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Abstract

Macroeconomic and aggregate financial series share an unconventional

type of nonlinear dynamics. Existing techniques (like co-integration) model

these dynamics incompletely, hence generating seemingly paradoxical re-

sults. To avoid this, we provide a methodology to disentangle the long-run

relation between variables from their own dynamics, and illustrate with two

applications.

First, in the forward-premium puzzle, adding a component quantify-

ing the persistent nonlinear dynamics of exchange rates yields substantial

predictability and makes the forward-premium term insignificant. Second,

S&P 500 grows in a pattern of momentum followed by reversal, forming long

cycles around a trend given by GDP, a stable non-breaking relation since

WWII.
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There are a number of paradoxes or puzzles, instances in which some very

natural relation between economic or financial variables seems to be vio-

lated, with the estimated coefficients of the relation defying financial or

economic logic. Many of these paradoxes concern cases where the dynamics

of the variables are persistent and not easily modelled empirically. We will

illustrate how these dynamics are responsible for such puzzles, and we will

present new tools for handling relations between persistent series in a way

that avoids spurious correlations between these variables.1

The dynamics of a series can be depicted by its Auto-Correlation Func-

tion (ACF), in addition to its usual time-domain and frequency-domain

representations. Figures 1 and 2 show the ACFs of the logarithms of the

$/£ exchange rate and the real S&P 500 stock market index, the formula

for the fitted curve in each of these graphs to be defined later in (9). For the

moment, one can immediately observe how similar the shape of these two

functions are, and how strong the autocorrelation is, even at long lags. These

well-structured and smooth ACFs are striking to anyone used to seeing the

jagged time-paths of these variables. It is also striking how different these

ACFs are from the ones implied by Auto-Regressive Integrated Moving-

Average (ARIMA) models that include the special cases of unit roots and

random walks.

If the dynamics of the variables in a model are not adequately repre-

sented, biased and inconsistent estimates of the relation will arise. The

current thinking is that the theory of integration and co-integration can

deal with such issues and avoid spurious correlations, and the theory has

developed into a huge branch of econometrics to try to deal with series hav-

ing a high degree of persistence. A defining feature of integration is that it

assumes that the dynamics of individual series can be approximated parsi-

moniously by a class of linear processes which, for example, Figures 1 and

2 reveal not to be the case. This is why a new econometric methodology is
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needed to deal with estimating relations between variables containing this

type of nonlinear long memory.2 Our proposed approach will encompass

single-equation co-integration models as a special case.

We exploit the common structure of these ACFs to devise a simple new

method to disentangle the co-movements of variables (i.e. identify and es-

timate the parameters of the relation linking them) from the effects of per-

sistence of the individual series. We provide two applications of different

natures to illustrate the versatility and potential of our method. These ap-

plications should not be misconstrued as complete modelling exercises, as

such additional endeavours would be far too substantial to fit in a single

study. The first application shows how our method dramatically reverses

the counterintuitive finding about the forward premium puzzle in the Un-

covered Interest Parity (UIP) regressions, revealing the insignificance of the

premium’s role and the importance of the predictable own-dynamics of ex-

change rates. The second application is about significance of a relation

between two variables, rather than the lack of it. It shows how the stock

market grows in long cycles around a trend given by Gross Domestic Prod-

uct (GDP), in a stable relation that does not break and that fits better

than existing econometric methods: S&P’s persistent dynamics and GDP

alone explain more than 50% of the variation in stock returns during the

period 1953—2004, which is an exceptionally high R2 given that we have not

used any other variables.3 Inter alia, our model also predicts the rebound

that followed the overreaction to the oil crisis in 1973, and the bursting of

the dot-com bubble of the late 1990’s. Using the methodology of Campbell

and Thompson (2008), we also show that our model could help a risk-averse

investor to reduce the weight of the risk-free asset in her optimal portfolio

and produce large gains in the portfolio’s expected return.

Our two applications encompass parsimoniously many salient features

obtained in a growing body of evidence for the predictability of exchange
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rates and stock markets. We parameterize these persistent nonlinear dy-

namics in one common formulation that is consistent with the microfounded

general-equilibrium model of Abadir and Talmain (2002) and with the evi-

dence uncovered here. In the case of exchange rates, strong autocorrelations

have been stressed in Backus, Gregory, and Telmer (1993), Bekaert (1996),

Okunev and White (2003); while Engel and Hamilton (1990), Diebold,

Husted, and Rush (1991), Diebold, Gardeazabal, and Yilmaz (1994), Baillie

and Bollerslev (1994, 2000), Sarno, Valente, and Leon (2006) have presented

evidence of long swings and persistence. For the stock market, in the short

and intermediate terms, the existence of momentum for individual stocks

has been shown by Jegadeesh and Titman (1993, 2001), Grundy and Martin

(2001), Grinblatt and Moskowitz (2004), Hvidkjaer (2006). The subsequent

reversal of this momentum into a correction or cycle has been documented in

De Bondt and Thaler (1985, 1987, 1989), Lakonishok, Shleifer, and Vishny

(1994), Lee and Swaminathan (2000), Griffin, Ji, and Martin (2003), Cooper,

Gutierrez, and Hameed (2004), Bhojraj and Swaminathan (2006). The em-

pirical relation of the stock market to the underlying state of the economy

and the implied predictability have been discussed in Campbell and Shiller

(1988) Fama and French (1989), and more recently in Liew and Vassalou

(2000), Lettau and Ludvigson (2001), Vassalou (2003), Chordia and Shiv-

akumar (2006), Petkova (2006), Cochrane (2008), Campbell and Thompson

(2008).

