by adding an extra

variable we are not adding information about the factor but rather simply

extra cross-sectional correlation among the idiosyncratic disturbances, then

the estimated factors deteriorate and their predictive precision is not neces-

sarily increased. More recently, Caggiano et al. (2011) conclude that between

12 and 20 variables are enough to obtain the best performance when predict-

ing euro area GDP using extracted factors; see also Banbura and Runstler

(2011). Finally, Bai and Ng (2008) propose selecting the variables before

performing PC and conclude that by doing so, the predictive performance

of the estimated factors can increase with respect to that obtained when all

available variables are included. Therefore, the debate about whether it is

best to include all available variables or to select an appropriate subset when

estimating unobserved factors using DFM is still open.

The objective of this paper is to analyze the uncertainty associated with

the estimated common factors when the cross-sectional and temporal dimen-

sions are �nite. As mentioned above, in the context of PC, only asymptotic

MSEs of the extracted factors are available. Instead, in this paper, we fo-

cus on the properties of the KFS procedures which allow us to obtain �nite

sample MSEs. When, as usual, the Kalman �lter is run with the unknown pa-

rameters substituted by consistent estimates, the MSEs of the estimated fac-

tors have two sources of uncertainty, one stemming from the �ltering process
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itself, also known in the literature as stochastic error uncertainty, and the

other from the estimated parameters. In order to separate both sources of

uncertainty, we analyze �rst the MSE of the estimated factors when the pa-

rameters are known and, then, the MSE when they are estimated using a

consistent estimator. Furthermore, by focusing on the Kalman �lter, we also

contribute to the literature by considering a wide range of speci�cations of

the factors and idiosyncratic noises and analyzing how di¤erent character-

istics of the DFM a¤ect the �nite sample MSE. In particular, we consider

idiosyncratic noises with weak and strong contemporaneous correlations and

stationary and non-stationary speci�cations. Finally, we obtain expressions

of the underlying uncertainty associated not only with smoothed but also

with real time one-step-ahead and �ltered estimates of the factors. We show

that, as far as the idiosyncratic noises are serially uncorrelated and regard-

less of whether their contemporaneous correlations are weak or strong, the

�lter uncertainty is a non-decreasing function of the cross-sectional dimen-

sion. Furthermore, in situations of empirical interest, if the cross-sectional

dimension is beyond a relatively small number, the �lter uncertainty only de-

creases marginally. However, the limiting behavior of the MSE depends on

the properties of the covariances of the idiosyncratic noises and the weights

of the factors. Weak cross-correlations together with pervasive factors is a

su¢ cient condition for the uncertainty of the �ltered and smoothed factor

estimates to converge to zero with the cross-sectional dimension. If this is

the case, the factors can be consistently estimated using the Kalman �lter

even if the system contains a relatively small number of variables.

In practice, the model parameters are unknown and have to be estimated,

adding further uncertainty to the estimated factors. However, the MSE ob-

tained from the Kalman �lter equations implemented with estimated para-

meters do not incorporate this further uncertainty and, consequently, subes-

timate the true uncertainty associated with the estimated factors; see, for

example, Quenneville and Singh (2000) and Rodríguez and Ruiz (2012). In

this paper, we measure the contribution of the parameter uncertainty in the
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total uncertainty when both the cross-sectional and temporal dimensions are

�nite. For this goal, we carry out Monte Carlo experiments incorporating

the parameter uncertainty into the Kalman �lter MSE using the proposal

of Delle Monache and Harvey (2011). We show that, in cases of empirical

interest, the parameter uncertainty could represent a large percentage of the

total uncertainty associated with the estimation of the underlying factors.

Furthermore, even for relatively large sample sizes, the parameter and total

uncertainties could increase with respect to the cross-sectional dimension.

The rest of the paper is organized as follows. In section 2, we analyze the

properties of the KFS estimators of the underlying factors in approximated

DFM with known parameters. Section 3 is devoted to the DFM model with

estimated parameters. Using simulations, we measure the uncertainty added

to the estimation of the underlying factors in strict DFM when the para-

meters are estimated by ML with the likelihood maximized using the EM

algorithm. Section 4 illustrates the results estimating the underlying factors

of simulated data. Finally, section 5 concludes the paper.

2 Kalman �lter with known parameters

In this section, we describe the DFM considered in this paper and derive

the steady-state Kalman �lter MSE when the cross-sectional dimension is

�nite and the model parameters and, consequently, the number of factors

are known. Therefore, the focus is on the �lter or stochastic error uncer-

tainty. We consider alternative speci�cations of the underlying factors and

of the idiosyncratic noises, including stationary and non-stationary models

and weakly and strongly correlated idiosyncratic noises. We start by con-

sidering the simplest case when the number of factors is just one and then

generalize the results to models with more than one factor.

8



2.1 Description of the dynamic factor model

In this subsection, we consider a DFM with a single factor; see Engle and

Watson (1981), Stock andWatson (1991), Arouba et al. (2009) and Camacho

and Perez-Quiros (2010) for empirical applications with just one factor. The

underlying factor, Ft; is given by the following AR(1) model

Ft = �Ft�1 + �t; (1)

where � is the autoregressive parameter such that �1 < � � 1. The distur-
bance, �t; is a Gaussian white noise process with variance �

2
�. When j�j < 1;

the factor is a zero mean, stationary process. This is the most popular DFM;

see Stock and Watson (2011). On the other hand, if � = 1, the common

factor is non-stationary and represents a stochastic level; see, for example,

Peña and Poncela (2004, 2006), Moon and Perron (2007), Eickmeier (2009)

and Lam et al. (2011) for non-stationary factors.

Alternatively, the factor can be assumed to have a �xed �nite variance

and, in this case, it is speci�ed as follows

Ft = �Ft�1 + (1� �2)1=2�t; (2)

see, for example, Harvey and Streibel (1998) for a speci�cation of underlying

economic cycles using the speci�cation in (2) and Onatski (in press) who

imposes this restriction when estimating the factors.

It is important to emphasize that when approaching the unit root, the

dynamic behavior of the factor is di¤erent depending on whether it is spec-

i�ed as in equations (1) or (2). When the factor is speci�ed as in equation

(1), its variability increases as � approaches 1. In the limit, when � = 1, the

factor is non-stationary. However, in (2), the variability of the factor is �xed

and, consequently, as � increases, the variance of the noise associated with

the factor is smaller. In the limit, when � = 1; the variance is zero and, con-

sequently, the factor is deterministic and observable (and estimated without

�lter error). This di¤erence is going to have implications when computing

the MSE of the factor estimators.

9



Dynamic factor models assume that the factor, Ft; is unobserved and af-

fects the evolution of an indeterminate number of variables, denoted by yit:

Consider that the �rst N of these variables are observed by the econometri-

cian and that the following DFM is used to estimate the factor

Y
(N)
t = �(N) + P (N)Ft + "

(N)
t (3)

where Y (N)t = (y1t; :::; yNt)
0 and "(N)t is a N � 1 vector of idiosyncratic noises

which follows the following VAR(1) process

"
(N)
t = �(N)"

(N)
t�1 + a

(N)
t (4)

where a(N)t is a Gaussian white noise vector with �nite and positive de�nite

covariance matrix �(N)a . The idiosyncratic noises, "(N)t ; are independently

distributed of �t�� for all leads and lags. The vector of constants is �
(N) =

(�1; :::; �N)
0 and P (N) = (p1; :::; pN)

0 is the factor loading vector. When the

factor is stationary, the VAR(1) process in (4) can be either stationary or

not; see, for example, Bai and Ng (2004) for DFM with unit roots both

in the factors and the idiosyncratic components and Eickmeier (2009) and

Chmelarova and Nath (2010) for empirical applications with nonstationary

idiosyncratic noises to output and prices in the Euro area countries and US

prices respectively. However, when the factor is non-stationary, we assume

that the idiosyncratic noises are either stationary or they have at most N�1
unit roots. In this case, the DFM is observable and the Kalman �lter reaches

the steady-state; see Harvey (1989). Note that, if the factor is non-stationary

and the idiosyncratic noises are stationary, the presence of a common factor

means that the series are cointegrated; see, for instance, Escribano and Peña

(1994).

