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Abstract

In this work, we extend our study in Chochola et al. [7] and propose some robust sequential procedure for the
detection of structural breaks in a Functional Capital Asset Pricing Model (FCAPM). The procedure is again
based onM -estimates and partial weighted sums ofM -residuals and “robustifies” the approach of Aue et al. [3], in
which ordinary least squares (OLS) estimates have been used. Similar to [3], and in contrast to [7], high-frequency
data can now also be taken into account. The main results prove some null asymptotics for the suggested test
as well as its consistency under local alternatives. In addition to the theoretical results, some conclusions from
a small simulation study together with an application to a real data set are presented in order to illustrate the
finite sample performance of our monitoring procedure.
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1. Introduction and statistical framework

Main aim of this work is to continue and extend our study in Chochola et al. [7] concerning the robust
monitoring of CAPM portfolio betas. The Capital Asset Pricing Model (CAPM), introduced by Sharpe [18] and
subsequently modified by many authors (see, e.g. Lintner [14], Merton [15] and others), is a still very popular
and widely used model for evaluating the risk of a portfolio of assets with respect to the market risk. However, it
is also well-known that the pricing of assets and predictions of risks may be incorrect and misleading if the model
parameters βi are varying over time. As in Aue et al. [3], we adopt here the arguments of Ghysels [9] and study
a (piecewise) unconditional CAPM, rather than a conditional version of the latter (cf., e.g., Andersen et al. [1]
for a comprehensive review), since in many cases misspecified conditional CAPMs tend to produce larger pricing
errors. For a more extensive discussion of this fact, we refer to Aue et al. [3], Sections 1 and 2, and the references
mentioned therein.

Indeed, contributing to avoid pricing and prediction errors was the main motivation for Aue et al. [3] in
constructing a sequential monitoring procedure for the testing of the stability of portfolio betas. The corresponding
stopping rules in [3] are based on comparing the (ordinary) least squares estimate (OLS) of the beta from a
historical data set (training period) to that from sequentially incoming new observations, and they were able to
take high-frequency data into account which is a typical situation in nowadays’ market analyses (see also Chochola
et al. [7] and the references mentioned therein).

Since OLS estimates may be sensitive with respect to outliers, we tried to “robustify” the Aue et al. [3]
approach in [7] by making use of M -estimates instead of least squares estimates and so are also able to deal with
heavier tail distributions than the OLS procedure. In a first step, however, we confined ourselves there to a study
of the CAPM without high-frequency observations. Aim of our present work now is to extend the latter study to
the Functional Capital Asset Pricing Model (FCAPM) taking also high-frequency observations into account. It
will turn out that, even in this more general situation, some moment conditions may be relaxed (cf., e.g., (B.4)
below compared to the corresponding assumption in [7]), but that, on the other hand and similar to Aue et al. [3],
certain smoothness conditions have to be added concerning the model’s intra-day behavior over time (see, e.g.,
(A.1)-(A.3), (B.5) and (B.7) below).

Note that, via Lp-m-approximability type conditions (cf. (B.4)-(B.5) below), our model is suitable for covering
general types of weak dependencies rather than strong dependencies in the sense of long memory. Monitoring
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procedures in the latter situation are still open for future work. On the other hand, in contrast to [3], our
present approach is now applicable to data sets under heavy-tailed (leptocurtic) and contaminated distributions
observed at high frequencies, which is certainly more useful in real data applications. The price to pay, however,
is that more involved techniques than those used in Chochola et al. [7] are required now and the computational
complexity increases as well. Nevertheless, a similar robust sequential monitoring procedure can be constructed
for the FCAPM portfolio betas, now also covering a high-frequency situation as described below.

We would like to mention, however, that our focus here is on the methodological and theoretical side, trying
to extend the work of Aue et al. [3] by using a robust approach and that of Chochola et al. [7] by including
high-frequency situations. Moreover, for the sake of illustration and comparison, we used the same data set as
in [3] for our application and a similar setting in the small simulation study of Section 3.

Our statistical framework in the sequel will be as follows. We consider the model

ri(s) = αi + βiriM (s) + εi(s), i ∈ Z, s ∈ [0, 1], (1.1)

where ri(s) = (ri,1(s), . . . , ri,d(s))
T is a d-dimensional vector of (functional) log-returns at (say) “day” i and “intra-

day time” s, riM (s) is the log-return of the market portfolio at day i and time s, and εi(s) = (εi,1(s), . . . , εi,d(s))
T

are d-dimensional (functional) error terms. The αi’s and βi’s are d-dimensional unknown parameters, and the
βi’s are the parameters of interest, usually called the “portfolio betas”. Note that the sequence {(ri(·), riM (·))}
is a (d+ 1)-dimensional (functional) time series satisfying certain conditions to be specified below.

We assume that a training sample of size m with no instabilities is available, i.e.,

α1 = . . . = αm =: α0 = (α0
1, . . . , α

0
d)

T , β1 = . . . = βm =: β0 = (β0
1 , . . . , β

0
d)

T , (1.2)

where α0 and β0 are unknown parameters. The problem of the instability of the portfolio betas is formulated as
a testing problem, that is, we want to test the null hypothesis

H0 : β1 = . . . = βm = βm+1 = . . .

of no “change versus” the alternative

HA : β1 = . . . = βm+k∗ �= βm+k∗+1 = . . .

of a “structural break” at an unknown change-point k∗ = k∗m.

For later convenience we reformulate our model as follows:

ri,j(s) = α0
j +β

0
j riM (s)+(α1

j +β
1
j riM (s))δmI{i > m+k∗}+εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (1.3)

where k∗ = k∗m is the change-point and α0
j , β

0
j , α

1
j , β

1
j , δm are unknown parameters.

As in [7], our test procedures will be generated by convex loss functions �1, . . . , �d with a.s. derivatives �′j = ψj

called score functions having further properties to be specified later. The estimators α̂jm = α̂jm(ψj), β̂jm =

β̂jm(ψj) of α
0
j , β

0
j based on the training sample are defined as minimizers of

m∑
i=1

n∑
ν=1

�j(ri,j(sν)− aj − bjriM (sν)) (1.4)

w.r.t. aj , bj , for j = 1, . . . , d, where sν = ν/n, ν = 1, . . . , n, are n equidistant intra-day time-points.

The test procedure constructed below will be based on functionals of partial sums of weighted M -residuals, which
are defined as follows:

ψ(ε̂i(sν)) = (ψ1(ε̂i,1(sν)), . . . , ψd(ε̂i,d(sν)))
T (1.5)

with

ε̂i(sν) = (ε̂i,1(sν), . . . , ε̂i,d(sν))
T ,

ε̂i,j(sν) = ri,j(sν)− α̂jm − β̂jmriM (sν). (1.6)

A suitable test statistic based on the first m+ k (functional) observations is

Q̂(k,m) =
( 1√

m

m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(ε̂i(sν))
)T

Σ̂
−1

m

( 1√
m

m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(ε̂i(sν))
)

(1.7)

where n = n(m) (see below) and the matrix Σ̂m is an estimator of the asymptotic variance (matrix)

Σ = lim
m→∞

var
{ 1√

m

m∑
i=1

∫ 1

0

riM (s)ψ(εi(s))ds
}

(1.8)
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based on the first m observations. Details will be discussed later.
For notational convenience and later use, we introduce the notations, for i ∈ Z and n ∈ N,

zi = (zi,1, . . . , zi,d)
T =

∫ 1

0

riM (s)ψ(εi(s))ds, (1.9)

ẑi = ẑi,n = (ẑi,1, . . . , ẑi,d)
T =

1

n

n∑
ν=1

riM (sν)ψ(ε̂i(sν)), (1.10)

z̃i = z̃i,n = (z̃i,1, . . . , z̃i,d)
T =

1

n

n∑
ν=1

riM (sν)ψ(εi(sν)), (1.11)

so that

Q̂(k,m) =
( 1√

m

m+k∑
i=m+1

ẑi

)T
Σ̂

−1

m

( 1√
m

m+k∑
i=m+1

ẑi

)
and

Σ = lim
m→∞

var
{ 1√

m

m∑
i=1

zi

}
.

Similar to [7], we reject the null hypothesis as soon as the test statistic exceeds a critical level for the first time,
i.e., when

Q̂(k,m)/qγ(k/m) ≥ c

for an appropriately chosen c = cγ(α), where qγ(t), t ∈ (0,∞), is a suitable boundary (weight) function. In this
case we stop the procedure and confirm a structural break, otherwise we continue monitoring. The associated
stopping rule is given by

τm = τm(γ) = inf{1 ≤ k ≤ �mT 	 : Q̂(k,m)/qγ(k/m) ≥ c}, (1.12)

with inf ∅ := ∞. Here T is a fixed positive number, that is, for practical reasons, we have a so-called closed-end
procedure again. The following class of weight functions qγ can be used, e.g.,

qγ(t) = (1 + t)2
( t

t+ 1

)2γ
, t ∈ (0,∞), (1.13)

where γ is a tuning constant taking values in
[
0, 1/2). The critical value c will be chosen such that, under H0 ,

for α ∈ (0, 1) (fixed),

lim
m→∞

P
(
τm <∞) = α, (1.14)

i.e., the overall asymptotic level (false alarm rate) is α and, under HA ,

lim
m→∞

P
(
τm <∞) = 1, (1.15)

i.e., the test is consistent (has asymptotic power 1).

The rest of the paper is organized as follows. The main results including the assumptions and limit properties
of the test procedures are presented and discussed in Section 2. Section 3 reports on the results of a small
simulation study and an application to a real data set. The proofs of our main results are given in Section 4,
whereas Section 5 contains some auxiliary lemmas to be used in the proofs.

2. Assumptions and main results

Compared to [7], the assumptions on the sequence {(εi,1(·), . . . , εi,d(·), riM (·))}i∈Z and on the loss functions
�1, . . . , �d (or equivalently on the score functions ψ1, . . . , ψd) have to be extended as follows.

We assume on ψj , the distributions of ε0,j(s) and λj(x; s) = −Eψj(ε0,j(s)− x), j = 1, . . . , d, s ∈ [0, 1], x ∈ R :

(A.1) ψj are nondecreasing functions, λj(0, s) = 0, λ′
j(0, ·) is continuous on [0, 1], λ′

j(x, s) :=
∂
∂x
λj(x, s) exists in

a neighborhood of 0 for all s ∈ [0, 1],

|λ′
j(x, s+ z)− λ′

j(0, s+ z)| ≤ D0|x|, |x| ≤ x0, s, s+ z ∈ [0, 1], |z| ≤ z0,

and

|λ′
j(0, x+ s)− λ′

j(0, s)| ≤ D0|x|, |x| ≤ x0, x+ s, s ∈ [0, 1],

for some x0, z0, D0 > 0;
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(A.2)

∫ 1

0

λ′
j(0, s) ds

∫ 1

0

λ′
j(0, s)Er0M (s)2 ds >

(∫ 1

0

λ′
j(0, s)Er0M (s) ds

)2
;

[ Note that, via the Cauchy-Schwarz inequality, we have at least “≥ ” in the latter condition, so we just
assume nondegeneracy. ]

(A.3) sups∈[0,1] E|ψj(ε0,j(s))|3 <∞ and

E
∣∣ψj(ε0,j(s) + t2)− ψj(ε0,j(s) + t1)

∣∣2 ≤ C1|t2 − t1|, |t1|, |t2| ≤ c0, s ∈ [0, 1],

for some c0, C1 > 0.

For later applications, let us briefly recall some of the most often considered ψj-functions. The classical choice
ψj(x) = x, x ∈ R

1, leads to the ordinary least squares (OLS) and L2-residuals. A choice of ψj(x) = sign x, x ∈ R
1,

leads to L1-estimators and L1-residuals. Huber [12] introduced ψj(x) = x I{|x| ≤ K}+K sign x I{|x| > K}, x ∈
R

1, for some K > 0, which is one of the most often used score functions, usually known as the Huber function.

For a vector-valued random variable X define

‖X‖p =
(
E|X|p)1/p, p ≥ 1,

the Lp-norm of X, where |X | denotes the Euclidean norm of X .

Concerning the assumptions on {riM (·)} and {εi(·)} we follow the setup in Aue et al. [3], but instead of
fourth moment assumptions used there it typically suffices here to have second or (2 + Δ)-moment conditions:

(B.1) For any i ∈ Z, riM (·) = h(ξi(·), ξi−1(·), . . .), where h(·) is a measurable function, {ξi(·)} is a sequence of
i.i.d. random functions, and sups∈[0,1]E|r0M (s)|3 <∞.
[Note that {riM (·) : i ∈ Z} is a stationary and ergodic sequence.]

Remark 2.1. For the sake of simplicity, we assume a third moment condition in Assumptions (A.3) and (B.1).
With some more technical effort, the latter can be replaced by a (2 +Δ)-moment condition with some Δ > 0 (cf.
Lemma 5.1 (i)-(ii) below).

(B.2) For any i ∈ Z, εi(·) = g(ζi(·), ζi−1(·), . . .), where g(·) is a measurable function, {ζi(·)} is a sequence of
i.i.d. random functions having some further properties to be specified later.
[Note that {εi(·) : i ∈ Z} is also a stationary and ergodic sequence.]

(B.3) The sequences {ξi(·)} and {ζi(·)} are independent.

(B.4) For all i ∈ Z,

sup
s∈[0,1]

∞∑
L=1

‖riM (s)− r
(L)
iM (s)‖2 <∞,

where

r
(L)
iM (·) = h(ξi(·), ξi−1(·), . . . , ξi−L+1(·), ξ(L)

i−L(·), ξ(L)
i−L−1(·), . . .),

with ξ
(L)
i−L(·), ξ(L)

i−L−1(·), . . . being i.i.d. with the same distribution as ξ0(·) and independent of {ξi(·)}.
[Note that r

(L)
iM (·) D

= riM (·) D
= r0M (·) for all i ∈ Z and L ≥ 1.]

(B.5) With ψ(εi(·)) = (ψ1(εi,1(·)), . . . , ψd(εi,d(·)))T , for all i ∈ Z, it holds that

sup
s∈[0,1]

sup
|a|≤a0

∞∑
L=1

‖ψ(εi(s)− a)−ψ(ε(L)
i (s)− a)‖2 <∞

for some a0 > 0, where

ε
(L)
i (·) = g(ζi(·), ζi−1(·), . . . , ζi−L+1(·), ζ(L)

i−L(·), ζ(L)
i−L−1(·), . . .),

with ζ
(L)
i−L(·), ζ(L)

i−L−1(·), . . . being i.i.d. with the same distribution as ζ0(·) and independent of {ζi(·)}.

Remark 2.2. Assumption (B.5) could be weakened as follows, but then the proofs would require somewhat more
technicalities:

(B.5’) lim sup
n→∞

1

n

n∑
ν=1

sup
|a|≤a0

∞∑
L=1

‖ψ(εi(sν)− a)−ψ(ε(L)
i (sν)− a)‖2 < ∞

for some a0 > 0, with sν = ν/n, ν = 1, . . . , n, and {ε(L)
i (·)} as in (B.5).
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As in Aue et al. [3] and Chochola et al. [7], the above assumptions are motivated by the work of Hörmann
and Kokoszka [10] on the concept of Lp-m-approximability, but could be relaxed here to a certain extent.

The following conditions, assuming that the processes under consideration are smooth functions of the intra-
day parameter s ∈ [0, 1], are weakened versions of the corresponding conditions in Aue et al. [3].

First we also make the following “high-frequency” assumption:

(B.6) We let n = n(m) → ∞ as m→ ∞.

Secondly, we assume smoothness of the riM (·)’s and ψj(εi,j(·))’s:
(B.7) For all i ∈ Z, j = 1, . . . , d, with sν = 1/n as above and n = n(m) → ∞,

a) lim
m→∞

(logm)
1

n

n∑
ν=1

sup
h∈[0,1/n]

‖riM (sν)− riM (sν − h)‖2 = 0

and

b) lim
m→∞

(logm)
1

n

n∑
ν=1

sup
h∈[0,1/n]

‖ψj(εi,j(sν))− ψj(εi,j(sν − h))‖2 = 0.

Remark 2.3. It will be obvious from the proofs below that, if the L2-approximability conditions in Assumptions
(B.4) and (B.5) are replaced by corresponding L2+Δ-approximability (with some Δ > 0), then the convergence
rate condition in (B.7) can be avoided, i.e., (B.7) can be replaced by

(B.7’) For all i ∈ Z, j = 1, . . . , d, with sν = 1/n as above and n = n(m) → ∞,

a) lim
m→∞

1

n

n∑
ν=1

sup
h∈[0,1/n]

‖riM (sν)− riM (sν − h)‖2+Δ = 0

and

b) lim
m→∞

1

n

n∑
ν=1

sup
h∈[0,1/n]

‖ψj(εi,j(sν))− ψj(εi,j(sν − h))‖2+Δ = 0.

Remark 2.4. The theoretical results below as well as the applications to the real data set work with equidistant
grid points being the same for all components. Nevertheless, going through the proofs this assumption can be
relaxed, e.g., working with more general sν,j ’s, j = 1, . . . , d, under accordingly modified assumptions. Moreover,
having a closer look at the test statistic defined through (1.7), (1.10) and (2.4), we realize that the test procedures
depend on the observations through

ẑi =
1

n

n∑
ν=1

riM (sν)ψ(ε̂i(sν)),

that are averages over time grids sν , i.e., averages over the intra-day behavior, which also work for asynchronous
data.

Next we present our results on the limit behavior of the test procedures, both under the null hypothesis H0

as well as under the alternative HA.

2.1. Asymptotic results

Theorem 2.1. Let Assumptions (A.1)-(A.2), (B.1)-(B.7) and (1.13) with γ ∈ [0, 1/2) be satisfied and

Σ̂m −Σ = oP (1) (m→ ∞), (2.1)

where, with the zi’s from (1.9),

Σ = lim
m→∞

var
{ 1√

m

m∑
i=1

zi

}
= E[z0z

T
0 ] +

∞∑
i=1

E[z0z
T
i + ziz

T
0 ], (2.2)

and Σ is a positive definite matrix. Then, under the null hypothesis H0 ,

max
1≤k≤�mT	

(
Q̂(k,m)

qγ(k/m)

)
D−→ sup

0<t<T/(T+1)

(∑d
j=1W

2
j (t)

t2γ

)
(m→ ∞),

where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent (standard) Brownian motions (Wiener processes).
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The proof of Theorem 2.1 is postponed to Section 4.

It follows from Assumptions (A.1)-(A.2) and (B.1)-(B.5) that {riM (·)} and {ψ(εi(·))} are independent se-
quences. Then Lemma 2.1 and Theorem 4.2 in Hörmann and Kokoszka [10] imply that the series in (2.2) converges
(component-wise) absolutely.

Now we turn to the model under local alternatives, i.e.

ri,j(s) = α0
j +β

0
j riM (s)+(α1

j +β
1
j riM (s))δmI{i > m+k∗}+εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (2.3)

with δm → 0 and k∗ < �mT 	.
Theorem 2.2. Let Assumptions (A.1)-(A.2), (B.1)-(B.7) and (1.13) with γ ∈ [0, 1/2) be satisfied and

Σ̂m −Σ = oP (1) (m→ ∞),

where Σ is as in Theorem 2.1. Then, under (2.3), with δm → 0, |δm|m1/2 → ∞, lim infm→∞(�mT 	−k∗)/m > 0,
and β1

j �= 0 for at least one j,

max
1≤k≤�mT	

(
Q̂(k,m)

qγ(k/m)

)
P−→ ∞ (m→ ∞).

