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Abstract

This paper develops a framework for the analysis of how asymmetric information

impacts on adverse selection and market effi ciency. We adopt Akerlof’s (1970) unit-

demand model extended to a setting with multidimensional public and private informa-

tion. Adverse selection and effi ciency are defined quantitatively as real valued random

variables. We characterize how public information disclosure and private information

acquisition affect the relationship between adverse selection and effi ciency. Gaussian

information structures can be summarized by three parameters with natural interpre-

tations as the quality of public information about match quality, a measure of the

difference between buyers and the seller in the extent of information about the seller’s

value, and a measure of the relevance of the seller’s valuation to buyers’valuation. In

particular, the characterization allows us to describe how a quantity of adverse selection

can be imposed effi ciently. We conclude by discussing implications and an application

to the labour market.

The Akerlof (1970) unit-demand model has proved fundamental in developing our un-

derstanding in a wide variety of applications ranging from resale to corporate securities,

∗heski.bar-isaac@rotman.utoronto.ca; ian.jewitt@nuffi eld.ox.ac.uk; clare.leaver@bsg.ox.ac.uk. Bar-Isaac
thanks SSHRC for financial support, and London Business School for hosting him while some of this paper
was written. Further acknowledgements to be added.

1



and insurance to labour markets. In these and other applications asymmetric information

affects both the terms of trade and the effi ciency of markets and, of course, may lead

markets to break down entirely.

Akerlof’s model is deliberately rather stylized to highlight these effects clearly. Specifi-

cally, it supposes that buyers and seller valuations are perfectly correlated so that informa-

tion can be captured by a scalar parameter and it supposes that buyers have no information

at all. Both assumptions are unrealistic. For example, in the second-hand car market, there

may be reasons other than low quality, such as moving to another continent, which would

lead the seller to have a low value for keeping the car. In addition, while of course one can

condition on the information to consider a car with a particular mileage, age, observable

condition and so on, the classical approach does not allow for exploration of how changes in

information affect market outcomes– the focus of our analysis. These limitations have, of

course, been noted and inspired further theoretical development. Finkelstein and McGarry

(2006), for example, provide convincing evidence of the inadequacy of the scalar type as-

sumption to account for observed behavior in insurance markets, and Einav, Finkelstein

and Cullen (2010) present a general framework that does not impose the scalar assumption,

though focused primarily on price rather than information effects. Levin (2001) explores

when more information can increase or decrease adverse selection for the scalar model (see

also Kessler (2001) and Creane (2008)).

The model we analyze is an extension of the Akerlof (1970) unit-demand model that

allows for multivariate private and public information, where identical buyers compete by

making offers for the good, after which the seller accepts one of the offers or keeps the

good. It is useful to distinguish between the joint distribution of seller and buyer valua-

tion, assumed to be common knowledge and the joint distribution of these valuations with

random variables representing the seller’s private information and the public information

available to all. Bergemann and Morris (2014) term the former the basic game and the

latter the information structure (see also Gossner (2000) who highlights this distinction).

A burgeoning literature explores how information structures map into economic outcomes

in contexts including information disclosure (Kamenica and Gentzkow, 2011), price dis-

crimination Bergemann, Brooks and Morris (forthcoming) and independent private value

auctions Bergemann, Brooks and Morris (2013). We conduct a related exercise for the unit-

demand trade model with a more-informed seller. In our analysis information structure is

the main parameter of the model and adverse selection and effi ciency are the equilibrium

outcomes.
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In order to quantify the effects of asymmetric information, we provide a definition of

the quantity of adverse selection conditional on public information as the difference in the

average quality of sellers (as perceived by buyers) and the average quality of those who select

to trade. Effi ciency is also defined as a quantity: specifically, it is defined relative to no trade

at all and measures the difference between the average value to the buyer and the seller for

traded goods, weighted by the probability of trade. Since adverse selection and effi ciency

are defined conditionally on public information, they are functions of public information

and therefore from an ex ante perspective they are random variables. Understanding

how asymmetric information impacts on adverse selection and market effi ciency therefore

amounts to understanding how the joint distribution of adverse selection and effi ciency

depends on the structure of asymmetric information.

An important aspect of the information structure is the public estimate of the difference

between the value of the good to the seller and to buyers. We term this random variable

(which obviously depends on public information) the apparent match quality.

We consider all Gaussian information structures, as do Bergemann, Heumann and Mor-

ris (2014) for example. We begin by showing that even though information may be of high

dimension, the distributions of adverse selection and effi ciency depend on the information

only through a three dimensional parameter space. These parameters have natural eco-

nomic interpretations as the quality of public information about the apparent match value;

a measure of the difference between buyers and the seller in the amount of information

about the seller’s value (which we term the “information gap”); and a measure of the

relevance of the seller’s valuation to buyers’valuation.

Our first characterization results compare market outcomes for fixed realizations of

public information. We find that adverse selection is increasing and effi ciency is decreasing

in the apparent match quality. These results are intuitive: Buyers who believe that the

private value to the seller is likely to be much higher than the value to buyers naturally

offer lower prices for fear that if they obtain the good it is a lemon. Instead, buyers who

believe that the seller’s value is much lower than the value to buyers are likely to offer

prices close to the expected valuation based only on public information and ignoring the

seller’s private information. The latter case naturally leads to more effi cient trade, whereas

in the former case (since the prices offered by buyers are far from their estimate of the

value of the good) trade is less effi cient.

While for any realization of a given information structure, there is less effi ciency when
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there is more adverse selection, this relationship need not arise for aggregate outcomes.1 ,2

Intuitively, information structures can impose adverse selection more effi ciently by concen-

trating it at public realizations where the good is more effi ciently retained by the seller.

Our next set of results is about aggregate market outcomes, and how they depend on key

features of the information structure.

Expected adverse selection is shown to be increasing in each of the three parameters

described above: aggregate adverse selection is higher when there is better public informa-

tion about the apparent match value, the difference between buyers and the seller in the

amount of information about the seller’s value is higher, and seller’s valuation are more

closely related to buyers’valuation. The relationship with expected effi ciency is more com-

plex. Comparing two information structures that are otherwise similar, the information

structure for which the seller’s value is more relevant for buyers entails lower expected

effi ciency. On the other hand, holding the information gap and informed party relevance

fixed (with the latter not too large), better public information about match quality leads

to greater expected effi ciency.

Moreover, adverse selection and effi ciency satisfy a Spence-Mirrlees condition. Com-

paring two information structures with the same information gap and which generate the

same quantity of expected adverse selection, the information structure with better public

information about match quality leads to more expected effi ciency.

We use these result to characterize how aggregate effi ciency and aggregate adverse

selection may be optimally achieved; that is, we characterize the upper frontier of the set

of outcomes that may be achieved by any information structure. As we discuss at greater

length below and in related work (Bar-Isaac, Jewitt and Leaver (2015)), this is an important

exercise in the context of labour market competition where firms compete to hire workers

by offering both current wages and future opportunities (that depend on the information

available to potential rival employers). We first consider information structure with the

same fixed inside information; that is we consider information disclosure. We establish

that these effi cient public information disclosures take a rather simple form whereby public

estimates of the buyer and seller value are conditionally collinear given public information.

Second, we explore the effect of improving private information. We show that, providing

1That a relationship may hold at individual realizations but might be reversed in the aggregate is a
familiar result in the statistics literature associated with Yule (1903) and Simpson (1951).

2Note that this distinction between results at the level of an individual realization of public information
and between aggregate outcomes does not arise in the context of classic results where there is only a single
possible realization of public information (namely null information).
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there is suffi cient freedom to transmit information publicly, improving private information

facilitates greater effi ciency in imposing adverse selection.

Information structures that impose a quantity of adverse selection effi ciently have the

interesting implication that the average price of goods that are traded is higher than the

average price offered for goods that are not traded– in the labor market this corresponds

to higher wages for workers that an employer does not seek to retain earning more than

workers whom the firm chooses to keep.3 Relatedly, a test for adverse selection based on

aggregate data that was unable to condition on the public information available to market

participants would under-estimate the extent of adverse selection in the market.4 More

broadly, we provide a condition under which prices for traded goods are higher or lower

than non-traded goods and whether aggregate tests overestimate or underestimate adverse

selection. We discuss our findings in the context of a labour market application.

1 Model

We present a unit-demand model of trade. Numerous identical buyers compete in offering

prices to a seller. There is asymmetric information whereby the seller has additional

information not available to buyers. The value to the seller is denoted by the random

variable VS . The value to a buyer is denoted VB. The joint distribution of (VS , VB) is

exogenously given and unchanging through our analysis. Instead, our focus of interest is

the information structure which specifies a 2 + nQ + nT dimensional vector (Q,T ) of real

valued random variables jointly distributed with (VS , VB). Q is to be read as information

private to the seller, T represents public information available to all market participants.

Note that depending on the realization of (VS , VB), trade may be effi cient (if VB > VS)

or ineffi cient, in the context of the insurance literature the possibility that trade may be

ineffi cient typically relies on positive loading factors (see for example, Fang and Wu, 2016).

Buyers compete with each other through price offers that naturally depend on a real-

ization of the public information T . The seller, who observes a realization Q can accept

3The empirical finding in Bidwell (2011) that external hires into a large investment bank are on average
paid 18 percent more than internal promotions into identical positions is consistent with this result. See
also Lang and Weinstein (2016) who argue that empirical findings on wage growth for employees who move
to new firms rather than stay at existing ones are hard to square one-dimensional models of asymmetric
information and competitive labour markets.

