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Abstract

We contribute to the rather thin literature on multivariate density forecasts by in-
troducing a new framework for out-of-sample evaluation of multivariate density forecast
models that builds upon the concept of “autocontour” proposed by Gonzalez-Rivera et al.
(2011). This approach uniquely combines formal testing with graphical devices. We
work with the one-step-ahead quantile residuals, which under the null hypothesis of a
correct density model must be i.i.d. (univariate and multivariate) normal. Their corre-
sponding autocontours are mathematically very tractable and the tests based on them
enjoy standard asymptotic properties. We show that parameter uncertainty is asymptoti-
cally irrelevant under certain conditions and, in general, a parametric bootstrap provides
outstanding finite sample properties. We provide simulation evidence on finite sample
performance of the tests and compare their performance with an alternative testing pro-
cedure. We also illustrate this methodology by evaluating bivariate density forecasts of
the returns on U.S. value and growth portfolios.
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1 Introduction

Evaluating density forecasts has been a very active field of research in recent years as both
academics and practitioners emphasize the broader information content of a density forecast
relative to a point forecast (see Tay and Wallis (2000) for a recent survey). Accurate density
forecasts facilitate decision making by policy makers and business managers alike. Prime
examples include the fields of financial risk management, e.g. Diebold et al. (1998), and
Berkowitz (2001), and monetary policy, e.g. Bache et al. (2010).

The pioneering work of Diebold et al. (1998) proposed using the probability integral trans-
formation (PIT) due to Rosenblatt (1952) to assess adequacy of predictive density models.
The PITs are defined as u; = fi/go f(v|Fi—1)dv where f(y;|Fi—1) is the conditional density of
the process {y:}. Under correct model specification, the PITs should be i.i.d. UJ[0,1]. Since
then numerous articles have proposed extensions and alternative testing approaches to assess
density forecasts by evaluating the statistical properties, uniformity and independence, of the
{u:}. Bai (2003) introduces a conditional Kolmogorov test to assess the properties of the {u;},
but his test does not have power against violations of independence as noted by Corradi and
Swanson (2006a), among others. Hong and Li (2005) propose a nonparametric-kernel-based
test that has power against violations of both independence and density functional form and
Hong et al. (2007) (HLZ hereafter) extend it to the out-of-sample framework. Corradi and
Swanson (2006a,b) extend this literature in interesting directions by developing conditional
Kolmogorov tests that allow dynamic misspecification with respect to the information set
under the null hypothesis, or allow comparison of a number of possibly misspecified condi-
tional density models. However, this literature, superbly reviewed by Corradi and Swanson
(2006¢), has only focused on univariate models. There has been only few studies that pro-
posed methods to deal explicitly with multivariate predictive densities. ' Diebold et al. (1999)
generalized Diebold et al. (1998) approach to the multivariate case by decomposing the joint
predictive distribution into its marginals and conditionals, whose respective PITs, as in the
univariate case, should be i.i.d. UJ0,1]. These properties are assessed by inspection of his-
tograms and autocorrelograms of the PITs. More recently, Bai and Chen (2008) adopted the
martingale transformation approach of Bai (2003) to the multivariate case, which requires
the use of single-indexed empirical processes to make the computation of the test feasible.
Kalliovirta (2008), extending the work of Berkowitz (2001) to the multivariate case, devel-
oped a battery of test statistics based on a further transformation of PITs to normality, i.e.
Zit = CI)*l(uZ-t) for i = 1,2,...,n. The resulting processes z;; are also called quantile residuals
of the assumed predictive model. Both Bai and Chen (2008) and Kalliovirta (2008) focus on
in-sample dynamic specification testing.

In this paper we offer a new framework for out-of-sample evaluation of density forecasts

in a multivariate context. We build up on the “autocontour” approach of Gonzilez-Rivera

!There is a growing literature on testing the goodness of fit of various copula functions in the multivariate
context, see Berg (2009) for a recent survey and power comparison.



et al. (2011) and Gonzélez-Rivera and Yoldas (2010) applied to the second transformation of
the PITs to normality, i.e. quantile residuals, as in Berkowitz (2001) and Kalliovirta (2008).