The plan of our paper is as follows. Section 1 presents a baseline ver-

sion of the forward premium puzzle, showing how the residual diagnostics

indicate omitted nonlinear long memory. Section 2 outlines our procedure

and explains the essentials of how it deals with the residual’s unconventional

dynamics. Sections 3 and 4 apply our procedure to the forward premium

puzzle and stock market, respectively. Section 5 concludes. The Appendix

gives the technical details relating to our procedure.
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1. The UIP theorem and the forward premium puzzle

One test for the efficiency of the foreign exchange market, going back to

Fisher (1930), is that “speculators” will equalize the expected return on

the similar short term assets across countries once converted to the same

currency. However, a large number of authors analyzing the data have found

systematic deviations from this norm. The data seemed to lend support to a

very substantial negative relation between the returns on holding a currency

and the forward premium on it. This is known as the forward premium

puzzle or anomaly. Many authors have studied this very counterintuitive

result and excellent summaries are found in Froot and Thaler (1990), Lewis

(1995), Engel (1996).

This section contains two parts: the three alternative formulations of

the baseline UIP theorem, followed by the empirical puzzle to be illustrated

graphically and by regression. The first formulation, to be given in (2), is in

terms of excess returns and sets the stage for a simple graphical presentation.

The second, in (3), is in terms of depreciation of a currency, and is widely

used in the literature. It also provides a bridge to the third form, in (4),

which is in terms of the levels of the variables and shows how the UIP

regression can be expressed in terms of our estimation method. Note that

Apte, Sercu, and Uppal (2004) recommend using levels in the related context

of purchasing power parity.

1.1 Three forms of the baseline UIP regression

Consider a US investor who, at time t, can invest either in a domestic dollar-

denominated bond or in a foreign sterling-denominated bond. The nominal

interest rate, paid at maturity t+ 1, is It for the domestic bond and I∗t for

the foreign bond. The interest rates It and I∗t are agreed upon and known

at time t. Let the exchange rate be St, such that one pound sterling is
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worth St US dollars. Consider the following two strategies, each involving

an investment of $1 at time t:

1. Invest in the domestic US$ bond. The yield at time t+1 is $It, which

can be approximated by it ≡ log (1 + It) since log (1 + It) ≈ It for

small It.

2. Invest in the foreign UK£ bond. The $1 is first converted at the

current exchange rate into £1/St. This amount is then invested in

the foreign bond at time t, to produce £(1 + I∗t ) /St at time t + 1.

Converting it back into dollars at the new exchange rate St+1 gives

$(1 + I∗t )St+1/St. Using a − 1 ≈ log a, the approximate US$ yield is
i∗t + st+1 − st, where st ≡ logSt and i∗t ≡ log (1 + I∗t ). The difference

∆st+1 ≡ st+1 − st is the approximate rate of depreciation of the US

currency.

Ignoring transaction costs, the excess return on investing in the foreign asset

is then defined as

rt+1 ≡ i∗t − it +∆st+1. (1)

The UIP hypothesis implies that rt+1 should not be predictable. In partic-

ular, the forward premium (ft − st), where ft is the log of the forward rate

Ft, should have no explanatory power. We briefly consider three essentially

equivalent formulations of a test for this latter hypothesis.

The first form is a direct implementation, estimating

rt+1 = α+ β (ft − st) + ut+1 (2)

and checking if β = 0. The puzzle is that the literature has found signifi-

cantly negative estimates for β. A higher premium (ft − st) means that the

forward rate indicates that the US$ is likely to depreciate, and yet the re-

gression says that it is systematically associated instead with positive excess

returns being made on the US$ (i.e. lower rt+1 on the UK£). The idea that
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market participants are ready to pay more for an asset when they expect

it to become less attractive seem to fly in the face of market efficiency or

even of rationality. A positive β might have been excusable, but a very large

negative one is puzzling.

The second form of the UIP regression can be derived by using the

Covered Interest Parity (CIP) relation. Consider an alternative strategy for

investing $1, which is to convert it into £1/St, invest this amount in the

foreign bond and sell forward the forthcoming £(1 + I∗t ) /St at the forward

rate Ft. Since all of these transactions can be completed today at no risk,

the US$ yield on this strategy, i∗t +ft−st, must be equal to the US$ yield it
of investing in a domestic bond, by arbitrage. Hence, i∗t − it = − (ft − st).

By substituting this into (2) and using definition (1), we get the second form

of the UIP regression:

∆st+1 = α+ (1 + β) (ft − st) + ut+1. (3)

Formulations (2) and (3) are equivalent, up to the CIP relation. Unlike the

UIP relation, one can verify that the CIP holds almost exactly in the major

markets. Note that β = −1 would imply that the exchange rate follows a
random walk if ut+1 did not contain further dynamics, but this random walk

hypothesis for st is negated visually by Figure 1. A more thorough testing

of β will follow in Section 3.

The third form of the UIP regression is obtained by recalling that∆st+1 ≡
st+1 − st and adding st to both sides of (3):

st+1 = α+ γft − βst + ut+1, (4)

where γ ≡ 1+β, the test becoming β = 0 and γ = 1. This formulation is in

terms of the levels of the variables, with st+1 as the dependent variable and

only ut+1 is contemporaneous to it in the equation.