The proof of Theorem 2.2 is also postponed to Section 4.

Remark 2.5. a) By Theorem 2.1, the assertion (1.14) holds true if cγ(α) satisfies

P

(
sup

0<t<T/(T+1)

(∑d
j=1W

2
j (t)

t2γ

)
≥ cγ(α)

)
= α,

where cγ(α) can either be obtained by simulation of the limit distribution or by an application of a suitable form
of bootstrap based on the training sample.

b) Theorem 2.2 implies the consistency of the test, i.e., the validity of (1.15) (asymptotic power 1).

2.2. Estimation of the variance matrix
In this section we deal with an estimator of the asymptotic variance (matrix) Σ as given in (2.2). Notice that
Σ =

∑∞
k=−∞ Γk, where Γk = E[z0z

T
k ] for k ≥ 0 and Γ−k = ΓT

k .

We consider an estimator of Σ based on the first m (functional) observations defined as

Σ̂m =
∑
|k|<q

ωq(k)Γ̂k (2.4)

where q = q(m), ωq(k) = ω(k/q) and ω is a kernel specified below, and Γ̂k is the k-th lag sample covariance
corresponding to Γk, i.e.,

Γ̂k =

⎧⎪⎪⎨⎪⎪⎩
1

m

m−k∑
i=1

ẑiẑ
T
i+k, k ≥ 0,

Γ̂
T

−k, k < 0,

(2.5)

with the ẑi’s as defined in (1.10), based on the riM (·)’s from (1.1) and ψ(ε̂i)’s according to the M-residuals as
given in (1.5) and (1.6).

Theorem 2.3. Let Assumptions (A.1), (A.2), and (B.1)-(B.7) be satisfied. Let Σ̂m be the estimator of Σ given
in (2.4) with a kernel ωq(k) = ω(k/q) satisfying the following conditions:

(i) ω(0) = 1;

(ii) ω is a symmetric and Lipschitz-continuous function;

(iii) ω has bounded support;

(iv) the Fourier transform of ω is also Lipschitz-continuous and integrable;

(v) q(m) = O(logm) (m→ ∞).

Then

Σ̂m = Σ+ oP (1) (m→ ∞).

We can work, e.g., either with the Bartlett kernel

ω(x) = (1− |x|)I{|x| ≤ 1} (2.6)

or with the flat-top kernel

ω(x) =

⎧⎪⎨⎪⎩
1, |x| ≤ 1

2
,

2(1− |x|), 1
2
< |x| < 1,

0, |x| ≥ 1.

(2.7)

6



3. Applications and simulations

In this section we present some results from a small simulation study as well as an application to a real data
set in order to illustrate the finite sample performance of our monitoring procedure based on the test statistic
(1.7) with boundary function (1.13).

First we discuss some aspects which are common to both the simulation study and the application. Since the
asymptotic distribution of the test statistic given in Theorem 2.1 coincides with the one derived in Chochola et
al. [7] (cf. also Remark 2.5), we can use the critical values given in Table 1 of [7].

The question of the choice of the tuning constant γ has also been discussed in [7] and the recommendation
given there remains valid, i.e., if a change is to be expected “early” after the training period, then γ near to 0.5
is advisable, whereas for “late change scenarios”, small γ’s are recommended. A choice of γ = 0.25 provides a
reasonably good balance between these two scenarios and is thus used here.

We consider the L2, Huber and L1 ψ-functions and always apply the same function to all coordinates.
It remains to choose the kernel function and especially its bandwidth q in the estimator of the variance matrix

suggested in (2.4). In this aspect, we use the results of Chochola [6] which show that it can be difficult to set a
proper q a priori for the Bartlett or the flat-top kernel, because it depends on the degree of dependency of the
data. Thus better results can be obtained using a data-driven adaptive choice of the bandwidth based on the
work of Andrews [2] and implemented in the statistical software R as described in Zeileis [19]. Differences between
possible kernel choices are not too big, so that we always use the Bartlett kernel here.

As an illustration of a possible application of our robust monitoring, we investigate the data set used in Aue
et al. [3] in more detail. Recalling this data set, it consists of five stocks from different sectors of S&P 100, namely
Boeing (BA), Bank of America (BAC), Microsoft (MSFT), AT&T (T), and Exxon Mobile (XOM). As the market
portfolio, the S&P 100 index itself is used.

The intra-day behavior of the process {ri(s) : s ∈ [0; 1]; i ∈ Z}, which is defined at time s as the difference
between the log-prices of the stocks at time s and s+15 min, is thus sampled every 15 minutes during any trading
day i. The process riM (·) is defined analogously.

The historical training period starts on January 29, 2001 and consists of 120 trading days for which the values
of the portfolio betas under consideration appear reasonably stable. The choice of the beginning of the period is
motivated by the fact that, prior to January 29, 2001, the tick size (i.e. the smallest value the price can change)
was different. The monitoring horizon for the closed-end procedure was selected as 360 days, corresponding to
T = 3 for our stopping rule in (1.12). This covers the 9/11 event, the influence of which we want to study.

The stability of the historical portfolio betas was checked via moving windows estimates presented in Figure 1.
The figure shows Huber estimates of portfolio betas based on moving windows of 10 trading days for each company
throughout the historical and monitoring periods, but the figures look similar for L2 estimates. The solid black
vertical line marks the end of the historical period (120 days), whereas the dashed black line marks the last day,
when the estimate is not influenced by the observations from the monitoring period. The grey lines refer in the
same way to the 9/11 event. Since “no change” during the historical period is assumed, we tested for a change in
this period via L2 and Huber retrospective procedures and this assumption could be confirmed.

The BAC and T estimates seem to be stable throughout the whole period, whereas there is a small temporary
influence of the 9/11 event on MSFT and a very big one on BA. Finally there seems to be a shift in the portfolio
beta of XOM right after the end of the training period. We come back to these observations later on.

Next we discuss the robust monitoring itself. Figure 2 shows values of the normalized test statistic, i.e.,
Q̂(k,m)/(c0.25(0.05) qγ(k/m)), for the L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring pro-
cedure and for various combinations of stocks, which are given in the heading of each chart. On the x-axis the
number of trading days is shown starting from the beginning of the monitoring. A vertical grey dashed line marks
the September 11, 2001, terrorist attack, the horizontal one (at value 1) indicates the critical line, due to the
normalization of the statistic.

When all companies are considered together, we get the same results as in Aue et al. [3] for the L2 procedure.
The critical value is extremely exceeded. For the Huber and L1 procedures the crossing still occurs, but in a much
more moderate way.

It is possible to get further insight by looking at the stocks individually. In view of the conclusions from
Figure 1, we examined Boeing (BA) and Exxon (XOM). Portfolio betas of the three remaining companies (BAC,
MSFT and T) do not show any sign of a change as can be seen from the last chart. For Boeing (BA) we can
see the extreme influence of the 9/11 event on the L2 monitoring procedure. In case of robust procedures this
has a much smaller impact, the critical value, however, is still crossed right after the event. For Exxon (XOM)
and robust monitoring, the critical line is crossed already before the 9/11 attack - there is a steady increase in
the test statistic from the beginning of the monitoring on, which is in line with the conclusions from Figure 1.
By applying the retrospective procedure to the XOM data for the first 120 and 240 trading days, respectively, it
turned out that no change could be detected based on the period of length 120, but using 240 days a change was
indicated close to trading day 110. This explains why the critical line is already crossed before the 9/11 event.

It is of further interest, whether the change in Boeing’s (BA) portfolio betas after the 9/11 was only temporary
or persistent. In order to find out, we use the same monitoring procedure, but exclude 5 or 10 trading days after
the 9/11 from the monitoring. This can be seen in Figure 3. We can see that, if 5 days are excluded, then the
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Figure 1: Huber estimates of portfolio beta based on moving windows of 10 trading days. Black solid vertical
line marks end of training period, grey one marks the 9/11 event. Dashed lines indicate the beginning of moving
windows that are already influenced by these events.

crossings are much smaller and, if 10 days are excluded, then the terrorist attack has no impact at all and the
change is not indicated until mid of March 2002.

In order to further quantify the finite sample properties of the monitoring procedure, a small simulation study
has been conducted. We simulated data according to the model (1.1), with d = 2, α0 = (1/2, 1/2)T ,β0 = (1, 1)T

for simplicity. Various settings have been used for the market portfolio log-returns riM (·) and the error terms
εi(·). The riM (·)’s were either independent standard Brownian motions (denoted Bi) or, similarly as in Aue et
al. [3], chosen as a functional AR(1) process, i.e.,

riM (s) = ρ

∫ 1

0

K(s, t)ri−1,M (t)dt+ ηi(s), s ∈ [0, 1],

where {ηi(·) : i ∈ Z} denotes a sequence of independent standard Brownian motions and K(s; t) = c exp(−|t− s|),
with c such that the norm of K equals one. We chose ρ = 0.1 and ρ = 0.4 as the dependency coefficient and denote
the models as AR(1;0.1) or AR(1;0.4). The random errors, in both coordinates, are either standard Brownian
motions or, to illustrate the robustness of the monitoring procedures, we use a 5% contamination with Brownian
motion having larger variance, i.e. 10Bi (denoted Mix).

Finally m = 100 or m = 200 and T = 5 were chosen, with a tuning constant γ = 0.25 in the boundary
function, nominal level α = 5%, and the Bartlett kernel is used with an adaptive choice of the bandwidth q, as
discussed at the beginning of this section. All results are based on 2000 repetitions.

First we have a look at the empirical levels presented in Table 1. We can see that the levels are approximately
kept for the Huber and L1 procedures in all scenarios considered. This, however, is no longer true for the L2

procedure, especially in the case of the contaminated model. So, in order to compare the different procedures one
would have to adjust them to possess the same empirical size.

In order to illustrate the properties of the test under the alternative hypothesis, we chose k∗ = 10 and a
unit change in both parameters α and β and in both coordinates. Figure 4 shows the densities of the detection
delays τm−k∗ for various choices of distributions of ri,M and εi. As long as both are standard Brownian motions
(Bi, Bi), the L2 procedure performs better than Huber and L1, while in case of (Bi,Mix) the L2 procedure is
outperformed by the robust ones, in particular by the Huber procedure. The latter effect is even more visible if
all procedures are adjusted to the same empirical size (see also Table 1).

8



0 50 100 150 200 250 300 350

0
5

10
15

20
25

BA + BAC + MSFT + T + XOM

0 50 100 150 200 250 300 350

0
5

10
15

20
25

BA

0 50 100 150 200 250 300 350

0
5

10
15

20
25

XOM

0 50 100 150 200 250 300 350

0
5

10
15

20
25

BAC + MSFT + T

Figure 2: Normalized test statistics for the L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring
procedures, various combinations of stocks - given in the heading of each chart. x-axis shows number of trading
days from the beginning of the monitoring on.
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Figure 3: Boeing stock, normalized test statistics for L2 (dashed line), Huber (solid line) and L1 (dotted line)
monitoring procedures. 5 or 10 days excluded from the monitoring after the 9/11.

In conclusion, in certain situations the robust monitoring procedures suggested in this work show definite
advantages over the much more sensitive L2 approach. They usually avoid overrejection of the test and are able
to keep the approximate size. A choice of Huber’s ψ-function seems to provide a good balance between robust
and sensitive monitoring. If no prior knowledge is available on where to expect a possible change, a choice of the
tuning constant γ = 0.25 in (1.13) appears to be appropriate.
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riM εi m L2 Huber L1

Bi Bi 100 8.4 7.0 5.9
200 5.3 4.8 4.1

Bi Mix 100 25.7 7.4 5.8
200 14.5 4.6 3.9

AR(1; 0.1) Bi 100 8.4 7.0 5.0
200 6.4 5.4 4.4

AR(1; 0.4) Bi 100 9.3 7.6 6.2
200 6.7 6.1 5.6

Table 1: Empirical sizes at nominal level α = 5% under H0.
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Figure 4: Densities of the detection delays for L2 (dashed line), Huber (solid line) and L1 (dotted line) monitoring
procedures.

4. Proofs

Proof of Theorem 2.1. Similar to Chochola et al. [7], the proof can be given in three steps. Let us recall that we
work with the model

ri,j(s) = α0
j +β

0
j riM (s)+(α1

j +β
1
j riM (s))δmI{i > m+k∗}+εi,j(s), j = 1, . . . , d, i = 1, 2, . . . , s ∈ [0, 1], (4.1)

as defined in (1.3).

1. In a first step we make use of asymptotic representations of the estimators α̂jm, β̂jm of α0
j , β

0
j , j = 1, . . . , d,

from (1.4). These estimators are based on the training sample only, so that we are in a non-sequential setup and
can proceed in the same way as in treating the behavior of multivariate M -estimators. However, we need to take
care of the dependency structure of the random error functions.
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In the following it is convenient to introduce auxiliary estimators α̂∗
jm and β̂∗

jm as minimizers of

m∑
i=1

n∑
ν=1

�j(εi,j(sν)− a∗j/
√
m− b∗j riM (sν)/

√
m) (4.2)

w.r.t. a∗j and b∗j , for j = 1, . . . , d, where sν = ν/n, ν = 1, . . . , n. Clearly,

α̂∗
jm =

√
m(α̂jm − α0

j ), β̂∗
jm =

√
m(β̂jm − β0

j ). (4.3)

Usually, the estimators α̂∗
jm and β̂∗

jm can be obtained as solutions of the equations

m∑
i=1

n∑
ν=1

ψj(εi,j(sν)− (a∗j + b∗jriM (sν))/
√
m) = 0, (4.4)

m∑
i=1

n∑
ν=1

ψj(εi,j − (a∗j + b∗jriM (sν))/
√
m)r̃iM = 0, (4.5)

w.r.t. a∗j , b
∗
j , for j = 1, . . . , d.

Lemmas 5.2 and 5.3 below ensure that α̂∗
jm = OP (1) and β̂

∗
jm = OP (1) and, moreover, we get the asymptotic

representations, as m→ ∞,

α̂∗
m =

1∫ 1

0
λ′(0, z)dz

1√
m

m∑
i=1

∫ 1

0

ψ(εi(s))ds− β̂∗
m

∫ 1

0
λ′(0, z)Er20M (z)dz∫ 1

0
λ′(0, z)dz

+OP (m
−η), (4.6)

β̂∗
m =

1√
m

∑m
i=1

∫ 1

0
ψ(εi(s))

(
riM (s)−

∫ 1
0 λ′(0,z)Er0M (z)dz∫ 1

0 λ′(0,z)dz

)
ds∫ 1

0
λ′(0, z)Er20M (z)dz −

( ∫ 1
0 λ′(0,z)Er0M (z)dz

)2
∫ 1
0 λ′(0,z)dz

+OP (m
−η), (4.7)

with some η > 0 (cf. Remark 5.1).

2. Next, as a consequence of Lemmas 5.2-5.4 in combination with Remarks 5.1-5.2, we observe that the limit
behavior of the weighted partial sums

Ĥ(m, k) = (Ĥ1(m, k), . . . , Ĥd(m, k))
T =

1√
m

m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(ε̂i(sν)), k = 1, . . . , �mT 	,

is the same as that of

H̃(m, k) =
1√
m

( m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν))− k

m

m∑
i=1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν))
)
, k = 1, . . . , �mT 	.

In view of Lemma 5.5 (ii) together with Assumption (2.1), this further implies that the limit behavior of

max
1≤k≤�mT	

Q̂(k,m)/qγ(k/m)

is the same as that of

max
1≤k≤�mT	

Q(k,m)/qγ(k/m),

where

Q(k,m) =H(m,k)TΣ−1H(m,k), (4.8)

with

H(m, k) =
1√
m

( m+k∑
i=m+1

∫ 1

0

riM (s)ψ(εi(s)) ds− k

m

m∑
i=1

∫ 1

0

riM (s)ψ(εi(s)) ds
)
, k = 1, . . . , �mT 	.

3. In order to obtain the limit behavior of

max
1≤k≤�mT	

Q(k,m)/qγ(k/m),

with Q(k,m) from (4.8), we follow the lines of proof of Theorem 2.1 in Chochola et al. [7]. We just have to replace

the random sequences and processes {Zi}, {Z(L)
i } and {Zm(t)} introduced there by

Zi = (Zi,1, . . . , Zi,d)
T =

∫ 1

0

riM (s)ψ(εi(s)) ds, i = 1, 2, . . . ,

Z
(L)
i = (Z

(L)
i,1 , . . . , Z

(L)
i,d )T =

∫ 1

0

r
(L)
iM (s)ψ(ε

(L)
i (s)), i = 1, 2, . . . , and

Zm(t) =
1√
m

�mt	∑
i=1

Zi, 0 ≤ t ≤ T + 1,
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where
∫ 1

0
is to be taken componentwise.

The main step, that is, the weak convergence in the Skorokhod space Dd[0, T + 1]

Zm(·) Dd[0,T+1]−→ WΣ(·),
where {WΣ(t) : t ∈ [0, T + 1]} is a centered Gaussian process with covariance function E[WΣ(t)W T

Σ(s)] =
min(t, s)Σ, is again a consequence of Billingsley [5], Theorem 21.1. An application of the continuous mapping
theorem then completes the proof. For details we refer to Chochola et al. [7], pp. 383-385.

Proof of Theorem 2.2. It suffices to show that

Q̂(k̃,m)

qγ(k̃/m)

P−→ ∞

for suitably chosen k̃. We take k̃ = k∗ + (mT − k∗)/2. In view of our assumptions on Σ̂m and the choice of k̃ it
suffices to treat

1√
m

k̃∑
i=k∗+1

1

n

n∑
ν=1

riM (sν)ψj(ε̂i,j(sν))

=
1√
m

k̃∑
i=k∗+1

1

n

n∑
ν=1

riM (sν)ψj

(
εi,j(sν)− (α̂∗

mj + β̂∗
mjriM (sν))/

√
m+ (α1

j + β1
j riM (sν))δm

)
,

where α̂∗
mj = OP (1) and β̂

∗
mj = OP (1). Therefore it is enough to study

1√
m

k̃∑
i=k∗+1

1

n

n∑
ν=1

riM (sν)ψj

(
εi,j(sν)− (a+ briM (sν))/

√
m+ (α1

j + β1
j riM (sν))δm

)
for |a| + |b| ≤ C, C > 0. Proceeding analogously to the proof of Lemma 5.4 and recalling that δm → 0, but
|δm|√m→ ∞, we get

∣∣∣E∗ 1√
m

k̃∑
i=k∗+1

1

n

n∑
ν=1

riM (sν)ψj

(
εi,j(sν)− (a+ briM (sν))/

√
m+ (α1

j + β1
j riM (sν)δm

)∣∣∣ P−→ ∞

and

var∗
{ 1√

m

k̃∑
i=k∗+1

1

n

n∑
ν=1

riM (sν)ψj

(
εi,j(sν)− (a+ briM (sν))/

√
m+ (α1

j + β1
j riM (sν))δm

)}
= OP (1),

uniformly in |a|+ |b| ≤ C, C > 0.
From here, after some standard steps, we receive the desired assertion.

