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Abstract

We propose a new and easy-to-use method for identifying cointegrated components of

nonstationary time series, consisting of an eigenalysis for a certain non-negative definite matrix.

Our setting is model-free, and we allow the integer-valued integration orders of the observable

series to be unknown, and to possibly differ. Consistency of estimates of the cointegration

space and cointegration rank is established both when the dimension of the observable time

series is fixed as sample size increases, and when it diverges slowly. A Monte Carlo study

of finite-sample performance, and a small empirical illustration, are reported. Asymptotic

justification of the method is also established in a fractional setting.
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1 Introduction

Cointegration entails a dimensionality reduction of certain observable multiple time series that are

dominated by common components. In particular a multiple time series can be said to be (linearly)

cointegrated if there exists an instantaneous linear combination, or cointegrating error, with lower

integration order. Much of the vast literature, following Box and Tiao (1977), Granger (1981),

Engle and Granger (1987), has focused on unit root series which have one or more short memory

cointegrating errors, but there have been extensions to nonstationary series with other integer

orders of integration, allowing also for the possibility of some nonstationary cointegrating errors,

as well as to fractional nonstationary, and even stationary, observable series and cointegrating

errors, with unknown integration orders. Much of the early literature, in particular, assumed a

complete parameterization of second order properties, where in particular the observable series

are generated from short memory inputs that have finite autoregressive moving average (ARMA)

structure, but it has also been common to study semiparametric settings, with underlying short

memory inputs having nonparametric autocorrelation, see e.g. Stock (1987), Phillips (1991), in

some cases without sacrificing precision relative to a correctly specified parametric structure.

Given knowledge of the cointegration rank, r, of a p-dimensional observable series, that is

the number of cointegrating relations, various methods are available for estimating the unknown

parameters of the model, such as the coefficients of the cointegrating errors, and even of unknown

integration orders, and for carrying out asymptotically valid, and sometimes even efficient, sta-

tistical inference. However, r might not be known to the practitioner, and various approaches for

estimating r from the data have been developed, starting from Engle and Granger (1987), Jo-

hansen (1991), in their parametric, unit root vector autoregressive (VAR) setting, and continuing

with, for example, Aznar and Salvador (2002) and Saikkonen and Lütkepohl (2000). If, however,

the order of the VAR is underspecified, or all observable series do not have a single unit root,

then typically the resulting specification error will invalidate such approaches, not to mention

rules of statistical inference on unknown coefficients in the model. It is possible that one or more

of the nonstationary observable processes could have two or more unit roots, or indeed could

have fractional orders of integration, as supported by some empirical investigations. References

that allow for nonparametric autocorrelation and/or unknown integration orders include Phillips

and Ouliaris (1988, 1990), Stock (1999), Shintani (2001), Harris and Poskitt (2004), Li, Pan and

Yao (2009) in the case of integer integration orders, and Robinson and Yajima (2002), Chen and

Hurvich (2006), Robinson (2008) in case of fractional integration orders, including in the latter

setting cases where observables are stationary and the cointegrating errors are stationary with

less memory.
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Like Phillips and Ouliaris (1988), Robinson and Yajima (2002), Harris and Poskitt (2004),

Li, Pan and Yao (2009), we employ methods based on eigenanalysis. In our case, in the setting

of nonparametric autocorrelation and unknown (and possibly different) integration orders, we

employ eigenvalues of a certain non-negative definite matrix function of sample autocovariance

matrices of the observable series, for estimating cointegration rank, with the cointegration space

then estimated by selection of eigenvectors, and cointegrating errors thereby proxied. Though the

initial development assumes that observable series have integer orders and cointegrating errors

have short memory, we extend these results to allow for observables to be fractionally nonsta-

tionary, and cointegrating errors to be fractionally stationary. In both circumstances we establish

consistency of our estimates of cointegration rank and space with p is fixed as the length of our

time series, n, diverges. In case of integer integration orders, we also establish consistency allowing

p to diverge slowly with n.

The rest of the paper is organized as follows. The proposed methodology is presented in Section

2. Asymptotic theory with integer order of integration is developed in Section 3. Simulations and

a small real data are reported in Section 4. In Section 5, both the proposed method and part of

the asymptotic theory are extended to the fractional case. All statements and proofs are relegated

to an Appendix, which also contains a number of technical lemmas.

2 Methods

2.1 Setting

We call a vector process ut weakly stationary if (i) Eut is a constant vector independent of t,

and (ii) E∥ut∥2 < ∞, and Cov(ut,ut+s) depends on s only for any integers t, s, where ∥ · ∥

denotes the Euclidean norm. Denote by ∇ the difference operator, i.e. ∇ut = ut − ut−1, and

∇dut = ∇(∇d−1ut) for any integer d ≥ 1. We use the convention ∇0ut = ut. Further, if ut has

spectral density matrix that is finite and positive definite at zero frequency we say ut is an I (0)

process. An example of an I (0) process is a stationary an invertible vector ARMA, and many I (0)

processes satisfy Condition 1 of Section 3.1 below, imposed for our asymptotic theory, including

the examples described immediately after Condition 1. Now denote by uit the ith element of ut

and define u+it = uit1 (t ≥ 1) , where 1 (·) is the indicator function. For an m-dimensional I (0)

process ut and non-negative integers d1, ..., dm, we say that vt =
(
∇−d1u+1t, ...,∇−dmu+mt

)′
is an

(m-dimensional) I (d1, ..., dm) process, with some abuse of notation when m = 1, d1 = 0. Note

that for d1 = ... = dm = 0, vt is not I (0) or even weakly stationary or equivalent to ut due to the

truncation (implying vt = 0, t ≤ 0) that is imposed in order to achieve bounded variance in case

of positive di, but it is ‘asymptotically’ weakly stationary and I (0) . When d1 = ... = dm = 1, all
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elements of vt have a single unit root, but we are concerned with processes for which di can vary

over i.

Now assume a p × 1 observable time series yt is I (d1, ..., dp) for non-negative integers, and

admits the following form

yt = Axt, (2.1)

where A is an unknown and invertible constant matrix, xt = (x′
t1,x

′
t2)

′ is a latent p× 1 process,

xt2 is an r × 1 I(0) process, and xt1 is an I (c1, ..., cp−r) process, where each ci is an element of

the set {d1, ..., dp} . Furthermore no linear combination of xt1 is I(0), as such a stationary variable

can be absorbed into xt2. Each component of xt2 is a cointegrating error of yt and r ≥ 0 is

the cointegration rank. In the event that there exists no cointegration among the components

of yt, r = 0. When yt itself is I(0, · · · , 0), r = p. But these are two extreme cases. Note that

cointegration requires equality of at least two di. For many economic and financial applications,

there exist a small number of cointegrated variables, i.e. r ≥ 1 is a small integer.

Note thatA and xt in (2.1) are not uniquely defined, as (A,xt) can be replaced by (AH−1,Hxt)

for any invertible H of the form  H11 H12

0 H22


where H11,H22 are square matrices of size (p − r), r respectively, and 0 denotes a matrix with

all entries equal to 0. Therefore there is no loss of generality in assuming A to be orthogonal,

because any non-orthogonal A admits the decomposition A = QU, where Q is orthogonal and

U is upper-triangular, and we may then replace (A,xt) in (2.1) by (Q,Uxt). In the sequel, we

always assume that A in (2.1) is orthogonal, i.e., A′A = Ip, where Ip denotes the p× p identity

matrix. Write

A = (A1,A2),

where A1 and A2 are respectively, p× (p− r) and p× r matrices. As now xt2 = A′
2yt, the linear

space spanned by the columns of A2, denoted by M(A2), is called the cointegration space. In

fact this cointegration space is uniquely defined by (2.1), though A2 itself is not.

2.2 Estimation

The goal is to determine the cointegration rank r in (2.1) and to identify A2, or more precisely

M(A2). Then M(A1) is the orthogonal complement of M(A2), and xit = A′
iyt for i = 1, 2. Our

estimation method is motivated by the following observation. For j ≥ 0, let

Σ̂j =
1

n

n−j∑
t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ =
1

n

n∑
t=1

yt.
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For any a ∈ M(A2), a
′Σ̂ja is the sample autocovariance function at lag j for the weakly stationary

univariate time series a′yt, and it converges to a finite constant (i.e. the autocovariance function

of a′yt at lag j) almost surely under some mild conditions. However for any a /∈ M(A2), a
′yt is

a I(d) for some d ≥ 1, and

a′Σ̂ja = Oe(n
2d−1) or Oe(n

2d), (2.2)

depending on whether E(a′yt) = 0 or not, see Theorems 1 & 2 of Peña and Poncela (2006). In the

above expression, where U = Oe(V ) indicates that P (C1 ≤ |U/V | < C2) → 1 as n → ∞, where

C2 > C1 > 0 are two finite constants. Hence intuitively the r directions in the cointegration space

M(A2) make |a′Σ̂ja| as small as possible for all j ≥ 0.