1.2 The forward premium puzzle
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We start by presenting the results using traditional methods, to verify the

presence of the puzzle in monthly data from the Bank of International Set-

tlements (BIS). We obtained data for the period January 1979 to February

2004. Running the regression (4) on the original data, with all coefficients

unrestricted, Ordinary Least Squares (OLS) gives

bst+1 = −2.84 ft +3.81 st,

(−4.94) (4.90)

[−3.44] [3.41]

(5)

where we do not report the estimated constant because it is tangential to

the analysis of predictability. The t-ratios and their Heteroskedastic and

Autocorrelation-Consistent (HAC) versions are given in parentheses and

brackets, respectively. The hypotheses they test are that the coefficients

of f and s equal 1 and 0, respectively.

There is a substantial amount of autocorrelation and heteroskedastic-

ity left over in the residuals, as is evidenced by the difference between the

adjusted and unadjusted t-ratios. Nevertheless, inference that is robust to

standard dynamics in the residuals can be carried out using HAC t-ratios.

They show that the coefficients of f and s are significantly different from

their anticipated values of 1 and 0, respectively.

It seems that forward rates violate the UIP in a puzzling way, if one

were to believe these estimated parameters. Based on (2), a scatter plot

of the excess return rt+1 (on the vertical axis) versus the forward premium

(ft − st) (on the horizontal axis) in Figure 3 tells the story. The data form a

funnel shape (indicating heteroskedasticity), with a clear negative inclination

(β < 0). As we shall show, these distortions are due to the graph (or

regression) missing a third dimension: the nonlinear long-memory dynamics.

Froot and Thaler (1990, p.188), put their finger on the problem, noting

that it could be explained “if only part of this appreciation occurs immedi-

ately, and the rest takes some time”. We will show that this is precisely the
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sort of problem that current econometric techniques cannot adequately deal

with. We now provide the required technique, and show how it can solve

the puzzle.

2. The ACF-based procedure

Consider the general representation

zt = ezt + ut, t = 1, 2, . . . T, (6)

where ezt represents the time-varying ‘fundamental’ value of zt, while ut are
the residual dynamics of adjustment towards such a value. By definition, ut

is centered around zero and is mean-reverting, otherwise zt will not revert

to its fundamental value ezt. Denoting the T × 1 vector of stacked zt values

by z ≡ (z1, . . . , zT )0, and similarly for ezt and ut, we write z = ez + u.
For some intuition, we may wish to think of the special case of ez being the

linear relation ez = Xβ, where X can contain lagged dependent variables,

so that we cover autoregressive distributed-lag models (e.g. used in co-

integration analysis) as one of the special cases of z = Xβ + u. This

case focuses attention on the nonlinearity in the dynamics of the residuals

u, rather than on the functional form relating ez to X. Naturally, our

procedure will estimate simultaneously both β and the parameters governing

the process u.

We have touched on long memory in a footnote in the introduction.

Here we give a short description of it. More details are given in Beran

(1992), Robinson (1994), Baillie (1996), Abadir and Taylor (1999). The

ACF ρ1, ρ2, . . . of a process {ut}Tt=1 is the sequence of correlations of the
variable with its τ -th lag:

ρτ ≡
cov (ut, ut−τ )p
var (ut) var (ut−τ )

, (7)

where ρ0 ≡ 1. Long memory is a case where this function of τ decays very
slowly as τ increases, typically hyperbolically and hence much slower than
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the exponential rate of decay obtained for stationary ARmodels. Unlike unit

root models, shocks to a long-memory process do not have an everlasting

impact.

The autocorrelation matrix of u can be written as

R ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ1 ρ2
. . . ρT−2 ρT−1

ρ1 1 ρ1
. . . . . . ρT−2

ρ2 ρ1
. . . . . . . . . . . .

. . . . . . . . . . . . ρ1 ρ2

ρT−2
. . . . . . ρ1 1 ρ1

ρT−1 ρT−2
. . . ρ2 ρ1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

In the case of a simple AR(1) with autoregressive parameter ρ, we would

have had ρτ = ρτ and knowledge of ρ alone would have allowed filling

the whole R matrix. In the general case, estimating R requires estimating

ρ1, . . . , ρT−1, that is T−1 parameters. However, we have only T data points.
Our solution is to let ρτ take the functional form in Abadir, Caggiano, and

Talmain (2006)

ρτ ≈
1− a [1− cos (ωτ)]

1 + bτ c
, (9)

with only 4 parameters to estimate rather than T − 1. We find this to be a
very accurate and parsimonious description of the ACFs in Figures 1 and 2,

where we superimpose the empirical ACF and the one fitted to the original

data by means of (9).4 The context in Abadir et al. (2006) is that of a

single variable in the ACF domain, where they show that this 4-parameter

functional form represents the dynamics of individual macroeconomic vari-

ables more accurately than AR(p) models. Here, we introduce the idea of

incorporating ACFs into multivariate time-domain estimation in order to

extract the relation linking the variables together while avoiding spurious

correlations.