4Chiappori and Salanie (forthcoming) provide a useful overview of testing for adverse selection in the
context of insurance markets. In the context of labour markets Gibbons and Katz (1991) is a seminal paper.
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or reject any of the offers. That T represents public information can be understood as

suggesting that it is contained with Q and implying that VB and VS are conditionally in-

dependent of T given Q. We suppose that given the information structure, expectations of

the values to the seller and buyers exist.

In equilibrium, the seller selects one of the highest price offers, as long as it is higher

than, her own estimate of her value. Buyers make price offers that maximize expected

profits given beliefs about the price offers of other firms and the seller’s strategy.

We focus on Gaussian information structures.5 A Gaussian structure can be represented

by its characteristic function φ(u) = exp
(
u′µi− 1

2u
′Σu
)
, where Σ is a symmetric positive

semidefinite matrix. Without loss of generality, we may normalize means of Q and T to

be zero. Hence, if information structures are Gaussian, they are identified with a set of

symmetric positive semidefinite covariance matrices.

It is convenient to introduce the following notation.

Notation 1 We can uniquely define:

B =
def
E[VB|Q], S =

def
E[VS |Q], M =

def
S −B.

The supports of Q and T are denoted respectively by Q and T. The supports of B and S

and supports conditional on T = t, but for the degenerate cases of null information will be

R.

The random variable B is the seller’s estimate (the best estimate given all available in-

formation) of the buyers’value of the good. Similarly, the random variable S is the best

estimate of the seller’s value of the worker in employment at the current, training firm.

A feature of this paper which distinguishes it from much of the existing literature (e.g.

Akerlof 1970, Levin 2001) is that we do not assume that B and S are increasing functions

of some underlying scalar type (making them co-monotone random variables). Neither do

we assume that B and S are co-monotone. Finally, the random variable M is the best

estimate of the difference between the seller’s value and the buyers’value. In what follows,

we refer to the expectation of M given public information, E[M |T ], as the apparent match

quality.6

5As we discuss below, several results apply beyond the Gaussian case. An earlier working paper, Bar-
Isaac, Jewitt and Leaver (2014) contains further discussion.

6Alternatively, one could view E[−M |T ] as the apparent grounds for trade.

6



It will become convenient, both for interpretation and reduction of dimensionality, to

refer to Gaussian distributions in terms of regression coeffi cients.

Notation 2 Following standard notation, we denote the linear regression coeffi cient of B
on S adjusting for T by βBS.T and the total regression coeffi cient obtained by marginalizing

over T by βBS. Cochran’s (1938) identity is

βBS = βBS.T + βBT.SβST .

We write σBS for the covariance of B and S, σ2
B for the variance of B, σ2

S|T for the

conditional variance of S given T and σBS|T for the conditional covariance of B and S

given T . If S is contained in T , then we will set βBS.T = 0.

We maintain the following assumption throughout the paper whose import is discussed

in the following section.

Assn 0 < βBS.T < 1.

1.1 Willingness to Pay

In estimating their value, buyers need only do so second hand, via estimating B. In

particular, the law of iterated expectations implies

E[VB|T, S] = E[B|T, S], (1)

and consequently for each t ∈ T , p ∈ S(t),

E[VB|T = t, S < p] = E[B|T = t, S < p]. (2)

The quantity in equation (2) represents the expected value to buyers in case the seller

is willing to sell at a price p. It therefore represents buyers’willingness to pay for a good

traded at price p.

Definition 1 (The willingness to pay map) Let C be the set of real valued functions

φ : T→ Conv(B). We define the willingness to pay map Ψ : C → C, by

Ψ(φ)(t) = E[B|T = t, S < φ(t)], for φ(t) ≥ inf S(t)

= E[B|T = t, S = inf S(t)], for φ(t) < inf S(t).

7



We will make use of the fact (established as Lemma 1) that under the maintained

assumption that βBS.T < 1, Ψ is contractive on an appropriately defined metric space.

This fact not only allows us to settle existence and uniqueness questions since it implies

that the willingness to pay map has a unique fixed point, but it also supplies a means of

verifying properties of adverse selection. Evidently, without the assumption βBS.T < 1 the

equilibrium price is not defined.

2 Equilibrium

Our objective in this section is to establish the analog of the familiar (Akerlof 1970) market

outcomes as equilibria. We begin by establishing the existence and uniqueness of a fixed

point of the willingness to pay map Ψ, we term this solution the price schedule.

Definition 2 We call the unique fixed point of the willingness to pay map Ψ the price

schedule p : T→ R. The random variable P = p(T ) is called the price.

Lemma 1 Ψ is a contraction mapping on an appropriately defined metric space and has

a unique fixed point.

Proof. Specifically, define the distance d : C×C → [−∞,∞], d(φ, ϕ) = supt∈T |φ(t)− ϕ(t)| .
It is classical that the set of bounded functions mapping from an arbitrary set into the reals

is a complete metric space when endowed with the sup norm (see e.g. Dunford and Schwartz

p.258). If B is compact, therefore, M = (C, d) is a complete metric space. However, apart

from the trivial case where Q is orthogonal to VB, B is not compact. Evidently, given some

φ∗ ∈ C if we denote by C∗ ⊂ C the set of φ ∈ C such that φ − φ∗ is bounded, (C∗, d) is a

complete metric space. Specifically, take φ∗(t) = E[B|T = t]− βBS.T
1−βBS.T

max{E[M |T = t], 0}.
The map Ψ is defined by

Ψ(φ)(t) = E[B|T = t]− βBS.TσS|Th
(
E[S|T = t]− φ(t)

σS|T

)
,

where h is the Gaussian N (0, 1) hazard function. Confirmation of this fact appears

in Proposition 4. The hazard is continuously differentiable and satisfies 0 < h′ < 1,

therefore it follows immediately from the mean value theorem that |Ψ(φ)(t)−Ψ(ϕ)(t)| <
βBS.T |ϕ(t)− φ(t)|, hence d (Ψ(φ),Ψ(ϕ)) ≤ βBS.Td (ϕ, φ). Finally, it is routine to establish
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that φ ∈ C∗ ⇒ Ψ(φ) ∈ C∗. Hence, Ψ is a contraction on the complete metric space (C∗, d).

Application of the Banach fixed point theorem completes the proof.

With the a well-defined and unique price, the following equilibrium of the trading game

can readily be established.

Proposition 1 There exists a PBE in which each buyer offers a price P = p(T ). The

seller sells if and only if S < P .

Proof. We start by confirming that there is no incentive to deviate from these strategies.

Clearly, the sellers sells if and only if S < P . It follows that it cannot be optimal for

buyers to deviate from posting an offer that is a fixed point of the willingness to pay map

in Definition 1. To see this, suppose E[VB|T = t, S < p(t)] 6= p(t) for some t ∈ T. Here,
either the successful buyer will make an expected loss, or there is a price offer that is a

profitable deviation by some buyer.

In this PBE, equilibrium market outcomes are determined by a price schedule that is

the unique fixed point of the willingness to pay map. It is an immediate consequence of

Definition 1 that in equilibria identified by Proposition 1, if there is a positive probability

of trade (i.e. if Pr[S < p(t)|T = t] > 0), then the following price equation holds

Price Equation
p(t) = E[B|T = t, S < p(t)]. (3)

For the analysis a key outcome of interest is the expected total surplus corresponding

to the information structure. This is defined as E[TS] = E[S] − E[M1{S<P}] = E[B] +

E[M1{S>P}].

2.1 Adverse Selection and Effi ciency: Definitions

Given all the information in the economy (and specifically, including the private information

of the buyer), we define the quantity of adverse selection as the difference between the

average quality of the good as perceived by buyers and the average quality contingent on

trade. That is, it measures how the fact that a good is selected to trade changes buyers’

estimates of the good’s value. This is consistent with the early usage in the insurance

literature discussed in Akerlof (1970), and is similar to measuring the extent of the winner’s

curse in a common value auction.
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Definition 3 (Quantity of adverse selection) The quantity of adverse selection is de-
fined as the random variable

AS = E[B|T ]− E[B|T, S < P ]. (4)

The adverse selection schedule is defined as the map as : T → R with as(t) = E[B|T =

t]− p(t).

Since the adverse selection schedule differs from (minus) the price schedule only by

the function t 7→ E[B|T = t], it follows from that the adverse selection schedule may also

be defined in terms of the fixed point of a contraction mapping. This has the evident

consequence that any property preserved under the contraction mapping is a property

which will be displayed by adverse selection.

Although adverse selection is defined as the difference in average (i.e. expected) value

between two distributions, the competitive nature of equilibria and the fact that valuations

and prices are measured in the same units means that the quantity of adverse selection can

also be viewed as a difference in prices. We may view adverse selection as the difference

between the equilibrium price which would obtain, through competition, in a counterfactual

game without private information (i.e. E[B|T ]) and the equilibrium price in the game itself

(P ). Viewed in this way, adverse selection is a price effect.

A familiar thought, certainly since Akerlof (1970), is that adverse selection depresses

prices and discourages trade, even when trade is warranted on effi ciency grounds. To

explore the equilibrium relationship between adverse selection, as quantified in Definition

3, the likelihood of trade, and market effi ciency, we introduce two further definitions and

associated notation.

Definition 4 (Probability of trade) The probability of trade is defined as the random
variable

R = E[1{S<P}|T ] = Pr[S < P |T ]. (5)

The probability of trade schedule is defined as the map r : T → R+ with r(t) = Pr[S <

w(t)|T = t].