Proof of Theorem 2.3.
Let zi, ẑi and z̃i be as given in (1.9), (1.10) and (1.11), respectively. Recall Γ̂k from (2.5) and further define,

for k ≥ 0,

Γk =
1

m

m−k∑
i=1

ziz
T
i+k,

Γ̃k =
1

m

m−k∑
i=1

z̃iz̃
T
i+k,

and, for k < 0, put Γk = ΓT
−k and Γ̃k = Γ̃

T

−k, respectively.

Let Σ̂m be as given in (2.4) and put

Σm =
∑
|k|<q

ωq(k)Γk

and

Σ̃m =
∑
|k|<q

ωq(k)Γ̃k.

Then we have

Σ̂m = Σm + (Σ̂m − Σ̃m) + (Σ̃m −Σm).
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First, let us consider Σm. Note, that {zi : i ∈ Z} is a stationary, L2-approximable, centered sequence
with E‖z0‖2 < ∞, which follows from Assumptions (B.1)-(B.5) together with Lemma 2.1 in Hörmann and
Kokoszka [10]. With a kernel ωq satisfying conditions (i)-(v), all assumptions of Theorem 16.6 in Horváth and
Kokoszka [11] are fulfilled. According to the latter theorem, we get

Σm
P−→ Σ as m→ ∞. (4.9)

In the next step we will show that

Σ̂m − Σ̃m = Op(q(m)m−1/4). (4.10)

Here we can proceed quite analogously to the corresponding part of the proof of Theorem 2.3 in Chochola et
al. [7]. Obviously,

Σ̂m − Σ̃m =
∑
|k|<q

ωq(k)(Γ̂k − Γ̃k)

and, since

ẑiẑ
T
i+k − z̃iz̃

T
i+k = (ẑi − z̃i)(ẑi+k − z̃i+k)

T + (ẑi − z̃i)z̃Ti+k + z̃i(ẑi+k − z̃i+k)
T ,

we have∑
0≤k<q

ωq(k)(Γ̂k − Γ̃k) = S1 + S2 + S3,

where

S1 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)[ψ(ε̂i(sμ))−ψ(εi(sμ))][ψ(ε̂i+k(sν))−ψ(εi+k(sν))]
T ,

S2 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)[ψ(ε̂i(sμ))−ψ(εi(sμ))]ψ(εi+k(sν))
T ,

S3 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)ψ(εi(sμ))[ψ(ε̂i+k(sν))−ψ(εi+k(sν))]
T .

For s ∈ [0, 1], set di(s) = a + briM (s), where a = (a1, . . . , ad)
T , b = (b1, . . . , bd)

T ,di(s) = (di,1(s), . . . , di,d(s))
T ,

and introduce

S0
1 =

∑
0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)[ψ(εi(sμ)− di(sμ)/
√
m)−ψ(εi(sμ))]

×[ψ(εi+k(sν)− di+k(sν)/
√
m)−ψ(εi+k(sν))]

T ,

S0
2 =

∑
0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)[ψ(εi(sμ)− di(sμ)/
√
m)−ψ(εi(sμ))]

×ψ(εi+k(sν))
T ,

S0
3 =

∑
0≤k<q

ωq(k)
1

m

m−k∑
i=1

1

n2

n∑
μ=1

n∑
ν=1

riM (sμ)ri+k,M (sν)ψ(εi(sμ))

×[ψ(εi+k(sν)− di+k(sν)/
√
m)−ψ(εi+k(sν))]

T .

Now, for any 1 ≤ j, � ≤ d,

E|riM (sμ)ri+k,M (sν)[ψj(εi,j(sμ)− di,j(sμ)/
√
m)− ψj(εi,j(sμ))]

×[ψ�(εi+k,�(sν)− di+k,�(sν)/
√
m)− ψ�(εi+k,�(sν))]|

≤ E|riM (sμ)ri+k,M (sν)|(E∗|ψj(εi,j(sμ)− di,j(sμ)/
√
m)− ψj(εi,j(sμ))|2)1/2

×(E∗|ψ�(εi+k,�(sν)− di+k,�(sν)/
√
m)− ψ�(εi+k,�(sν))|2)1/2 ≤ Cm−1/2,

uniformly in a, b such that max1≤j≤d(|aj | + |bj |) < C for some constant C > 0, where we have used the rule
of iterated expectations (with E∗ being the conditional expectation given riM , i = 1, . . . ,m), independence of
{riM (·)} and {ψ(εi(·))} (cf. Assumption (B.3)), the Cauchy-Schwarz inequality, Assumptions (B.1) and (A.3)
and the boundedness of ωq. From here we can conclude that, as m → ∞, each (j, �)-th element of S0

1 is
Op(q(m)m−1/2), and so is S0

1, uniformly in a, b such that max1≤j≤d(|aj |+ |bj |) < C, with some C > 0.
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Proceeding in the same way, we obtain S0
2 = Op(q(m)m−1/4) and S0

3 = Op(q(m)m−1/4), as m → ∞,
uniformly in a, b such that max1≤j≤d(|aj |+ |bj |) < C for some constant C > 0.

Since ε̂i,j(s) = εi,j(s)− α̂∗
jm/

√
m− β̂∗

jmriM (s)/
√
m and α̂∗

jm = OP (1), β̂
∗
jm = OP (1), for all j = 1, . . . , d (see

(4.6) and (4.7), respectively), we obtain, due to the monotonicity of the ψj ’s, that S1+S2+S3 = Op(q(m)m−1/4).
Combining this with the corresponding estimates for −q < k < 0, we get

Σ̂m − Σ̃m = OP

(
q(m)m−1/4

)
(m→ ∞),

i.e. (4.10).

It remains to estimate Σ̃m −Σm.
First, notice that, for k ≥ 0,

Γ̃k − Γk =
1

m

m−k∑
i=1

[(z̃i − zi)(z̃i+k − zi+k)
T + (z̃i − zi)zTi+k + zi(z̃i+k − zi+k)

T ].

Further, for i ∈ Z, n ∈ N,

z̃i − zi =
1

n

n∑
ν=1

riM (sν)ψ(εi(sν))−
n∑

ν=1

∫ sν

sν−1

riM (s)ψ(εi(s))ds

=

n∑
ν=1

∫ sν

sν−1

[riM (sν)ψ(εi(sν))− riM (s)ψ(εi(s))]ds

=

n∑
ν=1

∫ sν

sν−1

[riM (sν)− riM (s)]ψ(εi(sν))ds+

n∑
ν=1

∫ sν

sν−1

riM (s)[ψ(εi(sν))− riM (s)ψ(εi(s))]ds

= ui + vi.

Thus, ∑
0≤k<q

ωq(k)(Γ̃k − Γk) = A1 +A2 +A3,

where

A1 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

[uiu
T
i+k + uiv

T
i+k + viu

T
i+k + viv

T
i+k], (4.11)

A2 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

(ui + vi)z̃
T
i+k, (4.12)

A3 =
∑

0≤k<q

ωq(k)
1

m

m−k∑
i=1

zi(ui+k + vi+k)
T . (4.13)

Since all the matrices appearing on the right-hand side of (4.11) are of the same type, we shall only treat one of
them. Consider, for example, the (j, �)-th element of the matrix uiv

T
i+k. We have

ui,jvi+k,� =

n∑
μ=1

n∑
ν=1

∫ sμ

sμ−1

∫ sν

sν−1

(
[riM (sμ)− riM(s)]ψj(εi,j(sμ))ri+k,M(t)[ψ�(εi+k,�(sν))−ψ�(εi+k,�(t))]

)
dsdt,

and from here, using the independence of {riM (·)} and {ψ(εi(·))}, the Cauchy-Schwarz inequality and stationarity,

E |ui,jvi+k,�| ≤
n∑

μ=1

n∑
ν=1

∫ sμ

sμ−1

∫ sν

sν−1

(
‖riM (sμ)− riM (s)‖2 · ‖ri+k,M (t)‖2

× ‖ψj(εi,j(sμ))‖2 · ‖ψ�(εi+k,�(sν))− ψ�(εi+k,�(t))‖2
)
dsdt

≤
n∑

μ=1

n∑
ν=1

∫ sμ

sμ−1

∫ sν

sν−1

(
sup

s∈[0,1]

‖ψj(εi,j(s)‖2 · sup
h∈[0,1/n]

‖riM (sμ − riM (sμ − h)‖2

× sup
t∈[0,1]

‖ri+k,M (t)‖2 · sup
h∈[0,1/n]

‖ψ�(εi+k,�(sν)− ψ�(εi+k,�(sν − h))‖2
)
dsdt

= sup
s∈[0,1]

‖ψj(ε0,j(s))‖2 · sup
t∈[0,1]

‖r0M (t)‖2 · 1
n

n∑
μ=1

sup
h∈[0,1/n]

‖r0M (sμ)− r0M (sμ − h)‖2

× 1

n

n∑
ν=1

sup
h∈[0,1/n]

‖ψ�(ε0,�(sν)− ψ�(ε0,�(sν − h))‖2.
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Now, using Assumptions (A.3), (B.1) and (B.7a)-(B.7b), together with the fact that ωq is bounded and q(m) =
O(logm), we can easily deduce that

∑
0≤k<q

ωq(k)
1

m

m−k∑
i=1

ui,jvi+k,� = op(1) (m→ ∞).

The same result holds for all elements of the matrix A1. Concerning the matrices A2 and A3, we can proceed
in the same way. It suffices to write zi =

∑n
ν=1

∫ sν
sν−1

riM (s)ψ(εi(s))ds and make use of Assumptions (A.3) and

(B.1) again together with either (B.7a) or (B.7b). Combining all the asymptotics above with the corresponding
estimates for −q < k < 0, we get

Σ̃m −Σm = op(1) (m→ ∞), (4.14)

which together with (4.9) and (4.10) concludes the proof.

5. Some auxiliary results

In the sequel, C and D denote generic positive constants, which may vary from case to case.
For the sake of brevity, we let {xi(·)} denote any of the sequences {riM (·) − EriM (·)}, {ψj(εi,j(·))} or

{riM (·)ψj(εi,j(·))} and write {x(L)
i (·)} for the corresponding counterparts of {r(L)

iM (·)−Er
(L)
iM (·)}, {ψj(ε

(L)
i,j (·))} or

{r(L)
iM (·)ψj(ε

(L)
i,j (·))}, respectively.

Lemma 5.1. Under the assumptions of Theorem 2.1, possibly extended to an L2+Δ-approximability condition in
(B.4) and (B.5) (cf. Remark 2.5),

(i) there is a constant C > 0 such that, for every � ∈ Z, K ∈ N, and s ∈ [0, 1],

E

∣∣∣∣ �+K∑
i=�+1

xi(s)

∣∣∣∣p ≤ C sup
s∈[0,1]

‖x0(s)‖pp Kp/2, 2 ≤ p ≤ 2 + Δ,

and, for b1 ≥ b2 ≥ . . . ≥ bK > 0,

E max
1≤k≤K

∣∣∣∣bk �+k∑
i=�+1

xi(s)

∣∣∣∣2 ≤ C sup
s∈[0,1]

‖x0(s)‖22 (logK)2
K∑

k=1

b2k, (5.1)

E max
1≤k≤K

∣∣∣∣bk �+k∑
i=�+1

xi(s)

∣∣∣∣p ≤ C sup
s∈[0,1]

‖x0(s)‖pp
K∑

k=1

bpk k
p/2−1, 2 < p ≤ 2 + Δ; (5.2)

(ii) for some D > 0 and all m ∈ N, s ∈ [0, 1],

E

(
max

1≤k≤�mT	
1√

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

xi(s)

∣∣∣∣ )2

≤ D sup
s∈[0,1]

‖x0(s)‖22 (logm)2, (5.3)

E

(
max

1≤k≤�mT	
1√

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

xi(s)

∣∣∣∣ )p

≤ D sup
s∈[0,1]

‖x0(s)‖pp, 2 < p ≤ 2 + Δ; (5.4)

For the proof of (5.2) and (5.4), however, it is necessary to replace the L2-approximability conditions in Assump-
tions (B.4) and (B.5) by a corresponding L2+Δ-approximability assumption, with some Δ > 0.

(iii) uniformly in s ∈ [0, 1] and for any qm → ∞,

max
1≤i≤�m(T+1)	

|riM (s)| = OP (m
1/3), (5.5)

sup
s∈[0,1]

P
(

max
1≤i≤�m(T+1)	

|riM (s)| ≥ qmm
1/3
)→ 0. (5.6)

Proof. (i) Making use of the L2+Δ-approximability from Assumption (B.4) (with Δ ≥ 0, cf. Remarks 2.1 and 2.3),
the first bound has been obtained in Berkes et al. [4], Proposition 4. Observe that, in our case,

‖xi(s)‖p = ‖x(L)
i (s)‖p ≤ sup

s∈[0,1]

‖x0(s)‖p, for 2 ≤ p ≤ 2 + Δ, s ∈ [0, 1].

Similarly, for the two other bounds confer, e.g., Kirch [13], Theorems B.1 and B.3, which are based on earlier
results of Moricz [16] and Móricz et al. [17] in combination with Fazekas and Klesov [8].
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Note that the sequence {riM (s)ψj(εi,j(s))} also satisfies the L2+Δ-approximability condition, uniformly in
s ∈ [0, 1], since

‖riM (s)ψj(εi,j(s))− r
(L)
iM (s)ψj(ε

(L)
i,j (s))‖2+Δ

≤ ‖(riM (s)− r
(L)
iM (s))ψj(εi,j(s))‖2+Δ + ‖r(L)

iM (s)(ψj(εi,j(s))− ψj(ε
(L)
i,j (s)))‖2+Δ

≤ sup
s∈[0,1]

‖riM (s)− r
(L)
iM (s)‖2+Δ sup

s∈[0,1]

‖ψj(εi,j(s))‖2+Δ

+ sup
s∈[0,1]

‖r(L)
iM (s)‖2+Δ sup

s∈[0,1]

‖ψj(εi,j(s))− ψj(ε
(L)
i,j (s))‖2+Δ,

where, for the second inequality, we have used the independence of the sequences {riM (s)} and {ψj(εi,j(s))}.
(ii) It follows immediately from the fact that the sequence {xi(s)}, s ∈ [0, 1] fixed, satisfies Assumptions (B.1)
and (B.4) together with the estimates in (5.1) and (5.2).

(iii) By (i),

E
∣∣∣ �+K∑
i=�+1

(riM (s)− EriM (s))
∣∣∣3 ≤ C sup

s∈[0,1]

||r0M (s)− Er0M (s)||33 K3/2, s ∈ [0, 1].

We also have, for s ∈ [0, 1],

max
1≤i≤�m(T+1)	

|riM (s)| ≤ max
1≤i≤�m(T+1)	

|riM (s)−EriM (s)|+ max
1≤i≤�m(T+1)	

|EriM (s)|, and

max
1≤i≤�m(T+1)	

|riM (s)− EriM (s)| ≤ D
( 1

�m(T + 1)	
�m(T+1)	∑

i=1

|riM (s)− EriM (s)|3
)1/3

�m(T + 1)	1/3.

Since, by our assumptions, for fixed s ∈ [0, 1], {riM (s) − EriM (s)} is a stationary and ergodic sequence and
sups∈[0,1] E|riM (s)− EriM (s)|3 <∞, the ergodic theorem implies, as m→ ∞,

1

�m(T + 1)	
�m(T+1)	∑

i=1

|(riM (s)−EriM (s))|3 → E|(r0M (s)−Er0M (s))|3 ≤ sup
s∈[0,1]

E|r0M (s)−Er0M (s)|3 <∞.

Combining all this we get (5.5), which immediately implies (5.6).

In the following E∗ and var∗ denote the conditional expectation and conditional variance given riM (·),
i = 1, . . . ,m;m+ 1, . . . , �mT 	. We omit the index j, i.e., we write εi(s), ψ, . . . instead of εi,j(s), ψj(s), . . ..

Lemma 5.2. Let the assumptions of Theorem 2.1 be satisfied. Then, as m→ ∞,

sup
|a|+|b|≤C

|Zm(a, b)− E∗Zm(a, b)| = OP

(
m−η

)
,

E∗Zm(a, b) =
1

n

n∑
ν=1

λ′(0, sν)
2

1

m

m∑
i=1

(
a+ briM (sν)

)2
+OP

(
m−η(|a|3 + |b|3)),

and

sup
|a|+|b|≤C

∣∣∣Zm(a, b)− 1

n

n∑
ν=1

λ′(0, sν)
2

1

m

m∑
i=1

(
a+ briM (sν)

)2∣∣∣ = OP (m
−η),

for some η > 0, where

Zm(a, b) =
1

n

n∑
ν=1

m∑
i=1

(
ρ(εi(sν)− a/

√
m− briM (sν)/

√
m)− ρ(εi(sν)) + (a/

√
m+ briM (sν)/

√
m)ψ(εi(sν))

)
.

Proof. The lines of the proof are quite standard. We just need to derive a proper approximation for the conditional
expectation and variance of Zm(a, b).

Whenever convenient we use the short-hand notations

di(sν) = a+ briM (sν) and

g(εi(sν), x, di(sν)) = sign di(sν)
(− ψ(εi(sν)− x sign di(sν)) + ψ(εi(sν))

)
, i ∈ Z.

Note that, for any d,

ρ(εi − d)− ρ(εi) + dψ(εi) = sign d

∫ |d|

0

(− ψ(εi − x sign d) + ψ(εi)
)
dx ≥ 0, i ∈ Z.
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Direct calculations in combination with Lemma 5.1 result in

E∗Zm(a, b) =
1

n

n∑
ν=1

E∗
m∑
i=1

(

∫ |di(sν )|/√m

0

g(εi(sν), x, di(sν))dx

=
1

n

n∑
ν=1

m∑
i=1

λ′(0, sν)d
2
i (sν)

1

2m
+OP

( 1
n

n∑
ν=1

m∑
i=1

|di(sν)|3 1

m3/2

)
=

n∑
ν=1

1

2
λ′(0, sν)

(
a+ 2ab

1

m

m∑
i=1

riM (sν) + b2
1

m

m∑
i=1

r2iM (sν)
)
+OP

(
m−η(|a|3 + |b|3)),

for some η > 0 and uniformly in |a|+ |b| ≤ C.
For the conditional variance we obtain

var∗
{
Zm(a, b)

}
= E∗

( 1
n

n∑
ν=1

m∑
i=1

∫ |di(sν )|/√m

0

(
g(εi(sν), x, di(sν))− E∗g(εi(sν), x, di(sν))

)
dx
)2

=
m∑

i1=1

E∗
( 1
n

n∑
ν=1

∫ |di1 (sν)|/
√

m

0

(
g(εi1(sν), x, di1(sν))− E∗g(εi1(sν), x, di1(sν))

)
dx
)2

+ 2E∗ ∑
1≤i1<i2≤m

1

n

n∑
ν1=1

{(∫ |di1 (sν1 |/√m

0

(
g(εi1(sν1), x, di1(sν1))−E∗g(εi1(sν1), x, di1(sν1))

)
dx
)

×
( 1
n

n∑
ν2=1

∫ |di2 (sν2 )|/
√
m

0

(
g(εi2(sν2), y, di2(sν2))− E∗g(εi2(sν2), y, di2(sν2))

)
dy
)}

= I1 + I2 (say).