We now present a quasi Maximum Likelihood (ML) procedure to esti-

mate jointly the parameters of ezt and the ACF of ut. The adjective “quasi”
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is standard and indicates that the likelihood function is based on the as-

ymptotic normality that arises from the central limit theorem. This covers

a wide range of distributions, just requiring the first two moments of u to

be finite. To simplify the exposition, we adopt the linear model

z =Xβ + u, with u ∼ D (0,Σ) , (10)

where Σ is the T ×T autocovariance matrix. We will show how to estimate

β and Σ jointly. We need to start by explaining a couple of features of the

model, which we do in the next two paragraphs.

There are two implications to ut being mean-reverting. First, Σ is pro-

portional to the autocorrelation matrix R in (8)—(9), with b, c > 0 in (9).

Second, the asymptotic distribution theory for ML estimators of β and u is

standard. For example, one may use the usual F-test to compare alternative

values of the sum of squares u0u for different hypothesized values of β.5

We will assume that the sample mean of each variable in (10) has been

subtracted for numerical convenience, for a reason that is explained in Re-

mark 4 of the Appendix. We also assume that X is weakly exogenous (see

Engle, Hendry, and Richard, 1983) for the parameters of (10), which is jus-

tified in our two applications but need not be so in general. Otherwise, one

needs joint modelling of z and X, or estimation of the parameters of (10)

by means of instruments (effectively an orthogonal decomposition of the

equation). Note that estimating parameters and testing hypotheses requires

weak exogeneity, but forecasting requires strong exogeneity; see Engle et al.

(1983, p.286).

Now, to the joint estimation of all the parameters of (10). For any given

R, define bβR ≡ ¡X 0R−1X
¢−1

X 0R−1z (11)

as a function of R. Denoting the determinant of a matrix M by |M |,
the Appendix shows that the ML Estimator (MLE) of R is obtained by
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maximizing

− log
¯̄̄̄³
z −XbβR´0R−1 ³z −XbβR´R¯̄̄̄ (12)

with respect to the parameters of the ACF: the optimization of the joint

likelihood (for R and β) now depends on only 4 parameters that are given

in (9) and that determine the whole autocorrelation matrix R. Once the

optimal value bR of R is obtained, the MLE of β is bβ ≡ bβ
R
.

The main novelty in our procedure of this section is the parsimonious

parameterization of the autocorrelation matrix R. This transcends the cho-

sen estimation method, and it can be used as an input for methods other

than ML. We chose ML because of its statistical optimality properties, but

other choices are feasible and can employ our parameterization of R. One

such additional method is given in the Appendix.

3. Uncovering the Uncovered Interest Parity regression

Using our procedure on the US$-UK£ data set, we get the joint estimates

for the adjustment dynamics of ut as

bρτ = 1− 1.06 [1− cos (0.056τ)]
1 + 0.041τ0.79

(13)

and the relation of interest as

bst+1 = −0.65ft +0.90 st + but+1.
(−0.92) (0.50)

[−0.72] [0.39]

(14)

Again, we do not report the constant. We can see that the HAC adjust-

ment now makes almost no difference to the t-ratios for the tests that the

parameters of f and s are 1 and 0, respectively, so there is very little resid-

ual dynamics or heteroskedasticity left over. Both estimated coefficients are

not significantly different from their hypothesized values, as theory had pre-

dicted. The procedure has changed the story in a dramatic way. Once the
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dynamics of the problem are properly taken care of, neither the forward pre-

mium nor its components have any predictive power for the excess returns

rt+1. We cannot reject the hypothesis that rt+1 = ut+1. Notice that the

power of τ in (13) indicates that the memory in ut decays eventually (unlike

in unit-root models), but it does so more slowly than stationary linear AR

models can allow. It must be stressed that we have shown that rt+1 is not

related to the forward premium, but we have given no explanation here for

the fact that rt+1 has such persistent dynamics of its own.

The contrast with the earlier regression is even more striking if we com-

pare the bivariate scatter plots of rt+1 and (ft − st), before and after taking

into account the ACF, in Figures 3 and 4, respectively. With the original

data, there seemed to be a clear negative relation between rt+1 and (ft − st).

After the ACF-implied transformation,6 it looks like a round ‘cloud’ with no

particular tendency or deformation, which is the way that the scatter plot

of two independent variables should be, after standardization of the scale

for both axes. The relation found at the beginning between these variables

was spurious. It was just an artifact of the long memory of the variables

involved in the regression, and the incomplete modelling of these dynamics.

Of course, we could improve our results further by including risk premia,

transaction costs, and/or peso problems. What we have done here is to

show that our simple but unconventional dynamics already provide a lot of

explanatory power for the series.

Our results do not contradict the possibility of carry trades that are

profitable, on average. They identify the source of profitability and increase

the precision of the predictions by improving the fit of the equation. Our

regression reveals that the source of excess returns is the momentum of the

exchange rate rather than the nonzero forward premium. Hence, even when

ft ≈ st and there is no opportunity for a carry trade, there are profit oppor-

tunities due to the momentum of the exchange rate itself. The momentum
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happens to be coincidental with a nonzero forward premium, hence the ear-

lier result when the dynamics were omitted from the regression and the

forward premium was acting as a proxy for them.

4. The stock market application

In a monopolistically competitive economy, firms will make an economic

profit, which can be thought of as dividends in a Modigliani-Miller setting.

In equilibrium, the value of a firm is equal to the (stochastically) discounted

flow of its dividends. However, these dividends are not completely exoge-

nous in a general equilibrium framework. Talmain (2006) showed that, on

a balanced growth path, the capitalization of the stock market should be

proportional to GDP.