In contrast to Akerlof (1970) trade is not always warranted on effi ciency grounds, so

increased probability of trade is not a synonym for increased effi ciency.
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Definition 5 (Effi ciency contribution) The effi ciency contribution (relative to the no
trade status quo) is defined as the random variable

EC = −E[M1{S<P}|T ]. (6)

The effi ciency contribution schedule is defined as the map ec : T → R with ec(t) =

−E[M1{S<p(t)}|T = t].

Expected total surplus is given by E[S] − E[M1{S<P}]. Since E[S] is independent

of the information structure, it is immediate that the expected surplus depends on the

information structure only through its impact on EC. Note that EC is always positive,

this is established in the following remark, which is an easy consequence of the price

equation.

Remark 1
EC = E[(P − S)+ |T ] ≥ 0. (7)

We characterize the random variables AS,R,EC and the relationship between them.

A key simplification follows from identifying a natural orthogonality condition to which we

now turn.

3 Characterization

3.1 Fixed Information Structure

The difference between the estimate of the (buyers’) value based on public information

and the estimate based on the superior private information of the seller is E[VB|T ] −
E[VB|Q] = E[B|T ]−B. Since inside information Q contains public information T , E[B|T ]−
B represents the error in the buyers’estimate of the good’s value. Similarly, E[S|T ]− S is
the corresponding error in the public estimate of the seller’s value.

Notation 3 Errors in public estimates, compared to private estimates.

/B =
def
E[B|T ]−B, /S =

def
E[S|T ]− S.
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The first thing to note is that these errors are by construction uncorrelated with T . Since

AS is a function of T , it follows that these differences are also uncorrelated with AS. For

Gaussian information structures, this lack of correlation implies statistical independence.

Using the definition of AS in (4), we can write price as P = E[S|T ] − E[M |T ] − AS.
Hence, the trading event S < P can be re-expressed as AS + E[M |T ] < /S. That is, trade

takes place when the error in the public estimate of the buyers’value exceeds the sum of

adverse selection and the apparent match quality. The trading event, therefore, is an in-

equality between two independent random variables. A number of important consequences

follow.

Proposition 2 In the equilibrium identified in Proposition 1, adverse selection, AS, and

the apparent match quality, E[M |T ], are comonotone random variables. Specifically, there

exists an increasing function âs : R→ R+ such that AS = as(T ) = âs(E[M |T ]).

Proof. By Lemma 1 and Definition 3, a unique adverse selection schedule exists, allowing
us to write (4) recursively as AS = E [ /B|T,AS + E[M |T ] < /S] . Since ( /B, /S)⊥T , we may
therefore write as(t) = E[ /B|as(t) + E[M |T = t] < /S]. Hence, as(t) depends on t only

through E[M |T = t]. This establishes the existence of âs : R→ R such that AS = as(T ) =

âs(E[M |T ]).

Monotonicity follows from the positive dependence of /B and /S. Details are in Appendix

A.

Proposition 2 establishes an important property of adverse selection: AS depends on

information (Q,T ) only through the scalar E[M |T ] and the relationship is a non-decreasing

one. This is also intuitive: There is a genuine reason for trade if E[M |T ] is small (negative)

but not if it is large (positive).

It is worth noting that in general adverse selection can be either positive or negative.

Negative adverse selection reflects the possibility of asymmetric information leading to

propitious or advantageous selection, as has been noted by Hemenway (1990) and de Meza

and Webb (2001).

Using the properties of AS established in Proposition 2, it becomes straightforward to

provide a representation of the probability of trade R and the effi ciency contribution EC.

Proposition 3 Under the conditions of Proposition 2, the probability of trade R and the

effi ciency contribution EC depend on information (Q,T ) only through the apparent match
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quality E[M |T ]. Specifically, there exist r̂ : R→ R+ and êc : R→ R+ such that

R = r(T ) = p̂(E[M |T ]),

EC = ec(T ) = êc(E[M |T ]).

Moreover, a 7→ r̂(a) and a 7→ êc(a) are decreasing. Hence, R,EC,−AS and −E[M |T ] are

all comonotone.

Proof. We can write (5) as r(t) = Pr [AS + E[M |T ] < /S|T = t] . The fact that /S⊥T , im-
plies r(t) = Pr [as(t) + E[M |T = t] < /S]. Noting the obvious fact that this probability is

decreasing in as(t) + E[M |T = t], Proposition 2 implies R = r(T ) = r̂(E[M |T ]) for some

nonnegative decreasing function r̂ : R→ R+ as required. Using Remark 1, the effi ciency

contribution at T = t is ec(t) = E[(P − S)+ |T = t] = E
[
( /S −AS − E[M |T ])+ |T = t

]
.

Since /S⊥T it follows that ec(t) = ϕ (âs(E[M |T = t]) + E[M |T = t]) for the decreasing

convex function ϕ : R → R+, ϕ(z) = E
[
( /S − z)+]. Hence, ec(t) is a decreasing transfor-

mation of E[M |T = t].

Propositions 2 and 3 highlight the important role played by the apparent match qual-

ity E[M |T ] in determining adverse selection and effi ciency. As might be expected, higher

adverse selection, as defined here, occurs with reduced trade probability and lower ef-

ficiency contribution. These results do not rely on the Gaussian structure beyond the

implied orthogonality of the errors in public estimates with the public information; that is,

( /B, /S)⊥T .7

Gaussian information, of course, imposes more restrictions. The following result es-

tablishes that the marginal distribution of adverse selection depends on the information

structure only through a three dimensional parameter space.

Proposition 4 âs : R→ R+ is implicitly defined by

âs = βBS.TσS|Th

(
âs+ E[M |T = t]

σS|T

)
, (8)

where h : R→ R+ is the inverse Mills ratio (i.e. the normal hazard function).

7Further detail on the non-Gaussian case including conditions that ensure the existence of a well-defined
equilibrium and adverse selection schedule appear in Bar-Isaac, Jewitt and Leaver (2014).
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Proof. As in the proof of Proposition 2, we can write as(t) = E[ /B|as(t) + E[M |T = t] <

/S]. Noting that, by the Law of Iterated Expectations E[ /B|z ≤ /S] = E[E[ /B| /S]|z ≤ /S],

E[ /B| /S] = βBS.T /S, /S ∼ N
(
0, σS|T

)
, and h (z) = E[ /S|z ≤ /S] is the inverse Mills ratio,

establishes the implicit representation in (8).

This result implies that even though the information structure may be of high di-

mension, three parameters of the information structure characterize the adverse selection

schedule, according to (8) and E[AS] as discussed below. Moreover, these have a natural

economic interpretation. Specifically:

• σS|T is the information gap regarding the seller’s value of the good. It is a measure
of the difference in the amount of information about VS held by the informed and

uninformed parties. For Gaussian distributions, the variance of the conditional ex-

pectation V ar(E[VS |Q]) is a bona fide measure of how informative Q is about VS ,

similarly V ar(E[VS |T ]) measures how much information is in T . By the law of total

variance, we have σ2
S|T = V ar(E[VS |Q])− V ar(E[VS |T ]).

• βBS.T is relevance of the seller’s value to the buyers’ value. It is a measure of the
relevance of the seller’s estimate of its own value, S, to the buyers’value B given

public information T . Note that we may also write β2
BS.Tσ

2
S|T = V ar(E[VB|S, T ])−

V ar(E[VB|T ]). Therefore given σS|T , βBS.T is a measure of how much extra informa-

tion (S, T ) contains about B than just the public information T.

• σE[M |T ] is the quality of public information about match quality. It is a measure of

how much information is available publicly about VS − VB.8

3.2 Comparing Information Structures

The results in Section 3.1 characterize how, for a given information structure, adverse

selection and effi ciency depend on the information structure only through the apparent

match quality and that the information structure can be summarised by three parameters

relating to the information gap regarding the seller’s value, the relevance of the seller’s

value to buyer’s value, and the quality of public information about match quality.

8Note V ar(E[M |T ]) = V ar(E[VS − VB |T ]) determines the distribution of E[M |T ]. By construction,
E[E[M |T ]] = E[VS−VB ] independently of the information structure so, in the Gaussian case, its distribution
is determined solely by its variance, V ar(E[M |T ]).
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In particular, for a given realization of public information of a fixed information struc-

ture, adverse selection increases and effi ciency decreases in the apparent quality of the

current match (that is the estimate of the difference between the seller’s and buyers’valu-

ation). These relationships need not hold at the aggregate level when comparing different

information structures– that is, it may be that aggregate adverse selection and effi ciency

are both higher in one information structure than another.

The characterization of the adverse selection schedule, established in Proposition 4,

allows us to address the question of how overall effi ciency aggregated across submarkets

depends on the information structure, and how this relates to aggregate adverse selection.

Proposition 5 E[AS] and E[EC] depend on the information structure only through the

three dimensional parameter (βBS.T , σS|T , σE[M |T ]) ∈ [0, 1)×R2
+. Furthermore,

1. E[AS] is increasing in (βBS.T , σS|T , σE[M |T ]).

2. For each (σS|T , σE[M |T ]) ∈ R2
+, E[EC] is decreasing in βBS.T .

3. For each (βBS.T , σS|T ) ∈ [0, π4 ]×R+, E[EC] is increasing in σE[M |T ].

Proof. Part 1. It is immediate from (8) that for each t ∈ T, âs(E[M |T = t]) is increasing

in βBS.T . Similarly, âs(E[M |T = t]) is seen to be increasing in σS|T by the star-shaped

property of the normal hazard function (Lemma D2). The convexity property of the

normal hazard (Lemma B) is inherited by âs, hence it follows from Jensen’s inequality

that E[AS] = E[âs(E[M |T ])] is increasing in σE[M |T ].