The autocontour approach is based on the generalized residuals of a location-scale time
series model, i.e. & = (yr — fy)t—1)/0¢e—1 Where g, is the conditional mean and oy;_; is
the conditional standard deviation of the process. Under correct specification, the generalized
residual should be i.i.d. with density f(e;). The autocontour is the n-dimensional probability
contour of the multivariate density of the process {e;} under i.i.d-ness, e.g. for n = 2 and lag
i the bivariate density is given by f(e¢,e1—i) = f(e¢)f(1—i). Fixing the probability contained
within a given autocontour is the basis of a testing procedure for model specification. We
generalize this methodology to evaluate out-of-sample predictive densities based on quantile
residuals. There are at least two advantages of working with quantile residuals. First, it allows
for a broad range of specifications beyond the location-scale model, even though this is the
most common in the econometrics literature. Our proposed methodology applies to density
forecasts from non-linear models with conditional densities dependent on higher moments
other than conditional mean and variance, such as Hansen (1994)’s autoregressive condi-
tional density model; regime-switching models with state-dependent heteroskedasticity and
Student-t innovations as in Perez-Quiros and Timmermann (2000); univariate and multivari-
ate stochastic processes as in Liesenfeld and Richard (2003); and univariate and multivariate
diffusion processes as in Hong and Li (2005). Generally speaking, for any specification, if
the PITs can be retrieved, the quantile residuals will be easily calculated, and that will allow
the implementation of autocontour-based testing. Secondly, the shape of autocontour may
be difficult to obtain when the density functional form of the generalized residual becomes
more complex. In this case, we need to implement numerical procedures to obtain the right
probability mass of each autocontour, see Gonzalez-Rivera et al. (2011). With the quantile
residual we only deal with Gaussian autocontours that are analytically tractable and graphi-
cally very easy to implement. Our paper contributes to the limited literature on multivariate
predictive density evaluation by proposing a computationally simple approach that uniquely
combines formal testing with graphical illustration, making the visualization aspect one of
the great advantages of this methodology. The proposed tests target the joint hypothesis of
independence and normality of the quantile residual vector. The shape of the autocontours
is the key to detect violations in both directions. The statistical properties of the tests devel-
oped in Gonzélez-Rivera et al. (2011) translate easily into the out-of-sample context, so that
standard asymptotic distributions hold. In some instances parameter uncertainty is asymp-
totically irrelevant, but in those where parameter estimation may play a role, we show that a
parametric bootstrap procedure delivers very good finite sample properties of the tests. We
illustrate our methodology with an empirical application on daily returns to value and growth
equity portfolios. We evaluate the bivariate density forecasts of these two portfolios from
2006 to 2009. While in-sample, a DCC model with bivariate Student-t seems to be adequate,



out-of-sample, our tests rejects this density because it is unable to accommodate the high
volatility events of 2007 and 2008.

The rest of the paper is organized as follows. In Section 2, we present the testing framework
and discuss the role of parameter estimation in the distributions of the proposed tests. In
Section 3, we provide a detailed assessment of the finite sample performance of the tests,
and a comparison with the non-parametric tests of HLZ. In Section 4, we offer an empirical
application on evaluating predictive densities for value and growth portfolios, and in Section

5 we conclude.

2 Testing Methodology

2.1 Quantile Residuals

Let y: = (y1t, - - -, Ynt)" denote the vector of interest with conditional density function f(y:|F;—1)
where F;_1 is the information set available at time ¢ — 1, i.e. 71 = o{ys,yi—1,...}.> Con-
sider a parametric density forecast model for y;, say g(y¢|xi—1 ,0) where x;_1 is an F;_
measurable vector and @ is a vector of parameters such that 8 € ® C R*. Under correct
density model specification we have g(y¢|x;—1 ,00) = f(y¢|Fi—1) a.s. for some unknown true

parameter vector 8y € ©. The predictive density function of y; can be decomposed as follows

9(yelxe-1,0) = [T 9(wjelxi-1. Aj-1,0), (1)

Jj=1

where A;_1 = o{Yi,...,Yj_1,:}.> Then, the PITs are given by u;; = G;(yjt|x4—1,0) =

7 gi(ulxi—1, Aj—1,0)du and the vector of quantile residuals take the following form

&G (y1e|x¢-1,0))
-1 Xt—1,

CH »
(G (ynt|xi-1,0))

where ®~!(.) denotes the inverse cumulative distribution function of the standard normal
distribution. Under mild regularity conditions and correct specification of the conditional
density, each ®1(uj) is i.i.d. N(0,1), so that the vector z;(6p) will be i.i.d. N(0,L,).
Furthermore, Kalliovirta (2008) proposes a transformation of the vector of quantile residu-
als that yields a univariate stochastic process, which is also i.i.d. standard normal. Specifically,

by generalizing the transformation proposed in Clements and Smith (2000) and Clements and

2For simplicity we do not consider predictor variables in the information set, but the extension is straight-
forward.

3In general, the ordering does not have to be from 1 to n, i.e. the joint density can be decomposed in n!
ways. The ordering does not have an impact on the asymptotic distribution of the tests but it may affect
power in finite samples. See Hong and Li (2005) for a discussion of this point.



Smith (2002), she shows that the univariate process v(6g) = w¢(6p) Z?;ol (_jl!)j [In(we(00))]’,
where wt(6o) = I17_; G;(y;t|xt—1,00), is 1.i.d. uniformly distributed. Then, the transforma-

tion to normality ¢;(68¢) = ®~*(v¢(80)) delivers a quantile residual that is i.i.d. N(0,1).