In the second application of our estimation procedure, we show that the

S&P 500 index does not have the unit root often debated in the literature

on stock market efficiency. Rather, it grows in persistent long cycles guided

by the trend line given by GDP, as seen in Figure 5 where both variables are

in logarithms of real US$. We gave references in the introduction for papers

documenting the short-run momentum followed by a longer-run correction,

as well as the connection with the underlying state of the economy. In

addition, Cavaliere (2001) devised a nonparametric test (but no econometric

model) that detected the presence of long memory in S&P 500 and rejected

the unit root hypothesis. Also, Hong and Lee (2005) have devised tests which

they applied, demonstrating significant nonlinearities in the evolution of the

mean of returns on S&P 500 and NASDAQ.

In this section, we study this relation by two different methods: the

standard one (unit roots and co-integration analysis) and our procedure.

We also show that standard methods would end up with estimated para-

meters that are unstable, often oscillating as more data becomes available,

trying to mimic the nonlinearity of the process. S&P turns out to be quite
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different from linear integrated processes, hence co-integration cannot apply

and different tools are needed to study this variable and its relation to the

state of the economy.

4.1 The estimates from standard analysis

Define yt and st to be the logarithms of the annual real GDP and of the real

stock market index, respectively.7 Consider the error-correction model of st

in terms of yt,

∆st = α+
¡
β1∆st−1 + · · ·+ βp∆st−p

¢
(15)

+
¡
γ1∆yt−1 + · · ·+ γq∆yt−q

¢− δ (st−1 − yt−1) + δ1yt−1 + ut,

where the are no contemporaneous variables on the right-hand side, apart

from ut. If δ 6= 0, the Error-Correction Mechanism (ECM) is defined by the

expression

−δ (st−1 − yt−1) + δ1yt−1 = −δ (st−1 − λyt−1) , (16)

where λ ≡ 1 + δ1/δ. The ECM represents the long-run relation between s

and y in ‘equilibrium’: set = κ + λyet , where κ is some constant. The long-

run proportionality between set and yet can be investigated by testing the

hypothesis H0: δ1 = 0. Let dt−1 be the deviation at time t− 1 of st−1 from
its equilibrium value set−1, that is, dt−1 ≡ st−1 − set−1. The model implies

that such a deviation will pull st back towards its long-term equilibrium

value by δdt−1 when δ > 0. A small δ indicates a weak tendency for return

to the long-term equilibrium. For more details, see Hendry, Pagan, and

Sargan (1984).

Hendry and Von Ungern-Sternberg (1980) generalize this model to in-

clude an Integral Correction Mechanism (ICM), where cumulative imbal-

ances of (st−1 − κ− yt−1) play a role in the catching-up of st with its equi-

librium value. This is an important mechanism. When equity prices increase
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faster than their fundamental value, they build up the wealth of the stock-

holders faster than on a balanced growth path. This wealth buildup creates

the condition for a tendency-reversal when stockholders convert their capital

gains into additional discretionary spendings. Other factors, such as capital

accumulation, pull in the same direction. We summarize all of these factors

in one variable, the adjustment overhang, which is the cumulative sum of

departures of the log of S&P from its fundamentals. Define

xt−1 ≡
t−1X
j=1

(sj − yj) . (17)

Adding this explanatory variable to the right-hand side of (15), we also

need to add a balancing linear trend, in case the relation between sj and yj

contains an intercept κ, because
Pt−1

j=1 (sj − κ− yj) = κ (t− 1) + xt−1. An

augmented Dickey-Fuller t-test of −2.61 rejects the hypothesis that xt has
a unit root.

For S&P 500 over 1953—2004, we obtained the regression

c∆st = 0.0051 ∆st−1 −0.39 ∆st−2 −0.33 ∆st−3
(0.04) (−2.67) (−2.21)

(18)

−0.046 xt−1 −0.0029 t +1.62 ∆yt−2,

(−4.73) (−2.30) (1.81)

where the t-ratios for significance from 0 are in parentheses. Insignificant

variables have been dropped (except ∆st−1 which we will discuss in the next

paragraph), and we do not report the constant.

The regression indicates that the proportionality hypothesis holds, and

that the ICM plays a more important role than the ECM. The fit is R2 =

37.4%. Closer inspection reveals the fragility of the estimates. In Figure

6, each central line presents recursive parameter estimates as the sample is

increased to its full size, with ±2 standard-error bands for approximate 95%
confidence intervals. Panels 1—6 represent the parameters of the variables in

the order that they appear in the regression. For stability of the parameter
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estimates, the central lines should be nearly horizontal. Significance of these

estimates occurs when the bands do not include zero. The bands for the

initial estimates are understandably large, since these are based on the very

few first observations. Otherwise, we make the following observations.

Although all but one reported final parameter estimate are significant,

this is not systematically so throughout the period. A sample stopping a

few years short would have found the first estimate significant, with the

third and fifth insignificant. The sixth is marginal throughout, at the 95%

significance level. Panels 1, 3, 4, and 5 show parameters that are breaking

up then down and so on, trying to mimic the nonlinearity of the time path

of S&P seen earlier in Figure 5.

Of course, one can include more lags of the variables in question, but

this worsens rather than improves stability, while not improving the fit since

these additional estimates are insignificant. Also, the RESET test is 2.69,

with a borderline p-value of 10.8%, indicating potentially some omitted non-

linearities.