Part 2. Straightforward manipulations show that EC has the representation

EC = σS|TΨ

(
E[M |T ] + âs (E[M |T ])

σS|T

)

where, Ψ(x) =E[(ε− x)+] with ε ∼ N (0, 1). Note that Ψ is a decreasing function. Since

âs is increasing in βBS.T , EC is made smaller in first-order stochastic dominance order and

therefore has smaller expectation.

Part 3. This is more delicate. Using the above representation, we can write E[EC] as

E[EC] = σS|TE

[
Ψ

(
σE[M |T ]ε+ âs

(
σE[M |T ]ε

)
σS|T

)]
. (9)
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Differentiation gives
∂E[EC]

∂σE[M |T ]
= E

[
Ψ′.
(
âs′ε+ ε

)]
.

Differentiating the representation for âs in (8) gives

âs′ = âs′
(
σE[M |T ]ε

)
=

βBS.Th
′

1− βBS.Th′
.

Using this together with the fact that Ψ′ = −(1−F ) (F is the standard normal cdf) gives

∂E[EC]

∂σE[M |T ]
= −E

[(
1− F

1− βBS.Th′
ε

)]
.

Setting k(x, β) = 1−F (x)
1−βh′(x) and a(ε) =

σE[M|T ]t+âs(σE[M|T ]ε)
σS|T

, this becomes

∂E[EC]

∂σE[M |T ]
= −

∫ ∞
−∞

k(a(η), βBS.T )ηf(η)dη.

Using symmetry of the normal density around zero,

∂E[EC]

∂σE[M |T ]
=

∫ ∞
0

(k(a(−η), βBS.T )− k(a(η), βBS.T )) ηf(η)dη.

The desired result now follows from the following facts. For each 0 ≤ β < 1, x 7→ k(x, β)

is quasiconcave and for each x ∈ R, β 7→ k(x, β) is increasing on [0, 1) and satisfies

limx→−∞ k(x, β) = 1 and k(0, β) = 0.5
(

1− 2β
π

)−1
. Hence, k(0, π4 ) = 1. It follows that

for β ≤ π
4 , (1) min

x≤0
k(x, β) ≥ max

x≥0
k(x, β), (2) x 7→ k(x, β) is decreasing on R+. Hence,

x > 0, x′ < x imply k(x′, β) > k(x, β). Since a is an increasing function and it is positive

on R++, it follows that k(a(−t), β) > k(a(t), β) for t ∈ R++, therefore
∂E[EC]
∂σE[M|T ]

> 0 as

required.

Proposition 5, Part 1, establishes that expected adverse selection is increasing in all

three parameters. It is intuitive that E[AS] is increasing in the information gap and

relevance of the seller’s value parameters. The reason why E[AS] is increasing in the quality

of public information about match quality is slightly less obvious but it arises via Jensen’s

inequality from a natural convexity– when apparent match quality is high adverse selection

will be positive and large, but when apparent match quality is low adverse selection remains

bounded from below by zero.
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Parts 2 and 3 of the proposition establish the effect of the parameters on expected

effi ciency. Comparing two information structures with the same σS|T and σE[M |T ]
9, the

information structure for which βBS.T is larger leads to less expected effi ciency. Hence,

there is a trade off between E[AS] and E[EC] for fixed σS|T and σE[M |T ]. This is consis-

tent with the familiar intuition from models with scalar types and no public information.

On the other hand, holding σS|T and βBS.T fixed (with the latter not too large), better

public information about the match quality increases both expected adverse selection and

expected effi ciency.

Proposition 6 For each fixed σS|T , E [EC] and E [AS] satisfy a strict Spence-Mirrlees

condition in each of βBS.T and σE[M |T ]. Specifically,

∂E [AS]

∂σE[M |T ]
/
∂E [AS]

∂βBS.T
>
∂E [EC]

∂σE[M |T ]
/
∂E [EC]

∂βBS.T
.

Proof. Implicit differentiation of (9) gives

∂E[EC]

∂σE[M |T ]
= E

[
Ψ′.

(
∂AS

∂σE[M |T ]
+ ε

)]
,

∂E[EC]

∂βBS.T
= E

[
Ψ′.

∂AS

∂βBS.T

]
< 0,

the inequality following from Ψ′ < 0. Similarly, implicit differentiation of the representation

for âs in (8) gives

∂E[AS]

∂σE[M |T ]
= E

[
∂AS

∂σE[M |T ]

]
= E

[
βBS.Th

′

1− βBS.Th′
ε

]
> 0,

∂E[AS]

∂βBS.T
= E

[
∂AS

∂βBS.T

]
= E

[
σS|Th

1− βBS.Th′

]
> 0.

The marginal rate of substitution between σE[M |T ] and β for the function E[AS] is given

9For instance, this would arise under two information structures with the same public information and
with private information equally good for estimating VS . To see this, note first that private information
Q does not affect σE[M|T ] (recall V ar(E[M |T ]) = V ar(E[VB − VS |T ])). Second, σS|T is a measure of the
quality of information about VS .
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by
∂E[AS]
∂σE[M|T ]
∂E[AS]
∂β

=
β

σS|T

E
[

h′

1−βh′T
]

E
[

h
1−βh′

] = k > 0.

Thus, with k so defined, the operator Dk defined as Dk =
(

∂
∂σE[M|T ]

− k ∂
∂β

)
satisfies

Dk (E[AS]) = E[Dk (AS)] = 0.

We will show

Dk (E[EC]) = E[Dk (EC)] = E
[
Ψ′. (Dk (AS) + ε)

]
> 0.

First, noting that Ψ′ is increasing in ε, hence, Ψ′ and ε have a positive covariance E [Ψ′.ε] >

0. It suffi ces therefore to show that

E
[
Ψ′.Dk (AS)

]
> 0.

Note that

Dk (AS) =
βBS.Th

′

1− βBS.Th′

(
ε−

kσS|T
βBS.T

h

h′

)
.

The function x 7→ h(x)/h′(x) is increasing and starshaped (Lemma B1 in Appendix B). It is

a consequence of Lemma B1 that
âs(σE[M|T ]ε)+σE[M|T ]ε

σS|T
is starshaped in ε (which is inherited

from h). Hence, since starshaped functions are closed under composition, Dk (AS) has a

single sign change from negative to positive as ε traverses from −∞ to ∞. The rest of the
proof is standard. Suppose Dk (AS) is zero at some realisation ε = ε′, then setting c equal

to the value taken by Ψ′ at ε′ and using the fact that Ψ′ is increasing in ε, it is established

that (Ψ′ − c) .Dk (AS) ≥ 0 on R , the inequality being strict except at ε′. Therefore,

0 < E
[(

Ψ′ − c
)
.Dk (AS)

]
= E

[
Ψ′.Dk (AS)

]
− cE [Dk (AS)] = E

[
Ψ′.Dk (AS)

]
.

This establishes Dk (E[EC]) > 0. Since ∂E[EC]
∂βBS.T

< 0, this implies the result.

Comparing two information structures with σS|T fixed and which generate the same

amount of expected adverse selection, the information structure with better public infor-

mation about match quality leads to higher expected effi ciency.

Propositions 5 and 6 have a useful implication which is illustrated in Figure 1. The
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figure illustrates the level sets of E[AS] and E[EC], their general shape are as established in

the Propositions. It is assumed that the vertex of the cone which is at (0, β) satisfies β ≤ π
4 .

On the positively oriented extreme ray of the cone, Proposition 6 applies to ensure that

there is a direction of increase of both E[AS] and E[EC] pointing into the interior of the

cone. Similarly, on the negatively oriented extreme ray of the cone, Proposition 5 applies

to ensure that there is a direction of increase of both E[AS] and E[EC] pointing into the

interior of the cone. Hence, there is always a direction pointing into the interior of the cone

in which both E[AS] and E[EC] are increasing. Moreover, as illustrated, this direction may

be chosen such that such that σE[M |T ] is increasing and |β − βBS.T | is decreasing. This is
stated formally in Corollary 1 below.

Fig 1: Implication of Propositions 5 and 6: Paths into the

body of the cone.

Definition 6 Let C be a cone in R+ ×R with vertex (0, β) and non-empty interior which

contains the horizontal line segment through its vertex, i.e. {(a1, β) ∈ R2
+|a1 ≥ 0}. Let

â = (â1, â2) lie on an extreme ray of C. We say the path p : R+ → C, p(a1) = (a1, ϕ(a1))

with ϕ : R+ → R is from â into the body of the cone if p(â1) = (â1, â2) and a1 7→ |ϕ(a1)− β|
is decreasing on [a1,∞).
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Corollary 1 Let C be a closed convex cone satisfying the conditions of Definition 6 for

some 0 ≤ β ≤ π
4 . Suppose â = (σE[M |T ], βBS.T ) ∈ R+ × [0, 1) lies on an extreme ray of C,

there is a path from â into the body of the cone along which both E[AS] and E[EC] are

increasing.

Proof. On the positively oriented extreme ray of the cone, Proposition 6 together with
the fact that E[AS] is increasing in both σE[M |T ] and βBS.T applies to ensure that there

is a direction of increase of σE[M |T ] and decrease of βBS.T which increases both E[AS]

and E[EC]. This establishes to conclusion if â is on the positively oriented extreme ray.