2.2 Test Statistics

The i.i.d. normality of the quantile residuals will hold only when the assumed conditional
density forecast model coincides with the true conditional density of yy, i.e. g(y¢|x¢—1 ,60) =
f(y¢|Fi—1) a.s. Hence, the adequacy of any density forecast model can be evaluated by
checking the i.i.d. normality of the quantile residuals. For now we will assume that 6 is
known. We will relax this assumption when we discuss the impact of parameter uncertainty
on the distribution of our test statistics.

We are interested in testing the following null hypotheses on

(i) the transformed vector of quantile residuals
Ho : qt(eo) ~ ii.d. N(O, 1) (3)

and

(ii) the vector of the quantile residuals

Ho : 2:(8o) ~ i.i.d. N(0,1,), (4)

In both cases H; is simply negation of the null. We develop test statistics that are designed
to test the joint hypothesis of independence and density functional form on z; and g;.*

Let us now focus on the univariate aggregated quantile residual process and consider
the joint distribution of ¢; and ¢, for £ < K < oco. Due to independence and normality
implied by the null hypothesis, their joint pdf is given by ¢(qs, g—x) = i exp (—% (qt2 + qf_k)).
For this process we define the autocontour, ACRy ’k, as the set of points in the hyperplane
(Gt, qt—r) that results from horizontally slicing the joint density function at a fixed value, say
¢a, to guarantee that the resulting set contains 100a% of observations. This is effectively the

probability contour plot of ¢ (g, g;—x) with probability mass equal to c. The formal definition

of ACRy*
h(gt) 1 1
/ / o &P <—2 (th + qz?k)) dgrdgr—x < a} , (5)

where B(.,.) is a set in R% a, = —2In(27d,), and h(q) = Vaa — @7 AC’Rq will have

100a% coverage only when both assumptions under the null, correct dynamic specification

ACRg* = {B<qt,qt v C B

and density functional form, are satisfied. A graphical illustration for different coverage levels

is given in Figure 1.

4For ease of exposition we will suppress the parameter vector argument in the quantile residuals until we
deal with the parameter uncertainty problem.



Let T and P denote the number of observations in the full sample and the prediction
sample respectively. We define an indicator series with respect to the ACRy k autocontour
as follows

k
I =1 ((aas) ¢ ACRSY) =R+ k+1,....T, (6)

where R =T — P, and I(.) denotes the usual indicator function. For the normal autocontour,

we construct this indicator series as follows
Iz’k:]l(qt2+%:2—k>aa), t=R+k+1,...,T. (7)

Given the quantile residuals, we only need to obtain the a, value to make this definition
operational. Since ¢ + qt2_ ;. is chi-squared distributed with two degrees of freedom, it follows
that ap, = —2In(1—«). Let p, = 1 —a, then it is straightforward to show that E[Ig;k] =1l-a«a

and Var (I ;k) = a(1 — a). Furthermore, I %k is autocorrelated with autocovariance function

Cov (Igj;k, ok ) = 1(s = k) [P (Igff 1,10k, = 1) - pg} .
Hence, I;f ;k exhibits a dependence structure similar to a restricted MA(k) process. By ex-
ploiting the statistical properties of this indicator process under the null, we will evaluate the
adequacy of the one-step-ahead density forecast.

Two tests are provided. By fixing the probability a and the lag k, we can construct a t-
test based on the sample values of p,. Furthermore, by jointly analyzing several autocontour
coverage levels, say a = (aq,...,q,)" we can construct a chi-squared test based on the

/

corresponding sample values of the vector po, = (Pays---»Pas,) - Both statistics amount to

test for the independence and density functional form of the aggregated quantile residual ¢.
5

A t-test to evaluate one-step-ahead density forecasts Define ﬁg"k = ﬁ Zf: Rkl L, Z ’tk.

Under the null hypothesis given in Equation (3), we have

e VPR
q

a,k
Oq

~Pa) 4 n(0,1),

where aff’k = \/pa(l — Pa) +2Cov (I:;k, Igik)

We can examine the lag structure of tg"k for k=1,..., K and collect those t-statistics in
a graph, which we call autocontourgram, (see Section 4 for various empirical examples). In
certain applications, such as financial risk management, a specific coverage level may be of

particular interest, which makes t?’k very useful. In other instances, it may be desirable to

5The mathematical proofs for both tests are straightforward extensions of those provided in Gonzélez-Rivera
et al. (2011)



construct a test statistic that aggregates information from multiple autocontours and covers

the entire density instead of specific regions. This is provided by the following test statistic.

A chi-squared test to evaluate one-step-ahead density forecasts Let us consider a

set of coverage levels, say a = (a1, ..., qy,), and the vectors po = (Pays - -+ Pay) s f)qo‘k =
(ﬁg‘l’ ,...,ﬁg‘m’ ) where pa“ = 5 ZtT:RJrkH I;fgk. Under the null hypothesis given in

Equation (3), we have

—_—T~ d
IR = (P = k)(Pg* — pa) BT (BS" — Pa) = X*(m),
5" s C Oluk Iajv Co a]vk Iaivk
ij = mln(pai7paj) Pa; P + OU( gt 1 tgi— k) + ( , q7t—kz)'

Now consider the vector of quantile residuals, z; and let r; = (z;,2, ,)’. Then, r; is i.i.d.
N(0,I5,). In this case, the autocontour with 100a% coverage will be a 2n-dimensional sphere.