Using Assumption (A.3) together with the Cauchy-Schwarz inequality, we get

I1 =

m∑
i1=1

E∗
( 1
n

n∑
ν=1

∫ |di1 (sν )|/√m

0

(
g(εi1(sν), x, di1(sν))− E∗g(εi1(sν), x, di1(sν))

)
dx
)2

≤ D

m∑
i1=1

E∗
( 1
n

n∑
ν=1

∫ |di1 (sν)|/√m

0

g(εi1(sν), x, di1(sν))dx
)2

≤ D
m∑

i1=1

1

n

n∑
ν1=1

1

n

n∑
ν2=1

E∗
[(∣∣∣ ∫ |di1 (sν1 )|/√m

0

g(εi1(sν1), x, di1(sν1)dx
∣∣∣)

×
(∣∣∣ ∫ |di1 (sν2 )|/

√
m

0

g(εi1(sν2), z, di1(sν2))dz
∣∣∣)]

≤ D
m∑

i1=1

1

n

n∑
ν1=1

1

n

n∑
ν2=1

[(
|di1(sν1)|/

√
m
)3(

|di1(sν2)|/
√
m
)3)]1/2

= D
( 1
m

)3/2(|a|3m+ |b|3
m∑

i1=1

( 1
n

n∑
ν1=1

|ri1M (sν1)|3/2
)2
OP ((|a|3 + |b|3)m−η),

uniformly in |a|+ |b| ≤ C.
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Concerning I2 we have, due to the independence of {riM (s)} and {εi(s)},

I2 ≤ 2

m−1∑
i1=1

m−i1∑
i2=1

1

n

n∑
r2=1

1

n

n∑
r1=1

∫ |di1 (sr1 )|/√m

0

∫ |di1+i2
(sr2 )|/√m

0(
E∗(g(εi1(sr1), x, di1(sr1)))

2
(
E∗(−ψ(εi1+i2(sr2)− y) + ψ(ε

(i2)
i1+i2

(sr2)− y))2

+ E∗(−ψ(εi1+i2(sr2)) + ψ(ε
(i2)
i1+i2

(sr2)))
2))1/2dxdy

≤ D

m−1∑
i1=1

1

n

n∑
r2=1

1

n

n∑
r1=1

|di1(sr1)/
√
m|1/2+1

×
m−i1∑
i2=1

|di1+i2(sr2)/
√
m| sup

|a|≤a0

(
E∗(ψ(εi1+i2(sr2)− a)− ψ(ε

(i2)
i1+i2

(sr2)− a)
)2)1/2

≤ D
1

n

n∑
r2=1

1

n

n∑
r1=1

1

m3/2

m−1∑
i1=1

|di1(sr1))|3/2

× sup
|a|≤a0

m−i1∑
i2=1

|di1+i2(sr2)|
(
E
(
ψ(ε0(sr2))− a)− ψ(ε0(sr2))

(i2) − a)
)2)1/2

≤ OP (m
−η),

where we used the fact

E|di1+i2(sr1)|3/2 · |di1(sr2)| ≤
(
E|d1(sr1)|3Ed21(sr2)

)1/2
.

On combining the above estimates for E∗Zm(a, b), I1, I2, we conclude that Lemma 5.2 holds true.

Lemma 5.3. Let the assumptions of Theorem 2.1 be satisfied. Then, as m→ ∞,

sup
|a|+|b|≤C

|Mm(a, b)− E∗Mm(a, b)| = OP (m
−η),

E∗Mm(a, b) = − 1

n

n∑
ν=1

λ′(0, sν)
(
a+ b

1

m

m∑
i=1

riM (sν), a
1

m

m∑
i=1

riM (sν) + b
1

m

m∑
i=1

r2iM (sν)
)T

+OP

(
m−η

)
,

and

sup
|a|+|b|≤C

∣∣∣Mm(a, b) +
1

n

n∑
ν=1

1

m
λ′(0, sν)

(
am+ b

m∑
i=1

riM (sν), a
m∑
i=1

riM (sν) + b
m∑
i=1

r2iM (sν)
)T ∣∣∣ = OP

(
m−η

)
,

with some η > 0, where

Mm(a, b) =
1

n

n∑
ν=1

1√
m

m∑
i=1

(
1, riM (sν)

)T (
ψ(εi(sν)− (a+ briM (sν))/

√
m)− ψ(εi(sν))

)
.

Proof. Again one has to get suitable approximations for the conditional expectationMm(a, b) and the conditional
(2× 2)-variance matrix

var∗{Mn(a, b)} = E∗(Mn(a, b)− E∗Mn(a, b)
)(
Mn(a, b)− E∗Mn(a, b)

)T
.

We start with the conditional expectation

E∗MT
m(a, b) =

1

n

n∑
ν=1

1√
m

m∑
i=1

(
1, riM (sν)

)(− λ(di(sν)/
√
m, sν)

)
= − 1

n

n∑
ν=1

1

m
λ′(0, sν)

m∑
i=1

(
1, riM (sν)

)
di(sν)

+OP

( 1
n

n∑
ν=1

1

m3/2

m∑
i=1

(
1, |riM (sν)|

)|d2i (sν)|)
= − 1

n

n∑
ν=1

1

m
λ′(0, sν)

m∑
i=1

(
a+ briM (sν), ariM (sν) + br2iM (sν)

)
+OP

(
a2m−1/2 + b2

1

n

n∑
ν=1

1

m3/2

m∑
i=1

|riM (sν)|3
)
= OP

(
(a2 + b2)m−η),
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uniformly in |a|+ |b| ≤ C, where the rates above are to be understood componentwise.
For the conditional variance matrix we only calculate one term. The calculation of the others is similar and

will therefore be omitted. We have

var∗
{ 1

n

n∑
ν=1

1√
m

m∑
i=1

riM (sν)
(
ψj(εi,j(sν)− di(sν)/

√
m)− ψj(εi,j(sν))

)}
=

1

m

m∑
i=1

E∗
( 1
n

n∑
ν=1

riM (sν)
(
ψ(εi(sν)− di(sν)/

√
m)− ψ(εi(sν)) + λj(di(sν)/

√
m, sν)

))2
+ 2

1

n

n∑
r1=1

1

n

n∑
r2=1

1

m

m∑
i=1

m−i∑
j=1

riM (sr1)ri+j,M(sr2)

× E∗(ψj(εi,j(sr1)− di(sr1)/
√
m)− ψj(εi,j(sr1)) + λj(di(sr1)/

√
m, sr1))

)
× (ψ(εi+j(sr2)− di+j(sr2)/

√
m)− ψj(εi+j(sr2)) + λj(di+j(sr2)/

√
m, sr2)

)
= J1 + 2J2 (say).

In view of Assumption (A.2), a similar estimate as that for I1 in the proof of Lemma 5.2 gives

J1 =
1

m

m∑
i=1

1

n

n∑
ν=1

1

n

n∑
r=1

riM (sν)riM (sr)

× E∗(ψ(εi(sν)− di(sν)/
√
m)− ψ(εi(sν)) + λ(di(sν)/

√
m, sν)

)
× (ψ(εi(sr)− di(sr)/

√
m)− ψ(εi(sr)) + λ(di(sr)/

√
m, sr)

)
≤ D

1

m

m∑
i=1

1

n

n∑
ν=1

1

n

n∑
r=1

|riM (sν)||riM (sr)|

×
(
E∗(ψ(εi(sν)− di(sν)/

√
m)− ψ(εi(sν))

2E∗(ψ(εi(sr)− di(sr)/
√
m)− ψ(εi(sr))

2
)1/2

≤ D
1

m

m∑
i=1

( 1
n

n∑
ν=1

|riM (sν)||di(sν)/
√
m|1/2

)2
≤ D

1

n

n∑
ν=1

1

m

m∑
i=1

|riM (sν)|2||di(sν)/
√
m)| = OP (m

−η).

Concerning J2 we obtain

J2 =
1

n

n∑
r1=1

1

n

n∑
r2=1

1

m

m∑
i=1

m−i∑
j=1

riM (sr1)ri+j,M(sr2)

× E∗(ψ(εi(sr1)− di(sr1)/
√
m)− ψ(εi(sr1)) + λ(di(sr1)/

√
m, sr1)

)
× (ψ(εi+j(sr2)− di+j(sr2)/

√
m)− ψ(εi+j(sr2))− (ψ(ε

(j)
i+j(sr2)− di+j(sr2)/

√
m)− ψ(ε

(j)
i+j(sr2)))

)
,

and, uniformly in |a|+ |b| ≤ C,

|J2| ≤ D
1

n

n∑
r1=1

1

n

n∑
r2=1

1

m

m∑
i=1

m−i∑
j=1

|riM (sr1)ri+j,M (sr2)|(|di(sr1)|/
√
m)1/2

× {E∗(ψ(εi+j(sr2)− di+j(sr2)/
√
m)− ψ(εi+j(sr2))

− (ψ(ε
(j)
i+j(sr2)− di+j(sr2)/

√
m)− ψ(ε

(j)
i+j(sr2)))

)2}1/2
≤ D

1

n

n∑
r1=1

1

n

n∑
r2=1

1

m3/2

m∑
i=1

m−i∑
j=1

(
a1/2 + b1/2|riM (sr1 |

)|riM (sr1)ri+j,M (sr2)|

× sup
|a|≤a0

(
E(ψ(ε0(sr2)− a)− ψ(ε

(j)
0 (sr2)− a))2

)1/2
= OP

(
(a1/2 + b1/2)m−η

)
.

Now, a similar estimate as that for I2 in the proof of Lemma 5.2 gives

sup
|a|+|b|≤C

|J2| = OP

(
m−η

)
,

with some η > 0, so that altogether we have

sup
|a|+|b|≤C

var∗
{ 1

n

n∑
i=1

1√
m

m∑
i=1

riM (sr)
(
ψ(εi(sr)− di(sr)/

√
m)− ψ(εi(sr))

)}
= OP

(
m−η),

for some η > 0.
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Remark 5.1. Inserting α̂∗
j,m and β̂∗

j,m (as defined in (4.3)) for a, b into the assertion of Lemma 5.3 and omitting
the index j for the sake of smplicity, we receive

1

n

n∑
ν=1

1√
m

m∑
i=1

(
1, riM (sν)

)T (
ψ(εi(sν)− (α̂∗

m + β̂∗
mriM (sν))/

√
m)− ψ(εi(sν))

)
+

1

n

n∑
ν=1

λ′(0, sν)
(
α̂m + β̂∗

m
1

m

m∑
i=1

riM (sν), α̂
∗
m

1

m

m∑
i=1

riM (sν) + β̂m
1

m

m∑
i=1

r2iM (sν)
)T

= OP

(
m−η).

Due to the definition of α̂∗
m and β̂∗

m and by our assumptions, we have the following asymptotic representation:

α̂∗
m =

1∫ 1

0
λ′(0, z)dz

1√
m

m∑
i=1

∫ 1

0

ψ(εi(s))ds− β̂∗
m

∫ 1

0
λ′(0, z)Er20M (z)dz∫ 1

0
λ′(0, z)dz

+ oP (m
−η),

β̂∗
m =

1√
m

∑m
i=1

∫ 1

0
ψ(εi(s))

(
riM (s)−

∫ 1
0 λ′(0,z)Er0M (z)dz∫

1
0 λ′(0,z)dz

)
ds∫ 1

0
λ′(0, z)Er20M (z)dz −

( ∫
1
0 λ′(0,z)Er0M (z)dz

)2
∫
1
0 λ′(0,z)dz

+ oP (m
−η).

The last two relations are important for getting the limit distribution of our test procedure.

The next lemma follows along the arguments of Lemma 5.4 in Chochola et al. [7], modified along the lines of
the proofs of the previous lemmas. So the proof will only be sketched and not be given in detail.

Lemma 5.4. Let the assumptions of Theorem 2.1 be satisfied. Then, for any T > 0, as m→ ∞,

max
1≤k≤�mT	

( |{Nk,m(a, b)− E∗Nkm(a, b)}a=α̂∗
m,b=β̂∗

m
|

(k/m)γ

)
= OP (m

−η),

for some η > 0, where α̂∗
m, β̂

∗
m are as in (4.3), and

Nk,m(a, b) =
1

n

n∑
ν=1

1√
m

m+k∑
i=m+1

riM (sν)
(
ψ(εi(sν)− a/

√
m− briM (sν)/

√
m)− ψ(εi(sν))

)
.

Proof. Lemma 5.4 is related to Lemma 5.3, but it is somewhat more complicated.

Direct calculations give

E∗Nk,m(a, b) = − 1

n

n∑
ν=1

1√
m

m+k∑
i=m+1

riM (sν)λ
(
(a+ briM (sν), sν)/

√
m
)

= − 1

n

n∑
ν=1

λ′(0, sν)
1

m

(
a

m+k∑
i=m+1

riM + b
m+k∑

i=m+1

r2iM (sν)
)

+OP

( 1
n

n∑
ν=1

1√
m

m+k∑
i=m+1

|riM (sν)||(a+ briM (sν))/
√
m|2

)
,

uniformly for |a|+ |b| ≤ C, with some η > 0. In fact we need to study more carefully the properly standardized
remainder

max
1≤k≤�mT	

1

(k/m)γ

( 1
n

n∑
ν=1

1

m3/2

m+k∑
i=m+1

|riM (sν)|
)
+ max

1≤k≤�mT	
1

(k/m)γ

( 1
n

n∑
ν=1

1

m3/2

m+k∑
i=m+1

|riM (sν)|3
)
.

Both terms above are OP (m
−η) for some η > 0.

Next, we try to get an upper bound for var∗{Nk,m(a, b)}. We have

var∗{Nk,m(a, b)} =
1

m

m+k∑
i=m+1

E∗
( 1
n

n∑
ν=1

riM (sν)

× (ψ(εi(sν)− di(sν)/
√
m)− ψ(εi(sν))−E∗ψ(εi(sν)− di(sν)/

√
m))

)2
+ 2

1

m

m+k∑
i=m+1

1

n

n∑
r1=1

riM (sr1)E
∗
(
ψ(εi(sr1)− di(sr1)/

√
m)− ψ(εi(sr1))− E∗ψ(εi(sr1)− di(sr1)/

√
m)
)

×
(m+k−i∑

ν=1

1

n

n∑
r2=1

ri+ν,M(sr2)

× (ψ(ε(ν)i+ν(sr2)− di+ν(sr2)/
√
m)− ψ(ε

(ν)
i+ν(sr2))−E∗ψ(ε(ν)i+ν(sr2)− di+ν(sr2)/

√
m)
))

= L1,k + 2L2,k (say),
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and, along the lines of the proof of Lemma 5.3 (see the estimation of the terms J1, J2 there), we get

L1,k =
k

m
m−1/2

(|a|+ |b|)OP (1),

|L2,k| = 1

m1+1/2
(|a|1/2k + |b|1/2k)OP (1),

uniformly in |a|+ |b| ≤ C and in 1 ≤ k ≤ �mT 	. So, altogether we have

var∗{Nk,m(a, b)} =
k

m
m−η(|a|+ |b|)OP (1),

uniformly in |a|+ |b| ≤ C and in 1 ≤ k ≤ �mT 	, with some η > 0.

Quite similarly we get, for � = 1, 2, . . .,

var∗{Nk+�,m(a, b)−Nk,m(a, b)} =
�

m
m−η(|a|+ |b|)OP (1).

Then, on applying Theorem B.4 of Kirch [13],

m−1+2γE∗ max
1≤k≤�mT	

( 1

kγ
|Nm,k(a, b)− E∗Nm,k(a, b)|

)2
= m−1+2γ(logm)2

�mT	∑
k=1

1

k2γ
m−η(|a|+ |b|)OP (1) = (logm)2m−η(|a|+ |b|)OP (1).

We need to replace a, b by the estimators α̂∗
m, β̂

∗
m. However our Nk,m(a, b) depends on ε1(·), . . . , εm(·). There-

fore we try to replace Nk,m(a, b) by something that is asymptotically equivalent, but does not depend on
ε1(·), . . . , εm(·).

Toward this note that

N
(m)
k,m(a, b) =

1√
m

k∑
i=1

1

n

n∑
ν=1

ri+m,M (sν)
(
ψ(ε

(i)
i+m(sν)− di(sν)/

√
m)− ψ(ε

(i)
m+i(sν))

)
has all the properties of Nk,m(a, b) above, but it is independent of ε1(·), . . . , εm(·). This together with the

consistency of α̂∗
m and β̂∗

m implies

m−1+2γ max
1≤k≤�mT	

( 1

kγ

∣∣∣{N (m)
m,k (a, b)− E∗(N (m)

m,k (a, b)|}a=α̂∗
m,b=β̂∗

m)|
)2

= OP

(
(logm)2m−η max(|α̂∗

m|+ |β̂∗
m|, |α̂∗

m|1/2 + |β̂∗
m|1/2)) = OP

(
(logm)2m−η).

It is still necessary to show the closeness of Nk,m(a, b) and N
(m)
k,m(a, b). Clearly, N

(m)
k,m(a, b) is independent of

ε1(·), . . . , εm(·) and
E∗(Nk,m(a, b)−N

(m)
k,m(a, b)

)
= 0,

Nk,m(a, b)−N
(m)
k,m(a, b) =

1√
m

1

n

n∑
ν=1

k∑
i=1

(ri+m,M (sν)

×
((
ψ(εi+m(sν)− di+m(sν)√

m
)− ψ(ε

(i)
i+m(sν)− di+m(sν)√

m
)
)

− (ψ(εi+m(sν))− ψ(ε
(i)
i+m(sν))

))
,

E∗|Nk,m(a, b)−N
(m)
k,m(a, b)| ≤ D√

m

1

n

n∑
ν=1

k∑
i=1

|ri+m,M (sν)|

× sup
|a|≤a0

E
(|ψ(ε0(sν)− a)− ψ(ε

(i)
0 (sν)− a)|+ |ψ(ε0)(sν)− ψ(ε

(i)
0 (sν))|

)
≤ D√

m

1

n

n∑
ν=1

�mT	∑
i=1

|ri+m,M (sν)| sup
|a|≤a0

E|ψ(ε0(sν)− a)− ψ(ε
(i)
0 (sν)− a)|,

which holds for any 1 ≤ k ≤ �mT 	. So, in view of our assumptions,

sup
|a|+|b|≤C

E∗|Nk,m(a, b)−N
(m)
k,m(a, b, j)| = OP (m

−1/2),

whence

sup
1≤k≤�mT	

(
sup|a|+|b|≤C E

∗|Nk,m(a, b)−N
(m)
k,m(a, b)|

(k/m)γ

)
= OP (m

−η),

for some η > 0. A combination of the above estimates completes the proof of Lemma 5.4.
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Remark 5.2. From Lemma 5.4 we get the following approximations:

1√
m

m+k∑
i=m+1

n∑
ν=1

1

n
riM (sν)ψ(εi(sν)− α̂∗

m/
√
m− β̂∗

mriM (sν)/
√
m)

=
1√
m

m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν))−
(
α̂m

1

m

m+k∑
i=m+1

n∑
ν=1

λ′(0, sν)riM (sν)

+ β̂∗
m

1

m

m+k∑
i=m+1

1

n

n∑
ν=1

λ′(0, sν)r
2
iM (sν)

)
+OP (m

−η).