To combine information over different lags, define

Ŵ =

j0∑
j=0

Σ̂jΣ̂
′
j , (2.3)

where j0 ≥ 1 is a prespecified and fixed integer. We use the product Σ̂jΣ̂
′
j instead of Σ̂j to ensure

each term in the sum is non-negative definite, and that there is no information cancellation over

different lags. Note that a′Σ̂ja = Oe(1) if a ∈ M(A2), and is at least of the order of n2d−1 if

a ∈ M(A1). Hence intuitively M(A2) should be the linear space spanned by the r eigenvectors

of Ŵ corresponding to the r smallest eigenvalues, and M(A1) is that spanned by the (p − r)

eigenvectors of Ŵ corresponding to the (p − r) largest eigenvalues. This point can be further

elucidated as follows. Let (γ̂1, · · · , γ̂p) be the orthonormal eigenvectors of Ŵ corresponding to

the eigenvalues arranged in descending order and

Â = (Â1, Â2) = (γ̂1, · · · , γ̂p),

then

Â′ŴÂ =

j0∑
j=0

(Â′Σ̂jÂ)(Â′Σ̂
′
jÂ) =

 Â′
1ŴÂ1 0

0 Â′
2ŴÂ2

 (2.4)

=

j0∑
j=0

 Â′
1Σ̂jÂ1Â

′
1Σ̂

′
jÂ1 + Â′

1Σ̂jÂ2Â
′
2Σ̂

′
jÂ1 0

0 Â′
2Σ̂jÂ2Â

′
2Σ̂

′
jÂ2 + Â′

2Σ̂jÂ1Â
′
1Σ̂

′
jÂ2

 .

The (1, 1)-th block on the RHS is dominated by
∑j0

j=0 Â
′
1Σ̂jÂ1Â

′
1Σ̂

′
jÂ1. The (2, 2)-th block con-

sists of two lower order terms, and is dominated by
∑j0

j=0 Â
′
2Σ̂jÂ2Â

′
2Σ̂

′
jÂ2 as∑j0

j=0 Â
′
2Σ̂jÂ1Â

′
1Σ̂

′
jÂ2 = op(1) (since j0 is fixed). Consequently, we estimate A and xt by

Â = (Â1, Â2), and x̂t = (Â′
1yt, Â

′
2yt). (2.5)
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The idea using an eigenanalysis based on a quadratic form of sample autocovariance matrices

has been used for factor modelling for dimension reduction (Lam and Yao 2012, and references

within), and for segmenting a high-dimensional time series into several both contemporaneously

and serially uncorrelated subseries (Chang et al. 2014). One distinctive advantage of using the

quadratic form Σ̂jΣ̂
′
j instead of Σ̂j in (2.3) is that there is no information cancellation over

different lags. Therefore this approach is insensitive to the choice of j0 in (2.3). Often small

values such as j0 = 5 are sufficient to catch the relevant characteristics, as serial dependence is

usually most predominant at small lags. Using different values of j0 hardly changes the results;

see Table 4 in Section 4 below, and also Lam and Yao (2012) and Chang et al. (2014).

2.3 Determining cointegration ranks

The components of x̂t = Â′yt ≡ (x̂1t , · · · , x̂
p
t )

′, defined in (2.5), is arranged according to the

descending order of the eigenvalues of Ŵ. Therefore, the order of the components reflects reversely

the likeness of the stationarity of those component series, with {x̂pt } most likely being a stationary

cointegrating error series. Hence the unit-root tests (Phillips and Ouliaris, 1988) can be applied

to each of the component series {x̂pt }, {x̂
p−1
t }, · · · to determine the cointegration rank r. Below

we propose some alternative criteria to determine r.

Let λ̂1 ≥ · · · ≥ λ̂p ≥ 0 be the eigenvalues of Ŵ. By (2.4) and (2.2), λ̂i is at least of the order

of n2 for all 1 ≤ i ≤ p − r, and λ̂i = Op(1) for all p − r < i ≤ p. Hence as long as 1 ≤ r < p,

λ̂i/(nλ̂p) → ∞ in probability for all 1 ≤ i ≤ p − r, and λ̂i/(nλ̂p) = op(1) for all p − r < i ≤ p.

This leads to estimating r by

r̂ = max{j : λ̂p+1−j/(nλ̂p) ≤ 1, 1 ≤ j ≤ p}. (2.6)

See also Lam and Yao (2012) and Ahn and Horenstein (2013) for procedures based on eigenvalue

ratios for factor models.

Alternatively we may define a simple information criterion as follows

IC(l) =

l∑
j=1

λ̂p+1−j + (p− l)ωn,

where ωn → ∞, ωn/n
4dmin−2 → 0 in probability (as we allow ωn to be data-dependent), and dmin

is the smallest integration order among all the components of yt1. Then r can be estimated as

r̃ = arg min
1≤l≤p

IC(l). (2.7)

Note that when ωn = nλ̂p, it holds that r̃ = r̂.
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3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed statistics. First, we show

that with r given, the linear space M(Â2) is a consistent estimator for the cointegration space

M(A2). We measure the distance between the two spaces by

D(M(Â2),M(A2)) =

√
1− 1

r
tr(Â2Â′

2A2A′
2). (3.1)

Then D(M(Â2),M(A2)) ∈ [0, 1], being 0 if and only if M(Â2) = M(A2), and 1 if and only

if M(Â2) and M(A2) are orthogonal. Furthermore, we show that both the estimators r̂ and r̃,

defined respectively in (2.6) and (2.7), are consistent for the cointegration rank r. We consider

two asymptotic regimes: (i) p is fixed while n → ∞, and (ii) p → ∞ more slowly than n. In this

section we always assume that j0 in (2.3) is a fixed positive integer.

Put xt1 = (x1t , · · · , x
p−r
t )′. Under (2.1), xjt is I(dj) for 1 ≤ j ≤ p − r and zjt ≡ ∇djxjt is I(0),

where dj ≥ 1 is an integer. Write zt = (z1t , · · · , z
p−r
t )′ and εt = (z′t,x

′
t2)

′. Denote the vector of

partial sums of components of εt by

Sn(t) ≡ (S1
n(t1), · · · , Sp

n(tp))
′ =

( 1√
n

[nt1]∑
l=1

(ε1l − Eε11), · · · ,
1√
n

[ntp]∑
l=1

(εpl − Eεp1)
)′
,

where 0 < t1 < · · · < tp ≤ 1 are constants and t = (t1, · · · , tp)′.

3.1 When n → ∞ and p is fixed

We introduce a regularity condition first.

Condition 1.

(i) There exists a Gaussian process W(t) = (W 1(t1), · · · ,W p(tp))
′ such that as

n → ∞,

Sn(t)
J1=⇒ W(t), on Dp(0, 1),

where
J1=⇒ denotes weak convergence under Skorohod J1 topology (Chapter 3 in

Billingsley 1999), and W(1) has a positive definite covariance matrix Ω = (σij).

(ii) The sample autocovariance matrix of xt2 satisfies

sup
0≤j≤j0

∥∥ 1
n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(x1+j,2,x1,2)

∥∥
2

p−→ 0,

where ∥H∥2 = sup∥a∥=1 ∥Ha∥ is the L2-norm of matrix H, x̄2 is the sample mean

of xt2, and
p−→ denotes convergence in probability.
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Condition 1 is mild. It is fulfilled when {εt} is weakly stationary with det(Var(εt)) ̸= 0,

E∥εt∥2γ < C for some constants γ > 1 and C < ∞, and {εt} is also α-mixing with mixing

coefficients αm satisfying the condition
∑∞

m=1 α
1−1/γ
m < ∞; see Theorem 3.2.3 of Lin and Lu

(1997). It is also fulfilled when εt =
∑∞

j=0Cjηt−j , where ηt are i.i.d. with non-singular covariance

matrix and E∥ηt∥4γ < ∞ for some constant γ > 1, and det(
∑∞

j=0Cj) ̸= 0,
∑∞

j=1 ||Cj || < ∞. See

Fakhre-Zakeria and Lee (2000).

Theorem 1. Let r be known. Under Condition 1, D(M(Â2),M(A2)) = op(1). Furthermore,

(i) D(M(Â2),M(A2)) = Oe(n
−2dmin+1) provided either (a) |I0| ≥ 2 or (b) |I0| = 1 and EzI0t =

0, and

(ii) D(M(Â2),M(A2)) = Oe(n
−2dmin) provided |I0| = 1 and EzI0t ̸= 0,

where dmin = min1≤i≤p−r di, I0 = {i : Xi ∼ I(dmin), 1 ≤ i ≤ p − r} and |I0| denotes the number

of elements in I0.