The formal definition is given by

h h2n 2n
/ / —exp | — Z’r% drig...drang <o p,  (8)
- h2n i=1

where hy = v/dy, h; = \/dy — Z] 1 Jt fori=2,...,2n, A <, and dy = inf{d : R(d) < a}

where R(.) is the cdf of a chi-squared random variable with 2n degrees of freedom. Given the

ACR* .= {B (r;) C R*"

dimension of the vector of quantile residuals and the coverage level, d, can be easily computed
with numerical methods.
As in the univariate case, we proceed to construct an indicator series with respect to this

autocontour as follows
Iz%kzﬂ(l‘ért>da), t=R+k+1,...,T. (9)

This indicator process has the same statistical properties as those of the indicator for the
univariate case and, consequently the ¢ and chi-squared test statistics will be constructed
exactly in the same way as describe above. We will denote these test statistics as t?’k and
Jg ok, Finally, we can follow the same strategy for the individual elements of the vector of
quantile residuals to obtain a more refined picture of the properties of the density forecasts.
We will denote the corresponding test statistics as t?i’k and Jg ok,

These tests will have power to detect potential shortcomings of a density forecast, those
coming either from misspecified dynamics, or from an incorrect density functional form, or
from both. The fundamental reason is that the tests deal explicitly with both implications
of the null hypothesis through the shape of the autocontours. Discrepancies between the
theoretical autocontour under the null and the actual autocontour are the key to understand
the power of the tests. For example, assume that the postulated density forecast model

belongs to the location scale family and dynamics are correctly captured, but the assumed



density form is incorrect, e.g. the true density is leptokurtic while multivariate normality
is assumed. The neglected leptokurtosis in the underlying process will be reflected in the
quantile residuals. In that case z; ( and ¢;) will be still i.i.d. but not normally distributed.
The actual autocontours will deviate from the spheres (circles) implied by normality. The
discrepancy between the two autocontours will cause a difference in the actual versus assumed
coverage levels, which will cause the tests to reject the null model. Now suppose that the
postulated model correctly captures the density functional form, but the dynamics are not
fully modeled so that there is remaining linear dependence in quantile residuals. This will
translate into actual elliptical autocontours as opposed to circles implied by the null and,
again, the null will be rejected. Furthermore, whenever there is neglected linear dependence,
both ¢2°% and J&* (t9°F and J£°F) statistics will exhibit a fast decaying pattern with respect to
the lag displacement as linear dependence will die off rather quickly. On the other hand, they
will display persistence when dynamic misspecification is of nonlinear type, e.g. neglected
ARCH effects in financial data.

Though a priori it would be possible to choose o optimally for some defined objective
function, e.g. the power function of the tests, from an empirical perspective, it is the applica-
tion of interest that should guide the choice of a. For instance, if the researcher is interested
in Value-at-Risk (VaR) calculations, the modeling of the tails of the conditional distribution
is the most relevant, and consequently the «’s of choice should be those corresponding to the
extreme quantiles, i.e. 90, 95, 99%. In the financial duration literature, if the interest lies
on the modeling of short durations (highly liquid assets), the most relevant a’s will those
corresponding to the most central quantiles, i.e. 1, 5, 10%. As a starting point in the imple-
mentation of our methodology, we recommend canvassing the full density with a chi-squared
test, and upon rejection of the null, to examine individual autocontours to assess where the
rejection comes from. As for the choice of k, this is analogous to examining the Q-statistics
in a classical autocorrelogram where Q-statistics are reported for a large set of displacements.
Likewise, with our proposed t-tests and chi-squared tests we will report their values for a
large set of displacements (see simulations and empirical sections) and assess whether or not
the dynamics of the model are well-specified.

Up to now we have assumed that the parameters of the density model are known but
in practice the parameters will be estimated. Ignoring parameter uncertainty can result in
substantial size distortions of the tests, as shown in a recent paper by Chen (2010) in the
context of moment based tests for univariate density forecast models. In an out-of-sample
context, the relevance of parameter uncertainty depends on the forecasting scheme (fixed,
rolling, or recursive) as well as on the size of the prediction sample relative to the estimation
sample. Here we provide a theoretical analysis in case of the fixed scheme, as in HLZ, but

similar results can be obtained under recursive and rolling schemes.