In view of Remark 5.1, we similarly get

1√
m

m∑
i=1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν))

= α̂∗
m

1

m

m∑
i=1

1

n

n∑
ν=1

λ′(0, sν)riM (sν) + β̂∗
m

1

m

m∑
i=1

1

n

n∑
ν=1

λ′(0, sν)r
2
iM (sν)) +OP

(
m−η

)
.

After some standard steps this results in

1√
m

m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν)− α̂∗
m/

√
m− β̂∗

mriM (sν)/
√
m)

=
1√
m

( m+k∑
i=m+1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν))− k

m

m∑
i=1

1

n

n∑
ν=1

riM (sν)ψ(εi(sν)) +OP

(
m−η)).

Here we also used that

max
1≤k≤�mT	

1

m(k/m)γ

∣∣∣ 1
n

n∑
ν=1

λ′(0, sν)
( k
m

m∑
i=1

riM (sν)−
m+k∑

i=m+1

riM (sν)
)

+
1

n

n∑
ν=1

λ′(0, sν)
( k
m

m∑
i=1

r2iM (sν)−
m+k∑

i=m+1

r2iM (sν)
)∣∣∣ = oP (1)

as m→ ∞ (cf. Lemma 5.5 (iii)).

Lemma 5.5. Let Assumptions (B.1), (B.4), and (B.6)-(B.7) be satisfied. Then,

(i) there is a constant C > 0 such that

E max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

n∑
ν=1

∫ sν

sν−1

(
riM (sν)− riM (s)

)
ψj(εi,j(s))ds

∣∣∣∣
≤ C (logm)

1

n

n∑
ν=1

sup
h∈[0,1/n]

‖r0M (sν)− r0M (sν − h)‖2; (5.7)

(ii) for j = 1, . . . , d, as m→ ∞,

max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

(
z̃i,j − zi,j

) ∣∣∣∣
= max

1≤k≤�mT	
1√

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

(
1

n

n∑
ν=1

riM (sν)ψj(εi,j(sν))−
∫ 1

0

riM (s)ψj(εi,j(s))ds

)∣∣∣∣ = oP (1).

(5.8)

Moreover, due to strict stationarity, the above relations also hold with max1≤k≤�mT	 1√
m (k/m)γ

∑m+k
i=m+1 being

replaced by 1√
m

∑m
i=1.

(iii) for j = 1, . . . , d, as m→ ∞,

max
1≤k≤�mT	

1

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

1

n

n∑
ν=1

λ′
j(0, sν)

(
riM (sν)− Er0M (sν)

)∣∣∣∣ = oP (1); (5.9)

max
1≤k≤�mT	

1

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

1

n

n∑
ν=1

λ′
j(0, sν)

(
r2iM (sν)− Er20M (sν)

)∣∣∣∣ = oP (1). (5.10)
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Moreover, the above relations also hold with max1≤k≤�mT	 1
m (k/m)γ

∑m+k
i=m+1 being replaced by 1

m

∑m
i=1.

Proof. Again, for the sake of simplicity, we omit the index j in the sequel.

(i) On interchanging summation, expectation and integration, a similar argument as in the proof of (5.3) gives

E max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

n∑
ν=1

∫ sν

sν−1

(
riM (sν)− riM (s)

)
ψ(εi(s))ds

∣∣∣∣
≤

n∑
ν=1

∫ sν

sν−1

{
E

(
max

1≤k≤�mT	
1√

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

(
riM (sν)− riM (s)

)
ψ(εi(s))

∣∣∣∣)2}1/2

ds

≤ D (logm) sup
s∈[0,1]

‖ψ(ε0(s))‖2 1

n

n∑
ν=1

sup
h∈[0,1/n]

‖r0M (sν)− r0M (sν − h)‖2,

with some D > 0, where in the last inequality we made use of the independence of the sequences {riM (·)} and
{εi(·)}. Since sups∈[0,1] ‖ψ(ε0(s))‖2 <∞, this proves (i).

(ii) Consider

max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

(
1

n

n∑
ν=1

riM (sν)ψ(εi(sν))−
∫ 1

0

riM (s)ψ(εi(s))ds

)∣∣∣∣
= max

1≤k≤�mT	
1√

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

n∑
ν=1

∫ sν

sν−1

(
riM (sν)ψ(εi(sν))− riM (s)ψ(εi(s))

)
ds

∣∣∣∣
≤ C

( n∑
ν=1

∫ sν

sν−1

max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

(
riM (sν)− riM (s)

)
ψ(εi(s))

∣∣∣∣ds
+

n∑
ν=1

∫ sν

sν−1

max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

riM (sν)
(
ψ(εi(sν))− ψ(εi(s))

)∣∣∣∣ds)

=
n∑

ν=1

∫ sν

sν−1

(
I1,m(sν , s) + I2,m(sν , s)

)
ds. (5.11)

According to (5.7) and Assumption (B.7a), as m→ ∞,

E
( n∑

ν=1

∫ sν

sν−1

I1,m(sν , s)ds
)
≤ C (logm)

1

n

n∑
ν=1

sup
h∈[0,1/n]

‖r0M (sν)− r0M (sν − h)‖2 = o(1). (5.12)

By an analogous argument,

E
( n∑

ν=1

∫ sν

sν−1

I2,m(sν , s)ds
)

≤
n∑

ν=1

∫ sν

sν−1

E max
1≤k≤�mT	

1√
m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

riM (sν)
(
ψ(εi(sν))− ψ(εi(s))

)∣∣∣∣ds
≤ C (logm) sup

s∈[0,1]

‖r0M (s)‖2 1

n

n∑
ν=1

sup
h∈[0,1/n]

‖ψ(εi(sν))− ψ(εi(sν − h))‖2 = o(1), (5.13)

where we have used the independence of the sequences {riM (·)} and {εi(·)} once again in combination with
Assumptions (B.1) and (B.7b).

(iii) In a first step, we replace 1
n

∑n
ν=1 λ

′(0, sν)
(
rqiM (sν)− Erq0M (sν)

)
in (5.9)-(5.10) with

xi =

∫ 1

0

λ′(0, s)
(
rqiM (s)− Erq0M (s)

)
ds, i = 1, 2, . . . ; q = 1, 2.

This can be done in a similar way as in the proof of (5.8). We even have an additional multiplication by 1/
√
m

here. Note that the sequence {xi}i=1,2... is again strictly stationary and ergodic with Ex0 = 0.
Now, it suffices to prove (5.9) and (5.10) with maxK<k≤�mT	 instead of max1≤k≤�mT	 and

∑m+k
i=K+1 replacing∑m+k

i=m+1, where K = Km is such that K → ∞, but K/m1−γ → 0, e.g., for K = logm.
In view of the strict stationarity and Ex0 = 0, the ergodic theorem gives, as m→ ∞,

max
K<k≤�mT	

1

k

∣∣∣∣ m+k∑
i=m+1

xi

∣∣∣∣ = oP (1).
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On observing that

max
K<k≤�mT	

1

m (k/m)γ

∣∣∣∣ m+k∑
i=m+1

xi

∣∣∣∣ ≤ T 1−γ max
K<k≤�mT	

1

k

∣∣∣∣ m+k∑
i=m+1

xi

∣∣∣∣,
this completes the proof of (5.9) and (5.10), respectively.
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Abstract 

We develop testing procedures which detect if the observed time series is a martingale 

difference sequence. Furthermore, tests are developed that detect change–points in the 

conditional expectation of the series given its past. The test statistics are formulated 

following the approach of Fourier–type conditional expectations first proposed by 

Bierens (1982) and have the advantage of computational simplicity. The limit behavior of 

the test statistics is investigated under the null hypothesis as well as under alternatives. 

Since the asymptotic null distribution contains unknown parameters, a bootstrap 

procedure is proposed in order to actually perform the test. The performance of the 

bootstrap version of the test is compared in finite samples with other methods for the 

same problem. A real–data application is also included. 
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KEYWORDS: Martingale difference hypothesis; Change–point test; Bootstrap test; 

Empirical characteristic function  

 

1 INTRODUCTION 

The martingale difference hypothesis (MDH) is a property integrated in many statistical 

models popular in finance and economics. Such an assumption is standard with asset 

returns in an efficient market, with changes in consumption, as well as with disturbances 

in a correctly specified time–series regression model, among others. The basic idea 

underlying the MDH is the unpredictability of macro and financial series on the basis of 

currently available information. Hence the MDH is critically related to the efficient 

market hypothesis first put forward in seminal papers by Samuelson (1965) and Fama 

(1970). The efficient market hypothesis states that in efficient markets, prices follow a 

martingale and always fully and instantaneously reflect all available relevant information 

consisting of past prices and returns. Consequently, as price adjustments to new piece of 

information is instantaneous and accurate, no agent, however well informed, can use 

market information as a basis for superior forecasts or in order to accomplish trading 

profits beyond the level justified by the risk which he/she assumes. However, most 

efficiency studies on financial markets focus on a weak form of market efficiency 

through the MDH, whereby the profit expected from an asset which is forecasted to have 

its future price equal to its the current price is equal to zero. The MDH for exchange rates 

has been a major concern in the finance literature and many authors have investigated this 

hypothesis, often with mixed conclusions; see for instance, Belaire-Franch and Contreras 

(2011), Yilmaz (2003), Hong and Lee (2003), Fong et al. (1997), and Fong and Ouliaris 
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(1995). Less standard areas where the MDH has been put forward include electricity 

prices (Veka, 2013) and CO 2  emissions (Daskalakis et al., 2009, Charles et al., 2011a), 

among others. 

 

The standard formulation of the MDH is  

1( | ) = 0, = 1, ,t tY t  (1) 

 where t  denotes the information set available at time t , and tY  represents first 

differences of a process which under this hypothesis forms a martingale sequence. The 

statistical problem of testing the null hypothesis in (1.1) has been addressed by many 

authors; see Escanciano and Lobato (2009a) for an excellent survey. One approach is to 

consider methods which test for lack of autocorrelation in tY , a condition which is a 

necessary (but not a sufficient) for the MDH. A standard method for testing 

autocorrelation of fixed finite order is via the Box–Pierce Portmanteau test commonly 

implemented via its Ljung and Box (1978) modification. Other methods include the 

robustified Box–Pierce statistic (or variance ratio test) of Lo and MacKinlay (1988), the 

automatic variance ratio test of Choi (1999), that was later modified for 

heteroscedasticity by Kim (2009), and the automatic Portmanteau test of Escanciano and 

Lobato (2009b), which is data–driven with respect to the order of autocorrelation. 

(Recently, a different data–driven test using neural networks and boosting has been put 

forward by Kapetanios and Blake, 2010). In this category we also mention the tests of 

Lobato et al. (2002) which works under general dependence structures and that of Francq 

et al. (2005) applied not on the original observations but on corresponding residuals. On 

the other hand, MDH tests involving an infinite set of autocorrelations are derived in the 
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frequency domain via the spectral density or distribution. Such a test was first proposed 

by Durlauf (1991) and was later extended by Deo (2000) to account for conditional 

heteroscedasticity. 

 

While the aforementioned methods only consider linear dependencies (of finite or infinite 

order), a number of testing procedures for (1.1) make use of the following equivalence 

relation  

1 1( | ) = 0 [ ( )] = 0, = 1, ,t t t tY Y v t  (2) 

 where ( )v  is a suitably chosen weight function. As before, eqn. (1.2) may involve a 

finite but also a potentially infinite set of time lags. An additional challenge with these 

tests is the choice of the weight function ( )v  figuring in (1.2). In this connection a 

subclass of such tests uses indicator functions, while others use non–linear but smooth 

weight functions ( )v . The tests of Domínguez and Lobato (2003), Escanciano and 

Velasco (2006a) and Escanciano and Mayoral (2010), belong to the first category. The 

second line of research was initiated by Bierens (1982), and includes de Jong (1996), 

Bierens and Ploberger (1997), Kuan and Lee (2004) and Bierens and Wang (2012). In 

these papers instead of using classical autocorrelation between tY  and past values, the 

authors employ nonlinear exponential–type transformations of such past values. 

 

In the present paper we follow the approach of Bierens and consider tests for the MDH 

involving an exponential–type weight function. Note that this approach is also followed 

by Hong (1999) and Escanciano and Velasco (2006b), who propose tests based on the 

‘generalized autocovariances’ figuring in the equation in the right–hand side of (1.2). 

D
ow

nl
oa

de
d 

by
 [

N
or

th
 W

es
t U

ni
ve

rs
ity

] 
at

 0
3:

48
 0

2 
N

ov
em

be
r 

20
14

 



 

 
5 

However while these authors construct their tests based on L2–type distances involving 

spectral densities (Hong, 1999) or spectral distribution functions (Escanciano and 

Velasco, 2006b) corresponding to the general autocovariances, our tests are based on 

distances involving these autocovariances directly, and properly integrated over an 

argument u  which will be specified below. As it will be seen, the new test has the 

advantage of computational simplicity. Moreover the tests proposed herein will be based 

on a fixed number of lags. In this connection, we note that it would be natural to allow 

the time lag to be time dependent, and possibly increase without bound with the sample 

size as in de Jong (1996). Although this issue is also discussed in the paper and shown 

that such an approach is still feasible both from the practical as well as from the 

theoretical point of view, our computations and proofs will be much more technical and 

therefore we shall not pursue this aspect of our tests in detail in this work. 

 

However, the main contribution of the present paper is the development of change–point 

tests involving the MDH, an issue which, to the best of our knowledge, has not been 

addressed before in the literature. The relevance of this problem stems from the fact that 

despite the prominence of the MDH in the financial literature, market efficiency should 

be viewed as a dynamic state. Specifically the idea of market adaptivity goes back to 

Grossman and Stiglitz (1980), who postulate the rise of occasional profitable 

opportunities to compensate investors for the cost of analysing the market. (This is also 

compatible with the adaptive market efficiency hypothesis of Lo, 2004.) In other words 

markets experience structural changes, and at a certain time may pass from a state of 

market efficiency, where the MDH holds true, to a state where well–informed agents can 
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systematically gain excess returns, and vice versa. (For recent empirical evidence in stock 

returns see Todea and Lazăr, 2012, and Kim et al., 2011.) 

 

The remainder of this paper is as follows. In Section 2 we specify the null hypotheses 

considered and the corresponding test statistics, while Section 3 addresses the issue of 

computation of these statistics. Section 4 is devoted to the asymptotic behavior of the 

tests under the null hypothesis as well as alternatives while in Section 5, a bootstrap 

version is formulated and its asymptotic validity is shown. The finite–sample properties 

of the proposed methods are investigated in Section 6 where we also present a real–data 

example. Finally, the proofs are given in Section 7. 

 

2  NULL HYPOTHESES AND TEST STATISTICS 

 We consider three different types of hypotheses and for each particular null hypothesis 

propose a corresponding test statistic. Specifically on the basis of observations 1,..., nY Y , 

we first consider the null hypothesis of a martingale difference sequence (MDS)  

(1)

0 1: ( | ) = 0t tH Y  

 and test it against the hypothesis that the structure indeed depends on the past 

observations:  

(1)

1 1 1: ( | ) = ( , , ),t t t t mH Y g Y Y  

1( ( , , ) = 0) < 1,t t mP g Y Y  

 for an arbitrary unknown function g . 

Based on the same methodology, we also propose two tests for changes in the structure of 

a given process. First, we test the MDH against the alternative that the process changes 
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from a martingale structure to a non–martingale structure at some unknown point 0k . 

Specifically the null and the alternative hypothesis are as follows: 

(2)

0 1

(2)

1 1 0

1 1 0

1

: ( | ) = 0,

: ( | ) = 0, < ,

but ( | ) = ( , , ),

( ( , , ) = 0) < 1.

t t

t t

t t t t m

t t m

H Y

H Y t k

Y g Y Y t k

P g Y Y

 

The unknown point 01 < <k n  is called change–point. 

 

The next test considers a generalized version of the MDH and a possible change in the 

conditional martingale difference structure:  

(3)

0 1

(3)

1 1 0

1 1 0

1

: ( | ) = ,

: ( | ) = , < ,

but ( | ) = ( , , ), ,

( ( , , ) = ) < 1,

t t

t t

t t t t m

t t m

H Y c

H Y c t k

Y g Y Y t k

P h Y Y c

 

where c  is an unknown constant. As already mentioned, the parameter m  is chosen in 

advance and therefore restricts the kind of alternatives that are detectable. Also, although 

the tests are formulated for general time t , it is clear that detection of the alternative 

hypotheses is considered only after the first m  values of the process tY  have been 

observed. 

 

We formulate our procedure by using the following characterization of Bierens (1982): 

For real y  and a given vector x  of dimension m , ( | ) = 0y x  holds if and only if 

'( ) = 0iu xye , for all 
mu . In view of this characterization let  
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'( ) ,

= 1

1
( ) = , = 1, , ,

t
ium m

t

m

S u Y e t m n
n

Y

 (2.1) 

( ) ( ) = 0, = 0,1, , ,m

tS u t m  

where , 1 2= ( , ,..., )t m t t t mY Y YY  and > 0m  denotes a chosen time–lag, and consider the 

integrated process  

( ) ( ) 2( ) = | ( ) ( ) | ( ) , 0 1,m m

m nm sn
Q s S u S u w u du s  (2.2) 

 where ( )w  denotes a weight function the choice of which we shall discuss in the next 

paragraph. Notice that this approach amounts to choosing 
'

,
1 1( ) := ( , ) =

iu
t m

t tv v u e
Y

 in 

the original formulation in (1.2). 

 

We suggest to reject the null hypothesis 
(1)

0H  against alternative 
(1)

1H  if  

(1) := (0)n mT Q  (2.3) 

 is large. Notice that 
(1)

nT  is related to the test statistic developed by Escanciano (2009) 

for a slightly different problem. 

 

 Likewise, the null hypothesis 
(2)

0H  is rejected in favor of alternative 
(2)

1H  if  

(2)

1

( ) := ( / ) / ( / , )maxn m
m k n

T Q k n q k n  (2.4) 

 is large, where  

( , ) = (1 ) , (0,1), 0 < 1.q s s s  (2.5) 

In turn, the null hypothesis 
(3)

0H  should be rejected against alternative 
(3)

1H  if  

(3)

1

( ) := ( / ) / ( / , ),maxn m
m k n

T Q k n q k n  (2.6) 
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 is large, where  

( ) ( ) 2( ) = | ( ) ( ) | ( ) ,m m

m nm sn
Q s S u sS u w u du  (2.7) 

( , ) = ( (1 )) , (0,1), 0 < 1.q t s s s  (2.8) 

 The choice of [0,1)  is made in concordance with the test procedures generally used 

in change point analysis (e.g. Horváth and Kokoszka, 1997), i.e.,  close to 1 leads to the 

procedures more sensitive w.r.t a change either at the beginning or at the end in 

comparison with those with  close to 0 . 

 

As already noticed the tests may not be consistent against some specific alternatives 

because they take into account only a finite number m  of lags. As a remedy one can 

formally replace , e.g., ,' mu Y  by 
1

=1

t

j t j jj
u Y a  in 

( ) ( )m

tS u  with ja ’s chosen in such way 

that they restrict influence of t jY  for large j . See de Jong (1996) for an idea. However, 

as a consequence we lose computational simplicity, assumptions in theorems in Sections 

4 and 5 have to be much stronger, and the proofs become still more complex. 