Theorem 2. Let 1 ≤ r < p and Condition 1 hold.

(i) For r̂ defined in (2.6), limn→∞ P ( r̂ = r ) = 1.

(ii) For r̃ defined in (2.7), limn→∞ P ( r̃ = r ) = 1 provided 1/ωn + ωn/n
4dmin−2 = op(1).

3.2 When n → ∞ and p → ∞, p = O(nc)

We extend the asymptotic results in the previous section to the cases when p → ∞ and p = O(nc)

for some c ∈ (0, 1/2). Technically we employ a normal approximation method to establish the

results. See Condition 2(i) below.

Condition 2.

(i) Suppose that the components of zt are independent and Ezt = 0. For each

component (zit) of zt, there exists an independent and standard normal sequence

{νit} for which as n → ∞,

sup
1≤i≤p−r

sup
0≤t≤1

E
[ [nt]∑
s=1

(zis − σiiν
i
s)
]2

= O(n2τ ), (3.2)

where 0 < τ < 1/2 is a constant, b1 ≤ σ2
ii ≡ limn→∞Var

(∑n
s=1 z

i
s

)
/n ≤ b2 for

any i, and b1, b2 are two positive constants.

(ii) The sample autocovariance matrix of xt2 satisfies

sup
0≤j≤j0

∥∥∥ 1
n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(x1+j,2,x1,2)

∥∥∥
2

p−→ 0.
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(iii) Suppose {zt} and {xt2} are independent and for τ given above

sup
p−r<j≤p

n∑
s,t=1

|E(εjsε
j
t )| = O(n1+2τ ).

Remark 1. The inequalities in the line below (3.2) will hold if the zt’s are I(0) with spectral

density continuous at zero frequency, because the variance is proportional to the Cesaro sum of

the Fourier series of the spectral density at zero frequency, and thus converges to the latter (which

is positive and finite under I(0)) after normalization.

Remark 2. When integration orders of all nonstationary components are the same, the indepen-

dence assumption in Condition 2(i) can be relaxed and replaced by zt = Bet, where B is a p×m

constant matrix, m ≥ p − r, all the components of et = (e1t , · · · , emt )′ are independent, and {eit}

satisfies (3.2) for 1 ≤ i ≤ m.

Remark 3. Let p = o(n1/2). Condition 2 is implied by any of the three assertions below.

(i) The components of εt are independent of each other, and each component series {εit} is a

martingale difference sequence with sup1≤i≤p E|εit|q < ∞ for some q > 2. Furthermore, for

some 2 < q∗ ≤ min{4, q},

sup
1≤i≤p

E

∣∣∣∣∣
n∑

t=1

[(εit)
2 − σ2

ii]

∣∣∣∣∣ = O(n2/q∗).

(ii) The components of εt are independent, Eεt = 0, and max
1≤i≤p

E|εit|κ < ∞ for some κ > q ∈

(2, 4]. The process {εt} is α-mixing with mixing coefficients αm satisfying

∞∑
m=1

α(κ−q)/(κq)
m < ∞. (3.3)

(iii) The components of εt are independent. Each component εit satisfies the following conditions.

(a) There exists an i.i.d random sequence {ηit} such that

εit =
∞∑
j=0

cijη
i
t−j .

(b) Eεit = 0, E|εit|q < ∞ for some q > 2 and
∑∞

j=0 j|cij | < ∞.

Theorem 3. Let r be known and Condition 2 hold. If p = o(n1/2−τ ) and τ given in Condition

2, it holds that

D(M(Â2),M(A2)) = Op(p
1/2n−2dmin+1(λ∗)−1),

where λ∗ is the smallest eigenvalue of
∫ 1
0 F(t)F′(t) dt defined in Lemma 9 in Section 7 below.
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Remark 4. Theorem 3 is derived under the condition p = o(n1/2−τ ), while there are no direct

constraints on either r or p− r. However when p− r is fixed,
∫ 1
0 F(t)F′(t) dt is a (p− r)× (p− r)

positive definite matrix, and, hence, λ∗ is positive and Oe(1). When the integration orders of all

the nonstationary components are the same and equal to dmin, then (λ∗)−1 = Op((p− r)2dmin−1).

Theorem 4. Let Condition 2 hold and p = o(n1/2−τ ). Then r̃, defined in (2.7), converges to r

in probability, provided lim
n→∞

P{log n < ωn < (λ∗n2dmin−1)2/ log n} = 1.

4 Numerical properties

We illustrate the proposed method with both simulated and real data examples below. Note that

the comparison with Johanson’s (1991) likelihood method is carried out for Example 1 only, as

Examples 2 & 3 consider the settings with d1, · · · , dm > 1 for which his method is not applicable.

Example 1. Let in model (2.1) all components of xt2 be stationary AR(1) and all components

of xt1 be ARIMA(1,1,1) processes. The AR(1) coefficients are generated independently from

U(−0.8, 0.8), where the AR and MA coefficients in the ARIMA(1,1,1) are generated independently

from U(0.3, 0.8) and U(0, 0.95). The innovations in these processes are independent N(0, 1). The

elements of A are generated independently from U(−3, 3). We consider various combinations for

p, r = p/4 and r = 3, and sample size n between 500 and 2500; see Table 1. For each setting,

generate 500 replicates. We estimate the cointegration rank r using both the ratio method (2.6)

and the information criterion (2.7). Since the estimated cointegration rank is not necessarily

equal to r, and A is not a half orthogonal matrix (as specified above), we extend the definition

of discrepancy measure (3.1) as follows:

D1(M(Â2),M(B2)) =
{
1− 1

max(r, r∗)
tr
(
Â2Â

′
2B2(B

′
2B2)

−1B′
2

)}1/2
, (4.1)

where r∗ = rank(Â2), and B2 is the p × r matrix consisting of the last r columns of (A−1)′, as

now xt2 = B2yt. Then D1(M(Â2),M(B2)) ∈ [0, 1], being 1 if and only if M(Â2) and M(B2)

are orthogonal with each other, and 0 if and only if the two subspaces are the same. When r∗ = r

and A′A = Ip, B2 = A2 and D1(M(Â2),M(B2)) = D(M(Â2),M(A2)) defined in (3.1). We

use j0 = 5 in the definition of Ŵ in (2.3).

We compare the performance of our procedure with Johansen’s (1991) trace test with sig-

nificance level α = 0.05. Since the limiting distribution, i.e. the distribution of (
∫ 1
0 (dW)F′

[
∫ 1
0 FF′ dt]−1

∫ 1
0 F(dW)′), in his test is nonstandard, we approximate it by the distribution of

[ T∑
t=1

εt(Xt−1 − X̄−1)
′
][ T∑

t=1

(Xt−1 − X̄−1)(Xt−1 − X̄−1)
′
]−1[ T∑

t=1

(Xt−1 − X̄−1)ε
′
t

]
, (4.2)
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where εt = (εt,1, · · · , εt,p−r)
′,X0 = 0 and Xt =

∑t
j=1 εt, and {εt,i} are independent N(0, 1) vari-

ables. Setting T = 1000, the critical values were calculated in a simulation with 6000 repetitions

of the trace of (4.2) for p > 5. This is the procedure used in Johansen and Juselius (1990) for

calculating the critical values with p ≤ 5.

Table 1 reports the relative frequencies (Freq) of the events {r̂ = r} and {r̃ = r}, and the

average of the distance (Dist) D1(M̂(A2),M(B2)) (see (4.1)) for r = p/4 in a simulation with 500

replications, where the penalty ωn in the information criterion IC(l) is taken as either ω1
n = n5/4λ̂p

or ω2
n = n3/2λ̂p, and λ̂p is the smallest eigenvalue of Ŵ. Also included in Table 1 are the results

resulted from applying the Johansen likelihood test for the transformed component series. From

Table 1, we see that our procedure always has higher relative frequencies and smaller distances,

which indicates that our procedure outperforms Johansen’s likelihood method when r is relatively

small. Similar pattern are observed in Table 2 with r = 3.

Table 1: Relative frequencies for r̃ = r, r = p/4 and average distance in simulation with 500 replications
in Example 1.