Taking a mean value expansion of ﬁg’k((?) around 6, we can obtain the following equation

05" (6)

\/F(pgv’f(é)—pa):f(a’fao pa \f\ﬁe 60 Jim B | 0

+op(1),

0=0,
(10)

where ﬁg‘k(b\) = 57 ZZ;RJrkH I(¢2(0) + qf_k(g) > a,) and @ is the estimator obtained from
the first R observations. The parameter estimators are assumed to be v/R-consistent, i.e.
(5— 6o) = Op(R~1/2). In general, this condition will be easily satisfied by m-estimators, such
as the quasi maximum-likelihood (QML) estimator. If R — oo, P — oo, and P/R — 0as T —
00, the second term on the right hand side of Equation (10) will be asymptotically negligible
provided that the gradient term is bounded. Therefore, as long as the ratio of the prediction
sample to the estimation sample tends to zero as the total sample size grows indefinitely, our
test statistics can be applied to quantile residuals based on estimated parameters without any
adjustments. In situations where the condition P/R — 0 is violated, we can bootstrap the
tests to approximate their asymptotic distribution. Moreover, when P/R — 0 condition is
satisfied, we can obtain improvements in finite sample performance through bootstrap as the
test statistics are asymptotically distribution free under this condition, e.g. Horowitz (2001).
In our context, a parametric bootstrap is particularly relevant as the null model completely
specifies the conditional distribution of the data. Specifically, we generate B samples of size T’
from g(y¢|x¢—1, /0\) Let 8, denote the estimator under the fixed scheme from the bth bootstrap
sample, then the quantile residuals are calculated from g(y|x;—1, éb). The resulting quantile
residuals are used to calculate the test statistics, tg’k (b) for b=1,..., B. Then, the bootstrap

approximation to the p-value is given by

B

pEeF) = Z (GROIEE (11)

b:

Under suitable regularity conditions, asymptotic expansions can be used to show that the
parametric bootstrap converges to the true distribution of the test statistic at a rate of v/ P
even when P/R ~ 0 condition is violated. When P/R ~ 0 holds, the parametric bootstrap
converges to the true distribution of the test statistic faster than v/P. This approach provides

remarkable results in finite samples as shown by the following Monte Carlos simulation results.

3 Finite Sample Performance

In this section we examine the size and power of the tests for several bivariate data generating
processes paying special attention to the size of the prediction sample relative to the estimation
sample. We also offer a comparison with the tests of HLZ applied to the aggregated vector of

quantile residuals. These authors entertain the same joint hypothesis of iid-ness and correct

5The analysis here exclusively focuses on the t-statistic for the aggregated quantile residual and an individual
autocontour. The same line of reasoning applies to the vector of quantile residuals and the chi-squared statistic.



density functional form as our autocontour tests, so that the comparison will be fair and
informative. In addition, since their tests are non-parametric, the comparison will offer an
assessment of the merits of parametric autocontour-based tests versus non-parametric kernel-
based tests.

HLZ tests are based on the PITs, which must be i.i.d. U[0,1] under correct specification
of the density forecast. Their tests compare the joint density of the pair {u, u;—j} with the
product of two independent U[0,1] densities, which is equal to unity under the null. They
propose two tests: (i) for a given displacement k, Q(k) — N(0,1) where the test statistic is the
properly centered and scaled version of the non-parametric kernel based estimator of the joint
density of {uz,u;_1,} using a boundry-modified kernel; and (i) W (K) = K21 | Q(k) —
N(0,1). The Q(k) test is similar to our autocontour tests t3* and J&*, for which the

displacement k is also fixed.

3.1 Size

We simulate data from two VAR (1) systems under bivariate normality and bivariate Student-t:

Sizel: yr=Ay;i—1+ 21/2615, (12)
Size2: yy = Ay + 2%y,

where

A 0.15 0.05 7
0.15 0.45

1 0.3
03 1 |’

€; is an i.i.d. standard Normal vector, and e&; i.i.d. Student-t vector with degrees of freedom

2:

equal to 5 with identity covariance matrix. We estimate A and X under the fixed fore-
casting scheme with Least Squares and apply our tests to the quantile residuals described
above. The number of Monte Carlo replications is 1000. We set T" = 5000 and consider
P € {250,500, 1000,2000}. The nominal size level is 5%. The set of autocontour coverage
levels is given by a = {0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}. Finally, we
set the number of bootrstrap replications equal to 500, i.e. B = 500.

The results for t-statistics are presented in Tables 1 and 2, and for the chi-squared statistics
in Table 3. The t-statistics in general have very good size properties for both tests, ¢, and
t,, and for both assumed bivariate densities. For the smallest value of the evaluation sample
size considered (P = 250), the test statistics are slightly undersized in some cases, such
as t2.99,1 under normal distribution. This is expected because there may not be enough
variation in the data at the extreme coverage levels to obtain a reliable estimate of the
violation percentage for relatively small values of P. As P increases, this tendency disappears

as expected. Another critical observation is that the parametric bootstrap scheme delivers



excellent results in situations where asymptotic irrelevance of parameter estimation is hard
to justify. This can be directly seen from the last rows of Tables 1 - 2 where P/R = 0.67.

The results for the chi-squared test statistics in Table 3 are similar to those of the t-
statistics. They enjoy empirical sizes fluctuating around the nominal size of 5% even in those
cases where the P/R ratio is high.”