Similarly, on the negatively oriented extreme ray of the cone, Proposition 5 applies–

increasing σE[M |T ] with βBS.T constant suffi ces.

3.3 A Sampling Example

The following example illustrates different possible relationships between aggregate adverse

selection and effi ciency that may arise through different information structures.

Suppose seller and buyers obtain noisy samples of the valuations:

Q = (VS + ε1, ..., VS + εNS , VB + ν1, ..., VB + νNB ) ,

T = (VB + ν1, ..., VB + νNT ) , NT ≤ NB.

Private information Q consists of NS samples of the seller’s valuation VS = VB + VM

and NB samples of buyers’ valuation VB. Some of the samples of buyers’ are publicly

available in T . Hence, elements of Γ are identified with three numbers: NS , NB, and NT ,

Γ ⊂ {(NS , NB, NT ) ∈ N3 | 0 ≤ NT ≤ NB, 0 ≤ NS}.
All random variables are independently distributed, and assumed to be N (0, 1) except

for VB ∼ N
(
µ, σ2

VB

)
and VM ∼ N

(
0, σ2

VM

)
. Below, we describe how changes in the

information structure, that increase the asymmetry in information between the seller and

buyers, affect adverse selection and effi ciency.

a. Fewer public samples of buyer value.

Suppose that the information structure (Q′, T ′) involves public information T ′ that

contains fewer samples of buyer value VB than the public information T associated

with the information structure (Q,T ) (lower NT with no change in NB and NS).

Both the information gap and informed party relevance are bigger under (Q′, T ′) than

20



(Q,T ). Hence, AS′ > AS. To see that EC ′ < EC, note that βBS.T = 1 − βMS.T .

Using the orthogonality ofM and T, it follows that 1−βBS.T = σMS

σ2
S|T
, therefore, since

σMS is unaffected by information disclosure, σS|T (1− βBS.T ) = σMS
σS|T

is decreasing in

the information gap. This gives the result.

b. More private samples of buyer value.

Suppose (Q′, T ′) contains more samples of VB than (Q,T ) (higher NB with no change

in NS and NT ). It can be shown that both the information gap and informed party

relevance are bigger under (VB, VS , Q
′, T ′) than (Q′, T ′). Hence, it is immediate that

AS′ > AS. We can also show that EC ′ < EC. As in part a., this is established

by showing that collecting more samples of VB decreases βMS.TσS|T . The intuition

is that collecting more samples of VB makes S a noisier measure of M given public

information. Note that βMS.TσS|T is a measure of how much information S contains

about M .

c. More private samples of seller value.

In a. and b. above, adverse selection and effi ciency go in opposite directions. Here

is a case where they go together. Suppose Q = T = VB + ν1, then AS = EC =

0. However, with Q′ = (VB + VM + ε1, VB + ν1) , T ′ = VB + ν1 (higher NS with

no change in NB and NT ) there is both positive adverse selection and effi ciency

contribution.

4 Effi cient Adverse Selection

As argued above, in aggregate comparisons of information structures, no clear relation-

ship need arise between aggregate adverse selection and effi ciency. To gain intuition, and

to speak to applications were information structures might arise endogenously,10 we ex-

plore how keeping fixed the private information of the seller, different public information

disclosure can impose a fixed quantity of adverse selection most effi ciently.

4.0.1 Preliminaries

In the Gaussian case, an information structure I = (VS , VB, Q, T ) from a set Γ of feasi-

ble information structures can be identified one-to-one with a set of symmetric positive
10We speak to one such application in the labour market explicitly in Section 5.2, and at much greater

length in Bar-Isaac, Jewitt and Leaver (2015).
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semidefinite covariance matrices partitioned as

ΣI =

 ΣV ΣV Q ΣV T

ΣQV ΣQ ΣQT

ΣTV ΣTQ ΣT

 , (10)

each containing ΣV as the first 2 × 2 elements and with ΣQ and ΣT positive definite

(if necessary delete redundant elements). V denotes the vector of employment values

(VS , VB). Note that we write ΣV rather than ΣVSVB for later convenience. Using this

notation, that the private information Q contains public information T can be written as

ΣV T = ΣV QΣ−1
Q ΣQT .

Definition 7 The seller has fixed private information Q if for each I ∈ Γ, (V,QI , TI) is

equal in distribution to (V,Q, TI). Hence, SI = E[VS |Q] = S and BI = E[VB|Q] = B, for

each I ∈ Γ.

Notation 4 Let Sn denote the set of n × n symmetric matrices, S+
n ⊂ Sn positive semi-

definite, S++
n ⊂ S+

n positive definite. For n = 2 + nQ + nTI , S
+
(
Σ(V,Q)

)
denotes the set of

all finite symmetric positive semidefinite matrices partitioned as in (10) with

Σ(V,Q) =

[
ΣV ΣV Q

ΣQV ΣQ

]
(11)

as the first (2 + nQ)× (2 + nQ) elements. For A,B ∈ Sn, we write A � B if B − A ∈ S+
n

and A ≺ B if B − A ∈ S++
n . 0 ∈ Sn denotes the n-dimensional null matrix, hence A � 0

means A is positive definite. ΣSB and ΣSB|T denote the 2×2 unconditional and conditional

covariance matrices:

ΣSB =

(
σ2
S σSB

σSB σ2
B

)
, ΣSB|T =

(
σ2
S|T σSB|T

σSB|T σ2
B|T

)
.

4.0.2 Disclosure with Fixed Private Information

With fixed private information, different elements of Γ correspond to different public in-

formation disclosures. We are especially interested in the case of Gaussian information

structures where there are no further constraints on information disclosure apart from the

fact that one cannot disclose what is not known. We write Γ = ΓQ to denote the set of
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such Gaussian information structures with fixed private information Q. ΓQ can be iden-

tified one-to-one with the subset of S+
(
Σ(V,Q)

)
satisfying ΣV T = ΣV QΣ−1

Q ΣQT
I
. We can

therefore define the set of possible expected adverse selection-effi ciency pairs that such an

information structure could generate as

Ω(ΓQ) =
def

{
(E[AS],E[EC]) | ΣI ∈ S+

(
Σ(V,Q)

)
,ΣV TI = ΣV QΣ−1

Q ΣQTI

}
.

The set S+
(
Σ(V,Q)

)
of positive semidefinite matrices with (11) as the initial block of

elements is a rather large one from which to choose, especially since the overall dimension-

ality is not specified a priori. However, Proposition 5 established that adverse selection

E[AS] and effi ciency E[EC] depend on a much lower dimensional parameter space. The

following lemma achieves a similar reduction in dimensionality to three (the elements of a

symmetric 2× 2 matrix) bounded by semidefinite constraints.

Lemma 2 The set Ω(ΓΣV Q) can be parameterized equivalently as

Ω(ΓQ) =
{

(E[ASI ],E[ECI ]) | ΣSB|TI ∈ S2, 0 � ΣSB|TI � ΣSB

}
.

Proof. Proposition 5 applies wherever AS is defined. Hence, the marginal distribution of
AS is determined by the three quantities σS|T , βBS.T , σE[M |T ]. Similarly for EC. By the law

of total variance σ2
E[M |T ] = σ2

M−σ2
M |T = σ2

M−(σS|T−σB|T )2. σ2
M is determined only by the

private information of training firm, Q, so remains constant. Hence σ2
E[M |T ] is determined

by the conditional covariance matrix. It follows immediately from the standard formula

for univariate regression that βBS.T = σBS|T /σ
2
S|T . Therefore, βBS.T is also determined by

the conditional covariance matrix. Hence, E[EC] and E[AS] depend on Σ ∈ S+
(
Σ(Y,QI)

)
only through Σ(S,B)|T ∈ S2. This establishes the first part of the parameterization.

It remains to establish the semidefiniteness conditions. The constraint 0 � Σ(S,B)|T

arises because Σ(S,B)|T is a covariance matrix and so must be positive semidefinite. The

second semidefinite constraint states that Σ(S,B)|T must also be smaller in the semidefinite-

ness order than the unconditional covariance matrix for (S,B) . To see this, note by the

law of total variance V ar ((S,B)) = E[V ar ((S,B)|T )] + V ar((E[S|T ],E[B|T ])).

Given inside information Q, what type of public information TI generates the maximum

expected effi ciency for a given expected quantity of adverse selection? Lemma 2 suggests
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that the problem may be formulated as the following nonlinear semidefinite program:

V (ΣSB, AS) = max
ΣSB|TI∈S2

E[ECI ] (P1)

subject to E[ASI ] ≥ AS, and 0 � ΣSB|TI � ΣSB.

Thus the problem is reduced to choosing a 2×2 conditional covariance matrix ΣSB|TI ∈
S2 for (S,B). In what follows, we will say I ∈ Γ solves the program P1 if ΣSB|TI ∈ S2

solves P1. Our next result establishes conditions for this optimum. Since the statistic TI
is not uniquely defined (because any full rank linear transformation of TI carries the same

information), the TI identified in the statement of this proposition should be understood

as unique up to equivalence classes.

Proposition 7 Suppose information structures are Gaussian with fixed inside information
Q, and suppose βSB ≤ π

4 . If I ∈ Γ solves program P1 for some AS ≥ 0, then ΣSB|TI is

singular. Furthermore,

1. If B and S are colinear (B = β0 + βBSS), then for some ε⊥B, ε ∼ N(0, σε), T =

B + ε.

2. If B and S are not colinear, TI is two dimensional and for some α ∈ R2, B =

βBS.TS + α · T .