500 1000 1500 2000 2500
p n Freq Dist Freq Dist Freq Dist Freq Dist Freq Dist

Johansen 0.390 0.371 0.452 0.326 0.490 0.302 0.480 0.307 0.514 0.289
ratio 0.748 0.174 0.848 0.105 0.884 0.081 0.886 0.079 0.890 0.074

8 IC(ω1
n) 0.654 0.217 0.780 0.136 0.802 0.123 0.818 0.112 0.852 .091

IC(ω2
n) 0.448 0.338 0.572 0.136 0.628 0.222 0.656 0.206 0.690 0.185

Johansen 0.210 0.449 0.344 0.355 0.380 0.336 0.400 0.322 0.464 0.287
ratio 0.658 0.236 0.794 0.138 0.770 0.151 0.844 0.102 0.840 0.107

12 IC(ω1
n) 0.556 0.261 0.708 0.168 0.748 0.145 0.796 0.114 0.824 0.101

IC(ω2
n) 0.366 0.358 0.444 0.299 0.518 0.258 0.536 0.247 0.610 0.206

Johansen 0.008 0.604 0.050 0.503 0.080 0.456 0.134 0.425 0.164 0.406
ratio 0.404 0.390 0.544 0.299 0.620 0.243 0.704 0.184 0.730 0.169

20 IC(ω1
n) 0.390 0.342 0.554 0.245 0.670 0.183 0.686 0.154 0.768 0.121

IC(ω2
n) 0.232 0.417 0.346 0.331 0.400 0.294 0.456 0.256 0.472 0.245

Johansen 0 0.696 0 0.595 0.002 0.549 0.004 0.522 0.010 0.501
ratio 0.234 0.489 0.386 0.372 0.462 0.332 0.558 0.280 0.582 0.250

28 IC(ω1
n) 0.252 0.407 0.454 0.274 0.546 0.228 0.610 0.195 0.700 0.144

IC(ω2
n) 0.176 0.442 0.270 0.350 0.334 0.304 0.358 0.284 0.436 0.240

Example 2. Let in model (2.1) all components of xt2 be stationary AR(1) and all components

of xt1 be ARIMA(1,2,1) processes. The AR(1) coefficients are generated independently from

U(−0.8, 0.8), the AR and MA coefficients in those ARIMA(1,2,1) are generated independently

from U(0.3, 0.8) and U(0, 0.95). The innovations in these processes are independent N(0, 1). The

elements of A are generated independently from U(−3, 3). We consider various combinations for

p and r, and sample size n between 300 and 2500; see Table 3. For each setting, we replicate the

simulation 1000 times.

Fig.1 presents the sample ACF/CCF of yt for one instance with n = 1000, p = 6 and r = 2.
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Table 2: Relative frequencies for r̃ = r, r = 3 and average distance in simulation with 500 replications in
Example 1.

500 1000 1500 2000 2500
p n Freq Dist Freq Dist Freq Dist Freq Dist Freq Dist

Johansen 0.834 0.086 0.838 0.086 0.844 0.081 0.856 0.074 0.842 0.080
ratio 0.620 0.252 0.704 0.197 0.734 0.176 0.802 0.131 0.816 0.122

5 IC(ω1
n) 0.802 0.130 0.868 0.087 0.884 0.077 0.916 0.058 0.922 0.050

IC(ω2
n) 0.902 0.065 0.922 0.051 0.940 0.038 0.958 0.0284 0.962 0.025

Johansen 0.522 0.277 0.562 0.247 0.540 0.255 0.606 0.217 0.550 0.248
ratio 0.636 0.242 0.788 0.145 0.790 0.144 0.860 0.095 0.874 0.084

10 IC(ω1
n) 0.654 0.210 0.812 0.118 0.856 0.089 0.882 0.072 0.896 0.062

IC(ω2
n) 0.504 0.275 0.628 0.201 0.672 0.175 0.746 0.134 0.740 0.137

Johansen 0.078 0.594 0.184 0.485 0.276 0.423 0.320 0.392 0.346 0.371
ratio 0.526 0.311 0.692 0.192 0.742 0.163 0.808 0.119 0.810 0.116

15 IC(ω1
n) 0.356 0.381 0.494 0.285 0.578 0.235 0.644 0.196 0.684 0.170

IC(ω2
n) 0.174 0.498 0.262 0.428 0.316 0.390 0.336 0.372 0.388 0.337

Johansen 0 0.749 0.018 0.656 0.022 0.618 0.053 0.579 0.060 0.572
ratio 0.316 0.443 0.464 0.315 0.552 0.268 0.606 0.233 0.645 0.207

20 IC(ω1
n) 0.176 0.527 0.262 0.440 0.316 0.396 0.361 0.362 0.396 0.337

IC(ω2
n) 0.100 0.617 0.114 0.577 0.140 0.544 0.176 0.516 0.178 0.509

Johansen 0 0.847 0 0.766 0.002 0.713 0 0.695 0.013 0.672
ratio 0.242 0.497 0.315 0.423 0.374 0.371 0.413 0.343 0.530 0.275

25 IC(ω1
n) 0.132 0.596 0.166 0.527 0.170 0.518 0.213 0.472 0.246 0.461

IC(ω2
n) 0.064 0.690 0.071 0.660 0.078 0.644 0.096 0.612 0.103 0.603

Johansen 0 0.905 0 0.831 0 0.796 0 0.769 0.003 0.747
ratio 0.186 0.559 0.270 0.456 0.295 0.423 0.313 0.405 0.363 0.368

30 IC(ω1
n) 0.103 0.656 0.106 0.616 0.105 0.593 0.146 0.551 0.140 0.548

IC(ω2
n) 0.056 0.744 0.030 0.730 0.060 0.698 0.063 0.683 0.045 0.693

By applying our proposed method to this sample, the sample ACF/CCF of the transformed

x̂t = Â′yt are plotted in Fig.2. Those figures show clearly that all the components of yt are

nonstationary while the last two components of x̂t are stationary.

(Put Figures 1 & 2 about here.)

Table 3 reports the relative frequencies of the events {r̂ = r} and {r̃ = r} in a simulation

with 1000 replications, where the penalty ωn in the information criterion IC(l) is taken as either

ω1
n = n5/4λ̂p or ω2

n = n3/2λ̂p, and λ̂p is the smallest eigenvalue of Ŵ. Also included in Table

3 are the results resulted from applying the Phillips-Perron unit-root test for the transformed

component series. We choose the Phillips-Perron method among other unit-root tests as it is

applicable with different integration orders. Note that when ωn = nλ̂p, r̂ = r̃. While the numerical

results in Table 3 lend further evidence for the consistency of both estimators, finite sample

performance depends on choice of the penalty parameter ωn: large ωn should be used when r

is relatively large. But the unit-root tests lead to very accurate estimates for the cointegration

ranks for this example.

The boxplots of D1(M̂(A2),M(B2)) are presented in Figs. 3 – 5 for (p, r) = (6, 2), (10, 4) and
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Table 3: Relative frequencies for r̂ = r and r̃ = r in simulation with 1000 replications in Example 2.

(p, r) n 300 500 1000 1500 2000 2500

Ratio 0.835 0.887 0.979 0.993 1.000 0.999
p=6, r=2 IC(ω1

n) 0.923 0.953 0.994 1.000 1.000 1.000
IC(ω2

n) 0.967 0.985 0.998 0.998 1.000 0.998
Unit-root test 0.999 1.000 0.998 0.989 0.995 0.992

Ratio 0.278 0.343 0.715 0.921 0.970 0.988
p=6, r=4 IC(ω1

n) 0.543 0.644 0.920 0.987 0.994 0.998
IC(ω2

n) 0.762 0.852 0.986 0.999 1.000 0.988
Unit-root test 1.000 1.000 1.000 0.995 0.998 0.993

Ratio 0.799 0.906 0.993 0.992 0.995 0.991
p=10, r=2 IC(ω1

n) 0.822 0.95 0.988 0.984 0.978 1.000
IC(ω2

n) 0.736 0.904 0.953 0.922 0.928 1.000
Unit-root test 0.978 0.991 0.997 0.991 0.990 0.986

Ratio 0.333 0.459 0.880 0.978 0.988 0.997
p=10, r=4 IC(ω1

n) 0.594 0.774 0.982 0.998 0.999 0.999
IC(ω2

n) 0.802 0.937 0.996 0.998 0.999 0.999
Unit-root test 0.999 1.000 0.998 0.989 0.995 0.992

Ratio 0.994 0.998 0.996 0.996 0.994 0.991
p=20, r=6 IC(ω1

n) 0.075 0.565 0.948 0.940 0.896 0.882
IC(ω2

n) 0.330 0.791 0.798 0.691 0.616 0.558
Unit-root test 0.815 0.289 0.503 0.805 0.901 0.858

Ratio 0.000 0.005 0.479 0.873 0.946 0.951
p=20, r=10 IC(ω1

n) 0.000 0.050 0.857 0.974 0.991 0.993
IC(ω2

n) 0.003 0.410 0.972 0.996 0.995 0.999
Unit-root test 0.994 0.961 0.976 0.999 0.994 0.989

Ratio 0.000 0.000 0.026 0.356 0.753 0.874
p=20, r=14 IC(ω1

n) 0.000 0.000 0.254 0.791 0.949 0.983
IC(ω2

n) 0.000 0.015 0.717 0.958 0.993 0.996
Unit-root test 0.987 1.000 0.998 0.999 0.993 0.996

(20, 14) respectively. For all the settings reported, D1(M̂(A2),M(B2)) decreases as the sample

size n increases.