There are several particular cases of the DFM in equations (3) and (4)

that have attracted quite a lot of attention in the related literature. When

�(N) = 0 and �(N)a is diagonal, the idiosyncratic noises are contemporaneously

and serially independent. In this case, the DFM is known as strict; see

Breitung and Eickemeir (2006). When there is serial correlation with �(N)
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being diagonal, the model is known as exact; see, Doz et al. (2011, in press).

Chamberlain and Rothschild (1983) introduce the term "approximate factor

structure" in static factor models where the idiosyncratic components do not

need to have a diagonal variance-covariance matrix. Bai and Ng (2002), Stock

and Watson (2002) and Forni et al. (2000, 2005) generalize the approximate

factor model to the dynamic case, allowing for weak cross-correlation.

The DFM in equations (3) and (4), with Ft de�ned either as in (1) or

(2), is conditionally Gaussian. Consequently, when the idiosyncratic noises

are serially uncorrelated, the Kalman �lter and smoothing algorithms provide

MinimumMSE estimates of the underlying factors. On the other hand, when

the idiosyncratic noises are serially correlated, the DFM can be reformulated

in two alternative ways to preserve the optimal properties of the Kalman

�lter and smoother. First, considering that the factor is de�ned as in (1), it

is possible to express the DFM in state space form as follows:

Y
(N)
t = �(N)� + �(N)Y

(N)
t�1 +

h
P (N) ��(N)P (N)

i " Ft

Ft�1

#
+ a

(N)
t

"
Ft

Ft�1

#
=

"
� 0

1 0

#"
Ft�1

Ft�2

#
+

"
�t
0

#
; (5)

where �(N)� = �(N)(I � �(N)); see Reis and Watson (2010) and Jungbacker
et al. (2011) for implementations of the model in (5). The DFM in (5)

can be also adapted to the factor speci�cation in (2). Alternatively, one can

deal with the autocorrelation of the idiosyncratic noises by augmenting the

state vector by "(N)t ; see, for example, Jungbacker et al. (2011). Although

both formulations lead to the same results when the initialization issues are

properly accounted for, the latter enlarges the dimension of the state vector

which can become too large when N is large. Consequently, when necessary,

we consider the reformulation in (5) when dealing with DFM with known

parameters.

It is well known that, in conditionally Gaussian models, as the DFM

considered in this paper, the estimates of the underlying factor provided by
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the Kalman �lter and smoothing algorithms are given by the corresponding

conditional means. Denoting by ftj� the estimate of Ft obtained with the

information available up to time � , if the model parameters are known, the

�lter delivers

ftj� = E
h
FtjY (N)1 ; :::; Y (N)�

i
where � = t�1; for one-step-ahead estimates, � = t for �ltered estimates and
� = T for smoothed factor estimates. Therefore, by construction, regardless

of the cross-sectional dimension, the �lter delivers unbiased estimates of the

factor. Note that, we cannot talk about misspeci�cation when some of the

variables a¤ected by the underlying factor are not included in the model im-

plemented for factor extraction. However, including more variables implies

more information to estimate the factor and, consequently, under mild con-

ditions, the MSEs of the factor estimates are expected to be non-increasing

functions of the cross-sectional dimension. Next, we derive the MSE of ftj�
as a function of the cross-sectional dimension and analyze whether this is the

case. Because the �lter is run in two di¤erent state space models depending

on whether the idiosyncratic noises are or not serially correlated, we consider

separately both cases.

2.2 Serially uncorrelated idiosyncratic noises

In this subsection, we analyze how the MSEs of ftj� depend on N in the

DFM with serially uncorrelated idiosyncratic noises, i.e. when �(N) = 0 in

equation (4). Given that the system matrices are time-invariant, the Kalman

�lter reaches the steady-state in which the MSE of the one-step-ahead and

�ltered estimates are constant; see Harvey (1989). Note that when dealing

with smoothed estimates, their MSEs are also constant in the middle of the

sample. From now on, we focus on steady-state MSE.

Consider �rst, the steady-state MSE of the one-step-ahead estimates of

the underlying factor, denoted by V (N); which is obtained after solving the
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following Riccati equation

V (N) = �2
h
V (N)� V (N)P (N)0

�
P (N)V (N)P (N)0 + �(N)"

��1
P (N)V (N)

i
+k�2�
(6)

where �(N)" = �
(N)
a and k = 1 when the factor is speci�ed as in equation

(1) while k = (1 � �2) if it is de�ned as in (2). Note that, as in any time-
invariant model, the �lter uncertainty of one-step-ahead estimated factors is

independent of the particular data available; see Harvey (1989). However, it

depends on the dynamic properties of the factors through � and k�2�, on the

variances and contemporaneous correlations between the idiosyncratic noises

through �(N)" and on the factor loadings that appear in the vector P (N). The

cross-sectional dimension a¤ects the steady-state MSE through these last two

terms.

The following lemma establishes the solution of the Riccati equation.

Lemma 1. Given the DFM in (3) with the factor de�ned either as in

expressions (1) or (2), and "(N)t being a serially uncorrelated vector process

with contemporaneous covariance matrix given by �(N)" , non necessarily di-

agonal, the one-step-ahead steady-state MSE is given by the solution of the

Riccati equation in (6) which is given by

V (N) =
k�2�Q(N)� 1 + �2 +

q�
k�2�Q(N)� 1 + �2

�2
+ 4k�2�Q(N)

2Q(N)
(7)

where Q(N) = P (N)
0

(N)P (N) with 
(N) =

�
�
(N)
"

��1
: Furthermore, V (N +

1) = V (N) when adding an additional variable, if i) � = 0, or ii) Ft is given

by (2) with � = 1; or iii) pN+1 = 0 and its corresponding idiosyncratic noise,

"N+1; is not correlated with any of the other N variables previously included

in the system. Otherwise, V (N + 1) < V (N):

Proof. See the Appendix. �

Lemma 1 establishes that, when the factor is either deterministic or white

noise, the MSE of ftjt�1 does not depend on the cross-sectional dimension,
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being zero in the �rst case and �2� in the second. In all other cases, adding a

new variable to the system never decreases the precision in the estimation of

the underlying factor. It is important to remark that this result is satis�ed

regardless of whether the cross-correlations between the idiosyncratic noises

are weak or strong or whether the factor is stationary or not. Furthermore,

when adding an additional variable with zero weight, if this variable is corre-

lated with the variables already included in the model, the steady-state MSE

also decreases. This result somehow contradicts the conclusion of Boivin and

Ng (2006) about the deterioration of factor estimates when adding an extra

variable which is not adding information about the factor but rather simply

extra cross-sectional correlation among the idiosyncratic disturbances. We

can guess that their conclusion could be attributed to the estimation method.

Finally, note that, in the particular case of a strict DFM, in which there is

not contemporaneous correlation among the idiosyncratic noises, i.e. �(N)" is

diagonal, Q(N) =
NX
i=1

qi with qi =
p2i
�2i
.

As we mentioned above, for a given cross-sectional dimension, N; the

steady-state one-step-ahead MSE also depends on the dynamics of the un-

derlying factor. First, it is obvious that for �xed �, V (N) always increases

with �2�. On the other hand, when the underlying factor is de�ned as in (1)

and �2� is �xed, the precision of ftjt�1 decreases as � increases. This could be

expected as the variability of the factor, is larger as it approaches a random

walk. Therefore, as � is larger, more variables are needed as to estimate the

underlying factor with a given precision. If the underlying factor is de�ned

as in (2), it is obvious that V (N) decreases as � increases given that the

factor is closer to be deterministic.

Consider now the limiting behaviour of V (N) when N tends to in�nity.

There are situations in which, by de�nition, there is a �nite number of vari-

ables, N�; that depend on the factor; see, for example, the factor model in

Chamberlain and Rothschild (1983). In these cases, according to (7), the
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minimum MSE is given by

V (N�) = 0:5
�
k�2� � 1 + �2

�0@1�
vuut1 + 4k�2�Q�

k�2�Q� 1 + �2
�2
1A ; (8)

where Q = Q(N�). The MSE in (8) is always larger than k�2� for �nite Q:

Alternatively, there are applications in which there are potentially in�n-

ity variables that depend on the factor. In this case, the limiting behavior

of V (N) depends on whether the contemporaneous correlations between the

idiosyncratic noises are weak or strong. Note that the steady-state MSE

of the one-step-ahead estimates of the underlying factor, in expression (7),

depends on the cross-sectional dimension, N; through the term Q(N): There-

fore, the limiting behavior of V (N) depends on the limiting behavior ofQ(N):

From expression (7), it is straightforward to show that, if Q(N) converges

to in�nity with N , then the steady-state MSEs of the one-step-ahead fac-

tor estimates tend to k�2�, the variance of the noise in the factor equation.