We also apply the HLZ tests to the aggregated vector of quantile residuals, ¢;. The critical
values are calculated by implementing the distribution-free simulation procedure proposed by
the authors, which is supposed to correct for finite sample bias. The results are presented in
Table 4. When the prediction sample is relatively small the size of both tests, Q(k) and W (K)
for bivariate Normal and bivariate Student-t, is acceptable. When the prediction sample is
large, we observe severe size distortions, e.g. when P = 2000 and for the bivariate Student-t
case, the size of the test W (5) is 13.5%, more than twice the nominal size of 5%. As P
increases, the calculated critical values approach asymptotic critical values since the HLZ
simulation procedure depends on sample size only. On the other hand, the effect of parameter
estimation become more pronounced as P/R grows. These two effects combined result in the

observed size distortions for large values of P in our simulations.

3.2 Power

In order to assess the power of the tests, we choose the VAR(1) specification with bivariate
normality (described above as “Size 17) as the model under the null hypothesis, and we
consider three alternative DGPs that deviate from the null in particular ways. First, we
consider a model with linear dynamics as in the null model but with a non-normal density.
Specifically we generate data from the multivariate Student-t distribution with 5 degrees of
freedom. This model corresponds to that described above as “Size 2” and we will name it
“Power 17. With this model, we will assess deviations from density functional form in the

density forecast. The second DGP introduces non-linear dynamics in the conditional mean

vector:
Power2: y; =1(y14-1 < 0)A1yi—1 +L(y14—1 > 0)Agyr—1 + 21/26t, (13)
where,
el o)
Ay = —A4, and ¢ is an i.i.d. standard Normal vector. Since we maintain bivariate normality

of the vector of innovations, we would like to assess power in the direction of misspecified
dynamics in the density forecast. Finally, the third DGP will combine non-normality with
non-linear dynamics in higher moments than the mean. We consider a model with time-

varying variances and correlations as in the Dynamic Conditional Correlation (DCC) model

"When we completely rely on asymptotic irrelevance arguments and do not bootstrap the distributions of
the tests we observe some non-negligible size distortions especially when P/R is relatively large. These results
are available upon request.
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of Engle (2002). This third DGP is given by
Power3: y; = Ay: 1+ €, (14)

where €, ~ N(0,H;), H; = D;R;D;, D; = diag{hi14,...,hnn:}, and each element of Dy is
modeled as a standard GARCH(1,1) process:

2 .
hii,t = w; + Q€54 1 + ﬁihii,tfla 1=1,...,n.

The model is complete by defining dynamics of the time-varying correlation matrix, R;. Let
e = Dt_let, then Rij¢ = vijt/(\/Viit\/Vjjt) Where

I''=(1-a—B)T+ae_1€e,_; + OB,

and T = E [ese}]. We set a; = 0.15, 3; = 0.8, w; = 1 — a; — B3;, « = 0.15, and 8 = 0.8.

Table 5 summarizes rejection rates for t, statistics at the 5% nominal size level. When the
data is generated from “Power 1” the tests are extremely powerful in detecting deviations from
normality. We observe rejection rates larger then 90% even with small prediction samples P =
250. The relatively high rejection rates at small and large coverage levels are due to neglected
leptokurtosis. When the data is generated from “Power 2”7, the rejection rates are not as
high as those from “Power 1”7, and it seems that we need larger samples than 250 to obtain
rejection rates above 70%, but overall the results are quite satisfactory. The largest rejection
rates when neglected nonlinearity is at stake happen for autocontours with probability mass
0.1 <a <04 and o = 0.99. This means that small to intermediate autocontours and the
autocontour associated with the tail of the distribution are more sensitive to this form of
deviation from the null. For a € {0.8,0.9} the rejection rates are very low implying that the
null and the alternative are close to each other for those particular coverage levels. Finally,
when we consider time varying variance and correlations under the alternative, we observe
that the rejection rates tend to be larger than those for “Power 2” but smaller than those
for “Power 1”7. For a given prediction sample, the power seems to be more uniform across
autocontours than in “Power 1”7 and “Power 2”. In Table 6 we present the rejection rates
for the test with aggregated quantile residuals t,. The conclusions are similar to those for
Table 5, however the statistics t, are more powerful than the ¢, tests across the three DGPs
considered.

Table 7 summarizes the results for the chi-squared tests. Similar to the case of t-statistics,
the chi-squared statistics based on the vector of quantile residuals are more powerful than
those based on the aggregated process. For DGPs “Power 1”7 and “Power 3”7, the rejection
rates are similar with respect to the lag order. This is due to misspecification of density
functional form (Power 1) and to neglected variance/correlation dynamics (Power 3) that

create leptokurtic behavior in the quantile residuals at all lags. In DGP "Power 2’, the sharp
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drop in the rejection rates of both J, and J, from k£ = 1 to k > 2 is particularly noteworthy as
it distinguishes the case of misspecified mean dynamics from other sources of misspecification.