4.2. The estimates from our ACF-based ML procedure

Once we consider the ACF of st, it becomes clear that st is not a unit-

root process, but rather the nonlinear long-memory type discussed earlier.

Fitting to it our theoretical functional form (9), we get the curve in Figure

2 where the approximation is again very good.

For the same sample, we get the joint estimates for the adjustment dy-

namics of ut as bρτ = 1− 1.04 [1− cos (0.61τ)]
1 + 0.17τ1.11

(19)
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and the relationc∆st = −0.71 ∆st−1 −0.59 ∆st−2 −0.53 ∆st−3
(−5.56) (−4.18) (−4.61)

(20)

−0.070 xt−1 −0.0044 t −1.49 ∆yt−1 + but.
(−5.60) (−2.64) (−2.45)

Insignificant variables have been dropped and the proportionality hypothe-

sis is accepted as before. The fit for the returns on the stock market, ∆st,

is R2 = 50.8%, surprisingly large given that we have only used our dynam-

ics and GDP as explanatory variables. The p-value for the improvement in

fit compared to the standard model is 3.91%, a substantial improvement.

The practical significance of this R2 statistic is elucidated in Campbell and

Thompson (2008). What is the gain to a mean-variance investor from iden-

tifying a predictor of the S&P 500 with this explanatory power? Let Q (our

notation) be the usual Sharpe ratio. Their answer is that this gain depends

on the risk aversion of this investor and, as an approximation, on the ra-

tio R2/Q2. Since the annual Sharpe ratio on the S&P 500 for the period

1953-2004 is 0.226, we can see that the ratio is

R2

Q2
=
0.508

0.0512
= 9.92.

Hence, the gains are considerable.8

Going back to our equation, the RESET is now 0.0004, with a p-value

of 98.4%, clearly indicating no leftover nonlinearities. In contrast to the

unit roots and co-integration analysis, the coefficients are now very stable

throughout the sample and do not oscillate as before, and this is verified in

Figure 7. Gone is the sequence of breaks up and down previously observed

for a parameter’s estimate. The ACF has taken care of the long cycle that

caused these undesirable features in the estimates of the traditional method.

The previously omitted nonlinear dynamics of S&P 500, away from the long-

run proportionality to GDP, have been accounted for by the ACF dynamics

incorporated in ut.
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Apart from the memory pattern in (19), the residuals have no leftover

dynamics: the LM test of no autocorrelation is highly insignificant, with

a p-value of 82.5%. The power of τ in (19) implies that the adjustment

dynamics in ut are mean-reverting, but slower than stationary linear AR

models. This means that st does not stray too far from the trend-line that

yt provides, and that it has the tendency to revert to it over time. In the

context of Figure 5, GDP provides the stochastic trend line around which

S&P 500 moves in long-memory cycles. Notice that these cycles have a

pattern that is fairly well behaved, in contrast with the unpredictability

that a unit-root model would have implied. As time passes, the variance

bounds of a random walk would diverge linearly away from its trend line,

and there would be no tendency for trend-reversion (zero probability of this

happening). However, in Figure 5, we see no such feature, neither for GDP

nor for S&P. The analysis of this section confirms it for S&P. For GDP, see

Abadir and Talmain (2002).

Figure 8 shows the implied predictions of the percentage changes in S&P

500. The predictions do not shadow (or lag behind) the actual values, con-

trary to what standard time series methods yield. The actual changes are

generally well reflected in our fitted values. There are a few notable excep-

tions that can be attributed to two main reasons: temporary S&P overre-

actions that are unjustified by fundamentals and/or model predictions that

materialize after a short delay. For example, our model provides evidence of

overreaction at the aggregate level, supporting the one discussed for individ-

ual stocks in the references listed in the introduction. The excess volatility

of S&P in the early 70’s is detected by our predictions pointing to changes

that are less pronounced than the actual ones. The implication was that,

whenever the market deviated from our prediction, it undertook a correction

immediately the next period, bringing it nearer to the fundamental values

from our equation. For example, in 1971—1972, S&P was growing while our

19



model was predicting that it should go down, well ahead of the oil shock.

That happened a couple of years later, with an extremely large negative

change. The oil shock was not completely responsible for that correction, as

our modelling of the fundamentals has revealed. A similar story can be told

about the end of the 1990’s and early 2000’s. Our prediction was pointing

the way down at the heydays of the dot-com bubble and, as it burst so dra-

matically, our method showed that the fall of the market has been overdone.

A subsequent upward correction took place, as anticipated by our predic-

tion. Finally, the rise in GDP productivity that took place in the early 90’s

led our model to predict an increase in S&P, which actually happened with

a delay of a couple of years.

In both applications of our method, once the long cycles are taken into

account, the residuals were found to contain no structural breaks. We did

not need to add to the models any dummy variables for breaks, even in

periods where the relation in terms of the raw data seemed at first sight

to break, e.g. due to Britain’s exit of the exchange-rate mechanism or to

extended S&P bubbles or corrections. In the case of the stock market, the

ICM plays the following two roles. First, it makes sure that if S&P strays

from GDP too fast, it is brought back faster than usual. This can be seen

in the last four years, which correspond to the bubble that burst, and where

the cycle was shorter than the previous ones. Second, and as a result, the

ICM ensures that the S&P cycles are of random length (or frequency), once

the two dynamics arising from ICM and ACF are added up.