Proof. Proposition 6 implies that at least one of the constraints 0 � ΣSB|T or ΣSB|T �
ΣSB must bind, therefore it suffi ces to show that ΣSB|T � ΣSB does not bind alone.

Equivalently, that ΣSM |T � ΣSM does not bind alone. The constraint ΣSM |T � ΣSM

expressed in terms of βBS.T , σE[M |T ], σ
2
S|T becomes

0 �
(

σ2
S − σ2

S|T (1− βBS.T )σ2
S|T

(1− βBS.T )σ2
S|T σ2

M − σ2
E[M |T ]

)
.

That is, (σE[M |T ], βBS.T ) is contained in a cone with vertex at (0, β) with (1−β)σ2
S|T = σSM ,

i.e. β = 1 − σSM
σ2
S|T
≤ 1 − σSM

σ2Sγ
=

σ2S−σSM
σ2S

= σSB
σ2S

= βBS . If βBS ≤ π
4 , this cone satisfies

the conditions of Corollary 1 and applying the corollary, there is a direction of increase for

E[AS], E[EC] pointing into the interior of the cone. Hence the constraint ΣSM |T � ΣSM
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does not bind alone. Therefore ΣSB|T is singular as required. This argument establishes

the result for the nondegenerate cases σ2
S|T , 0 < σ2

S|T < σ2
S . If σ

2
S|T = σ2

S , T is orthogonal

to S and the cone has no interior. However, in this case the cone degenerates into the line

segment β = βBS . Proposition 5 implies that traversing this line segment in a direction of

increasing σE[M |T ] increases E[EC] and E[AS], so the result still holds. If σ2
S|T = 0, then

ΣSB|T is singular so there is nothing to prove.

The result identifies (up to equivalence classes) the public information disclosures as-

sociated with effi cient imposition of adverse selection. The constraints in P1 bind in a
particular way– such that the matrix ΣSB|TI is singular. This condition implies that,

given TI , S and B have a singular covariance matrix and therefore that there is an affi ne

relationship between them.

The basic idea of the proof follows easily from Corollary 1. Either the constraint

ΣSB|TI � ΣSB binds, or 0 � ΣSB|T binds. In the latter case ΣSB|T is evidently singular as

claimed. The constraint ΣSB|T � ΣSB can be expressed as a conical one to which Corollary

1 applies, implying there is a path of increasing E[AS] and E[EC] into the body of the

cone– in other words, the constraint ΣSB|T � ΣSB does not bind (in isolation). Hence,

the result.

4.1 Information Acquisition

4.1.1 Information Acquisition

In this section, we explore how the quality of private information affects the trade-off be-

tween adverse selection and effi ciency. Hence, we are interested in the incentives for firms’

to acquire information. We begin by establishing that it is not always possible to ‘neutral-

ize’ the effect of acquiring more private information via a public information disclosure.

Notwithstanding this result, we are still able to show that information acquisition expands

the expected adverse selection-effi ciency frontier.

The Diffi culty of Neutralizing Private Information It should be obvious that

the effect of acquiring more inside information on expected adverse selection and effi ciency

will depend on disclosure, i.e. whether this information is passed into the public domain. A

more subtle point is that acquiring more inside information and disclosing it will typically

result in a different combination of expected adverse selection and effi ciency relative to

not acquiring the information in the first place. To see this, it is helpful to return to our
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concrete example in Section 3.3.

Sampling example (continued) Suppose that under information structure γ, Q =

VS and Tγ = ∅ (i.e. large M, N = n = 0), and under information structure γ′,

Qγ′ = (VS , VB), and TγI = VB (i.e. large NS , large NB = NT ). The change from in-

formation structure γI to γ
′
I therefore corresponds to the situation where the seller learns,

and discloses, the buyer’s value; i.e. it passes all of its extra private information into the

public domain. Under information structure γ′, there is full effi ciency and no adverse se-

lection. In contrast under information structure γ, there is positive adverse selection but

not full effi ciency (even relative to the worse information).

In light of this example, it is natural to ask whether there is some (other) disclosure

policy that will neutralize the acquisition of more inside information.

Remark 2 In the Gaussian case, suppose Q′ is more informative than Q. The following
statements are equivalent.

1. For any γ ∈ ΓQ, there is a γ′ ∈ ΓQ′ such that (ASγ′ , ECγ′) is equal in distribution to

(ASγ , ECγ).

2. The improvement in information leaves unchanged the correlation between B and S,

that is σSM = σS′M ′.

Proof. It is required that for each disclosure Tγ under private information Q, there ex-
ists a choice of T ′ under private information Q′ such that (1) E[M ′|T ′] has the same
distribution as E[M |T ], i.e. V ar(E[M ′|T ′]) = V ar(E[M |T ]). (2) the functional forms

of âM and êc are the same in the two cases. Hence, we require it be possible to set

σ2
S′|T ′ = σ2

S|T and βB′S′.T ′ = βBS.T and V ar(E[M ′|T ′]) = V ar(E[M |T ]). Equivalently,

σM ′S′|T ′ = σMS|T , σ2
S′|T ′ = σ2

S|T and V ar(E[M ′|T ′]) = V ar(E[M |T ]). By the law of

total variance V ar(E[M |T ]) = σ2
M − σ2

M |T , similarly for V ar(E[M ′|T ′]). Hence, we re-
quire σ2

M ′|T ′ = σ2
M ′ − σ2

M + σ2
M |T . It is also required that the semidefinite constraints

0 � ΣS′M ′|T ′ � ΣS′M ′ are satisfied. In sum, we require that for any 2×2 symmetric matrix

ΣSM |T satisfying 0 � ΣSM |T � ΣSM , it is also true that 0 � ΣSM |T +

(
0 0

0 σ2
M ′ − σ2

M

)
�

ΣS′M ′ , where σ2
M ′ − σ2

M ≥ 0 by the fact that Q′ is more informative than Q. Since
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(
0 0

0 σ2
M ′ − σ2

M

)
is positive semidefinite, 0 � Σ(S,M)|T +

(
0 0

0 σ2
M ′ − σ2

M

)
is evi-

dently satisfied so the condition reduces to Σ(S,M)|T +

(
0 0

0 σ2
M ′ − σ2

M

)
� Σ(S′,M ′). Given

Σ(S,M)|T � Σ(S,M), it suffi ces that Σ(S,M) +

(
0 0

0 σ2
M ′ − σ2

M

)
� Σ(S′,M ′). Equivalently,

0 �
(

σ2
S′ − σ2

S σ2
S′M ′ − σ2

SM

σ2
S′M ′ − σ2

SM 0

)
which holds if and only if σ2

S′ ≥ σ2
S (which is en-

sured by Q′ is more informative than Q) and σ2
S′M ′ = σ2

SM , which is the desired result.

The condition in Remark 2 is strong. Typically, acquisition will improve information

about match quality, and it will not be possible to neutralize the effects of more pri-

vate information simply by passing it on. This diffi culty arises because of the parameter

σ2
E[M |T ] = σ2

M −σ2
M |T . To retain this at its previous level when Σ(S,B) increases to Σ(S′,B′),

σ2
B|T must also increase by the same amount.

Information Acquisition Increases Effi ciency If it were possible to neutralize

private information via disclosure, then establishing that information acquisition (weakly)

increases effi ciency would be trivial. Notwithstanding Remark 2, we can use the results of

Section 4 via Corollary 1 to establish that private information acquisition can expand the

adverse selection-effi ciency frontier.

Proposition 8 With free disclosure of information, information acquisition increases ef-
ficiency. Specifically, V

(
Σ(S,B), AS

)
is increasing in Σ(S,B) in positive semidefinite order

in the region βBS ≤ π
4 .

Proof. As in the proof of Proposition 7, for fixed σS|T , the constraint Σ(S,B)|T � Σ(S,B)

represents, in (σE[S|T ], βBS.T ) space as a cone satisfying the conditions of Corollary 1. The

corresponding region for the constraint 0 � Σ(S,B)|T is a convex elliptical region containing

the vertex of the cone. Improving the information from Σ(S,B) to Σ(S′,B′) � Σ(S,B) enlarges

the elliptical region by set inclusion, but shifts the cone so that neither of the two constraint

sets generally contains the other. The general situation is as illustrated in Figure 2 in which

the cone with vertex at (0, β) represents the constraint set with less private information and
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the one with vertex at (0, β′) represents the constraint set with better private information.

The two constraint sets have been drawn to satisfy the conclusion of Proposition 8 which

asserts that the set of βBS.T achievable with less private information is also achievable

with more private information. By Corollary 1 from any point in the constraint with

vertex at (0, β), there must be a path along which both E[EC] and E[AS] are increasing

which eventually passes into the constraint set with vertex at (0, β′). (Note, one can always

construct a new cone which is a subset of the one with vertex at (0, β)– the construction

is shown for the path initiating on the elliptical part of the constraint.) This establishes

the conclusion.

Illustration for Proof of Proposition 8.