 

3  COMPUTATION OF TEST STATISTICS 

As it will be seen in Section 4, the asymptotic theory of the tests developed in this paper 

is valid for a large class of weight functions ( )w . Here however we will carry out the 

computation step–by–step, and show that certain classes of weight functions render the 

test statistics with the desirable property of computational simplicity. 
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Consider first the test statistic figuring in (2.3), and observe that straightforward 

calculation leads to:  

( ) 2

, ,

= 1 = 1

(0) = | ( ) | ( )

1
= ( ),

m

m nm

n n

w m m

m m

Q S u w d

Y Y I Y Y
n

u u

 (3.1) 

 where. 

Assuming that, for each argument 1:= ( ,..., ) m

mu u u , the weight function can be 

decomposed as 
=1

( ) = ( )
m

j jj
w u w u , where ( )jw  satisfies ( ) = ( )j jw u w u  for each 

u , we obtain  

, ,

=1 =1

( ) = cos{ ( )} ( ) = ( ).
m m

w m m j j j j j j w j j
j

j j

I Y Y u Y Y w u du I Y Y  (3.2) 

 For simplicity we take 1 2 mw w w w  (say). 

It is now clear that there is no difficulty in choosing the weight function ( )w  that leads to 

a test statistic 
(1) = (0)n mT Q  which is easy to calculate. In fact, we may use any (even) 

weight function ( )w u  as a building block (provided that the corresponding integral wI  is 

analytic), and define ( )w u  by the product equation figuring above (12). Examples of such 

functions are the following: (i) | |( ) = , =1,2
buw u e b , (ii) 2( ) = 2(1 cos( )) /w u u u  and (iii) 

( ) =1, | | 1w u u  and ( ) = 0, | |>1w u u . We may also slightly generalize by making the 

transformation u au  in ( )w u , which for each choice of ( )w  results in a corresponding 

parametric family of weight functions indexed by the parameter > 0a . 

In the simulation study, we will be using the weight function 
| |( ) = a uw u e  for which the 

integral ( )wI x  reduces to  
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2

2 /
( ) = cos( ) ( ) = .

1 ( / )
w

a
I x ux w u du

x a
 (3.3) 

At this point we shall investigate the role of the weight function ( )w u  in the test statistic 

in (3.1). Our arguments will be heuristic somewhat, but nevertheless reveal interesting 

connections. First recall from (3.1) and (3.2) that  

=1, = 1

1
(0) = ( ).

n m

m w j j

jm

Q Y Y I Y Y
n

 

Now assume that ( ) < , > 0u w u du , and use a Taylor expansion of cos( )x  in ( )wI x  

to obtain  

, = 1

1
(0) = ,

n

m

m

Q Y Y v
n

 

where ( )

=1
=

m j

j
v v , with  

2

( )

2

=0

( )
= ( 1) ,

(2 )!

k

j jj k

k

k

Y Y
v

k
 

and = ( )u w u du . It is clear from the previous equations that the test statistic (0)mQ  

comes in a form reminiscent of a weighted V –statistic where each product Y Y  receives 

a total weight v  with (component) weights 
( )jv  depending on past observations and on 

the weight function w  in a complicated way. In 
( )jv  specifically, the contribution of each 

pair of past observations (through j jY Y ) is determined by, among other things, the 

weight function w , via the quantities . To gain some extra insight, take 
| |( ) = a uw u e  

so that 1= (2 !) / , = 2a k , and write aQ  for the resulting test statistic that is easily 

seen to simplify to  
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2

1 2
=1, = 1 =0

1 2
= ( 1) ( ) .

n m
k k

a j jk
jm k

Q Y Y Y Y
n a

 

From the last equation it is evident that while in the test statistic the weights depend on 

past observations, this dependence decreases as the value of a  increases. In fact 

asymptotically we have  

, = 1

1
= 2 ,lim

n
m

a
a

m

aQ Y Y
n

 

 which shows that in the limit the contribution of the weights v  to the value of the test 

statistic is neutralized, as a . On the other hand a value of a  which is too small 

causes numerical instability in aQ . (In this connection notice that for = 0a , aQ  is no 

longer finite.) Consequently the choice of the value of a  comes down to a compromise 

which should, on the one hand avoid large values of a  that diminish the influence of the 

weights on the test statistic, but on the other hand should also avoid values of this 

parameter near the origin that render the test statistic vulnerable to numerical error. (This 

reasoning was specific to the weight function | |a ue , but it can be easily seen to apply to 

other weight functions such as 
2aue , for instance.) Moreover, in the context of 

goodness–of–fit testing with i.i.d. observations it has been documented that the choice of 

the specific parametric form of the weight function ( )w u  is much less important than the 

choice of the value of the weight parameter a . In this respect the situation here is similar 

to nonparametric density estimation where the choice of the kernel is much less important 

than the choice of the bandwidth. In fact, there is an interesting connection between, on 

the one hand the weight function w  and the weight parameter a , and on the other hand 

the kernel and the bandwidth, respectively, of nonparametric estimation of a 
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corresponding density; see for instance Meintanis (2013) and Henze et al. (2005) for this 

connection in the context of goodness–of–fit testing with i.i.d. observations. To see this 

recall representation (11) for the test statistic (0)mQ  and take ( ) = ( ), > 0aw u w au a , as 

weight function. Then by a simple change of variables in the integral ( )wI x  we can write  

, = 1

1
(0) = ,

n

m

m

Q Y Y K
n

 

where  

, ,1
= .

m

m m

wK I
a a

Y Y
 

The last representation shows that the statistic (0)mQ  is in the same spirit as the criterion 

used by Lavergne and Patilea (2013), where a similar statistic is used for estimation of 

parameters in parametric models by means of a method involving conditional moments. 

As in Lavergne and Patilea (2013) our kernel ( )wI  (defined below (3.1)) takes the form 

of the characteristic function of a measure ( )w  (possibly non-normalized), the only 

difference being that here ( )w  is assumed to be symmetric around the origin. By way of 

example take 
2

( ) = uw u e , and notice that then  

2/2 /4( ) = ,m x

wI x e  

which implies that the kernel coincides with a constant multiple of the density of 

(0, 2 )m , i.e. of a zero–mean multivariate normal distribution with covariance matrix 

equal to the identity matrix (of dimension m ) multiplied by 2 . Making a connection with 

the limit obtained above we note that, unlike the case of density estimation in which we 

typically assume that = 0na a , as n , here we consider a fixed bandwidth as in 
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Lavergne and Patilea (2013). Also the interesting limit results for fixed sample size n  

and in the case of a , and not as 0a , which in fact is not feasible. A finer 

analysis of the effect of the value of a  on the power of tests was undertaken by Tenreiro 

(2009), but this is confined to the strict parametric context of i.i.d. testing for univariate 

normality, and even then the entire problem is highly non–trivial and involves a series of 

approximations, not to mention the need for apriori fixing specific deviations from the 

null hypothesis in order to determine an optimal value for a . 

Concerning the test statistic 
(2) ( )nT  defined in (6), it is most important to evaluate 

( / )mQ k n . Proceeding similarly as in (11), it is easy to see that  

( ) ( ) 2

2

' '
, ,

1 1

2

'
,

1

, ,

= 1 = 1

=1= 1 = 1

=

( / ) = | ( ) ( ) | (u)

1
= ( )

1
= ( )

1
= ( )

1
= ( )

(2 / )
=

m m

m k nm

k n
iu Y iu Y

m m

m

m m

n
iu Y

m

m

k

n n

w m m

k k

n n m

w j j

jk k

m

k

Q k n S u S u w d

Y e Y e w d
n

Y e w u d
n

Y Y I Y Y
n

Y Y I Y Y
n

a

n

u

u u

u

2
=11 = 1

1
,

1 {( ) / }

n n m

jk j j

Y Y
Y Y a

 (3.4) 

 where in the last step we choose 
| |( ) = a uw u e . We also note that the terms ( / )mQ k n  may 

be calculated recursively from =k n  to = 1k m  and therefore the computational 

complexity of the sequential test statistic 
(2) ( )nT  is obviously of the same order as that of 

the test statistic 
(1)

nT . 
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Compared to (1)

nT  and (2)

nT , the calculation of the test statistic (3)

nT  defined in (8) is more 

involved because we have to evaluate the term ( / )mQ k n  for which we have the 

following:  

2

( ) ( )

, , , ,

= 1 = 1

, , 2
=1= 1 = 1

( / ) = ( ) ( ) ( )

1
= ( )

(2 / ) 1
= ,

1 {( ) / }

m m

m k nm

n n

k k w m m

m m

m n n m

k k

jm m j j

k
Q k n S u S u w u d

n

c c Y Y I Y Y
n

a
c c Y Y

n Y Y a

u

 (3.5) 

 where , = ( ) /kc I k k n . 

We close this section by noting that our methods have a direct connection with methods 

involving the empirical characteristic function and that, apart from testing the MDH, such 

methods have been efficiently employed in the past for a variety of testing problems with 

dependent data. Earlier works are Epps (1988, 1987) and Feuerverger (1990), while the 

most recent literature includes Quessy and Éthier (2012), Leucht (2012), Hlávka et al. 

(2012), and Ghosh (2012). 

 

4  ASYMPTOTIC BEHAVIOR OF THE TEST STATISTICS 

4.1  Behavior Under The Null Hypothesis 

 The next theorem gives the asymptotics of the introduced statistics under the null 

hypothesis.  
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Theorem 4.1 Assume that { }tY  is a martingale difference sequence as well as stationary 

and ergodic with 2

1| | <Y  for some > 0  and let ( )w  be a measurable non-

negative function on m  such that  

( ) = ( ) > 0, , 0 < ( ) < .m

m
w w for all w dt t t t t  (4.1) 

 Then as n :  

(1) 2) | (0, ) | ( ) ,n m
a T Z w duu u  

(2) 2

0< <1

1
) ( ) | ( , ) (1, ) | ( ) ,sup

(1 )
n m

s

b T Z s Z w d
s

u u u u  

(3) 2

0< <1

1
) ( ) | ( , ) (1, ) | ( ) ,sup

( (1 ))
n m

s

c T Z s sZ w d
s s

u u u u  

 where 0 < 1, { ( , ), [0,1], }mZ s su u  is a Gaussian process with expectation zero 

and covariance ( 1 20 1s s )  

2

1 1 2 2 1 1 1 1 1 2 1 2c { ( , ), ( , )} = ( ( , ) ( , )), , ,m m mov Z s Z s s E Y h u h u u uu u Y Y  

1 1

=1 =1

( , ) = cos sin ,
m m

m q m q q m q

q q

h u Y u YY u  (17) 

 Here 1 1 1= ( , , ) , = ( , , )m m mu u Y Yu Y . 

 

The proof is postponed to Section 7. 

 

The assumption that the MDS is stationary and ergodic is only needed to apply the 

central limit theorem and other limit theorems for stationary and ergodic sequences. 

Otherwise a more general form of limit theorems for MDS have to be used and the proofs 
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become still more technical and less transparent. 

 

The assertion of our theorem remains true if 1 1 2 2cov{ ( , ), ( , )}Z s Z su u  are replaced by 

their consistent estimators. Then critical values can be obtained by simulating the limit 

distribution. But it is more convenient to get their approximation via a proper bootstrap as 

explained in Section 5. 

 

At the end of Section 2 we have shortly discussed possible modifications of the test 

statistics to increasing number of lags m . We expect that under proper assumptions 

(much stronger than above) the limit behavior of the modified test statistics will have 

similar structure as in the above theorem but with a Gaussian process 

{ ( , ); [0,1], }mZ s su u  with more complex dependence structure, and moreover the 

dimensions of both the process and the weight function ( )w  tends to  together with n . 

To prove an analog to the above theorems requires among others to derive an extension 

of crucial Lemma 7.1. We are losing among others the properties of stationarity and 

ergodicity, and the dimensions of both the process { ( , ); [0,1], }mZ s su u  and the 

weight function ( )w  tend to  together with n . 

 

4.2  Behavior Under Alternatives 

Here various results on the limit behavior of our test statistics are presented. We 

formulate alternatives through a sequence of martingale difference sequences { }t  

perturbed by some function g . For { }t  and g  we postulate  
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1.  { }t  is a stationary and ergodic martingale difference sequence and g  is a measurable 

function such that  

2 2

1 1 1( ( ) = 0) < 1, | | < , | ( ) | <m mP g g  

for some > 0 .  

 

4.2.1 Alternative Of A Stationary Time Series That Is Not An MDS 

In order to get an idea about the asymptotic power of statistic 
(1)

nT  we consider the 

following types of alternatives: [ A1a:]  

1. Fixed alternative: 

= ( ),k k kY g  

where ({ }, )t g  satisfies AE. 

2. Local alternative: We observe 1, , nY Y  with  

= (x ) ,k k k nY g d  

where 0nd  and ({ }, )t g  satisfies AE.  

 

Theorem 4.2 Let (16) be satisfied. 

 a) For the fixed alternative 1A a  with  

2

1 1( (x ) ( , )) ( ) > 0n nmR
g h w dY u u u  (4.3) 

 the following holds  

(1) .
P

nT  (4.4) 

 b) For the local alternative 1A b  with | |nd n  as n  and  
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20 < ( ) ( ) <
mR
r w du u u  (4.5) 

 where  

1 1( ) = ( (x ) (x , ))m mr E g hu u  (4.6) 

 ( h  as in (17)), equation (19) holds true. 

 c) For the local alternative 1A b  with 0nd n b  the following holds true  

(1) 2| (0, ) ( ) | ( ) ,n m
T Z br w duu u u  

where { (0, ); ) }mZ u u  is a Gaussian process from Theorem 4.1 and (20) is satisfied.  

 

4.2.2 Change-Point Alternative With An MDS Before The Change 

In order to get an idea about the asymptotic power of statistic 
(2)

nT  we consider the 

following types of alternatives:  

[A2a]: Fixed alternative: We observe  

{ > } 0
0

= ( )1 , =k k k k kY g k n  

for some 0 < <1 , where ({ }, )t g  fulfill assumption AE. Let (20) be satisfied. 

[A2b]:  Local alternative: We observe 1, , nY Y  with  

{ > } 0
0

= ( ) 1 , =k k k n k kY g d k n  

for some 0 < <1  and some constant c , where { }nd  is a sequence of real numbers with 

0nd  and where ({ }, )t g  satisfies AE.  

 

Theorem 4.3 Let (16) be satisfied. [a)]  

    1.  For the fixed alternative 2A a  with (18) the following holds  
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(2) ( ) .
P

nT  

    2.  In the situation of the local alternative 2A b  with | |nd n  and if and (20) are 

satisfied then the following holds  

(2) ( ) .
P

nT  

    3.  For the local alternative 2A b  with 0nd n b  it holds  

(2) 2

0< <1

1
( ) | ( , ) (1, ) (1 max( , )) ( ) | ( ) ,sup

(1 )
n m

s

T Z s Z s br w du
s

u u u u  

where ( )r u  is defined in (21) and (20) is satisfied.  

 

   4.2.3 General Change-Point Alternative 

 In order to get an idea about the asymptotic power of statistic 
(3)

nT  we consider the 

following types of alternatives:  

 

[ A3a:]    Fixed alternative: We observe  

{ } 0
0

= ( )1 , =k k k k kY g c k n  

for some 0 < <1 , where ({ }, )t g  satisfies AE and (20), c  is a positive constant. 

 

[ A3b]:     2.   Local alternative: We observe 1, , nY Y  with  

{ > } 0
0

= ( ) 1 , =k k k n k kY c g d k n  

for some 0 < <1 , where { }nd  is a sequence of real numbers with 0nd  and ({ }, )t g  

satisfies AE and (20). 
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Theorem 4.4 Let (16) be satisfied.  [a)]  

a)  For the fixed alternative 3A a  with (18) the following holds  

(3) ( ) .
P

nT  

 

b)  For local alternatives 3A b  with | |nd n  it holds  

(3) ( ) .
P

nT  

 

c).  For the local alternative 3A  with 0nd n b  it holds  

 (3) 2

0< <1

1
( ) | ( , ) (1, ) min( , )(1 max( , ) ( ) | ( ) ,sup

( (1 ))
n m

s

T Z s sZ s s br w du
s s

u u u u  

where ( )r u  is defined in (21) and satisfies (20).  

 

 The proofs are postponed to Section 7. 

 

One can infer from the above theorems that our tests are consistent for the respective 

fixed alternatives as well as for the local ones if | |nn d . The case with 
1/2| |nd n  

is a border line, where the limit distribution differs from the limit null one but is bounded 

in probability. 

 

The test statistics 
(3) ( )nT  can be also used for testing 

(2)

0H  against 
(2)

1H  however 
(2) ( )nT  

has a higher power (as seen from Theorems 4.3 and 4.4). 
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At the end of this section we shortly discuss the problem of estimation the change point 

0k  for situations considered in Theorem 4.3 a and Theorem 4.4 a. Going through the 

proof of Theorem 4.2 (see (7.8) - (7.11)) we notice that under the assumptions of 

Theorem 4.3 a and Theorem 4.4 a  

2 21
( / ) (min( , )(1 max( , ))) | ( ) | ( ) , (0,1).

P

m m
Q ns n s s r u w u d s

n
u  

Therefore  

< <

( ) = min{ < < ; ( / ) / ( / , ) = ( / ) / ( / , )}maxm m
m j n

k m k n Q k n q k n Q j n q j n  

can serve as an estimator of the change point 0k  in either situation. From this we have the 

consistency of the change-point estimator in the sense that  

( ) /
P

k n  

follows using standard arguments. Afterwards, one can split the observations into two 

parts 
1 ( )
, ,

k
Y Y  and 

( ) 1
, , nk

Y Y  and apply the test separately to each part in order to 

check the stability of the model in each part. To study the details though would be quite 

technical and complex and we will not pursue it here. 

 

5  BOOTSTRAP APPROXIMATIONS FOR THE TEST STATISTICS 

 The asymptotic distribution of the test statistics as derived in the previous paragraph 

depends in a complicated matter on the unknown distribution of the observations. 

Consequently, the asymptotical critical values can neither be calculated, nor estimated or 

simulated. For this reason a bootstrap approximation cannot be avoided. 
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There exist several alternative types of resampling in the context of testing the MDH. For 

example, Horowitz et al. (2006) employ the blocks–of–blocks bootstrap method with 

autocorrelation–type tests, while in Whang and Kim (2003) the variance–ratio test is 

implemented by sub–sampling in overlapping time periods; more information on 

different types of resampling with various MDH tests may be found in Fan and Mills 

(2009). In the context of our test however we propose to use a version of the wild 

bootstrap procedure initially suggested by Wu (1986) and Mammen (1993), and which, in 

situations similar to the present one, has been put on a firm theoretical basis by 

Domínguez and Lobato (2003) and Escanciano and Velasco (2006a, 2006b). Note that 

the wild bootstrap procedure has proved to be most effective in finite–sample studies (see 

Charles et al., 2011b, Fan and Mills, 2009), yielding reliable empirical levels as well as 

good power across many alternatives, and it is probably for this reason that it is often 

invoked with real–data applications; see for instance Veka (2013), Todea and Laz a r 

(2012), Kim et al. (2011), and Charles et al. (2011a). 

We assume: [(B.1):] 

(B.1)  { }i i  are i.i.d. with mean zero, unit variance and 
2

1| | <E  for some > 0 , 

 (B.2)  { }i i  and { }i iY  are independent sequences of random variables.  