(Put Figures 3 – 5 about here.)

To illustrate the impact of j0 used in defining Ŵ in (2.3), we ran the simulation with n = 500

and j0 taking 7 different values between 5 and 100. Each setting is repeated 500 times. The

results are reported in Table 4. The different values of j0 lead to about the same performance in

terms of the relative frequencies for r̃ = r and the means and the standard deviations for distance

D1(M̂(A2),M(B2)). For example, when p = 10 and r = 2, the estimation for r improves slightly

when j0 increases, while the estimation for the cointegration space becomes slightly worse. Overall

Table 4 suggests that the proposed method may be insensitive to the choice of j0 in (2.3).

Example 3. Now we consider an example in which some components of yt1 are I(1) and some

are I(2). More precisely in model (2.1) all components of xt2 are stationary AR(1), s components

of xt1 are ARIMA(1,1,1), and the other p − r − s components are ARIMA(0,2,1). The AR(1)

coefficients are taken as −0.8 + 1.6i/r, i = 1, 2, · · · , r. The ARIMA(1,1,1) coefficients are taken

as 0.3 + 0.5i/s and 0.2 + 0.6i/s, i = 1, 2, · · · , s respectively. The ARIMA(0,2,1) coefficients are
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Table 4: Relative frequencies for r̃ = r with ω2
n, and means and standard deviations (STD) of

D1(M̂(A2),M(B2)) in simulation with 500 replications in Example 2.

(p, r) j0 5 10 20 30 40 50 100

Relative frequency 0.984 0.984 0.988 0.988 0.982 0.986 0.986
p=6, r=2 mean 0.010 0.012 0.009 0.007 0.013 0.010 0.010

D1 STD 0.083 0.088 0.077 0.070 0.094 0.083 0.083

Relative frequency 0.862 0.862 0.870 0.874 0.878 0.866 0.878
p=6, r=4 mean 0.074 0.078 0.075 0.073 0.068 0.077 0.070

D1 STD 0.187 0.201 0.199 0.197 0.187 0.199 0.192

Relative frequency 0.882 0.884 0.916 0.900 0.934 0.936 0.942
p=10, r=2 mean 0.008 0.006 0.006 0.009 0.007 0.008 0.009

D1 STD 0.055 0.045 0.045 0.063 0.055 0.062 0.070

generated independently from U(−0.95, 0.95). The innovations in these processes are independent

N(0, 1). Let the elements of A be generated independently from U(−3, 3). We consider various

combinations for p, r, s, and the sample size n. For each setting, we replicate the simulation 1000

times and estimate the cointegration rank r using both the ratio method (2.6) and the information

criterion (2.7) with ωn equal to either ω1
n = n5/4λ̂p or ω3

n = n2/3λ̂p.

Fig.6 plots the sample ACF/CCF of yt for one instance with n = 1000, p = 6, r = 2 and

s = 2. The sample ACF/CCF of the transformed x̂t = Â′yt are plotted in Fig.7. Those figures

show clearly that all the components of yt are nonstationary while the last two components of x̂t

are stationary.

(Put Figures 6 – 7 about here.)

Table 5 reports the relative frequencies of the events {r̂ = r} and {r̃ = r} in a simulation

with 1000 replications, where the penalty ωn in the information criterion IC(l) is taken as either

ω1
n = n5/4λ̂p or ω3

n = n2/3λ̂p, and λ̂p is the smallest eigenvalue of Ŵ. The estimates for the

cointegration ranks by the Phillips-Perron test are more accurate. Comparing to Table 3, the

estimation for the cointegration rank r is less accurate than that for Example 1. This is due to

the existence of different integration orders for the different components of yt, which implies that

the eigenvalues of Ŵ are more diverse; see (2.2). However the estimation for the cointegrated

variables themselves is hardly affected. We plot the boxplots of the distances between the true

cointegrated space M(B2) and its estimator M(Â2), defined as in (4.1), in Figs 8–9 for the

four different settings for (p, r, s), where the cointegration rank r is either estimated by the ratio

method or simply set at its true value. The distances for the estimation with true r are significantly

smaller than those for the estimation with estimated r. These results indicate clearly that while

the performance of the estimators for the cointegration rank r is not entirely satisfactory when

the components of yt have different cointegration ranks, the transformed series x̂t = Â′yt contain

the well estimated cointegrated variables.
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Table 5: Relative frequencies for r̂ = r and r̃ = r in simulation with 1000 replications in Example 3.

(p, r, s) n 300 500 1000 1500 2000 2500

Ratio 0.711 0.778 0.873 0.918 0.909 0.873
(6, 2, 2) IC(ω1

n) 0.788 0.841 0.877 0.857 0.783 0.687
IC(ω3

n) 0.476 0.522 0.623 0.749 0.846 0.893
Unit-root 0.968 0.969 0.961 0.951 0.959 0.947

Ratio 0.186 0.205 0.290 0.535 0.698 0.822
(6, 4, 1) IC(ω1

n) 0.406 0.430 0.600 0.836 0.925 0.962
IC(ω3

n) 0.020 0.035 0.039 0.114 0.235 0.346
Unit-root 1.000 1.000 0.997 0.999 0.997 0.998

Ratio 0.056 0.084 0.384 0.786 0.936 0.968
(10, 4, 1) IC(ω1

n) 0.232 0.306 0.752 0.940 0.964 0.937
IC(ω3

n) 0.002 0.007 0.049 0.303 0.607 0.801
Unit-root 0.961 0.978 0.970 0.946 0.907 0.904

Ratio 0.018 0.035 0.105 0.372 0.637 0.801
(10, 6, 2) IC(ω1

n) 0.096 0.122 0.448 0.744 0.872 0.914
IC(ω3

n) 0.000 0.000 0.002 0.046 0.192 0.369
Unit-root 0.986 0.984 0.986 0.960 0.954 0.952

Ratio 0.000 0.002 0.043 0.493 0.802 0.925
(20, 10, 1) IC(ω1

n) 0.001 0.003 0.354 0.831 0.909 0.898
IC(ω3

n) 0.000 0.000 0.000 0.033 0.250 0.522
Unit-root 0.577 0.720 0.772 0.734 0.654 0.633

Ratio 0.000 0.000 0.000 0.060 0.295 0.560
(20, 14, 2) IC(ω1

n) 0.000 0.000 0.021 0.409 0.698 0.845
IC(ω3

n) 0.000 .000 0.000 0.001 0.008 0.046
Unit-root 0.962 0.939 0.879 0.873 0.854 0.827

Example 4. For an empirical example, we consider the 8 monthly US Industrial Production

indices in January 1947 – December 1993 published by the US Federal Reserve, namely the total

index, manufacturing index, durable manufacturing, nondurable manufacturing, mining, utilities,

products and materials. The original 8 time series are plotted in Fig.10. Applying the proposed

method to these data, the transformed series x̂t = Â′yt are plotted in Fig.11 together with their

sample ACF. The ratio method (2.6) claims r̂ = 3 cointegrated variables. The IC method (2.7)

leads to r̃ = 3 with ωn = n5/4λ̂8, and r̃ = 4 with ωn = n3/2λ̂8, where λ̂8 is the minimum eigenvalue

of Ŵ defined as in (2.3). Indeed the last 3 or 4 series in Fig.11 certainly look stationary.

We also apply Johansen’s (1991) likelihood method to this data set. Both the trace and the

maximum tests indicate r = 4. The corresponding transformed series together with their sample

ACF are plotted in Fig.12.

Let Â2 denote the last 4 columns of Â and B̂2 consist of the loadings for the last 4 component

series displayed in Fig.12, i.e., the columns of Â2 are the loadings of the 4 cointegrated variables

identified by the proposed method in this paper, and the columns of B̂2 are the loadings of the 4

cointegrated variables identified by Johansen’s likelihood method. Then

D1(M(Â2),M(B̂2))
2 = 1− 1

4
tr{Â2Â

′
2B̂2(B̂

′
2B̂2)

−1B̂′
2} = 1− 0.9816 = 0.0184.