Proposition 8 establishes that, if βBS is not too large, private information acquisition

expands the adverse selection-effi ciency frontier. As with Proposition 7 the gist of the proof

follows easily given Corollary 1. The constraints Σ(S,B)|T � Σ(S,B) and 0 � Σ(S,B)|T boil

down respectively to a cone satisfying the conditions of Corollary 1 and a convex elliptical

set containing the vertex of the cone. Improving private information for fixed TγI , expands

the elliptical set in the sense of set inclusion, but generally shifts the vertex of the conical
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set. So the intersection of the two constraint sets are not generally ordered by set inclusion

as private information improves (Remark 2 already implies this). Notwithstanding this,

it is very easy to show that the set of attainable βBS.T under better private information

contains the set of attainable βBS.T under worse private information. Given this fact,

Corollary 1 is easily seen to imply that from any point in the intersection of constraint

sets with worse private information, there is a path along which which E[AS] and E[EC]

are both increasing and which passes into the intersection of the constraint sets for better

private information. Hence, the conclusion of the proposition is established.

5 Discussion and Applications

5.1 Empirical Consequences

Comparing prices of traded and non-traded goods In the classic Akerlof (1970)

with only a single (null) realization of public information, the price of traded and non-traded

goods is identical. However, in aggregating across realizations of public information, since

both the propensity for different public realizations and the probability of trade associated

with each realization vary, this is a meaningful comparison. The following result provides

a characterization. We discuss a labor market implication in Section 5.2 below.

Proposition 9 Suppose the conditions of Proposition 2 hold.

1. If E[B|T ] and E[M |T ] are negatively quadrant dependent (NQD),11 then the average

price of trade goods is higher than the average price of non-traded goods; that is,

E[P |S < P ] > E[P |S ≥ P ].

2. If (T, S,B) is affi liated and t 7→ E[M |T = t] is increasing, then E[B|T ] and E[M |T ]

are positively quadrant dependent (PQD),12 moreover, the average price of traded

goods is lower than the average price of non-traded goods.

Proof. 1. From the price equation (3), E[RP ] = E[E [B|T ]R]− E[(AS)R]. If E[B|T ] and

E[M |T ] are NQD, then since R is a decreasing function of E [M |T ], E [B|T ] and R are PQD

and, consequently, have a positive covariance. Therefore, E[E [B|T ]R] ≥ E [B|T ]E[R].

11A suffi cient condition for NQD is σBM > σBM|T ; i.e. if disclosure of public information decreases the
correlation between B and M . Appendix C briefly reviews statistical dependence concepts.
12A suffi cient condition is that βBT.S ≥ 0, βBT ≥ 0, βMT ≥ 0 and T is affi liated.
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Since Proposition 11 below asserts that E[(AS)R] < E[AS]E[R], it follows that E[RP ] >

E[P ]E[R], i.e. the average wage of released workers is higher than the average wage, as

required.

2. Suppose (T, S,B) is affi liated. Theorem 5 of Milgrom and Weber (1981) implies that the

willingness to pay mapΨ of Definition 3 maps increasing functions into increasing functions.

Hence, the wage schedule, which is the unique fixed point of this map, is an increasing

function. If t 7→ E[M |T = t] is increasing, then by Proposition 3, t 7→ r(t) is decreasing.

Hence, since T is affi liated, the covariance inequality E[p(T )r(T )] ≤ E[p(T )]E[r(T )] holds.

Since E[r(T )] = Pr[S < P ], Bayes law gives E[P ] ≥ E[P |S < P ] as required.

The proposition uses Lehmann’s (1966) notions of positive and negative quadrant de-

pendence for pairs of random variables (PQD and NQD respectively). If a pair of random

variables are PQD, they are also positively correlated. For the readers convenience, Ap-

pendix C gives a brief summary. While our framework allows for multidimensional public

and private information, this result makes clear the importance of the correlation or other-

wise of just two scalar statistics, E[B|T ] and E[M |T ]. The basic intuition follows from our

result that the probability of trade, R, is high when E[M |T ] is low. If E[B|T ] and E[M |T ]

are ‘negatively correlated’, then it is intuitive that the workers more likely to leave will be

those more highly valued by outside firms. The proposition makes this intuition precise.

Finding adverse selection when public information is not observed by the econo-
metrician In our unit-demand model, the positive correlation test for adverse selection

(Chiappori and Salanie 2000) becomes a simple test of whether adverse selection is posi-

tive. As was stressed by Chiappori and Salanie, since theory implies different observable

types should be offered different contracts, one should control for public information and

hence test whether AS = E [B|T ] − E [B|T, S < P ] > 0. However, if there is unobserved

heterogeneity, i.e. T is poorly observed by the econometrician, this control is diffi cult. A

natural surrogate is to estimate the quantity of adverse selection in the aggregated market

constructed by ignoring T , specifically E [B]−E [B|S < P ]. Our next result speaks to what

may be learned from this quantity.

Since E[AS] = E[B]− E[P ], the difference between the quantity of adverse selection in

the aggregated market and the average quantity of adverse selection can be written as

E[B]− E[B|S < P ]− E[AS] = E[P ]− E[P |S < P ]. (12)

30



It follows that the quantity of adverse selection in the aggregated market will overestimate

(underestimate) the average quantity of adverse selection in cases where the average price

of traded goods is higher (lower) than of non-traded goods. Proposition 9 therefore has

the immediate corollary that the aggregated market will overestimate (underestimate) the

average quantity of adverse selection according to whether Condition 1. or 2. of Proposition

9 obtain. The following proposition strengthens the bound obtained in the first part of

this corollary and provides conditions for a weaker bound in the second part.

Proposition 10 Suppose the conditions of Proposition 2 hold. If E[B|T ] and E[M |T ] are

NQD then

E[B]− E[B|S < P ] ≤ E[AS|S < P ].

If E[B|T ] and E[M |T ] are PQD the direction of inequality is reversed.

Proof. By the definition of adverse selection and the wage equation E[AS|S < P ] =

E[E[B|T ] − B|S < P ]. Hence, by straightforward manipulations E[B] − E[B|S < P ] =

E[AS|S < P ]+E[E[B]−E[B|T ]|S < P ]. The result now follows from noting that E[E[B]−
E[B|T ]|S < P ] = E[(E[B]− E[B|T ])R]/E[R]. Hence, E[B]−E[B|S < P ] = E[AS|S < P ]−
Cov

(
E[B|T, ], R

E[R]

)
. Since Cov

(
E[B|T, ], R

E[R]

)
is positive if E[B|T ] and E[M |T ] are NQD

and negative if PQD, the result is established.

This result raises the possibility of an effect reversal (Yule 1903; Simpson 1953) in which

E[B]−E[B|S < P ] ≤ 0 notwithstanding the fact that AS > 0. The intuition for this effect

reversal is clearly similar to that of Proposition 9. The probability of trade R is high when

E[M |T ] is low. So if E[B|T ] is high when E[M |T ] is low, the value of traded goods might

be higher than the value of the population not trading.

Adverse selection falls mainly on trades that do not take place As noted above,

in the empirical investigation of markets (potentially) impacted by adverse selection data

may well be incomplete. For example, prices of used cars are generally only available for

those used cars which are actually traded.

Proposition 11 Suppose the conditions of Proposition 2 hold. The average quantity of ad-
verse selection conditional on trade taking place is an underestimate of the average quantity

of adverse selection. Hence,

0 ≤ E[AS|S < P ] ≤ E[AS].

31



Proof. Since AS and R are respectively increasing and decreasing functions of E [M |T ],

they are negatively correlated, it follows that E[AS|S < P ] = E[(AS)R]
E[R] ≤ E[AS].

This proposition establishes that adverse selection falls mainly on trades that do not

take place. Hendren (2013) makes a similar point. He argues that severity of asymmetric

information explains insurance rejections in non-group health insurance markets. Hence,

failure of the positive correlation test for those who obtain (some) insurance does not

necessarily mean that there is no adverse selection in the market overall. Hendren’s model

retains the scalar type assumption and adverse selection is not always ‘interior’ (in the

language of the current paper, for some realization of T the probability of trade is zero,

hence insurance rejections). Although the models are different, both point to the obvious

importance of taking into account trades which do not occur when estimating the amount

of adverse selection in the economy and its impact on market effi ciency.

Proposition 11 means that adverse selection concentrates disproportionately where

trades do not take place, and we remarked that depending on data availability this might

impede its detection.

5.2 Labour Market Application

In the labor market interpretation pursued at length in Bar-Isaac, Jewitt and Leaver (2015),

the seller can be seen as a current employer, and buyers as rival employers who might try to

raid an employee, along the lines of Waldman (1984) and Greenwald (1986). Thus p would

be understood as a wage, and the quantity of adverse selection and its effect on wages is

of direct interest in speaking to the distribution of surplus between employer and worker.

In this interpretation, B can be understood as general human capital, S the productivity

of the worker at the current employer, and M = S − B, the match-specific component of
worker productivity at the current employer.

Our results highlight that the information structure associated with a particular em-

ployer determines a worker’s outside opportunities and their wages.13 Indeed, to the extent

that firms can commit to information structures through rules, review procedures and orga-

nizational processes, firms would compete to attract workers through offering information

structures in addition to wages. Creating adverse selection (and thereby depressing wages)

is a means of transferring rents from worker to firm; however, it is clear that if attracting

13The empirical importance of such effects has been noted in the recent work of Pallais (2014), for
example, who contrasts wage prospects for workers under two different information structures.
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workers is a concern for a firm then it would seek to claw back rents in the most effi cient

way possible. In particular, for a firm with such concerns the analysis in Section 4.0.2 is

pertinent and the firm would adopt a disclosure policy characterized through Proposition

7.