Notice that this result could be expected as the one-step-ahead predictions

of the underlying factor always involve the uncertainty associated with �t.

However, when Q(N) converges to a constant, Q; then the limit of the MSE

is given by expression (8).

The following lemma establishes the conditions for Q(N) to diverge and,

consequently, the steady-state MSE of ftjt�1 to converge to its minimum k�2�:

Lemma 2. Let g2N = �
�2
N jN�1

�
pN � P (N�1)

0

(N�1)�N;N�1

�2
where �2N jN�1 =

�2N � �0N;N�1
(N)�N;N�1 is the variance of "N conditional on "i for i =

1; :::; N�1 and �N;N�1 is the N�1 vector containing the covariances between
"N and "i for i = 1; :::; N � 1 and let Q(N) be de�ned as in expression (7).
If lim
N!1

g2N+1
g2N

= l exists and l > 1, then

lim
N!1

Q(N) =1:

Proof. In the proof of lemma 1, we show that Q(N + 1) = Q(N) + g2N :

Therefore, Q(N) is a series of positive terms and the result of the lemma
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is obtained as a direct consequence of the D�Alembert criterion; see, for

example, Piskunov (1969). �

Lemma 2 has several important implications for the empirical implemen-

tation of DFM. First, it is important to note that the usual assumption in

the large DFM literature about the idiosyncratic noises being weakly cor-

related and the factors being pervasive, i.e., their cumulative loadings on

N cross-sectional variables rising proportional to N; is a su¢ cient condition

for Q(N) to go to in�nity with N: In this case, when N ! 1, 1
N

NX
i=1

p2i is

asymptotically larger than the maximum eigenvalue of �(N)" and the explana-

tory content of the factor strongly dominates the explanatory content of the

idiosyncratic noises; see, for example, Onatski (in press). Second, note that,

in any case, the condition in lemma 2 for Q(N) to go to in�nity is su¢ cient

but not necessary. If lim
N!1

g2N+1
g2N

does not exist or is equal to 1, the series

Q(N) can either converge or diverge when the number of variables increase,

and it is necessary to use alternative criteria to solve the problem. Third,

from an empirical point of view, we expect the variables being introduced

in the model according to a criterion that implies some kind of ordering.

Consider, for example, situations in which the variables are introduced ac-

cording to their explanatory content with respect to the factor so that the

less pervasive variables are those introduced later in the model. In this case,

we expect the conditions in lemma 2 for Q(N) to go to in�nity with N not

to be satis�ed and the MSE is never as small as k�2�.

Next, we illustrate the results of lemmas 1 and 2 focusing on the issue

of how many variables should be included in the system used to extract the

factors and the role of the contemporaneous correlations on the steady-state

MSE of ftjt�1. For this purpose, we �rst consider a strict DFMwith the factor

speci�ed as in equation (1) with qi = 1, i = 1; :::; N �2� = 1 and � = 0:4;

0.8 and 1; see Camacho et al. (2012) for the empirical adequacy of these

parameter values. In this case, the minimum MSE of the one-step-ahead

estimates of the factor is 1. Using expression (7), we can see that, if � = 0:4;
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N = 7 variables are needed to obtain a MSE which is 2% larger than the

minimum attainable when N = 1. However, if � = 0:8; N = 30 variables

are needed for a similar precision. Finally, when � = 1; N = 50 variables

are required for the MSE to be a 2% larger than the minimum. Therefore,

if the factor is speci�ed as in equation (1), more variables are needed to

extract it with a given precision as � approaches the unity. This result

is illustrated in the top left panel of �gure 1 that displays the steady-state

MSE in (7) as a function of the cross-sectional dimension, N . We can observe

that the larger is �, the larger the steady-state MSEs of ftjt�1 and a larger

number of variables is required to converge. However, even when � = 1,

if the number of variables in the system is around 30, adding additional

variables only decreases the MSE marginally. It is surprising to observe that

this number of variables is similar to those found by Bai and Ng (2002),

Watson (2003) Caggiano et al. (2011) and Banbura and Runstler (2011) in

the context of real and simulated data when the factor is estimated by PC.

On the other hand, when the autoregressive dependence of the underlying

factor is small, � = 0:4, the MSEs are very close to �2� = 1 regardless

of the number of variables included in the system. In this case, using the

information of approximately 5 variables, the steady-state MSE is already

quite close to its minimum. For comparison purposes, the steady-state MSE

of the one-step-ahead estimates of Ft de�ned as in equation (2), are plotted

in the right column of �gure 1 for the same parameters as above. We can

observe an apparently di¤erent picture but with similar conclusions about

the number of variables. In this case, it is important to remember that the

variability of the factor decreases as � increases. Therefore, the steady-state

MSEs are smaller as � increases and their limit is (1 � �2) when the cross-
sectional dimension tends to in�nity. When � = 1; the factor is deterministic

and constant and, consequently, the MSE is obviously zero regardless of the

cross-sectional dimension, N ; see �gure 1 and lemma 1. Once more, �gure

1 illustrates that this limit is reached for a relatively small number of time
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series.

Figure 1 about here

Next, we analyze the e¤ects of the presence of contemporaneous corre-

lations on the previous conclusions. For this purpose, we consider a DFM

with contemporaneously correlated idiosyncratic noises. The factor is de-

�ned as in (1) with the values of the parameters � and �2� as above. The

relative weights, qi, are also the same as above. The idiosyncratic noises have

weak cross-correlations with covariance matrix, �(N)" = �
(N)
a ; given by the

following Toeplitz matrix

�(N)" =

266664
1 b � � � bN�1

b 1 � � � bN�2

...
...

. . .
...

bN�1 bN�2 � � � 1

377775 : (9)

where b = 0:5. Therefore, the ijth element of the correlation matrix of the

idiosyncratic noises is given by 0:5(j�i) which implies that the correlation be-

tween any two noises is weaker as they are further apart in the vector. The

left column of �gure 2 plots the corresponding steady-state MSE. Compar-

ing the left columns of �gures 1 and 2, we can observe that the steady-state

MSE are approximately the same although, when there is cross-correlation,

they decay slightly slower than in the DFM with uncorrelated idiosyncratic

noises. Therefore, adding weak cross-correlations only increases the uncer-

tainty marginally and the main conclusions are the same.

Finally, we consider a DFM with strong cross-correlations among the

idiosyncratic noises. The same DFM is again considered but now all out-

diagonal elements of �(N)" are equal to 0.5. The right column of �gure 2 plots

the corresponding steady-state MSE in equation (7) as a function of N . We

can observe that, as established in lemma 2, the MSEs do not converge to

�2�. This result is in concordance with the results in Onatski (in press) for

PC factor extraction when the explanatory power of the factors does not

strongly dominate the explanatory power of the idiosyncratic noises.
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Figure 2 about here

Now, we consider the properties of real time steady-state MSE of the

�ltered estimates which are established in the following lemma.

Lemma 3. Given the DFM in (3) with the factor de�ned either as in ex-

pressions (1) or (2), and "(N)t being a serially uncorrelated vector process with

contemporaneous covariance matrix given by �(N)" , non necessarily diagonal,

the �ltered steady-state MSE is given by

W (N) =
V (N)

1 + V (N)Q(N)
: (10)

Furthermore, when adding an additional variable, W (N + 1) = W (N)

if i) � = 0, or ii) Ft is given by (2) with � = 1; or iii) pN+1 = 0 and

its corresponding idiosyncratic noise, "N+1; is not correlated with any of the

other N variables previously included in the system. Otherwise,W (N+1) <

W (N):

Proof. See the Appendix. �

It is obvious that when the factor is de�ned as in (2) and � = 1, the

steady-state MSE of the updated estimates is trivially equal to zero. Fur-

thermore, when the factor is white noise or the added variables do not in-

corporate new information in the system, the real time �ltered MSEs are

also constant. In all other cases, the �ltered uncertainty always decreases as

more variables are used to estimate the underlying factor. Finally, note that

the asymptotic behavior of W (N) depends on the convergence of Q(N): If

Q(N) tends to1 with N; W (N) converges to zero and the �ltered estimates

of the underlying factor are consistent when the cross-sectional dimension

tends to in�nity. Therefore, the conditions for the consistency of the �ltered

estimates are the same as those established in lemma 2 for Q(N) to diverge.