This indicates that the two sets of cointegrated variables identified by the two methods are
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effectively equivalent.

5 Fractional cointegration

Fractional cointegration has attracted increasing attention in recent years, see, e.g., Robinson

and Hualde (2003), Chen and Hurvich (2006) and Robinson (2008). In this section, we generalize

the method presented in Section 2 to the cases when the components of yt may be fractionally

integrated. For simplicity, we now assume p is fixed.

We first present a gentle introduction for fractionally integrated processes and the concept of

fractional cointegration.

Let v+t = vt1(t > 0) and for any α ∈ R,

∆−α =
∞∑
j=0

aj(α)B
j , aj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)

be formally defined as in Hualde and Robinson (2010), where B is the backshift operator. With

these definitions we can extend the definition of the I (d1, ..., dm) process vt in Section 2 to non-

negative real-valued di, such that di ̸= k − 1/2 for any integer k. Note that for di < 1/2 the ith

element of vt is ‘asymptotically stationary’ (due again to the truncation in the definition of vt),

while di > 1/2 represents the ‘nonstationary’ region.

With this extended definition to cover fractional time series we again consider a p×1 observable

I (d1, · · · , dp) time series yt satisfying (2.1), partitioning xt as before. However we also extend the

definition of cointegration, saying that yt is cointegrated if at least two di are equal and exceed

1/2 and there exists a linear combination giving nonzero weight to two or more of these that is

I (c) for 0 ≤ c < 1/2. Thus let dmin > 1/2 be the smallest integration order of elements of xt1 and

let δ ∈ [0, 1/2) be the largest integration order of elements of xt2. Thus, each component of x′
t2 is a

cointegrating error of yt. Let A = (A1,A2) and M(A2) be defined as in Section 2. Then M(A2)

is called the fractional cointegration space and r is called the fractional cointegration rank. We

estimate M(A2) and r in the same manner as in Section 2, though now a large j0 should be used

in (2.3).

Let εi = (ε1i , · · · , ε
p
i )

′ be the p × 1 I(0) with mean zero such that ∇djxji = εji . Let Sn(t) =∑[nt]
i=1 εi and I1 = {i : di < 1/2, 1 ≤ i ≤ p}.

Condition 3.

(i) E||εt||q2 < ∞ for some q > max(4, 2/(2dmin − 1)) and for any i, j ∈ I1, as

n → ∞,

1

n

n∑
t=1

xitx
j
t

p−→ E[xi1x
j
1].
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(ii) There exists an i.i.d mean zero p×1 normal vector {wi} such that as n → ∞,

sup
0≤t≤1

||Sn(t)−
[nt]∑
i=1

wi||2 = op(n
1/s), for some s > 2.

Remark 5. Condition 3 is mild and satisfied by either of the following processes.

1. Suppose εt follows a linear process:

εt =
∞∑
k=0

Cket−k, t = 1, 2, · · ·

and {et} are i.i.d vectors with mean zero, Eete
′
t = Σe > 0, E||et||q2 < ∞ for some q > 4, the

p× p coefficient matrices Ck satisfy
∞∑
k=0

k||Ck||2 < ∞. Then, by Lemma 2 of Marinucci and

Robinson (2000), we have (ii) of Condition 3 holds. (i) follows by ergodicity.

2. Suppose εt follows a generalized random coefficient autoregressive model:

εt = Ctεt−1 + et (5.1)

and {(Ct, et)} are i.i.d random variables with E||C1||q2 < 1 and E||e||q < ∞ for some q > 2,
then (ii) of Condition 3 holds with s < min{q, 4}, see Corollary 3.4 of Liu and Lin (2009).
Similarly, (i) follows by ergodicity.

Theorem 5. Let r be known. Under Condition 3, D(M(Â2),M(A2)) = op(1). Furthermore,

D(M(Â2),M(A2)) = Op(n
−2dmin+1).

Let r̂∗ = max{j : λ̂p+1−j/(n
dmin+δ−1λ̂p) ≤ 1, 1 ≤ j ≤ p} and r̃ be defined as in (2.7).

Theorem 6. Let Condition 3 hold.

(i) limn→∞ P ( r̂∗ = r ) = 1 provided 1 ≤ r < p and

(ii) limn→∞ P ( r̃ = r ) = 1 provided limn→∞(1/ωn + ωnn
−4dmin+2) = 0.

6 Conclusions

We propose in this paper a simple, direct and model-free method for identifying cointegration

relationships among multiple time series of which different components series may have differ-

ent integration orders. The method boils down to an eigenanalysis for a non-negative definite

matrix. One may view that the components of the transformed series x̂t = Â′yt are arranged

in the ascending order according to the “degree” of stationarity; reflected by the magnitude of

the eigenvalues of Ŵ. Then in addition to the proposed information criterion for determining

the cointegration order, unit-root tests may be applied to determine the number of stationary

components of x̂t.

In this paper we only focus on inference on the cointegration rank r and cointegration space

M(A2). One practically relevant open problem is to identify the subspaces of M(A1) according

to the different integration orders of the components of x̂t1. Further, it would be interesting to

consider letting j0 in (2.3) diverge together with the sample size n.
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7 Appendix: Technical proofs

7.1 Proof for Section 3.1

Let

Σx
j = diag

[(
1

n

n−j∑
t=1

(xt+j,1 − x1)(xt1 − x1)
′

)
,

(
1

n

n−j∑
t=1

(xt+j,2 − x2)(xt2 − x2)
′

)]
=: diag(Σx

j1,Σ
x
j2),

Wx =
∑j0

j=0Σ
x
j (Σ

x
j )

′ =: diag(Dx
1 ,D

x
2) and Γx be the p× p orthogonal matrix such that

WxΓx = ΓxΛx,

where Λx is the diagonal matrix of eigenvalues of Wx. Since xt1 is nonstationary and xt2 is

stationary, intuitively 1
n

∑n−j
t=1 (xt+j,1 − x1) (xt1 − x1)

′ and 1
n

∑n−j
t=1 (xt+j,2 − x2)(xt2 − x2)

′ do not

share the same eigenvalues, so Γx must be block-diagonal. Define Wy = AWxA′, then

Wy = AWxA′ = AΓxΛxΓ
′
xA

′.

This implies that the columns ofAΓx are just the orthogonal eigenvector ofWy. Since Γx is block-

diagonal, it follows that M(A2) is same as the space spanned by the eigenvectors corresponding

to the smallest r eigenvalues of Wy. As a result, to show the distance between the cointegration

space and its estimate is small, we only need to show that the space spanned by the eigenvectors

of Wy can be approximated by that of Ŵ. This question is usually solved by the perturbation

matrix theory. In particular, let

Ŵ = Wy +∆Wy, ∆Wy = Ŵ −Wy,

and

sep(Dx
1 ,D

x
2) = min

λ∈λ(Dx
1 ), µ∈λ(Dx

2 )
|λ− µ|,

where λ(A) denotes the set of eigenvalues of a matrix A. When ||∆Wy|| = op(sep(D
x
1 ,D

x
2)), one

can use the perturbation results of Golub and Loan (1996) to establish the bound of Theorems

1, 3 and 5, see also Lam and Yao (2012) or Chang, Guo and Yao (2014). However, in our setting

sep(Dx
1 ,D

x
2) can be of smaller order than ||∆Wy||, i.e., sep(Dx

1 ,D
x
2)/||∆Wy|| p−→ 0 as n → ∞

and the above method will not work.

To fix this problem, we adopt the perturbation results of Dopico, Moro and Molera (2000)

instead. A similar idea was used by Chen and Hurvich (2006) to recover their fractional cointegra-

tion spaces via the periodogram matrix, using a random diagonal block matrix instead. However,

because of the quadratic form of Wx (=
∑j0

j=1Σ
x
j (Σ

x
j )

′), we cannot find a normalizing constant
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matrix Cn such that CnW
xCn = Oe(1) or CnW

yCn = Oe(1), as a result, the argument of Chen

and Hurvich (2006) based on the perturbation bound of Barlow and Slapnicar (2002) cannot be

used. To our end, we first establish some lemmas and put their proofs in the supplementary

material.

For 1 ≤ i ≤ p− r, set f i
0(t) = W i(t), f i

di
(t) =

∫ t
0 f

i
di−1(s) dt, µi = Ezit and define

F i(t) = f i
di
(t)−

∫ 1

0
f i
di
(t) dt, Gd(t) =

∏d−1
j=0(t+ j)

d!
, Ḡd =

1

n

n∑
t=1

Gd(t).

Then, we have the following weak convergence result for the sample autocovariance.