5. Concluding comments

Integration and co-integration have had a huge impact on the analysis of

macroeconomic and aggregate financial data. They were a good first step

in establishing methods to deal with variables containing much persistence.

Here, we present a more general econometric method of analysis that is
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justified by the economic model of Abadir and Talmain (2002), and we show

how it explains the evolution of exchange rates and S&P 500.

Our method has the potential to reveal new insights when two conditions

are satisfied: whenever a model requires us to disentangle the dynamics of

a dependent variable from its relation with other variables of interest, and

when these dynamics are of the long-memory form. The first condition is

the norm. The second feature is increasingly encountered, given the recent

econometric advances in handling long memory processes and the evidence it

has uncovered so far. For example, see the arguments in Abadir and Taylor

(1999) and the numerical results in Diebold and Rudebusch (1989), Bail-

lie and Bollerslev (1994, 2000), Gil-Alaña and Robinson (1997), Chambers

(1998), Abadir and Talmain (2002), Abadir et al. (2006).

Appendix

We can use the Cholesky decomposition to write the matrix Σ of (10) as

Σ = σ2LL0, where L−1 is the lower triangular matrix that removes auto-

correlation from u and takes the form

L−1 =

⎛⎝ A 0

−α0 1

⎞⎠ , (21)

with α0 ≡ (αT−1, · · · , α2, α1) and A a lower-triangular block of dimension

T − 1. Therefore, premultiplying (10) by L−1,

L−1z = L−1Xβ + ε, with ε ∼ D ¡0, σ2IT ¢ . (22)

(Notice that we reserve εt for well-behaved errors, and use ut for errors with

possible patterns such as autocorrelation.) The transformed residuals ε are

now uncorrelated, and standard estimation procedures can be applied to the

transformed model.9 The exogeneity assumption given before (11) implies

that, given the past, εt is independent of the t-th row of L−1X, since L−1

is lower triangular (see Remark 2 below).
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The transformed data L−1z and L−1X can be regressed by traditional

methods. The Cholesky decomposition command is built-in as standard

in all matrix-handling languages, such as Gauss and Matlab. The Gener-

alized Least Squares (GLS) estimators can be obtained by minimizing the

criterion (z −Xβ)0Σ−1 (z −Xβ) with respect to all parameters jointly.

Alternatively, the ML estimators are obtained by maximizing

− log |Σ|− (z −Xβ)0Σ−1 (z −Xβ) , (23)

where only the first term differs from the GLS criterion, and it has the ben-

eficial effect of ensuring that the elements of the diagonal of L−1 are not too

far from unity. This difference is responsible for another desirable property

that the method of ML has, that it is invariant to reparameterizations of

the model. Concentrating the log-likelihood with respect to

bβR ≡ (X 0R−1X)−1X 0R−1z and bσ2L ≡ 1

T
(z −XbβR)0 ¡LL0¢−1 (z −XbβR)

(24)

(i.e. substituting bβR, bσ2L for β, σ2 into (23) and using Σ ≡ σ2LL0 ∝ R)
gives

− log
¯̄̄̄
1

T
(z −XbβR)0 ¡LL0¢−1 (z −XbβR)LL0 ¯̄̄̄− T

= − log
¯̄̄̄
1

T
(z −XbβR)0R−1(z −XbβR)R¯̄̄̄− T

= − log
¯̄̄
(z −XbβR)0R−1(z −XbβR)R¯̄̄+ T log(T )− T

by
¯̄
T−1M

¯̄
= T−T |M | for any T × T matrix M . Dropping the constant

term −T (1− log(T )) yields (12), to be optimized with respect to the para-
meters of the ACF. The log-likelihood is nonlinear in R, and a grid search

over the 4 parameters of the ACF may be needed to ensure that a global

maximum is achieved.

Before we comment on the details of our procedure, we indicate how it

grew out of the traditional treatment of models with autocorrelated errors,
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which are nested within our model. We take the simplest example

zt = γxt + ut, (25)

with ut = ρut−1 + εt, |ρ| < 1, εt ∼ IID
¡
0, σ2

¢
.

To estimate (25), taking into account the autocorrelation of ut, the vari-

ables of the first equation (zt and xt) are transformed, then they are re-

gressed by OLS to estimate the parameter γ of the relation. The vector

z ≡ (z1, . . . , zT )0 is transformed into

L−1z ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ 0 0 · · · 0

−ρ 1 0 · · · 0

0 −ρ 1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 −ρ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3
...

zT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕz1

z2 − ρz1

z3 − ρz2
...

zT − ρzT−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

where an estimate of ρ is plugged in, and where ϕ is usually chosen asp
1− ρ2 to stabilize the variance of the transformed residuals. The lower

triangular matrix L−1 that premultiplies the vector of zt-values arises from

the Cholesky decomposition

R ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 ρ ρ2

ρ 1 ρ
. . .

ρ2 ρ 1
. . .

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
¡
1− ρ2

¢
LL0. (27)

Together with Σ = σ2LL0, we see that the proportionality factor linking R

to Σ is σ2/
¡
1− ρ2

¢
, the asymptotic variance of ut.