In the interesting case where productivity at the current and rival firms is not colinear,

then by Proposition 7, B andM have a positive conditional correlation given T .14 It follows

from the law of total probability (law of total covariance) that Cov (E [B|T ] ,E [M |T ]) <

Cov(B,M). Hence, if Cov(B,M) ≤ 0, as will be reasonable to assume in certain applications–

e.g. it is true in the specification of the sampling example when private information is very

good (in the limit of large NB, NS)– then Cov(E [B|T ] ,E [S|T ]) < 0. Since negatively

correlated Gaussian random variables are NQD (Lehmann 1996, p.1139), we may apply

Proposition 9.

Corollary 2 Suppose the conditions of Proposition 7 hold and Cov(B,M) ≤ 0. If adverse

selection is induced effi ciently, then on average wages of those that stay with the employer

are lower than average wages of those who leave.

Corollary 2 is intuitive. The effi ciency contribution E[EC] determines the amount of

surplus to be distributed between the employer and the worker. Since the quantity of

adverse selection E[AS] determines the expected employment wage of the worker, it also

determines the distribution of this surplus between the training firm and worker. Firm

profits are maximized by inducing adverse selection effi ciently. Applying Proposition 7,

the way to do this is to impose adverse selection on those workers that it is effi cient

to keep, and allow higher wages for those workers who are more productively employed

elsewhere.

In the sampling example, if the employer has maximal private information, then Cov(B,M) =

0. Thus, applying Corollary 2, if the employer has the market power to depress wages (for

example, through providing good training opportunities), it will be a low wage firm. More-

over, this implies following Proposition 10 that adverse selection in the aggregated market

will underestimate expected adverse selection. Effect reversals are therefore a possibility,

implying that the standard test (Gibbons and Katz 1991) is no longer a necessary condition

for adverse selection.
14To see this note that, using S = B +M, we can rewrite the expression in the Proposition as G =
βBS.T

1−βBS.T
S + α · T , where to satisfy regression to the mean, βBS.T ∈ (0, 1).
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Specifically, Gibbons and Katz (1991) test for adverse selection by comparing wages for

workers who are selectively ‘laid off’and those who become unemployed due to exogenous

plant closures. With plant closures, there is no stigma so wages should on average be E[B];

however, for workers who are laid off, expected wages are E[P |S < P ] = E[B|S < P ].

Hence, (absent the econometrician observing T ) the Gibbons and Katz test reduces to

testing whether there is adverse selection in the aggregated market: E[B]−E[B|S < P ] > 0.

Our analysis suggests that this test may be problematic if the current employer can freely

commit to information from a broad class and is suffi ciently attractive to workers that

it has scope to claw back worker rents through imposing adverse selection effi ciently. A

necessary condition for adverse selection for the Gibbons and Katz (1991) test to find

adverse selection is if E [B|T ] and E [M |T ] are PQD– in the Gaussian case, this would

correspond to Cov(E [B|T ] ,E [M |T ]) ≥ 0. Evidently, an over-suffi cient condition for this

is if M and T are orthogonal; that is, if public information does not speak to the match

between worker and current employer.
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A Material Omitted from Section 2

Lemma A1 Suppose z ≤ z′, then E[ /B|z < /S] ≤ E[ /B|z′ < /S].

Proof. By the law of iterated expectations

E[ /B|z ≤ /S] = E [E [B|T ]− E[B|T, S] | z ≤ /S] .

Hence, by the law of iterated expectations again,

E[ /B|z ≤ /S] =

∫
E[E [B|T = t]− E[B|T = t, S] | T = t, z ≤ /S]dF

T |z≤ /S(t).

Where, F
T |z≤ /S is the conditional cdf of T given the event z ≤ /S. Since /S⊥T , F

T |z≤ /S = FT ,

the unconditional cdf. Hence,

E[ /B|z ≤ /S] =

∫
E[E [B|T = t]− E[B|T = t, S] | T = t, z ≤ E [S|T = t]− S]dFT (t).

The result now follows from the fact that, given 0 < βBS.T < 1, for each fixed t ∈ T the

integrand is increasing in z.

Proposition 2 In the equilibrium identified in Proposition 1, adverse selection, AS, and

the apparent match quality, E[M |T ], are comonotone random variables. Specifically, there

exists an increasing function âs : R→ R+ such that AS = as(T ) = âs(E[M |T ]).

Proof. (continued) It remains to confirm positivity and monotonicity. Lemma 1 implies

that adverse selection at T = t, as(t), is uniquely defined as the limit of the convergent

sequence a0, a1, a2, ... with ai+1 = E[ /B|ai+E[M |T = t] < /S]. as(t′) is defined by a similarly

defined convergent sequence a0, a
′
1, a
′
2... . Suppose that E[M |T = t′] > E[M |T = t].

It follows immediately from the positive dependence of ( /B, /S) (Lemma A1) that a′1 =

E[ /B|a0 + E[M |T = t′] < /S] ≥ a1, hence a′2 ≥ a′2. Similarly a
′
i ≥ ai for all i, therefore

as(t′) ≥ as(t). Positivity follows directly from Lemma B1.

B Material Omitted from Section 3.2

Properties of the normal hazard function

It is convenient to collect here some mainly familiar properties of the normal hazard

function (inverse Mills ratio).
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Lemma B1 The normal hazard function h : R→ R+, satisfies:

1. Level bounds. [x]+ < h(x) <
√

4+x2−x
2 <

∣∣x+ 1
x

∣∣ on R. This implies limx→∞
h(x)
x =

limx→∞h′(x) = 1.

2. Gradient bounds. x 7→ h(x) and x 7→ x − h(x) are both strictly increasing on R.
0 < h′ < 1 on R.

3. Convexity bounds. h is strictly convex and log concave on R. 0 < d
dx

h(x)
h′(x) < 1.

4. Starshaped. x 7→ h(x) and x 7→ h(x)
h′(x) are both strictly starshaped on R. We call a

function g : R → R with g(0) > 0 strictly starshaped if for all x ∈ R, 0 < α < 1,

αg(x) < g(αx).

Proof. Property 1. The lower bound and larger upper bound are in Gordon (1941). The
tighter upper bound was established by Birnbaum (1942).

Property 2. One easily verifies h′(x) = h(x)(h(x) − x) which, given Property 1, is

positive. Since convexity implies the derivative is increasing, the final statement of 1.

implies h′ < 1.

Property 3. Convexity was conjectured by Birnbaum (1950), and proved by Samp-

ford (1953). Logconcavity is established in Marshall and Olkin (2007) Lemma B.4 p.437.

Marshall and Olkin establish the result using an inequality of Birnbaum. A simpler proof

follows from using h′(x) = h(x)(h(x)−x) and using Property 2. That h/h′ is increasing fol-

lows immediately from the logconcavity of h. That d
dx

h(x)
h′(x) < 1, follows from the convexity

of h follows immediately from observing d
dx

h(x)
h′(x) = 1− h(x)h′′(x)

(h′(x))2
.

Property 4. A continuous positive function is starshaped on R if it is starshaped on

(0,∞). h is starshaped if h
′(x)
h(x) ≤

1
x on (0,∞). One easily verifies h′(x) = h(x)(h(x) − x).

Hence, it suffi ces to show that (h(x) − x)x ≤ 1, the result therefore follows from 1. To

establish x 7→ h(x)
h′(x) is starshaped on (0,∞), we require that h/h′x is decreasing on x > 0,

this follows from h being starshaped (h/x is decreasing) and by the convexity of h, 1
h′

is decreasing. Hence, the result follows from the fact that the product of two decreasing

positive functions is decreasing.
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C Material Omitted from Section 5: Brief Notes on Statis-

tical Dependence Concepts

The pair of scalar random variables (X1, X2) are said to be positively quadrant dependent

(PQD) Lehmann (1966) if for all x1, x2 in the support of (X1, X2)

Pr[X1 ≤ x1, X2 ≤ x2] ≥ Pr[X1 ≤ x1] Pr[X2 ≤ x2].

If the inequality is reversed (X1, X2) is said to be negatively quadrant dependant (NQD).

If (X,Y ) are PQD, then for any non-decreasing functions ϕ1, ϕ2 (ϕ1(X1), ϕ2(X2)) is PQD.

(Lehmann 1966, Lemma 1). Lehmann Lemma 3 establishes if (X1, X2) are PQD, for all

non-decreasing functions ϕ1, ϕ2 such that the expectations exist

E[ϕ1(X1)ϕ2(X2)] ≥ E[ϕ1(X1)]E[ϕ2(X2)],

ϕ1(X1) and ϕ2(X2) have a positive covariance. This condition is an equivalence so may

serve as an alternative definition of PQD.

Applying Bayes rule, PQD evidently implies Pr[X1 ≤ x1|X2 ≤ x2] ≥ Pr[X1 ≤ x1]

which in turn implies, if the expectations exist, E[X1|X2 ≤ x2] ≤ E[X1]. Kowalczyk and

Pleszcynska (1977) say (X1, X2) is EDQ+ if for all x2 in the support of X2,

E[X1|X2 ≤ x2] ≤ E[X1].

If the inequality is reversed, then Kowalczyk and Pleszcynska (1977) say (X1, X2) are

EDQ−.

Let the vector of random variables X = (X1, ..., Xn) have a density with respect to

Lebesgue measure f, X is said to be affi liated if f(x∨x′)f(x∧x′) ≥ f(x)f(x′) a.e. on R2n.

Equivalently, for each pair of nondecreasing functions and sublattice Z E[ϕ1(X)ϕ2(X)|Z] ≥
E[ϕ1(X)|S]E[ϕ2(X)|Z].

It is known that: (X1, X2) affi liated ⇒ (X1, X2) PQD ⇒ (X1, X2) EDQ+.
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