For comparison purposes, we also report the power simulation results for the HLZ tests in
Table 8, where the tests statistics are calculated for the aggregated quantile residual process,
q¢- Note that these power simulation results are not size adjusted. Under “Power 17 DGP,
the HLZ tests have similar performance to the autocontour tests based on ¢, but they are less
powerful compared to our autoconotur tests based on z;. Similar observations apply under
the third DGP, “Power 3”. For the case of “Power 2”, the HLZ tests perform better than both
autocontour tests, especially in small samples. Given the size distortions of the HLZ tests,
especially under non-normal DGPs, the results indicate that the autocontour tests outperfom
HLZ tests for detecting deviations from specified density and dependence through moments
higher than conditional mean, while they perform comparably or slightly worse when it comes

to violations of the null through dependence in conditional mean.

4 Empirical Illustration

In this section we apply our methodology to the daily returns on value and growth portfolios.
Value and size are the most common styles in equity investments. For example, Morningstar
provides an equity style box as a nine-cell grid that is used to identify the investment styles of
domestic equity funds with respect to value and size. Style portfolios became subject of ex-
tensive academic research especially after the seminal work of Fama and French (1993). Even
though they have been analyzed for portfolio allocation decisions at the monthly frequency,
e.g. Guidolin and Timmermann (2008) and Patton (2004), to our knowledge no existing study
has investigated the bivariate density forecast model for value and growth portfolios at the
daily frequency.

We use the Fama-French data set available from the online Data Library of Kenneth
R. French. Stocks are sorted into small and big categories with respect to their market
capitalization. They are also sorted with respect to the ratio of market value to book value into
three categories: value, neutral, and growth. Fama and French then consider the intersection
of these categories to form a six cell grid.® We construct our value (growth) portfolio as the

average of small value (growth) and big value (growth) portfolios. Formally, we have

1
rtV alue _ §(Small Capitalization Value + Big Capitalization Value),
15)
1 (
pErowth §(Small Capitalization Growth + Big Capitalization Growth).

Then, the vector of interest is given by r; = (r)elue pGrowthy

January 2, 1990 to October 30, 2009, providing a total of 5001 observations and we hold back

. Our daily sample runs from

8For further details regarding the construction of portfolios and calculation of returns please refer to Kenneth
French’s web site.
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the last 1000 observations for out-of-sample evaluation. Summary statistics of returns (%)
can be found in Table 9. The mean daily return is close to zero for both portfolios in the
estimation and prediction samples. We observe that the standard deviation, the range, and
the kurtosis of both portfolios are substantially larger in the prediction sample than in the
estimation sample. We should keep in mind that the prediction sample includes the turbulent
financial events of 2008 and 2009.

We set the conditional mean equal to zero for the vector of returns, which is common
practice when modeling conditional distributions of daily/weekly returns, e.g. J.P.Morgan
(1996), and Capiello et al. (2006). This is mainly because the first moment is difficult to
model at daily and higher frequencies due to the presence of noise. Furthermore, variation in
the first moments is an order of magnitude smaller than the variation in the second moments
for high frequency returns (see Andersen et al. (2010) for a detailed illustration of this point).
We consider the DCC model of Engle (2002) under bivariate Normal and bivariate Student-t
distributions to model the fat tails and the time varying second moments of the data. The
model is given by

r, = H/ %, (16)

where H; = D:R;Dy, and D; = diag{hi14,...,h22}. In this setup, Ry is the time-varying
correlation matrix. Based on model selection criteria and specification tests we model the
individual variances as a threshold GARCH process as in Glosten et al. (1993):

hiit = w;i + Oéi?"%t_l + Bihiit—1 + L(riz—1 < 0)51'?”@-2775_1, i1=1,2.

This specification captures the well known negative correlation between realized returns and
volatility (the leverage effect/ the volatility feedback), e.g. Bollerslev et al. (2006). Let e; =
D, 'y,. Then, the dynamics of the correlation matrix is given by Rij = viji/ (mm)
where

I=(1-a—-B)T+ae_1e;_; + O,

and T = F[ece}].” The density forecast model is complete with the specification of the dis-
tribution of ;. We consider two popular densities to this end: multivariate normal and mul-
tivariate Student-t distributions. For the Student-t distribution, we still estimate the model
under normal likelihood with a QML interpretation. The degrees of freedom for Student-t
distribution is then estimated with the method of moments based on the conventional stan-
dardized residuals of the DCC model for each series, e.g. Bontemps and Meddahi (2005). The
average of the estimates is taken as the common degrees of freedom for the density forecast

model e.g. Pesaran et al. (2010). Based on this procedure we estimate the joint degrees of

9We also considered the asymmetric DCC model proposed in Capiello et al. (2006) and found that there
is a weak but statistically significant leverage effect in correlation dynamics. However, this model created
convergence problems in bootstrap replications.
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freedom parameter as 10. Finally, we set the prediction sample P = 1000 and consider a fixed
scheme.