As an illustration of the performance of the �ltered MSE, we consider,

once more, the same DFM considered above. The second row of �gure 1 plots
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the steady-state MSE of ftjt as a function of N in the strict DFM when the

factor is speci�ed as in (1) in the left column while the second column plots

the same quantities when the factor is speci�ed as in (2). This �gure shows

that, except when the factor is de�ned as in (2) and � = 1, the MSEs are

very similar for all values of � considered. The steady-state MSEs decrease

very slowly for N larger than 20. Furthermore, when N is larger than 30,

the MSEs are approximately equal to zero. For instance, if the factor is

de�ned as in (1) and � = 1; the reduction in the MSE is approximately 25%

when going from N = 2 to 20 variables while it is only about 3% when going

from N = 20 to 30 variables. On the other hand, the second row of �gure 2

plots the steady-state �ltered MSE when the factor is de�ned as in (1) and

the idiosyncratic noises have weak contemporaneous correlations in the left

column and when they have strong correlations in the right column. We can

see that by adding weak cross-correlation, the �ltered MSEs increase with

respect to those in the strict DFM. The MSEs still converge to zero with

the cross-sectional dimension but the rate is slower. However, if the cross-

correlations are strong, then the �ltered MSEs do not converge to zero. It is

important to note that in this latter case, having around 10 variables in the

system already generates �ltered MSEs which are very close to the minimum.

Finally, we analyze the properties of the MSE of the smoothed estimator

of the underlying factor, ftjT : Using the results in Harvey (1989), we can see

that if the Kalman �lter is in its steady-state, the smoother �lter also has

constant MSE in the middle of the sample, which is given by

S(N) =
V (N)

�
1 + V (N)Q(N)� �2

�
(1 + V (N)Q(N))2 � �2

: (11)

The following lemma establishes the non-increasing property of the steady-

state MSE of ftjT .

Lemma 4. Consider the DFM in (3) with the factor de�ned either as in

expressions (1) or (2), and "(N)t being a serially uncorrelated vector process

with contemporaneous covariance matrix given by �(N)" . When adding an
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additional variable S(N + 1) = S(N) if: i) � = 0, or ii) Ft is given by (2)

and � = 1; or iii) pN+1 = 0 and its corresponding idiosyncratic noise, "N+1;

is not correlated with any of the other N variables previously included in the

system. Otherwise, S(N + 1) = S(N):

Proof. See the Appendix. �

Note that if the factor is de�ned as in (2) with � = 1, then V (N) = 0

and, consequently, according to equation (11), the steady state MSEs of

the smoothed estimates are also equal to zero. From expression (11), it is

also straightforward to see that, if Q(N) tends in�nity with N; then S(N)

converges to zero as N goes to in�nity. Therefore, the conditions in lemma

2 are su¢ cient for the smoothed estimates of the underlying factor to be

consistent. This result can be compared with Doz et al. (2011) who prove the

consistency of Kalman �lter smoothed estimates assuming a more restrictive

stationary DFM.

The results are �nally illustrated for the same DFM considered above.

The third row of �gure 1 displays the MSE of ftjT as a function of N for

the strict DFM while the third row of �gure 2 plots the same quantities for

the DFM with contemporaneously correlated idiosyncratic noises. The plots

and conclusions are very similar to those obtained for the �ltered estimates.

There are no big gains in increasing the number of variables in the system

beyond 30 variables.

2.3 Serially correlated idiosyncratic noises

As mentioned above, if the idiosyncratic noises are serially correlated, the

Kalman �lter is optimal when implemented in the state-space model in (5)

in which the state vector is not scalar as it contains both Ft and Ft�1: In

this case, the corresponding Riccati equation does not have a closed-form

solution as a function of the parameters of the model; see Lancaster and

Rodman (1995) and Rojas (2011) for solutions of the Riccati equation. In this

subsection, we analyze the e¤ects of the serial correlation of the idiosyncratic
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noises on the steady-state MSE by running the prediction equations of the

Kalman �lter until the steady-state is reached for several particular DFM.

Note that, given the state vector in model (5), the Kalman �lter prediction

equations deliver both one-step-ahead and �ltered MSE without requiring

the simulation of the series. We also obtain the value of the smoothed MSE

in the middle of the sample where they are constant.

The particular DFM considered include both stationary and non-stationary

factors. The factor is speci�ed as in equation (1) with �2� = 1: First, we con-

sider a stationary factor with � = 0:8 and second a non-stationary factor

with � = 1: The idiosyncratic noises are assumed to be contemporaneously

uncorrelated, i.e. �a = I(N); with the autoregressive matrix in equation (5)

given by �(N) = �I(N); where I(N) is the order N identity matrix and � = 0;

0:5 and 0:9. Note that when � = 0; the same strict DFM considered above

is obtained for comparative purposes. As mentioned above, the existence of

the steady-state requires the DFM to be observable. Consequently, the case

when both the underlying factor and the idiosyncratic noises are random

walks has been ruled out. Furthermore, we should note that, when both �

and � are close to one, the steady-state is only reached after a very large

number of steps of the Kalman �lter.

The left column of �gure 3 plots the steady-state MSE as a function of

the cross-sectional dimension for one-step-ahead, �ltered and smoothed es-

timates of the underlying factor for the DFM with a stationary factor, i.e.

when � = 0:8, while the right column plots the same quantities when the fac-

tor is non-stationary, i.e. � = 1: We can observe that, regardless of whether

the factor is stationary or not, the steady-state MSE of ftj� ; � = t� 1; t and
T , are very similar when the idiosyncratic noises are serially uncorrelated and

when they have moderate temporal dependences, i.e. when � = 0:5. The con-

clusions about the number of variables needed in order to have estimates of

the underlying factor with a precision close to the maximum are very similar

to those obtained in the previous section. However, when the idiosyncratic

noises are very persistent, i.e. � = 0:9; and, consequently, they are close to
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be non-stationary, we observe much larger MSE for each cross-sectional di-

mension. Furthermore, the convergence of the MSE towards their minimum

is slower than when the idiosyncratic errors are moderately autocorrelated.

Therefore, to have the same precision in the estimation of the factor, it is

necessary to introduce in the model a larger number of variables. This result

could be expected given that, if both the factor and the idiosyncratic noises

are highly persistent, it could be di¢ cult for the �lter to distinguish between

them.

Figure 3 about here

Summarizing, it seems that unless the idiosyncratic noises are highly per-

sistent, the previous conclusions about the number of variables to be included

in the system to estimate the underlying factors are maintained in the pres-

ence of serially correlated idiosyncratic noises.

2.4 Generalization to more than one factor

The results above have been obtained assuming that there is a unique com-

mon factor in the system. However, in practice, a larger number of common

underlying factors could be expected in large systems. The natural question

to ask is whether the conclusions are still the same when we need to estimate

more than one factor. As mentioned above, we do not consider the model

uncertainty and, therefore, we assume that the number of factors is known

and given by r: The vector of factors is then given by

Ft = �Ft�1 + �t (12)

where � is an r � r diagonal matrix containing the autoregressive parame-
ters and �t is an r � 1 Gaussian vector with diagonal covariance matrix ��:
The variables in the system are related with the underlying factors through

equation (3) where P (N) is now an N � r matrix of factor loadings. To
simplify the discussion, we consider a DFM with serially uncorrelated idio-

syncratic noises with contemporaneous covariance matrix �(N)" . In this case,
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the Riccati equation is given by

V (N) = �
h
V (N)� V (N)P (N)0

�
P (N)V (N)P (N)0 + �(N)"

��1
P (N)V (N)

i
�0+��:

(13)

As commented above, given that the state vector is not scalar, the Riccati

equation in (13) does not need to have a closed-form solution in terms of

the parameters of the model. Therefore, once more, in this subsection, we

obtain the steady-state MSE associated with the estimates of the vector of

underlying factors by running the prediction equations of the Kalman �lter

until the steady-state is reached. The particular DFM considered is de�ned

as in 12 with

� =

"
1 0

0 0:4

#
and �� = I(2): The weights are given by pi1 = 1; i = 1; :::; N; while p12 = 0

and the remaining weights of the second factor, pi2; i = 2; :::; N; have been

randomly generated from a uniform [0; 1] distribution. Figure 4 plots the

steady-state MSE of one-step-ahead (�rst column), �ltered (second column)

and smoothed (third column) factor estimates for the �rst factor in the �rst

row and for the second in the second row. Finally, the third row of �gure 4

plots the corresponding covariances delivered by the �lter. Once more, we can

observe that the MSE of �ltered and smoothed estimates are very similar.