Lemma 7. Let Ld(t) = Gd(t)− Ḡd. Suppose xit ∼ I(di), 1 ≤ i ≤ p− r, then under Condition 1,(xit − x̄i − µiLdi(t)

ndi−1/2
, 1 ≤ i ≤ p− r

)
d−→
(
F i(t), 1 ≤ i ≤ p− r

)
and (7.1)

( 1

ndi+1/2

n∑
t=1

(xit − x̄i − µiLdi(t))(x
j
t − Exjt ), i ≤ p− r, p− r + 1 ≤ j ≤ p

)
p−→ 0. (7.2)

Next, we establish a bound for the eigenvalues of Σx
j and A′Σ̂jA =: Σ̂

x

j .

Without loss of generality, we assume the first s1 components of xt1 are I(a1), the next s2

components are I(a2) and the last sl components of xt1 are I(al), that is,

xt1 = (

I(a1)︷ ︸︸ ︷
x1t , · · · , x

s1
t ,

I(a2)︷ ︸︸ ︷
xs1+1
t , · · · , xs1+s2

t , · · · ,

I(al)︷ ︸︸ ︷
x
∑l−1

j=1 sj+1

t , · · · , x
∑l

j=1 sj
t )′,

where a1 > a2 > · · · > al = dmin are positive integers and
∑l

i=1 si = p − r. For 1 ≤ i ≤ l, define

νi =
∑i−1

j=1 sj . Then for any xt(si) := (xνi+1
t , · · · , xνi+si

t )′, if µi := (µνi+1, · · · , µνi+si)
′ ̸= 0, there

must exist a si × (si − 1) matrix Pi and s1 × 1 vector µ̄i such that P′
iPi = I(si−1), (Pi,µi) has

full rank si, P′
iµi = 0 and µ̄′

iµi = 1, where Ia denotes a × a matrix. Let Bi = (Pi, n
−1/2µ̄i)

′ if

µi ̸= 0 and Bi = Isi if µi = 0, and Θn = diag(B1,B2, · · · ,Bl, Ir). Define

Dn1 = diag
( s1︷ ︸︸ ︷
na1−1/2, · · · , na1−1/2, · · · ,

sl︷ ︸︸ ︷
nal−1/2, · · · , nal−1/2

)
, Dn2 = (

r︷ ︸︸ ︷
1, · · · , 1),

and Dn =: diag(Dn1,Dn2). Let Hd(t) = td/d! − 1/(d+ 1)!, F i(t) be given as in Lemma 7,

Fi(t) = (F νi+1(t), · · · , F νi+si(t))′, Mi(t) = (F′
i(t)Pi,H

ai(t))′I(µi ̸= 0) + Fi(t)I(µi = 0), and

M(t) = (M′
1(t),M

′
2(t), · · · ,M′

l(t))
′. By Lemma 7 and continuous mapping theorem, we have

Lemma 8. Let Γj(x) = diag
(

1
n

∑n
t=1(xt1 − x̄1)(xt1 − x̄1)

′, Cov(x1+j,2, x1,2)
)
. Under Condition

1, we have

D−1
n ΘnΓ

x
jΘ

′
nD

−1
n

d−→ diag
(∫ 1

0
M(t)M′(t) dt, Cov(x1+j,2, x1,2)

)
.
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Let F i(t), 1 ≤ i ≤ p−r be defined in Lemma 7, whereW i(t) = σiiB
i(t) and Bi(t), 1 ≤ i ≤ p−r

are independent Brownian motions. Let F(t) = (F 1(t), F 2(t), · · · , F p−r(t))′. We have

Lemma 9. Under condition 2 and p = o(n1/2−τ ) with 0 < τ < 1/2,∥∥∥D−1
n Γx

jD
−1
n − diag

(∫ 1

0
F(t)F′(t) dt, Cov(x1+j,2, x1,2)

)∥∥∥
2
= op(1). (7.3)

Further,
∫ 1
0 F(t)F′(t) dt is positive definite.

Lemma 10. Under Condition 1, or Condition 2 and p = o(n1/2−τ ), we have

max
0≤j≤j0

∥D−1
n Θn(Σ

x
j − Γx

j )Θ
′
nD

−1
n ∥2

p−→ 0 and (7.4)

max
0≤j≤j0

∥D−1
n Θn(Σ̂

x

j − Γx
j )Θ

′
nD

−1
n ∥2

p−→ 0. (7.5)

Proof of Theorem 1. Since

{D(M̂(A2),M(A2))}2 =
1

r
{tr[A′

2(Ip − Â2Â
′
2)A2]} ≤ ||A′

2(A2A
′
2 − Â2Â

′
2)A2||2 ≤ 2||Â2 −A2||22,

it follows from Theorem I.5.5 of Stewart and Sun (1990) (see also Proposition 2.1 of Vu and Lei

(2013)) that

D(M̂(A2),M(A2)) ≤
√
2||Â2 −A2||2 ≤

√
2||Â2 −A2||F ≤ 2

√
2|| sinΘ(Â2,A2)||F , (7.6)

where Θ(Â2,A2) = arccos[(A′
2Â2Â2A2)

1/2] is the canonical angle between the column spaces of

Â2 and A2. Let η = min
λ∈λ(Dx

1 ), µ∈λ(D̃x
2 )
|λ − µ|/

√
λµ, where λ(D̃x

2) consists of the r smallest

eigenvalues of A′ŴA =: Ŵx. By Theorem 2.4 of Dopico, Moro and Molera (2000), we have

|| sinΘ(Â2,A2)||F ≤ ||(Wy)−1/2∆Wy(Ŵ)−1/2||F /η. (7.7)

Note that

(Wy)−1/2∆Wy(Ŵ)−1/2 = (Wy)−1/2(Ŵ)1/2 − (Wy)1/2(Ŵ)−1/2. (7.8)

Thus, by equations (7.6), (7.7) and (7.8), we have

D(M̂(A2),M(A2)) ≤ (||(Wy)−1/2(Ŵ)1/2||F + ||(Wy)1/2(Ŵ)−1/2||F )/η.

Next, we show that||(Wy)−1/2(Ŵ)1/2||F = Op(1), which is equivalent to

||(Wx)−1/2(Ŵx)1/2||F = Op(1). (7.9)

Note that

0 ≤ Σx
0 ≤ (Wx)1/2 ≤

j0∑
j=0

{Σx
j (Σ

x
j )

′}1/2 and 0 ≤ Σ̂
x

0 ≤ (Ŵx)1/2 ≤
j0∑
j=0

{Σ̂
x

j (Σ̂
x

j )
′}1/2. (7.10)
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It follows from (7.10) that

||(Wx)−1/2(Ŵx)1/2||F ≤
j0∑
j=0

||(Σx
0)

−1{Σ̂
x

j (Σ̂
x

j )
′}1/2||F .

Thus, for (7.9), it is enough to show the eigenvalues of (Σx
0)

−1
∑j0

j=0{Σ̂
x

j (Σ̂
x

j )
′}1/2 are Op(1),

which can be transformed to show that

the solutions λ of |{Σ̂
x

j (Σ̂
x

j )
′}1/2 − λΣx

0 | = 0 are Op(1). (7.11)

Since diag
(∫ 1

0 M(t)M′(t) dt, Var(x1,2)
)
> 0, by Lemma 10 the solutions (λ) of equation

|D−1
n Θn{Σ̂

x

j (Σ̂
x

j )
′}1/2Θ′

nD
−1
n − λD−1

n ΘnΣ
x
0Θ

′
nD

−1
n | = 0 (7.12)

are bounded in probability. Thus, we have (7.11) and (7.9) as desired.

Similarly, we can show

||(Wy)1/2(Ŵ)−1/2||F = ||(Wx)1/2(Ŵx)−1/2||F = Op(1). (7.13)

Using equations (7.10) and (7.13), the remaining proof for Theorem 1 is to show that there exist

two positive constants c1, c2 such that in probability η ≥ c1n
2dmin−1/

√
j0 provided |I0| ≥ 2 or

|I0| = 1 and EzI0t = 0 and η ≥ c2n
2dmin/

√
j0 provided |I0| = 1 and EzI0t ̸= 0.

Define λi(A) be the i-th eigenvalue of a matrixA. Note that diag
(∫ 1

0 M(t)M′(t) dt, Var(x1,2)
)
>

0. By Lemmas 8 and 10, it follows that when |I0| ≥ 2 or |I0| = 1 and EzI0t = 0, λp−r(Σ
x
j ) =

Oe(n
2dmin−1) and λp−r+1(Σ̂

x

j ) = Oe(1). Thus, there exists two positive constants c3, c4 such that

in probability

λp−r(W
x) ≥ λp−r(Σ

x
0(Σ

x
0)

′) ≥ c3n
2(2dmin−1) (7.14)

and

c3 ≤ λp−r+1(Σ̂
x

0(Σ̂
x

0)
′) ≤ λp−r+1(Ŵ

x) ≤
[
λp−r+1

( j0∑
j=0

{Σ̂
x

j (Σ̂
x

j )
′}1/2

)]2
≤ c4j

2
0 . (7.15)

Hence, in probability

η ≥ |c3n2(2dmin−1) − c4j
2
0 |/
√

c3n2(2dmin−1)c4j20 ≥ c′n2dmin−1/j0.