The results for the chi-squared statistics are presented in Figures 2 (under normality)
and 3 (under Student-t). All p-values are calculated using the parametric bootstrap scheme
outlined in the previous section. From Panel-a of Figure 2 we observe that .Jg' * takes large
values, with an average of approximately 38, and it is significant for all lags at 5% level. The
monotonic behavior of the test statistic with respect to the lag order indicates that the DCC
model does a satisfactory job of capturing the dynamics of the data. Similar observations
apply to Jg' ok statistic, presented in Panel-b of Figure 2. Under Student-t, Figure 3, the
values of the statistics Jo* and Jq * are smaller than those under normality indicating that
the Student-t density forecast is a better fit than the Normal density forecast. However, Jz ok
points towards a mild rejection while Jg * indicates a clear rejection of the Student-t density
forecast at the conventional 5% significance level.

To understand where the rejection comes from, we examine the t-statistics tf;’k for different
a coverage levels. In Figures 4 and 5 we report the values of the t-statistics for normal and
Student-t for o € {0.1,0.95}. For a normal density forecast, the tests fail to reject for the
central autocontour (o = 0.1) while it clearly rejects for the tail autocontour (o = 0.95).
For a Student-t density forecast, the rejection comes from both autocontours, though the
rejection is much stronger for the 95% autocontour. Overall, the DCC model provides a good
specification of the dynamics of the data and the bivariate Student-t density forecast is an
improvement over the normal density forecast, but it is not entirely satisfactory as there are
significant outlier returns in both portfolios, value and growth, coming from the high volatile
periods in late 2008 and early 2009. The improvement provided by the Student-t distribution
is also evident from Figure 6, which provides (g, ¢;—1) scatter plots with normal autocontours
superimposed on the quantile residuals. Figure 7 shows the HLZ Q test calculated for the
aggregated quantile residual process under normal and Student-t densities. The results are
in line with those of the autocontour tests based on ¢;. The main difference is that our tests
reject conditional normal DCC model more strongly while the HLZ tests indicate a stronger
rejection of the conditional Student-t DCC model. This is likely due to the aforementioned
size distortions of the HLZ tests, which are more pronounced under non-normal densities.

Though not directly comparable, our results are in contrast with those of Bai and Chen
(2008). They provide in-sample evaluation of a bivariate system of monthly returns on IBM
Stock and S&P 500 index and fail to reject a bivariate GARCH model coupled with Student-t
distribution. On the other hand, we agree with Pesaran and Pesaran (2010) who conducted
an out-of-sample evaluation of an equally-weighted portfolio of 17 assets. They apply the
Kolmogorov-Smirnov test to the PITs of the Student-t DCC model and do not reject the
null but they reject the Student-t DCC model with respect to VaR violations. They argue

that tests focusing on the tail of the distribution prove to be more powerful. Our results are
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consistent with this conclusion, which illustrates the usefulness of our methodology in terms

of the flexibility it allows to focus on the entire distribution and/or specific regions.

5 Concluding Remarks

Noting that the literature on multivariate predictive densities is rather thin, we have aimed
to develop a new framework for the out-of-sample evaluation of multivariate density forecasts
building up on the concept of “autocontour” introduced in Gonzalez-Rivera et al. (2011). The
main advantage of our method is that the autocontours for a multivariate normal density are
mathematically tractable regardless of the complexity of the dynamics of the model and the
functional form of the assumed multivariate density. Once we obtain the quantile residuals
of the model, through a second transformation of PITs to normality, we implement a battery
of tests with standard asymptotic distributions and superior finite sample properties. In an
out-of-sample context, the uncertainty created by parameter estimation depends on the size of
the prediction sample relative to the estimation sample, which may be controlled easily by the
researcher. Nonetheless we have shown that in all instances, whether parameter uncertainty is
relevant or irrelevant, there are advantages to implementing a parametric bootstrap to correct
mild size distortions in the tests. We provide Monte-Carlo evidence pertaining to finite-sample
performance of our tests and compare them with those of Hong et al. (2007). We illustrate our
approach by evaluating the bivariate density forecast of value and growth portfolio returns
and concluded that a bivariate Student-t DCC density forecast is not fully satisfactory to
model the events of 2008 and 2009. The rejection is not due to the dynamics provided by
DCC, which seem to be adequate, but rather to the functional form of the bivariate density

that seems to require even fatter tails in the prediction sample.
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B Figures

Figure 1: Illustration of Autocontours
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Figure 2: Chi-squared Statistics under Normal Distribution
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Figure 3: Chi-squared Statistics under Student-t Distribution
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Figure 4: t3"*-Statistics under Normal Distribution
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Figure 5: t5"*-Statistics under Student-t Distribution
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Figure 6: Data and Autocontours for the Aggregated Quantile Residual Process
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Figure 7: HLZ Q(k) Statistics
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