We can also observe that the absolute covariances between the estimated

factors decrease with the cross-sectional dimension, N . From �gure 4, it is

also clear that the one-step-ahead estimates of both factors have very similar

steady-state MSE. In any case, the MSE of the second factor decrease very

quickly with the �rst variables added to the system but then, after having

around 30 variables, the decrease is rather slow.

Figure 4 about here

Therefore, it seems that the presence of more than one factor, require, in

general, more variables to be estimated with a given precision. This could

be due to the correlation between the estimated factors.
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3 Estimation of parameters

In the previous section, we assume known parameters and analyze how the

�lter uncertainty depends on the cross-sectional dimension. However, in

practice, when implementing KFS methods, the parameters are unknown

and are usually substituted by consistent estimates. In this case, the to-

tal uncertainty associated with the estimation of the underlying factors has

two components, one related with the stochastic error uncertainty, consid-

ered in the previous section, and another with the parameter uncertainty.

Note that the MSEs delivered by the �lter run with estimated parameters,

which are usually reported in practice by many authors, subestimate the

true uncertainty as they do not incorporate the additional uncertainty due

to the parameter estimation; see, for example, Quenneville and Singh (2000)

and Rodríguez and Ruiz (2012) who quantify this uncertainty as a 5% of

the total uncertainty in a univariate non-stationary one factor model with

T = 100. In this section, we measure the additional uncertainty attributable

to parameter estimation and its relation with the cross-sectional and time di-

mensions. Note that the parameter uncertainty is expected to increase with

the cross-sectional dimension as more parameters need to be estimated when

adding additional variables to the system. On the other hand, if the para-

meter estimator is consistent, increasing the temporal dimension decreases

the parameter uncertainty which disappears in the limit. Because of its pop-

ularity and given that the model considered in this paper is assumed to be

conditionally Gaussian, we focus on the ML estimator of the parameters with

the log-likelihood maximized using the EM algorithm. This algorithm has

the attractiveness of being derivative free and only requires one pass of the

smoother in each iteration. Therefore, it is computationally convenient when

dealing with the estimation of the parameters in large DFM.

In order to measure the total MSE associated with one-step-ahead esti-

mates of the factors when the Kalman �lter is implemented with estimated

parameters, we treat the estimated model as if it were misspeci�ed and use

the results in Delle Monache and Harvey (2011) who establish a general
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framework to compute the MSE in misspeci�ed state-space models. Con-

sider the strict DFM with r factors given by equations (3) and (12) and

denote by �(N) the vector of parameters to be estimated and by b�(N;T ); the
vector of the corresponding ML estimates. Also denote by bKt the �lter gain,

which is given by bKt = b�bVtjt�1 bP (N)0 h bP (N)bVtjt�1 bP (N)0 + b�(N)"

i�1
and by bVt+1jt

the one-step-ahead MSE matrices delivered by the �lter run with estimated

parameters, which are given by

bVt+1jt = b� �bVtjt�1 � bVtjt�1 bP (N)0 �b�bVtjt�1b�0 + b�"��1 bP (N)bVtjt�1� b�0+ b��: (14)
Note that although both, bKt and bVt+1jt; depend on the cross-sectional and

temporal dimensions, we do not made this dependence explicit to simplify

the notation. Then, according to the formulae derived by Delle Monache and

Harvey (2011), the true MSE of bftjt�1; the one-step-ahead estimates of the
underlying factors delivered by the Kalman �lter with the true parameters

substituted by estimated parameters, is given by

Vt+1jt =
hb�� bKt

bP (N)iVtjt�1 hb�� bKt
bP (N)i0 +h�

�� b��� bKt

�
P (N) � bP (N)�iXt

h�
�� b��� bKt

�
P (N) � bP (N)�i0 +

bKt�
(N)
"
bKt
0 + �� +

h�
�� b��� bKt

�
P (N) � bP (N)�iCtjt�1 hb�� bKt

bP (N)i0 +hb�� bKt
bP (N)iC 0tjt�1 h��� b��� bKt

�
P (N) � bP (N)�i0 (15)

where

Xt+1 = �Xt�
0 + ��

and

Ct+1jt = �Ctjt�1

hb�� bKt
bP (N)i0 +�Xt

h�
�� b��� bKt

�
P (N) � bP (N)�i0 +��

with X0 = C0 = V1=0 = 0: Delle Monache and Harvey (2011) show that the

true MSE in expression (15) has a steady-state.
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The MSE of the �ltered estimates of the underlying factors obtained when

the �lter is run with estimated parameters, bftjt; can also be derived from the
results in Delle Monache and Harvey (2011) as follows

Wtjt = Vtjt�1 + cMtGtcM 0
t � Vtjt�1 bP (N)0cM 0

t � cMtP
(N)V

0

tjt�1 �

C 0tjt�1

�
P (N) � bP (N)�0 cM 0

t � cMt

�
P (N) � bP (N)�Ctjt�1; (16)

where cMt = bVtjt�1 bP (N)0 h bP (N)bVtjt�1 bP (N)0 + b�(N)"

i�1
;

and

Gt = bP (N)Vtjt�1 bP (N)0 + �(N)" +
�
P (N) � bP (N)�Xt

�
P (N) � bP (N)�0 +

bP (N)C 0tjt�1 �P (N) � bP (N)�0 + �P (N) � bP (N)�Ctjt:�1 bP (N)0:
Delle Monache and Harvey (2011) do not provide results for the true MSE

of the �xed interval smoothed estimates considered in this paper. However,

we have seen in the previous section that the MSE of �ltered and smoothed

estimates are nearly indistinguishable. Therefore, we expect the MSE of

the smoothed estimates of the factors obtained when the �lter is run with

estimated parameters to be similar to that of the �ltered estimates and only

consider the latter in this section.

The "true" steady-state MSEs in equations (15) and (16) depend on the

parameter estimates obtained in a particular data set. Consequently, we

carry out Monte Carlo experiments to measure the uncertainty associated

with bftjt�1 and bftjt in the context of a strict DFM. For a given speci�cation,
we generate R = 500 replicates of sizes T = 100 and 200 and for each repli-

cate, we obtain the ML estimates of the parameters using the EM algorithm

and compute the true MSE of the one-step-ahead and �ltered estimates of

the underlying factors, using expressions (15) and (16) until they reach the

steady-state. Then we average the steady-state MSE through all replicates.

The resulting averages are denoted as V (N; T ) and W (N; T ), respectively.
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As an illustration, we consider a DFM with two factors de�ned as in equation

(11) with

� =

"
0:8 0

0 0:4

#
and �� = I(2): The factor loadings are given by pi1 = 1; i = 1; :::; N; p21 = 0;

p2i are randomly generated from a uniform [0; 1] distribution for i = 2; :::; N

and �(N)" = I(N): The usual identifying restrictions are imposed before esti-

mation. First, as the model is stationary, Y (N)t is assumed to be zero mean

and, consequently, all series in Y (N)t are centered previous to their analysis.

Finally, we restrict �� = I(2) and p11 > 0 and p12 = 0; see Harvey (1989).

Note that the positivity of the loading parameter of the �rst variable in the

system is needed to identify the sign of the factor. We also compute the

steady-state MSE associated with the stochastic error as given in equation

(13). In order to save space, we only report the results related with �ltered

estimates of the factors. The �rst row of the left column of �gure 5 plots the

total steady-state MSE of the �ltered estimates of the �rst factor together

with the corresponding stochastic error MSE when T = 100: The second

row plots the same quantities for the second factor. Finally, the third row

plots the corresponding covariances. The right column of �gure 5 plots the

same quantities when T = 200: We can observe that, obviously, the total

MSEs are always larger than the MSEs obtained when the �lter is run with

known parameters. Furthermore, for a given sample size, T; while the �l-

ter MSE approaches zero for relatively small cross-sectional dimensions, the

total uncertainty has a U shape. As more variables are introduced in the

system, more parameters need to be estimated and, consequently, the total

uncertainty could even increase with N: The di¤erence between the total

and the �lter uncertainty is relatively small when the number of variables in

the system is small but increases with the cross-sectional dimension. When

we are dealing with a system with N = 60 and T = 100, we can observe

that most of the uncertainty can be attributed to the parameter estimation.