If ut were following an AR(p), then the lower triangular matrix L−1

in (26) would contain p + 1 nonzero diagonals, and the first p rows would

have a normalization as was done for ϕ; e.g. see Chapter 5 of Amemiya

(1985). When the variables have long memory, as is in our case, one needs

a very large p to make this transformation. We overcame this problem
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by using our new ACF-based method in a parsimonious way. Using the

matrix companion form, Abadir, Hadri, and Tzavalis (1999) showed that

long lags have a similar effect to adding dimensions to a VAR (Vector AR),

which would increases the bias and variance of the estimators. Finding a

parsimonious solution avoids these types of problems.

We make the following remarks on the requirements and/or features of

R and the corresponding L in our procedure:

1. In estimating the parameters of the ACF, one needs to restrict their

values so that the estimated bR is positive definite, since this is true

(by definition) for R. There is no explicit formula for this restriction,

because there is no explicit solution for the roots of polynomials of

order greater than 4. Nevertheless, it is straightforward to implement

the restriction numerically either by skipping solutions that do not

satisfy the restriction, or by imposing a large Lagrangian penalty in

the objective (e.g. log-likelihood) function.

2. The lower triangularity of L−1 ensures that each element of the trans-

formed z is constructed only from past and current (but no future)

values of zt; e.g. see (26). The same comment applies to X.

3. The elements in the last row of L−1 have an interpretation as the co-

efficients of an AR(T − 1) representation for the last transformed data
point, which is why we stated them explicitly in (21). One may wish

to restrict the optimization procedure such that it produces stationary

roots for this AR representation, but we have not done so. Note that

any non-explosive process, whether nonlinear and/or nonstationary,

can be represented as an invertible MA having time-varying coeffi-

cients, which explains the time-varying AR representations implied by

the rows of L−1. This is known in time series as Cramér’s decompo-

sition, a generalization of Wold’s decomposition, and it explains how
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the nonlinear process of Abadir and Talmain (2002) can be estimated

by our linear representation procedure.

4. A well-known feature of the transformed model (22) is that the con-

stant, once transformed by any L−1, is not a constant vector any-

more; e.g. use ι ≡ (1, . . . , 1)0 instead of z in (26) and compare the

first element to the remaining T − 1. In our procedure, it is therefore
assumed that the data (z and X) have been de-meaned before being

transformed. This is because the procedure is based on transforming

vectors, say y, centered around 0 from y ∼ D(0,LL0) into L−1y ∼
D(0, IT ). Having a nonzero sample mean in y would have introduced

a common factor of L−1ι in all these transformed variables, which may

dominate these series and produce some seemingly common factor that

causes multicollinearity and other unnecessary numerical instabilities.

If a constant is required in the regression, it should be transformed sep-

arately then added to the regression for transformed variables. Numer-

ical instabilities apart, the theorem of Frisch and Waugh (1933) proves

that the resulting point estimates would be identical with or without

removing the mean.
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Notes

1For a historical account of the idea of spurious correlations, see Aldrich

(1995). Clearly, the idea is not restricted to the setting of unit roots, and it

predates this literature by far. Spurious correlations can occur even if the

series have dynamic properties that are different from unit-root series.

2A time series is said to have long memory if its autocorrelations dampen

very slowly, more so than the exponential decay rate of stationary autore-

gressive models but faster than the permanent memory of unit roots. Unlike

the latter, long-memory series revert to their (possibly trending) means.

3A full modelling of S&P should look at the further explanatory power

that other variables have, but this is not the purpose of this paper.

4In the illustrative Figures 1 and 2, the ACFs were fitted directly to the

variables. In terms of (6), these figures set ezt = 0, a restriction that will not
be imposed in (13) and (19).

5Estimators ofΣ (as opposed to β and u) have nonstandard distributions

when c ≤ 1/2 and the square-summability of ρτ fails. This is connected to
the problem of estimating the long-run variance; see Section 2 of Abadir,

Distaso, and Giraitis (2008).

6This is the terminology used for the presence of R in (11). See the

Appendix for a further explanation.

7We use the S&P 500 as our stock index. The other variables we need are

an aggregate price index and real output which, unlike a stock index, is only

available at low frequency. To avoid this seasonality problem interfering with

the results, we use annual data. Real annual GDP is available from National

Accounts. The consumer price index CPI is also available from the same

source at a monthly frequency. Theoretically, the value of firms is related

at each moment in time with current output. However the figure for annual

GDP is the production throughout the year. Hence, it must be related to

an average stock index over the year. We first construct the average daily
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close of the S&P 500 at the highest frequency at which the CPI is available.

Next, we divide this average by the CPI to obtain an index of the real value

of the stock market. Finally, we convert this real stock market index into a

yearly index.

8An investor, who has identified a predictor, can use this knowledge to

reduce the (conditional) variance of the return on the S&P 500. Hence, her

optimal behavior will be to invest more in the stock index and less in the

risk-free asset, increasing the expected return of her optimal portfolio.

9Analysis of the estimates of the error term e will determine the model’s

adequacy. Such diagnostics include checking for leftover persistence that

can be due to a spurious relation between z and X. For an illustration of

these checks, see the two applications given earlier.
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Figure 1. ACF of the logarithm of the $/£ exchange rate and its fit by

our functional form.
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Figure 2. ACF of the logarithm of S&P 500 and its fit by our functional

form.
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Figure 3. Scatter plot of the original data on excess returns rt+1 vs. the

forward premium (ft − st), for equation (2).
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Figure 4. Scatter plot of the ACF-transformed excess returns rt+1 vs. the

forward premium (ft − st), for equation (2).35
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