Similarly, we have |I0| = 1 and EzI0t ̸= 0, then in probability,

η ≥ c′n2dmin/j0. (7.16)

Since j0 is fixed, combining (7.9), (7.16) and (7.16), we complete the proof of Theorem 1. 2
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Proof of Theorem 2. First, we prove the consistency of r̂. Similar to (7.15), there exist two

positive constants c5, c6 such that

c5 ≤ λp(Σ̂
x

0(Σ̂
x

0)
′) ≤ λp(Ŵ

x) ≤ c6j
2
0 . (7.17)

Since λ̂i = λi(Ŵ) = λi(AŴxA′) = λi(Ŵ
x), equations (7.14), (7.15) and (7.17) imply when

|I0| ≥ 2 or |I0| = 1 and EzI0t = 0,

λ̂i

nλ̂p

≥ c3n
4dmin−3

c6j20
for i ≤ p− r and

λ̂i

nλ̂p

≤ c4j
2
0

nc5
for i = p− r + 1, · · · , p

hold uniformly in probability. As a result, we have limn→∞ P{r̂ = r} = 1 provided |I0| ≥ 2 or

|I0| = 1 and EzI0t = 0. The consistency of r̂ under the setting that |I0| = 1 and EzI0t ̸= 0, can be

proved similarly.

As for the consistency of r̃, it follows from its definition that

r̃∑
j=1

λ̂p+1−j + (p− r̃)ωn ≤
r∑

j=1

λ̂p+1−j + (p− r)ωn. (7.18)

Suppose that r̃ < r, it follows from (7.18) that

(r − r̃)ωn ≤
r∑

j=r̃+1

λ̂p+1−j ≤ (r − r̃)λ̂p+1−r. (7.19)

However equation (7.15) implies that in probability,

λ̂p+1−r = λp+1−r(AŴxA′) = λp+1−r(Ŵ
x) ≤ c4j

2
0 .

Since ωn/j
2
0 → ∞, it follows that equation (7.19) holds with probability zero. This gives that

lim
n→∞

P{r̃ < r} = 0. (7.20)

On the other hand, if r̃ > r, equation (7.18) yields

(r̃ − r)λ̂p−r ≤
r̃∑

j=r+1

λ̂p+1−j ≤ (r̃ − r)ωn. (7.21)

By (7.14), we have when |I0| ≥ 2 or |I0| = 1 and EzI0t = 0,

λ̂p−r = λp+1−r(Ŵ
x) ≥ c3n

2(2dmin−1). (7.22)

A similar argument to (7.14) deduces when |I0| = 1 and EzI0t ̸= 0,

λ̂p−r = λp+1−r(Ŵ
x) ≥ c′3n

4dmin . (7.23)

Since ωn/n
2(2d−1) → 0 as n → ∞, equations (7.21)–(7.23) imply

lim
n→∞

P{r̃ > r} = 0. (7.24)

Equation (7.20) together with (7.24) give the conclusion (ii) of Theorem 2 as desired. 2
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7.2 Proofs for Section 3.2

Proof of Theorems 3 and 4. Theorem 3 can be shown similarly to Theorem 1 by using

Lemma 9 instead of Lemma 8, except that when p → ∞,

||(Σx
0)

−1{Σ̂
x

j (Σ̂
x

j )
′}1/2||F = Op

( p∑
i=1

(λ̃i)
2

)1/2
 = Op(p

1/2),

where λ̃i, 1 ≤ i ≤ p are solutions of (7.11). As a result, (7.9) should be replaced by

||(Wy)−1/2(Ŵ)1/2||F = Op(p
1/2) and ||(Wx)−1/2(Ŵx)1/2||F = Op(p

1/2). (7.25)

And Theorem 4 can be shown similarly to Theorem 2. We omit the details. 2

7.3 Proofs for Section 5

To prove Theorems 5 and 6, we first introduce some notation. Let kni = ndi−1/2I(di > 1/2) +

ndi+1/2I(di < 1/2) and λi(t− s) = (t− s)di−1/Γ(di)I(di > 1/2) + (t− s)di/Γ(di + 1)I(di < 1/2).

Define Kn = diag(kn1, · · · , knp), Λ(t, s) = diag(λ1(t− s), · · · , λp(t− s)) and

B0 = 0, Bt = (B1
t , · · · , B

p
t )

′ =

∫ t

0
Λ(t, s) dWs, Ut = Bt −

∫ 1

0
Bt dt,

where Ws is given in (ii) of Condition 3.

Lemma 11. Let Ic1 = {i : di > 1/2}, xt,I = (xit, i ∈ I)′ and Zn(t) = (x′
[nt],Ic1

,
∑[nt]

j=1 x
′
j,I1

)′. Under

(ii) of Condition 3, we have

K−1
n Zn(t)

J1=⇒ Bt, on D[0, 1]p. (7.26)

Proof. Let dI1 = {di : i ∈ I1}, then
∑[nt]

j=1 xj,I1 is a integrated fractional process with order dI1+1,
each of its components has order larger than 1/2. Using (ii) of Condition 3 instead of Marinucci
and Robinson (2000) Lemma 2, we can show this lemma similarly to their Theorem 1.

Lemma 12. Under Condition 3, for any 0 ≤ j ≤ j0, we have

(i) If I1 = ∅, then

L−1
n Σ̂

x

jL
−1
n

d−→
∫ 1

0
UtU

′
t dt and L−1

n Σx
jL

−1
n

d−→ diag
(∫ 1

0
Ut,Ic1

U′
t,Ic1

dt,

∫ 1

0
Ut,I1U

′
t,I1 dt

)
.

(ii) If I1 ̸= ∅, then

L−1
n Σ̂

x

jL
−1
n

d−→ diag

(∫ 1

0
Ut,Ic1

U′
t,Ic1

dt, Cov(xt+j,I1xt,I1)

)
and (7.27)

L−1
n Σx

jL
−1
n

d−→ diag

(∫ 1

0
Ut,Ic1

U′
t,Ic1

dt, Cov(xt+j,I1xt,I1)

)
, (7.28)

where Ln = diag(ln1, · · · , lnp), lni = ndi−1/2I(di > 1/2) + I(di < 1/2).

By Lemma 12, Theorems 5 and 6 can be established in a similar manner as to Theorems 1

and 2. Therefore we omit the detailed proofs.
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Figure 1: Sample ACF/CCF of yt with n = 1000, p = 6 and r = 2 in Example 1.
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Figure 2: Sample ACF/CCF of x̂t with n = 1000, p = 6 and r = 2 in Example 1.
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Figure 3: Boxplots of D1(M̂(A2),M(B2)) for p = 6, r = 2 and 500 ≤ n ≤ 2500 in Example 1.
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Figure 4: Boxplots of D1(M(Â2),M(B2)) for p = 10, r = 4 and 1000 ≤ n ≤ 3000 in Example 1.
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Figure 5: Boxplots of D1(M(Â2),M(B2)) for p = 20, r = 10 and 1000 ≤ n ≤ 3000 in Example
1.
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Figure 6: Sample ACF/CCF of yt with n = 1000, p = 6, r = 2 and s = 2 in Example 2.
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Figure 7: Sample ACF/CCF of x̂t with n = 1000, p = 6, r = 2 and s = 2 in Example 2.
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Figure 8: Boxplots of D1(M(Â2),M(B2)) with the estimated r̂ (left panel) and the true r (right
panel) for Example 2, while p = 6, r = 2, s = 2 and 500 ≤ n ≤ 2500.
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Figure 9: Boxplots of D1(M(Â2),M(B2)) with the estimated r̂ (left panel) and the true r (right
panel) for Example 2, while p = 10, r = 4, s = 1 and 1500 ≤ n ≤ 5000.
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Figure 10: Time series plots of the 8 monthly U.S. Industrial Production indices in January 1947
- December 1993.
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Figure 11: Time series plots of the estimated x̂t by the proposed method and their sample ACF
for the 8 monthly U.S. Industrial Production indices.
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Figure 12: Time series plots of the estimated x̂t by Johansen’s method and their sample ACF for
the 8 monthly U.S. Industrial Production indices.
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