 Then consider  

( )*

,

= 1

1
( ) = exp ' ,

t
m

t m

m

S Y i
n

u u Y  

and define 
( )*j

nT , =1,2,3j , analogously to 
( )j

nT  with 
( ) ( )m

tS u  replaced by 
( )*( )m

tS u . 
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Theorem 5.1 Let (B.1) and (B.2) be satisfied. 

    1.   Under the assumptions of Theorem 4.1, i.e., under the null hypothesis, it holds  

( )* ( ) 1

1( | , , ) ( ) 0, = 1,2,3, .
P

j j

n n nP T x Y Y P T x j x  

These assertions remain true even under local alternatives, i.e., under the assumptions of 

Theorem 4.2c (for 
(1)

nT ), Theorem 4.3.c (for 
(2)

nT ), or Theorem 4.4c (for 
(3)

nT ).  

    2.   Under the assumptions of Theorem 4.2a for all x   

(1)* 0 2

1| ( | , , ) ( | (0, ) | ( ) ) | 0,
P

n n m
P T x Y Y P Z w du xu u  

where 0 < 1, 0{ ( , ), [0,1], }mZ s su u  is a Gaussian process with expectation zero 

and covariance ( 1 20 1s s )  

1
0 2

1 1 2 2 1 2 1 2

=1

1
c { ( , ), ( , )} = ( ( , ) ( , )), , .lim

ns

j j j
n

j m

ov Z s Z s E Y h h
n

u u Y u Y u u u  

    3.  Under the assumptions of Theorem 4.3a for all x   

(2)*

1| ( ( ) | , , )n nP T Y Y  

0 0 2

0< <1

1
( | ( , ) (1, ) | ( ) ) | 0,sup

(1 )

P

m
s

P Z s Z w d x
s

u u u u  

    4.  Under the assumptions of Theorem 4.4a for all x   

(3)*

1| ( ( ) | , , )n nP T x Y Y  

0 0 2

0< <1

1
( | ( , ) (1, ) | ( ) ) | 0.sup

( (1 ))

P

m
s

P Z s sZ w d x
s s

u u u u  
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Due to the stationarity assumption the covariance 
0

1 1 2 2c { ( , ), ( , )}ov Z s Z su u  can be 

expressed more explicitly for all alternatives. Particularly, under the assumptions of 

Theorem 3.2a we get that this covariance equals  

2

1 1 2( (z , ) (z , )),j j js h hu u  

where = (x )j j jg , under the assumptions of Theorem 3.3a it equals  

2 2

1 1 2 1 1 2min( , ) ( (x , ) (x , )) ( ) ( (z , ) (z , ))j j j j j js h h s h hu u u u  

and under the assumptions of Theorem 4.4a it equals  

2 2

1 1 2 1 1 2min( , ) ( (x , ) (x , )) ( ) ( (z , ) (z , )),j j j j j js h h s h hu u u u  

where =j j c  and = .j j c  

The above theorem shows that under the null hypothesis the bootstrap critical values are 

asymptotically equivalent to the asymptotic critical values while they are at least bounded 

under alternatives. For a fixed alternative the covariance structure of the limit process of 

( )*m

tS  is close to a null hypothesis limit in the sense that the limit process is centered with 

a similar covariance structure as under alternatives, while it is not centered under 

alternatives. A more detailed connection can not be made in this context as the fixed 

alternative is not clearly linked to a specific time series under the null hypothesis since 

the limit distribution is not pivotal under the null hypothesis. In the contiguous case the 

bootstrap critical values are close to the critical values for observations  following the 

null hypothesis. 

 

6  SIMULATION AND DATA EXAMPLE 

D
ow

nl
oa

de
d 

by
 [

N
or

th
 W

es
t U

ni
ve

rs
ity

] 
at

 0
3:

48
 0

2 
N

ov
em

be
r 

20
14

 



 

 
26 

6.1  Simulations 

 We investigate the small sample properties of the proposed test by Monte Carlo. Earlier 

small–sample studies for MDH tests were carried out by Lupi (1996), Fan and Mills 

(2009) and Charles et al. (2011b). Here we compare the new test with the spectral test of 

Escanciano and Velasco (2006b) which was shown to be one of the most powerful tests 

in the simulation studies presented by Escanciano and Velasco (2006b) and Charles et al. 

(2011b). To facilitate comparison we use the same processes as in Escanciano and 

Velasco (2006b). More precisely, with t  and tu  denoting two independent sequences of 

i.i.d. (0,1)N  random variables, we consider the following processes: 

 

IID    independent and identically distributed (0,1)N  variates.  

    GARCH(1,1) process =t t tY  with 
2 2 2

1 1= 0.001 0.01 0.97t t tY .  

    stochastic volatility model = exp( )t t tY  with 1= 0.936 0.32t t tu .  

    non-linear moving average 1 2 2= ( 1)t t t t tY .  

    bilinear process 1 1 1 2 1 2=t t t t t tY b Y b Y  with 1 = 0.15b  and 2 = 0.05b .  

    bilinear process with 1 = 0.25b  and 2 = 0.15b .  

    the sum of a white noise and the first difference of a stationary AR(1) process 

1=t t t tY X X  with 1= 0.85t t tX X u .  

    threshold autoregressive model 1= 0.5t t tY Y  if 1 1tY  and 1= 0.4t t tY Y  if 

1 < 1tY .  

    first order exponential autoregressive model 
2

1 1= 0.6 exp( 0.5 )t t t tY Y Y .  
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    fractional integrated model ARFIMA (0,0.3,0) , i.e., 0.3(1 ) =t tL Y  with L  denoting 

the usual back shift operator.  

 

The behavior of the non-sequential test statistic 
(1)

nT  is investigated in Table 1 for various 

values of the tuning parameters a  and m  for three MDS processes (IID, G1, and SV) 

and for seven non-MDS processes. The empirical significance level seems to be 

reasonably close to = 0.05  and the empirical power is largest, in most cases, for =1m  

and =1a . This power, although mostly reasonably high, it appears to be low for NDAR 

and NLMA alternatives and in certain cases with EXP(1). Compared to the state–of–art 

test by Escanciano and Velasco (2006b, Tables 1–3), the empirical power of our test 

(with =1a  and =1m ) is mostly slightly lower but, on the other hand, the test statistic 

(1)

nT  is computationally very simple and the proposed test may be carried out even for 

larger sample sizes. We also generalize the proposed test statistic to the change–point 

setup. 

 

In Tables 2 and 3, we investigate the behavior of the change-point test statistic 
(2) ( )nT  

for {0,0.5} . The empirical significance level lies close to = 0.05 . Also the power 

pattern observed in Table 1 mostly persists here too (as well as in Table 4 below), with 

the tests having reasonable power, but again missing certain types of alternatives such as 

those involving the NDAR and NLMA, and in certain cases the SV process. 
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The simulation results concerning the change-point hypothesis (3)

0H  are summarized in 

Table 4. The empirical powers for 
(3)

0H  are slightly lower than empirical powers 

observed for (2)

0H  in Table 2. This behavior is not surprising because the hypothesis (3)

0H  

is more general than the hypothesis 
(2)

0H . Notice also that the test statistic 
(3) ( )nT  is 

computationally more intensive than 
(2) ( )nT . 

 

As an illustration of the difference between hypotheses 
(2)

0H  and 
(3)

0H  and the 

corresponding test statistics 
(2) ( )nT  and 

(3) ( )nT , we include Table 5 where the process 

P1 consists of IID N(0,1) observations shifted by 1  and the process P2 are IID N(0,1) 

observations shifted by 2 . This model with a constant shift is actually a slight 

simplification of one of the models used in Bao and Lee (2006). Using our method, we 

test the existence of the change-point 0k  without any prior knowledge concerning its 

location and we obtain the empirical rejection rates given in Table 5. The hypothesis 
(2)

0H  

is satisfied only for 1 2= = 0  and this is reflected in the left part of Table 5, where we 

can also see that the test statistics 
(2) ( )nT  detects also the situation with 1 0  that is not 

covered by 
(2)

0H . The results for 
(3)

0H  that may be found in the right-hand side of Table 5 

show that 
(3)

0H  is satisfied whenever 1 2= , although in this case the corresponding test 

appears to be conservative somewhat. 

 

6.2  Data Example: S&P 500 
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In this section we apply the suggested procedures on the log returns of the S&P 500 stock 

index. Since this is a commonly used index in the context of testing the MDH, we briefly 

mention some of the earlier findings: Hong and Lee (2005) find strong evidence against 

the MDH for both the raw data as well as for the residuals after removing linear 

dependence. On the other hand, Escanciano and Mayoral (2010) use several test statistics, 

some of them being significant for the MDH while others non-significant. Likewise 

Escanciano and Velasco (2006b), having apriori subdivided their data–set into three 

different sub–periods, are led to mixed conclusions with the MDH being accepted for 

certain periods with specific tests while being rejected for other periods with the same or 

other tests. The MDH is also rejected for 40% of the individual stocks in the S&P 500, by 

the test of Kapetanios and Blake (2010). While these findings correspond to different 

time periods with daily, but also with weekly data, it appears reasonable to suggest that 

the MDH for this particular series conforms nicely with the adaptive market hypothesis 

that market efficiency varies over time and profitable opportunities do appear 

episodically in an intrinsically dynamic fashion. In this connection Bao and Lee (2006), 

working in the context of density forecasts find that despite the fact that the entire 

distribution of the S&P 500 series is not predictable, some of its tail characteristics are 

better predicted by certain non–linear models, thus rejecting the MDH for this part of the 

distribution. This last finding is compatible with a collection of empirical results 

suggesting that time periods of predictability appear to coincide with a certain amount of 

higher market uncertainty and volatility; see for instance Kim et al. (2011), Veka (2013) 

and Charles et al. (2011a). 
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Here we shall initially follow the exposition of Escanciano and Velasco (2006b) who 

analyze three sample periods for log returns of the S&P 500 stock index; see Figure 1. 

(Note that these three sample periods were determined apriori and without any 

justification). The authors conclude that the MDH is not rejected for the first period 

(Jan1990–Dec1993), it is rejected for the second period (Jan1994–Dec1997), while it is 

questionable for the third period (Jan1998–Aug2002). These findings correspond to the 

spectral test in Escanciano and Velasco (2006b), and as already noted above vary with 

other MDH tests. Repeating their analysis using the test statistic (5), we are led to the 

same conclusion for the first two time periods. Specifically we obtain the p-value 0.476 

for the first sample and the p-value 0.005 for the second sample. 

 

Unfortunately, this approach heavily depends on the subdivision of the data set into two 

different time–periods, which is in fact done arbitrarily. However within this apriori fixed 

sample framework, one needs to perform repeated testing in order to locate a possible 

change point, that would eventually result to non–trivial problems which are often 

encountered with repeated testing. Therefore we now turn to the new test statistic (6) in 

the context of which the change point is not fixed but instead it is part of the output of the 

procedure. Specifically when the test for the change-point hypothesis 
(2)

0H  is applied to 

the joint data set (Jan1990–Dec1997) it leads to a p-value 0.003 ( =1a , =1m , = 0.5). 

Next, proceeding as described in Section 4.2.3, we obtain the change–point estimate 

= 1250k  corresponding to a change occurring on December 8th, 1994. Note that this 

date precedes by almost one year the arbitrarily chosen change-point in Escanciano and 

Velasco (2006b). Using, once more, the test statistic (5), we obtain p-value 0.649 for data 
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observed until December 7th, 1994, and p-value 0.000 for data observed from December 

8th, 1994, which implies that the MDH is not rejected for the first period (Jan1990–Dec7, 

1994), while it is rejected for the second perriod (Dec8, 1994–Dec1997). To confirm that 

there is no further change in the first period we use the statistic (6) to test the change-

point hypothesis 
(2)

0H  and obtained a p-value of 0.526. 

Hence, using the methods proposed in this paper we arrive at the following conclusions: 

 

    1.  We confirm the results of Escanciano and Velasco (2006b) that the MDH is not 

rejected from January 1990 until December 1993, and it is rejected from January 1994 

until December 1997.  

    2.  The hypothesis 
(2)

0H  of no change in the martingale difference structure between 

January 1990 and December 1997 is rejected with overall type I error equal to 0.05. 

However the change in the martingale difference structure of the S&P 500 log returns 

occurred in December 1994, almost one year later than the change-point considered 

previously in Escanciano and Velasco (2006b). This finding is corroborated by the fact 

that the MDH 
(1)

0H  is not rejected for log returns until December 7th, 1994, and it is 

rejected for log returns observed after December 8th, 1994. As a further confirmation we 

note that the hypothesis 
(2)

0H  of no change in the martingale difference structure is not 

rejected using the data between January 1990 and December 7th, 1994. 

 

In order to further investigate possible differences in the two time periods which were 

determined by our change–point analysis we have computed several descriptive statistics 

corresponding to the S & P 500 data in these two periods. While most of these statistics 
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were somewhat similar, there seems to be a considerable difference in the kurtosis of the 

data with the excess kurtosis being equal to 2.17 for the first period (Jan1990–Dec7, 

1994) and equal to 9.21 for the second period (Dec8, 1994–Dec1997). Hence there 

appears to be a significantly different tail–behavior before and after the change–point, 

and although this is certainly not conclusive evidence it would be reasonable to suggest 

that in the second time period the stock market was more volatile, a fact that as already 

mentioned has been associated to market predictability and the rejection of the MDH. 

 

7  PROOFS 

 In order to prove Theorem 4.1 the following lemma is essential. 

Lemma 7.1  Let (16) be satisfied and let { }tY  be a martingale difference sequence as 

well as stationary and ergodic with 
2

1| | <Y  for some > 0  and define  

= 1

1
( , ) = ( , ), , (0,1)

sn
m

n k k

k m

Z s Y h s
n

u Y u u  

 where ( , )kh Y u  is defined in (17), 1= ( , , )T

k k k mY YY  and 1= ( , , )T

mu uu . Then [a)]  

    1.  For any compact subset of m  and any 0 1s  it holds  

2( ( , )) ( ) <sup n
Fn

Z s w du u u  (7.1) 

    2.  There exists an > 0a , 0 < <D  such that for any 0 1s  it holds  

2 2

1 2 1 2( , ) ( , )sup
a

n n
n

Z s Z s Du u u u  (7.2) 

    3.  The marginal distributions of { ( , )}nZ s u  converge to the marginal distributions of a 

Gaussian process { ( , )}Z s u  with covariance structure ( 1 20 1s s )  
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2

1 1 2 2 1 1 1 2 1 2

=1 =1

c { ( , ), ( , )} = ( ( ) ( )), , .
m m

m q m q q m v

q v

ov Z s Z s s E Y h u Y h u Yu u u u  

 

Proof. For each u  the process ( , )nZ s u  is a sum of martingale differences so that  

( , ) = 0,nZ s u  

2 2 2 2

1

= 1

1
{ ( , )} = ( ( , )) 4

ns

n k k m

k m

Z s Y h Y
n

u Y u  (7.3) 

 as (.)h  is bounded and { }kY  is stationary. From this, assertion a) follows. 

 

In the following we will use D  as a generic constant which may vary from line to line. 

First notice that by the boundedness of sine and cosine and the mean value theorem it 

holds  

2(2 )/ min(2 ,2(2 )/ )

1 2 1 2| ( , ) ( , ) | | ( , ) ( , ) |k k k kh h D h hY u Y u Y u Y u  

min(2 ,2(2 )/ ) min(2 ,2(2 )/ )| , | ,kD D1 2 1 2Y u u u u  

 hence by the Hölder inequality and (24) it follows  

2 2 2 2 1/2

1 2 1 2 1 2

1/2

2 1/2 2

1 2 2 1

= 1

1/2

2 2

2 1

= 1

=

| ( , ) ( , ) | ( | ( , ) ( , ) | | ( , ) ( , ) | )

1
( | ( , ) ( , ) | ) = ( ( ( , ) ( , ))

1
( ) ( ( , ) ( , ))

1

n n n n n n

sn

n n k k k

k m

n

k k k

k m

k

Z s Z s Z s Z s Z s Z s

D Z s Z s D Y h h
n

D Y h h
n

n

u u u u u u

u u Y u Y u

Y u Y u

1/2

2 2/(2 ) 2(2 )/ /(2 )

1 2

1

( | | ) ( | ( , ) ( , ) | )
n

k k k

m

a

Y h h

D 1 2

Y u Y u

u u

 

 for some > 0a , hence b). 
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Concerning c) we apply Theorem 6.21, p.113, in Breiman (1968). We need to verify the 

assumptions. Since { }jY  is a stationary ergodic sequence it holds  

2 2 2 2

1

=1

1
( , ) ( | , ) = ( , ) ,

n P

j j j j j

j

h Y Y v Eh Y
n

Y u Y u  

 it holds even a.s. Additionally, for all > 0   

2 2 2

1 1 /2{| ( , ) |> }
=1 =1

1 1
( ( , ) ( 1 | , ) | | 0.

n n P

j j j jh Y n
j j

j j

h Y Y Y
n nY u

Y u  

 

Proof of Theorem. By assumption (16) we have  

=1 =1

cos sin ( ) = 0,
m m

q q q qm

q q

u x u x w du u  

 which immediately implies  

2

(1)

=1 =1 =1

1
= sin cos ( ) .

n m m

n k q k q q k qm

k m q q

T Y u Y u Y w d
n

u u  (7.4) 

 From Lemma 7.1 ( =1s ) in addition to Ibragimov and Chasminskij (1981), Theorem 22 

(pages 380, 381) we get that  

2 2( (1, )) ( ) ( (1, )) ( )n
F F

Z w d Z w du u u u u u  (7.5) 

 for any compact subset F  of m . Since ( )w  is integrable there exist for all > 0  a 

compact set F  such that  

2

\ \
( (1, )) ( ) ( ) < , forallnm mF F
Z w d D w d nu u u u u  

 and an analogous argument if nZ  is replaced by Z  which together with (26) show  
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2 2( (1, )) ( ) ( (1, )) ( )nm m
Z w d Z w du u u u u u  

proving a). 

To prove b) we consider the process  

2( ) = ( ( , ) (1, )) ( ) , (0,1).n n nm
X s Z s Z w d su u u u  

First, we prove the convergence of the finite dimensional distribution. To this end let 

10 < < < < 1rs s  and 1, , rb b . Then analogously to the proof of a) we obtain  

2 2

=1 =1

( ( , ) (1, )) ( ) ( ( , ) (1, )) ( ) ,r n r n r rm mR R
r r

b Z s Z w d b Z s Z w du u u u u u u u  

 which by the continuous mapping theorem shows the convergence of the finite 

dimensional distributions of ( )nX  towards those of 
2( ( , ) (1, )) ( )

m
Z s Z w du u u u . 