When T = 200; we can observe that the total MSEs of bftjt are obviously
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smaller for each N . This is obviously expected given that the ML estimator

of � is consistent, P lim
T!1

�b�� = � and, consequently, the limit when T tends
to in�nity of the MSE in (16) is given by the MSE in (13). However, the

parameter uncertainty is still important when N = 60:

Figure 5 about here

To assess the importance of the parameter uncertainty when extracting

the factors by running the Kalman �lter with estimated parameters, the left

column of �gure 6 plots the relative di¤erence between the average total

MSE, V (N; T ) and the MSE attributable to the �lter uncertainty, V (N);

i.e. the percentage of the total uncertainty that can be attributed to the

parameter uncertainty for one-step-ahead (left column) and �ltered (right

column) estimates of the factors, when T = 100: The right column of �gure

6 plots the same quantities when T = 200. We can observe that, for one-step-

ahead estimates of the �rst factor, this percentage is a quadratic function of

the cross-sectional dimension. It is minimum when the number of variables in

the system is between 20 and 30 variables when the parameter uncertainty

represents around a 4.5% of the total uncertainty. However, if there is a

small number of variables in the system, it can represent around 8% and

when N = 60; it represents around a 6%. When looking at the results for

the second factor, we can see that the percentage decreases with N , being

around 12% when there are few variables in the system and being as small as

2% when the number of variables is 60. Nevertheless, the percentages of the

�ltered estimates are completely di¤erent. Regardless of whether we look at

the results for the �rst or second factor, we can observe that the percentage

of the parameter uncertainty over the total uncertainty is minimum when

the number of variables is around 10. In this case, the percentage is around

1%. However, as the number of variables increases, this percentage also

increases and could be as large as 55% in the �rst factor or 30% in the second.

Furthermore, the percentage of the total MSE that can be attributed to the
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parameter estimation is now smaller.

Figure 6 about here

Another important issue, obtained as a subproduct of the analysis car-

ried out in this section, is a measure of the bias of the MSE computed using

the estimated parameters without taking into account the additional uncer-

tainty associated with the estimation. With this purpose, we also compute

the steady-state MSEs delivered by the �lter with estimated parameters by

computing recursively (14) until it reaches the steady-state. Then, we com-

pute the Monte Carlo averages of the steady-states for all replicates, de-

noted by bV (N; T ) and cW (N; T ) for one-step-ahead and �ltered estimates,
respectively. These averages are plotted in �gure 5 for T = 100 and 200.

We can observe that these MSE are clearly smaller to the total MSE and

closer to the MSE computed when the parameters are known. The biases

are larger the smaller T and the larger N: The left column of �gure 7 plots

(bV (N; T ) � V (N; T ))=V (N; T ); the relative baises of the MSE delivered by
the Kalman �lter with estimated parameters for one-step-ahead. The same

quantities for �ltered estimates are plotted in the right column of �gure 7.

Note that when T = 100 and the number of the variables in the system is

large, the biases could be as large as 30%. Therefore, the parameter uncer-

tainty should be taken into account if we want to have realistic measures of

the uncertainty of the underlying factors close to the true ones. The parame-

ter uncertainty can be an important issue when estimating large systems and

should not be ignored. Bootstrap procedures as those proposed by Rodriguez

and Ruiz (2012) could be implemented to incorporate this uncertainty.

Figure 7 about here

4 An illustration with simulated data

To analyze the practical implications of our results when dealing with real

data, the performance of the one-step-ahead estimates of the underlying fac-
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tor is illustrated with simulated data when T = 100 and N = 2 or N = 20.

We simulate a non-stationary factor by model (1) with � = 1 and �2� = 1

which is plotted in �gure 8. Then, 30 time series are simulated by a strict

DFM with relative loadings qi = 1, i = 1; :::; 20; and the corresponding idio-

syncratic noises being mutually independent Gaussian white noises. The

Kalman �lter is �rst run with the �rst two simulated variables and then with

all 30 variables. The left panels of �gure 8 plot the one-step-ahead estimates

of the factor together with the corresponding 95% prediction intervals ob-

tained using the MSE delivered by the Kalman �lter with known parameters

and N = 2 (top panel) and N = 20 (low panel) variables are used in the

estimation. Notice that when the cross-sectional dimension increases from

N = 2 to N = 20, the estimated factor is much closer to the simulated factor

and the intervals are much narrower. When N = 20, the intervals are very

narrow following closely the evolution of the simulated underlying factor.

The right panels of �gure 8 also plot the simulated factor together with

the corresponding one-step-ahead estimates obtained when the Kalman �lter

is implemented with the true parameters substituted by their ML estimates.

Once more, the top panel plots the estimates obtained when N = 2 while

the low panel plots the estimates when N = 20: In each of these two panels,

we have plotted two di¤erent series of 95% prediction intervals for the un-

derlying factor. First, we have plotted the intervals obtained using the MSE

directly delivered by the Kalman �lter with estimated parameters. The sec-

ond intervals have been obtained using the "true" MSE that incorporate the

parameter uncertainty which have been computed using the formulae in Delle

Monache and Harvey (2011). We can observe that the Kalman �lter intervals

are narrower than the true with the result that the simulated factor is lying

out of the intervals in too many moments of time. Therefore, it seems clear

that, in practice, we need to take into account the parameter uncertainty

when computing intervals for simulated factors.

Finally �gure 8 also illustrates that whenN = 20, the intervals are already

very narrow so there is no substantial gains in precision using more variables
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to extract the underlying factor.

Figure 8 about here

5 Conclusions

In this paper, we contribute to the issue about the �nite sample uncertainty

associated with the extraction of unobserved factors in DFM in the context

of KFS procedures. We also extend available consistency results to real time

�ltered estimates of the factors. Assuming that the model speci�cation is

known, if the Kalman �lter is implemented, as usual, substituting the un-

known parameters by consistent estimates, the total MSE can be decomposed

into the part attributable to the �lter uncertainty and that attributable to the

parameter uncertainty. When looking at the former component of the MSE,

we show that, regardless of whether the idiosyncratic noises are weakly or

strongly correlated, a relatively small number of variables, typically around

30, is enough to estimate the factors with an uncertainty close to its poten-

tial minimum. However, a larger number of variables could be needed if the

idiosyncratic noises are highly persistent. Furthermore, when looking at the

parameter uncertainty, we show that it can represent a large percentage of

the total uncertainty. For a given temporal dimension, the parameter uncer-

tainty and the total uncertainty can even be an increasing function of the

cross-sectional dimension. Therefore, it seems that there is no point in in-

cluding a huge number of variables when estimating underlying factor. This

result suggests that it could be worth to go back to the Kalman �lter im-

proving the e¢ ciency in the estimation of unobserved factors with respect to

PC whose main advantage is being able to deal with very large DFM,

In this paper, the results about the parameter uncertainty have been

obtained using the ML estimator based on the EM algorithm. However,

other alternative estimators, as those proposed by Jungbaker and Koopman

(2008) or Doz et al. (2011, in press), could be considered. The results could

then be compared with those of PC. This issue is left for further research.
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The Kalman �lter is based on a parametric speci�cation of the dynamics

of the factors and idiosyncratic components. Obviously, in practice these

dynamics could be misspeci�ed. Therefore, analyzing the e¤ects of misspec-

i�cation on the Kalman �lter MSE is an interesting topic that we left for

further research. Other sources of model misspeci�cation are related with

the number of underlying factors and the error distribution. Comparing the

performance of Kalman �lter and PC estimators in the context of both well

speci�ed and misspeci�ed models is also in our research agenda.

Appendix
Proof of lemma 1: Resolution of the Riccati equation for the

steady-state one-step-ahead MSE and its non-increasing property.
Using the expression of the inverse of the sum of two matrices, we obtain

the following result�
P (N)V (N)P (N)

0
+ �

(N)
"

��1
=


(N) � 
(N)P (N)0
�
P (N)0
(N)P (N)

0
+ (V (N))�1

��1
P (N)0
(N)

(17)

where 
(N) =
�
�
(N)
"

��1
:

Introducing (17) into the expression of the Riccati equation in (6), we

obtain the following expression

V (N) = k�2� + �
2V (N)�

�2V (N)P (N)
0
�

(N) � 
(N)P (N)

�
Q(N) + (V (N))�1

��1
P (N)0
(N)

�
P (N)V (N)

(18)

which can be rewritten as�
1� �2

�
V (N) + �2V 2(N)

 
Q(N) �

�
Q(N)

�2
Q(N) + (V (N))�1

!
= k�2�: (19)

After some straightforward algebra, the following equation is obtained

Q(N)V 2(N)�
�
k�2�Q

(N) � 1 + �2
�
V (N)� k�2� = 0: (20)

33



Taking the positive solution of the 2nd order equation (20), we obtain

expression (7) for the steady-state MSE.

To prove that V (N) is a non increasing function of N , subtract expression

(20) evaluated at N + 1 from the same expression evaluated at N ,

V (N)2Q(N) � V (N + 1)2Q(N+1)

+ V (N)
�
�k�2�Q(N) + 1� �2

�
� V (N + 1)

�
�k�2�Q(N+1) + 1� �2

�
= 0:

(21)

First, we need to prove that Q(N+1) � Q(N). Consider the following

partition of the covariance matrix of the idiosyncratic noises when the cross-

sectional dimension is N + 1

�(N+1)" =

"
�
(N)
" �N;N+1

�0N;N+1 �2N+1

#
;

where �2N+1 is the variance of "N+1 and �N;N+1 is an N � 1 vector that
collects the covariances between "i; i = 1; :::; N and "N+1. Using the formula

for the inverse of the partitioned matrix, we obtain the following expression

for 
(N+1) =
�
�
(N+1)
"

��1

(N+1) =

24 B � 1
�2N+1

B�N;N+1

� 1
�2N+1

�0N;N+1B
1

�2N+1
+ 1

�4N+1
�0N;N+1B�N;N+1

35 (22)

where B =
�
�
(N)
" � �N;N+1�

0
N;N+1

�2N+1

��1
. Applying the formula of the inverse of

the sum of two matrices, B can be rewritten as

B = 
(N) +

�
1� 1

�2N+1
�0N;N+1


(N)�N;N+1

��1
1

�2N+1

(N)�N;N+1�

0
N;N+1


(N)

= 
(N) +
1

�2N+1jN

(N)�N;N+1�

0
N;N+1


(N); (23)

where �2N+1jN = �
2
N+1��0N;N+1
(N)�N;N+1 is the variance of "N+1 conditional

on "i; i = 1; :::; N . Finally, let the factor loading vector be partitioned as
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P (N+1)
0
=
h
P (N)

0
pN+1

i
. Considering the previous partitions and using

the results in (22) and (23), it is possible to write Q(N+1) as

Q(N + 1) = P (N+1)
0

(N+1)P (N+1) =

= P (N)
0
�

(N) + 1

�2
N+1jN


(N)�N;N+1�
0
N;N+1


(N)

�
P (N)

+p2N+1

�
1

�2N+1
+ 1

�4N+1
�0N;N+1

�

(N) + 1

�2
N+1jN


(N)�N;N+1�
0
N;N+1


(N)

�
�N;N+1

�
�2 pN+1

�2N+1
P (N)0

�

(N) + 1

�2
N+1jN


(N)�N;N+1�
0
N;N+1


(N)

�
�N;N+1

= P (N)
0

(N)P (N) + 1

�2
N+1jN

�
P (N)

0

(N)�N;N+1

�2
+

p2N+1
�2N+1

+
p2N+1
�4N+1

�0N;N+1

(N)�N;N+1

�
1 + 1

�2
N+1jN

�0N;N+1

(N)�N;N+1

�
�2 pN+1

�2N+1
P (N)0
(N)�N;N+1

�
1 + 1

�2
N+1jN

�0N;N+1

(N)�N;N+1

�
:

(24)

Using that 1+ 1
�2
N+1jN

�0N;N+1

(N)�N;N+1 =

�2N+1
�2
N+1jN

; in (24), it follows that

Q(N + 1) = Q(N) +
1

�2N+1jN

�
P (N)

0

(N)�N;N+1

�2
+
p2N+1
�2N+1

+
p2N+1
�2N+1

1

�2N+1jN
�0N;N+1


(N)�N;N+1

�2 pN+1
�2N+1jN

P (N)0
(N)�N;N+1

= Q(N) + g2N+1 (25)

where g2N+1 =
1

�2
N+1jN

�
pN+1 � P (N)

0

(N)�N;N+1

�2
. Consequently, Q(N+1) �

Q(N) regardless of the properties of the covariances between the idiosyncratic

noises. Note that if "N+1 is uncorrelated with "i; i = 1; :::; N , then g2N+1 =

q2N+1 =
p2N+1
�2N+1

. If further, the variable yN+1 is non-informative so that p2N+1 =

0; or �2N+1 =1; then g2N+1 = 0 and, consequently, Q(N+1) = Q(N): However,
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if only p2N+1 = 0, then g
2
N+1 =

1
�2
N+1jN

�
P (N)

0

(N)�N;N+1

�2
> 0 and Q(N+1) >

Q(N):

To prove that V (N) is non-increasing, consider again equation (21) and

substitute Q(N+1) by Q(N) + g2N+1, obtaining the following expression�
V (N)2 � V (N + 1)2

�
Q(N) � V (N + 1)2g2N+1+

V (N)
�
��2�kQ(N) + 1� �2

�
� V (N + 1)

�
��2�kQ(N) + 1� �2

�
+

V (N + 1)k�2�g
2
N+1

= (V (N)� V (N + 1)) (V (N) + V (N + 1))Q(N)+
(V (N)� V (N + 1))

�
��2�kQ(N) + 1� �2

�
+

V (N + 1)
�
k�2� � V (N + 1)

�
g2N+1

= 0:

Rearranging terms,

V (N + 1)
�
V (N + 1)� k�2�

�
g2N+1 (26)

= (V (N)� V (N + 1))
��
1� �2

�
+
�
V (N) + V (N + 1)� k�2�

�
Q(N)

�
:

Next, we show that if � > 0; then V (N+1) > k�2�: Consider the expression

of V (N) in (7). Then,

V (N + 1) >
k�2�Q

(N+1) � 1 +
q�
k�2�Q

(N+1) � 1
�2
+ 4k�2�Q

(N+1)

2Q(N+1)

=
k�2�Q

(N+1) � 1 + k�2�Q(N+1) + 1
2Q(N+1)

= k�2�:

Therefore, the left hand side of expression (26) is always positive if g2N+1 >

0: On the other hand,
��
1� �2

�
+
�
V (N) + V (N + 1)� k�2�

�
Q(N)

�
> 0 and

consequently, V (N) > V (N+1): Finally, if g2N+1 = 0; then V (N) = V (N+1):

Proof of lemma 3: Non-increasing property of steady-state MSE
of �ltered estimates.
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The steady-state MSE of the �ltered estimates of the underlying factors

are given by

W (N) = V (N)� V (N)P (N)0
�
P (N)V (N)P (N)0 + �(N)"

��1
P (N)V (N):

Using the well-known formula for the inverse of the sum of matrices given

by Rao (1973), expression (10) of the steady-state MSE of ftjt is directly

obtained. In order to prove that it is non decreasing, we have to show that

V (N)

1 + V (N)Q(N)
� V (N + 1)

1 + V (N + 1)Q(N+1)
=

V (N)
�
1 + V (N + 1)Q(N+1)

�
� V (N + 1)

�
1 + V (N)Q(N)

�
[1 + V (N)Q(N)] [1 + V (N + 1)Q(N+1)]

� 0:

Since the denominator is positive, the proof is reduced to show that the

numerator is also positive. After some straightforward algebra

V (N) [1 + V (N + 1)Q(N + 1)]� V (N + 1)
�
1 + V (N)Q(N)

�
=

V (N)� V (N + 1) + V (N)V (N + 1)
�
Q(N+1) �Q(N)

�
� 0:

Lemma 1 establishes that if g2N+1 = 0, then Q
(N+1) = Q(N) and V (N) =

V (N+1): Otherwise, Q(N+1) > Q(N) and V (N) > V (N+1), so the inequality

is already proved.