To obtain tightness, we get by the Minkowski inequality  

2| ( ) ( ) | | ( , ) ( , ) | ( ) .n n n nX s X t D Z s Z t w du u u u  

 Hence, by the Jensen inequality, for any > 0 ,  

2(| ( ) ( ) | ) | ( , ) ( , ) | ( )n n n nP X s X t P D Z s Z t w du u u u  

1 /2
2| ( , ) ( , ) | ( )n nDE Z s Z t w du u u u  

2 1 /2| ( , ) ( , ) | ( ) | | ,n nD E Z s Z t w d D s tu u u u  

 where the last line follows from Stout (1974), Theorem 3.7.8. By Billingsley  (1968), 

Theorem 15.6., we obtain that  

[0,1]
2( ) ( ( , ) (1, )) ( ) ,

D

n m
X Z Z w du u u u  (7.6) 
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 which concludes the proof of b) for = 0 . For 0 < <1/ 2  it holds for arbitrary 

0 < <1/ 2a   

2

0< <1 0< <1

1
( ) / (1 ) | ( , ) (1, ) | ( ) ,supmax

(1 )
m m

s a s a

Q s s Z s Z w d
s

u u u u  

Hence it remains to study 1 < <1 ( ) / (1 )max a s mQ s s . This is equivalent to treating  

2

(1 ) < < = 1

1 1
( ( , )) ( ) .max

(( ) / )

n

j j
a n k n j k

Y h w
n k n n

Y u u u  (7.7) 

 

By Stout (1974), Theorem 3.7.8. it holds  

2 1 /2

= 1

| ( , ) | ( )
n

j j

j k

E Y h D n kY u  

where > 0D  is a generic constant depending on neither k  nor u . 

Therefore by Theorem B.3 (p. 184) in Kirch (2006) it holds  

2 (2 )/2

(1 ) < < = 1

1
( (( ) / ) | ( , ) | )max

n

j j
a n k n j k

E n k n Y h
n

Y u  

( 1)(2 )/2 (2 )/2 1 /2 1

= (1 )

( ) ( )
n

k n a

D n n k n k  

( 1)(2 )/2 /2 (2 )/2

=1

an

j

Dn j  

(1 )(2 )/2 ( 1)(2 )/2 (1 )(2 )/2( )D an n Da  

 

Since (1 )(2 ) / 2  is positive choosing > 0a  small enough also the right side of the 

last expression can be made small. Therefore we have that choosing > 0a  small also (28) 

is small in probability. We can proceed similarly with limit process  
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2

0< <1

1
| ( , ) (1, ) | ( ) .sup

(1 )
m

s

Z s Z w d
s

u u u u  

Then we can conclude that the assertion b) holds even for 0 < <1. 

 

It remains to show that the assertion of Theorem 4.1 c). The proof is quite parallel to the 

case of Theorem 4.1 b) and therefore omitted.  

 

Proof of Theorem 4.2. We will use a more general formulation than is needed for 

Theorem 4.2 which will be of use in the proof of Theorems 4.3 and 4.4. To this end 

consider an arbitrary but fixed (0,1]s  . 

The sequence { }k  satisfies the assumptions of Theorem 3.1a) and we can write  

= 1 = 1

= 1

= 1

1 2 3 4

1
( , ) = (x , ) (x ) (x , )

1
( ( , ) (x , ))

(x )( ( , ) (x , ))

= ( , ) ( , ) ( , ) ( , )

sn sn

n
n k k k k

k m k m

sn

k k k

k m

sn

n
k k k

k m

n n n n

d
Z s u h u g h u

n n

h u h u
n

d
g h u h u

n

J s J s u J s u J s u

Y

Y

u

 

 

 By Theorem 4.1 a) it holds  

2

1( , ) ( ) = (1).n PJ s w d Ou u u  (7. 8) 

 Next we deal with 
2

2 3 4( , ), ( , ), ( , )n n nJ s J s J su u u  for the fixed alternative in a), i.e. = 1nd . 

By the uniform ergodic theorem of Ranga Rao (1962) we get that  

2

3

1
| ( , ) | 0sup

P

n
u K

J s u
n

 (7.9) 
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 for any compact subset K . Together with (16) and because 1 2

,3| ( , ) |nn J s u D  

uniformly in s  and u  this shows that  

2

3

1
( , ) ( ) 0.

P

nJ s u w u du
n

 (7.10) 

 Analogously it holds  

22

2 4 1 1

1
( ( , ) ( , )) ( ) (x ) ( , ) ( ) > 0.

P

n n n nJ s J s w d s g h u w d
n

u u u u Y u u  (7.11) 

 

Putting (29) – (32) together proves assertion a). 

For local alternatives we get similar to (32) that  

2 2

22

1
( , ) ( ) | ( ) | ( ) 0,

P

nm

n

J s u w u du s r u w u du
d n

 (7.12) 

Similarly to (29) we get for local alternatives with 0nd n b   

2 2

1 2( , ) ( , ) ( ) | (0, ) ( ) | .n nm
J s u J s u w u du s Z u br u du  (7.13) 

To show the negligibility of 3nJ  and 4nJ  for local alternatives, first note that for any 

0 < < 4  and for any > 0  there exists a compact set mK  (depending on ) such 

that by (16) and the mean value theorem  

2 /2

1

1

| ( , ) ( , ) | ( ) | ( , ) ( , ) | ( )

( ( ), , ( )) ( )

( ( ), , ( )) .

k k k km K

T

n k k m
K

T

n K k k m

h Y u h u w u du D h Y u h u w u du

Dd g g u w u du

d D g g

 

 This yields by the Cauchy-Schwarz inequality and the martingale difference property of 

{ ( ( , ) ( , ))}k k kh Y u h u   
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22

3

2 2

/(2 )
(2 )/2/(2 )

2 2

( , ) ( ) = ( ( , ) ( , )) ( )

= ( ( , ) ( , )) ( )

| | ( ( , ) ( , )) ( )

(1) ,

n m m mm m

m m mm

m m mm

J s u w u du h Y u h u w u du

h Y u h u w u du

h Y u h u w u du

o D

 

which in particular shows that  

2

3( , ) ( ) = (1).n Pm
J s u w u du o  (7.14) 

 Similarly, one gets by the Cauchy-Schwarz inequality  

2

2

42
= 1

1 1
( , ) ( ) = ( )( ( , ) ( , )) ( )

sn

n k k km m

k mn

J s u w u du g h Y u h u w u du
d n n

 

2
( )( ( , ) ( , )) ( ) (1) ,m m mm

g h Y u h u w u du o D  

 hence  

2

42

1
( , ) ( ) = (1).n Pm

n

J s u w u du o
d n

 (7.15) 

 Together with (33), (34) and (35), this implies the assertion for local changes.  

  

Proof of Theorem 4.3. To show a) and b) it suffices to show that as n   

( ) ( ) 2

0
0

( / ) = | ( ) ( ) | ( ) .
P

m m

m k nm
Q k n S u S u w u du  

with 
0 =k n , (0,1)  and we can proceed as in the proof of Theorem 4.2 treating  

0(1, ) ( / , )n nZ Z k nu u  

instead of ( , )nZ s u . Therefore the rest of the proof is omitted. The proof of Theorem 4.3 

c) follows the lines of Theorem 4.1 c) and is skipped also. This completes the proof.  
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Proof of Theorem 4.4. The proof is quite parallel to the proofs of Theorem 4.2 and 4.3 

and therefore is omitted.  

 

Proof of Theorem 5.1. We follow the line of the proof of Theorem 4.1, but have to get the 

properties of  

*

= 1

1
( , ) = ( , ) , (0,1),

ns
m

n k k k

k m

Z s u Y h Y u s u
n

 

given { }j jY , instead of ( , ), m

nZ s u u . The present situation is slightly simpler since, 

given { }j jY , 
*( , )nZ s u  is the sum of independent variables with conditional mean zero and 

conditional variance  

* 2 2

= 1

1
{ ( , ) |{ } } = ( , ).

ns

n j j k k

j m

var Z s u Y Y h Y u
n

 

Further calculations give also  

2 2 2

1(2 )/2
= 1 = 1

1 1
(| ( , ) | |{ } ) = | ( , ) | | | .

ns ns

k k k j j k k

k m k m

E Y h Y u Y Y h Y u E
nn

 

First, we prove the result under the null hypothesis as well as alternative A1a. Going 

through the proof of Lemma 7.1 we realize that conditional versions of a) and b) follow 

by the law of large numbers for stationary and ergodic sequences in combination with the 

non-conditional results, which hold not only for the null hypothesis but also for 

alternatives A1a as can be checked easily. 

 

Hence, the crucial problem is to prove a conditional version of Lemma 7.1 c) which is the 

conditional asymptotic normality of 
*( , )nZ s u . We show that, as n ,  
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2

(2 )/2

= 1

2 2 (2 )/2

= 1

1
| ( , ) |

0, . .
1

( ( , ))

ns

k k

k m

ns

k k

j m

Y h Y u
n

a s

Y h Y u
n

 (7.16) 

 that ensures validity of the Lyapunov type condition for CLT. Under 0H  and alternative 

A1a using stationarity and ergodicity of { }j jY  we obtain  

2 2

= 1

2 2 2 2

= 1

1
| ( , ) | | ( , ) | , . .,

1
( , ) ( , ), . .

ns

k k k k

k m

ns

k k k k

j m

Y h Y u sE Y h Y u a s
n

Y h Y u sEY h Y u a s
n

 

 

By the assumptions 
2| ( , ) | <k kE Y h Y u  and 

2 20 < ( , )k kEY h Y u . Therefore (37) holds true 

given { }j jY . 

Here the conditional limiting process is 
0 (( , ),Z s u  is Gaussian process with zero mean 

and covariance structure  

0 0 2

1 1 2 2 1 2 1 2 1 2

= 1

1
( (( , ), ( , )) = ( , ) ( , ), , , .lim

ns

t t t
n

k m

cov Z s u Z s u EY h Y u h Y u s s u u
n

 

Under the null hypothesis this is the same process as in Theorem 4.1 – under the 

alternative A1a it is similar but not the same. Then we proceed along the line of the proof 

of Theorem  4.1 where we again use stationarity and ergodicity of { }k kY . 

The assertions under A2a and A3a can be derived analogously splitting all relevant sums 

into the part before the change and the part after, since both are sums over stationary and 

ergodic sequences. 
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Table 1 Percentage of rejection of martingale difference hypothesis ( (1)

0H ). 1000 

simulations with 1000 wild bootstrap replicates, = 0.05 . 

        

IID 

G1 SV NLMA BIL-

I 

BIL-

II 

NDAR TAR(1) EXP(1) ARFIMA  

  m=1 4.9 5.1 2.1 10.4 18.0 44.2 2.7 68.8 47.5 80.3  

 a=0.5 m=2 4.0 4.6 1.1 3.2 11.4 30.9 1.1 47.2 31.3 74.7  

  m=1 5.5 5.6 3.9 6.5 18.9 46.8 1.9 68.1 37.3 79.6  

 a=1 m=2 4.2 4.9 2.8 4.3 14.8 42.3 2.0 56.7 29.9 78.1  

  m=1 4.8 5.3 3.5 6.8 23.7 49.1 0.8 67.1 27.0 76.2  

 a=1.5 m=2 4.9 6.2 2.4 3.7 20.0 50.7 1.0 55.2 25.8 80.2  

n=100  m=1 4.4 5.9 4.6 6.3 22.7 50.2 0.8 63.2 22.5 75.1  

 a=2 m=2 5.0 4.6 2.9 4.6 21.1 48.8 0.7 59.7 20.0 78.1  

  m=1 4.4 6.9 5.7 3.7 26.3 53.5 0.4 61.4 15.7 71.0  

 a=3 m=2 3.2 5.6 4.0 3.9 25.1 55.7 1.0 61.1 14.0 73.7  

  m=1 5.4 5.3 5.2 3.7 26.6 51.0 0.5 66.0 13.9 65.9  

 a=4 m=2 5.5 5.0 5.2 4.3 28.1 55.4 0.9 62.4 13.9 71.1  

  m=1 4.6 5.3 2.8 42.5 53.5 95.8 2.3 99.9 96.6 99.1  

 a=0.5 m=2 4.3 4.6 0.2 18.3 41.8 92.8 2.1 98.6 87.8 99.2  

  m=1 5.9 5.2 3.7 32.1 55.2 97.2 1.7 99.6 90.1 99.7  

 a=1 m=2 5.8 4.9 1.7 16.8 53.4 97.4 2.2 99.3 84.4 99.5  

  m=1 6.0 5.2 3.5 20.2 60.2 97.4 0.5 99.4 78.7 99.3  

 a=1.5 m=2 4.6 5.4 3.0 14.4 54.7 96.6 1.9 99.0 77.3 99.6  
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n=300  m=1 5.8 5.3 5.3 14.1 63.2 95.2 1.0 98.6 62.3 98.7  

 a=2 m=2 5.4 3.9 2.8 13.1 58.7 96.5 1.3 97.8 61.0 99.2  

  m=1 6.8 5.3 2.9 8.3 64.4 96.6 0.8 98.4 33.0 95.8  

 a=3 m=2 4.7 5.3 3.6 7.2 63.6 95.8 0.7 98.2 31.9 98.6  

  m=1 4.3 5.8 4.6 7.1 67.2 96.1 0.5 96.9 18.7 90.6  

 a=4 m=2 4.2 4.0 4.9 5.8 66.6 97.0 1.1 97.9 22.9 95.2  
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Table 2 Percentage of rejection of martingale difference hypothesis ( (2)

0H ) for change 

from process P1 to process P2 with change-point 0k . 1000 simulations with 1000 wild 

bootstrap replicates, = 0.05 , =1m , =1a , = 300n . 

   P2          

P1   0k       

IID 

G1 SV NLMA BIL-

I 

BIL-

II 

NDAR TAR(1) EXP(1) ARFIMA  

  0 6.0 5.6 4.9 9.5 18.8 42.6 1.4 63.1 30.3 75.8  

 150 0.5 4.4 6.1 3.5 7.4 22.0 51.5 1.2 71.7 34.6 83.5  

IID  0 5.2 4.6 4.2 4.5 9.1 14.3 3.6 20.4 8.0 40.9  

 225 0.5 5.3 6.2 4.0 3.4 9.2 19.6 2.7 31.4 13.6 54.4  

  0 5.1 5.1 4.1 9.3 25.8 62.7 1.4 80.9 48.3 89.1  

 150 0.5 5.1 5.5 2.7 6.7 25.4 60.7 0.9 79.9 46.0 89.2  

G1  0 5.6 4.0 3.9 4.2 14.9 30.6 0.9 47.4 19.4 63.3  

 225 0.5 4.7 5.1 2.2 3.4 14.1 35.0 0.9 49.7 24.6 69.7  

  0 5.1 3.9 3.5 8.6 14.3 32.4 2.1 48.5 18.7 66.7  

 150 0.5 5.3 3.2 3.7 7.4 15.7 36.2 2.4 53.0 21.0 69.3  

SV  0 4.7 4.1 4.3 3.5 4.9 10.7 3.4 13.6 6.6 28.2  

 225 0.5 3.6 4.1 4.2 4.0 6.0 10.5 2.8 14.9 7.4 31.8  
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Table  3 Percentage of rejection of martingale difference hypothesis ( (2)

0H ) for change 

from process P1 to process P2 with change-point 0k . 1000 simulations with 1000 wild 

bootstrap replicates, = 0.05 , =1m , =1a , = 600n . 

       P2  

P1   0k       

IID 

G1 SV NLMA BIL-

I 

BIL-

II 

NDAR TAR(1) EXP(1) ARFIMA  

  0 5.3 4.1 3.2 22.1 35.3 81.7 2.1 96.3 60.5 96.2  

 300 0.5 5.4 6.1 3.2 21.1 40.3 86.7 2.3 97.5 66.4 97.1  

IID  0 4.8 4.1 4.8 8.4 11.2 26.7 3.1 38.7 17.2 56.3  

 450 0.5 4.4 5.2 2.4 7.5 15.0 38.1 2.1 56.4 19.4 72.2  

  0 5.2 5.0 3.4 23.9 52.9 93.7 1.6 99.4 82.8 99.1  

 300 0.5 4.9 5.0 3.6 19.0 50.4 93.4 0.8 99.2 82.2 99.5  

G1  0 5.2 5.2 4.4 11.6 25.5 61.2 1.7 77.2 42.7 84.3  

 450 0.5 4.0 4.2 3.6 7.4 27.2 59.0 0.5 81.2 43.4 89.3  

  0 4.4 3.1 3.3 16.1 24.4 59.7 1.9 76.1 35.5 86.2  

 300 0.5 4.7 4.2 4.1 18.8 26.7 66.4 2.9 81.2 41.5 89.3  

SV  0 3.4 3.9 5.5 5.4 7.5 14.1 3.5 20.6 9.5 43.9  

 450 0.5 3.9 4.3 3.8 6.6 6.5 19.0 2.4 28.2 10.6 46.4  
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Table  4 Percentage of rejection of martingale difference hypothesis ( (3)

0H ) for change 

from process P1 to process P2 with change-point 0k . 1000 simulations with 1000 wild 

bootstrap replicates, = 0.05 , =1m , =1a , = 300n . 

       P2 

P1   0k       

IID 

G1 SV NLMA BIL-

I 

BIL-

II 

NDAR TAR(1) EXP(1) ARFIMA  

  0 6.7 6.4 3.9 5.8 13.2 34.2 1.3 50.4 20.3 72.3  

 150 0.5 5.2 6.0 2.4 2.8 10.4 27.5 1.7 45.4 16.9 73.6  

IID  0 5.9 6.6 3.6 4.0 11.0 18.2 3.6 27.4 10.9 46.0  

 225 0.5 4.9 3.9 3.5 2.6 8.4 17.2 2.4 30.5 14.8 53.9  

  0 5.0 6.0 2.9 4.0 15.7 42.6 0.6 60.0 25.8 84.3  

 150 0.5 5.3 5.3 2.4 2.8 15.8 38.9 0.4 56.6 22.8 82.1  

G1  0 5.2 4.5 2.9 2.6 11.7 32.5 0.7 44.9 21.9 69.9  

 225 0.5 4.4 4.6 3.1 1.4 12.0 26.9 0.9 40.9 19.6 70.5  

  0 4.1 3.4 3.3 4.8 8.0 20.2 2.1 29.1 11.8 49.9  

 150 0.5 3.0 3.5 3.4 3.3 8.7 16.9 1.2 24.5 10.0 48.7  

SV  0 3.4 3.7 3.3 3.4 5.7 9.6 3.0 13.1 4.7 29.6  

 225 0.5 3.4 2.8 2.7 3.0 5.3 8.2 2.0 14.1 5.3 29.9  
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Table  5 Percentage of rejection of martingale difference hypotheses (2)

0H  and (3)

0H  for 

change from process P1 to process P2 with change-point 0 = 50k . 1000 simulations with 

1000 wild bootstrap replicates, = 0.05 , =1m , =1a , = 300n . 

  (2)

0H  
(3)

0H   

  
2  2  

 
1    0.0   0.1  0.2  0.5  1.0   0.0   0.1  0.2  0.5  1.0 

  0.0   4.1   32.0   82.7   100   100  3.5   6.6   12.0   52.2  99.0  

  0.1   4.8   33.4   85.6   100   100  6.5   4.5   4.2   33.6   97.3 

P1   0.2   5.5   40.1   87.9   100   100  13.9   5.6   4.4   19.9   88.7 

  0.5   18.4  67.9   97.0   100   100  63.8  39.8   21.3   2.5   29.1 

  1.0   65.3   95.2   100   100   100  99.9   99.1   96.8   46.5   1.1 
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Figure 1 Daily scaled log returns of S&P 500 from January 1993 until December 1997 

(source: Yahoo! Finance, http://finance.yahoo.com.) Dashed line denotes January 1st, 

1994, solid line denotes December 8th, 1994. 
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