Proof of lemma 4: Non-increasing property of steady-state MSE
of smoothed estimates.
As regards the variance of the smoothed factor, S(N), we can show that

under the same hypothesis as lemma 1, it is also a decreasing function of the

number of series N: We have to prove that S(N) � S(N + 1), where S(N)

is given in (11)

V (N)
�
1 + V (N)Q(N) � �2

�
(1 + V (N)Q(N))

2 � �2
�
V (N + 1)

�
1 + V (N + 1)Q(N+1) � �2

�
(1 + V (N + 1)Q(N+1))

2 � �2
:
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Notice that since V (N) � V (N + 1), then

V (N)
�
1 + V (N + 1)Q(N+1) � �2

�
(1 + V (N + 1)Q(N+1))

2 � �2
�

V (N + 1)
�
1 + V (N + 1)Q(N+1) � �2

�
(1 + V (N + 1)Q(N+1))

2 � �2
=

= S(N + 1):

Therefore, if we can prove that

S(N) =
V (N)

�
1 + V (N)Q(N) � �2

�
(1 + V (N)Q(N))

2 � �2
�
V (N)

�
1 + V (N + 1)Q(N+1) � �2

�
(1 + V (N + 1)Q(N+1))

2 � �2
(27)

then it will be already proved that S(N) � S(N+1): To prove (27), it su¢ ces
to prove that�

1 + V (N)Q(N) � �2
� ��

1 + V (N + 1)Q(N+1)
�2 � �2�

�
�
1 + V (N + 1)Q(N+1) � �2

� ��
1 + V (N)Q(N)

�2 � �2� � 0;
since the denominators are positive and V (N) can be simpli�ed from both

sides of the inequality (27).

After some straightforward algebra�
(1� �2) + V (N)Q(N)

� �
1� �2 + V 2(N + 1)Q2(N + 1) + 2V (N + 1)Q(N + 1)

�
�
�
(1� �2) + V (N + 1)Q(N + 1)

� �
1� �2 + V 2(N)Q2(N) + 2V (N)Q(N)

�
= [V (N)Q(N)� V (N + 1)Q(N + 1)] (1� �2) +�

V 2(N + 1)Q2(N + 1)� V 2(N)Q2(N)
�
(1� �2)

+V (N)V (N + 1)Q(N)Q(N + 1) [V (N + 1)Q(N + 1)� V (N)Q(N)]
+2(1� �2) [V (N + 1)Q(N + 1)� V (N)Q(N)]

=
�
(1� �2) + V (N)V (N + 1)Q(N)Q(N + 1)

�
[V (N + 1)Q(N + 1)� V (N)Q(N)]

+ [V (N + 1)Q(N + 1)� V (N)Q(N)] [V (N + 1)Q(N + 1) + V (N)Q(N)] (1� �2)
=

�
(1� �2) (1 + (V (N + 1)Q(N + 1) + V (N)Q(N))) + V (N)V (N + 1)Q(N)Q(N + 1)

�
� [V (N + 1)Q(N + 1)� V (N)Q(N)] :
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Since 1 � �2 � 0 and both V (N) and Q(N) are positive for all N , it

su¢ ces to prove that V (N + 1)Q(N + 1) � V (N)Q(N): By (7)

V (N)Q(N) =
k�2�Q

(N) � 1 + �2 +
q�
k�2�Q

(N) � 1 + �2
�2
+ 4k�2�Q

(N)

2
:

Then, taking also into account that Q(N+1) = Q(N) + g2N+1

V (N + 1)Q(N + 1)� V (N)Q(N)

=
k�2�Q

(N+1)

2
+

q�
k�2�Q

(N+1) � 1 + �2
�2
+ 4k�2�Q

(N+1)

2

�
k�2�Q

(N)

2
�

q�
k�2�Q

(N) � 1 + �2
�2
+ 4k�2�Q

(N)

2

=
k�2�g

2
N+1

2
+

q�
k�2�Q

(N+1) � 1 + �2
�2
+ 4k�2�Q

(N+1)

2
�q�

k�2�Q
(N) � 1 + �2

�2
+ 4k�2�Q

(N)

2
:

Since
k�2�g

2
N+1

2
is positive, we have to prove thatq�

k�2�Q
(N+1) � 1 + �2

�2
+ 4k�2�Q

(N+1) �
q�
k�2�Q

(N) � 1 + �2
�2
+ 4k�2�Q

(N)

or taking squares�
k�2�Q

(N+1) � 1 + �2
�2
+ 4k�2�Q

(N+1) �
�
k�2�Q

(N) � 1 + �2
�2
+ 4k�2�Q

(N):

After some straightforward algebra and taking into account that Q(N+1) =

Q(N) + g2N+1�
k�2�

�
Q(N) + g2N+1

�
�
�
1� �2

��2
+ 4k�2�

�
Q(N) + g2N+1

�
��

k�2�Q
(N) �

�
1� �2

��2
+ 4k�2�Q

(N)

= k2�4�g
4
N+1 + 2k�

2
�Q

(N)g2N+1 � 2k�2�g2N+1
�
1� �2

�
+ 4k�2�g

2
N+1

= k2�4�g
4
N+1 + 2k�

2
�Q

(N)g2N+1 + 2(1 + �
2)k�2�g

2
N+1 � 0
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which is positive since it is the sum of three positive terms. Therefore the

result is proved and S(N) � S(N + 1):
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Figure 1: Steady-state MSE of one-step-ahead (�rst row), �ltered (second

row) and smoothed (third row) estimates of the underlying factor in a strict

DFM with relative loadings qi = 1 for di¤erent values of the autoregressive

parameter, �. The identifying condition is �2� = 1 (�rst colum) and �
2
f = 1

(second colum).
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Figure 2: Steady-state MSE of one-step-ahead (�rst row), �ltered (second

row) and smoothed (thrid row) estimates of the underlying factor in a DFM

with qi = 1 and contemporaneously correlated idiosyncratic noises: Weak

correlations (left column) and strong correlations (right column).
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Figure 3: Steady-state MSE of one-step-ahead (�rst row), �ltered (second

row) and smoothed (third row) estimates of the underlying factor in a DFM

with relative loadings qi = 1 and serially correlated idiosyncratic noises with

parameter �; for stationary (left column) and non-stationary (right column)

factors.
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Figure 4: Steady-state MSE matrix of one-step-ahead (�rst column), �ltered

(second column) and smoothed (third column) estimates of the underlying

factors in a DFM with two factors. The �rst two rows represent the MSE of

the two factors while the third row represents the covariances.
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Figure 5: Steady-state total MSE (dashed lines), �lter MSE (continuous

lines) and estimated parameters MSE (dotted lines) matrices of �ltered es-

timates in a strict DFM with two factors and parameters estimated by ML

with T = 100 (left column) and T = 200 (second column). The �rst two

rows represent the MSE of each of the factors while the third row represents

the covariances.
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Figure 6: Percentage of the total MSE represented by the parameter uncer-

tainty in a strict DFM with two factors for one-step-ahead (left column) and

�ltered (right column) estimates when the parameters are estimated with

T = 100 (continuous lines) and T = 200 (dashed lines). The �rst row repre-

sents the results for the �rst factor while the second row corresponds to the

second factor.
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Figure 7: Relative biases in MSEs delivered by the Kalman �lter with esti-

mated parameters in a strict DFM with two factors for one-step-ahead (left

column) and �ltered (right column) estimates when the parameters are esti-

mated with T = 100 (continuous lines) and T = 200 (dashed lines). The �rst

row represents the results for the �rst factor while the second row corresponds

to the second factor.
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Figure 8: Underlying factor (continuous line) together with its one-step-

ahead estimate (dashed line) in a strict DFM with � = 1; �2� = 1 and relative

loadings qi = 1 whenN = 2 (top row) andN = 20 (low row). The left column

also plots the 95% prediction intervals obtained using the MSE delivered

by the Kalman �lter with known parameters. The right column plots 95%

prediction intervals obtained using the MSE delivered by the Kalman �lter

with estimated parameters and the intervals obtained using the true total

uncertainty.
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