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Abstract

On the temperature derivative market, modelling temperature volatility is an important

issue for pricing and hedging. In order to apply the pricing tools of �nancial mathematics,

one needs to isolate a Gaussian risk factor. A conventional model for temperature dynam-

ics is a stochastic model with seasonality and intertemporal autocorrelation. Empirical work

based on seasonality and autocorrelation correction reveals that the obtained residuals are

heteroscedastic with a periodic pattern. The object of this research is to estimate this het-

eroscedastic function so that, after scale normalisation, a pure standardised Gaussian variable

appears. Earlier works investigated temperature risk in di�erent locations and showed that

neither parametric component functions nor a local linear smoother with constant smoothing

parameter are �exible enough to generally describe the variance process well. Therefore, we

consider a local adaptive modelling approach to �nd, at each time point, an optimal smooth-

ing parameter to locally estimate the seasonality and volatility. Our approach provides a

more �exible and accurate �tting procedure for localised temperature risk by achieving nearly

normal risk factors. We also employ our model to forecast the temperature in di�erent cities

and compare it to a model developed in Campbell and Diebold (2005).

Keywords: Weather derivatives, localising temperature residuals, seasonality, local model selection
JEL classi�cation: G19, G29, G22, N23, N53, Q59

1 Introduction

The pricing of contingent claims based on stochastic dynamics, for example, stocks or FX rates,
is well known in �nancial engineering. An elegant approach to such a pricing task is based on
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self-�nancing replication arguments. An essential element of this approach is the tradeability of
the underlying. This however does not apply to weather derivatives, contingent on temperature
or rain, since the underlying is not tradeable. In this context, the proposed pricing techniques
are based on either equilibrium ideas (Horst and Mueller (2007)) or econometric modelling of the
underlying dynamics Campbell and Diebold (2005) and Benth, Benth and Koekebakker (2007)
followed by risk neutral pricing.

The equilibrium approach relies on assumptions about preferences (with explicitly known func-
tional forms) though. In this study we prefer a phenomenological approach since the underlying
(temperature) we consider is of varying local nature and our analysis aims at understanding the
pricing at di�erent locations and di�erent time points around the world. A time series approach
has been taken by Benth et al. (2007), who corrects for seasonality (in mean), then for intertem-
poral correlation and �nally as in Campbell and Diebold (2005), for seasonal variations. After
these manipulations, a Gaussian risk factor needs to be isolated in order to apply continuous time
pricing techniques, Karatzas and Shreve (2001).

Empirical studies following this econometrical route show evidence that the resulting temperature
risk factor deviates severely from Gaussianity, which in turn challenges the pricing tools, Benth,
Härdle and López Cabrera (2011). In particular, for Asian cities, like for example Kaohsiung
(Taiwan), one observes very distinctive non-normality in the form of clearly visible heavy tails
caused by extended volatility in peak seasons. This is visible from Figure 1 where a log density
plot reveals a nonnormal shoulder structure (kurtosis= 3.22, skewness= −0.08, JB= 128.74).
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Figure 1: Kernel density estimates (left panel), log kernel density estimates (middle panel) and
QQ-plots (right panel) of normal densities (grey lines) and Kaohsiung standardised residuals (black
line)

The econometric analysis we apply follows Benth et al. (2007) where temperature Tt is decomposed
into a seasonality term Λt and a stochastic part with seasonal variance σ2

t . The �tted seasonality
trend Λt and seasonal variance σ

2
t are approximated with truncated Fourier series (and an additional
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GARCH term):

Λt = a+ bt+

L1∑
l=1

cl cos

{
2π(t− dl)
l · 365

}
, (1)

σ2
t,FTSG = c10 +

L2∑
l=1

{
c2l cos

(
2lπt

365

)
+ c2l+1 sin

(
2lπt

365

)}
+ α1(σt−1ηt−1)2 + β1σ

2
t−1, (2)

ηt ∼ iid(0, 1).

The upper panel of Figure 2 displays the seasonality and deseasonalised residuals over two years
in Kaohsiung. The lower panel RHS displays the empirical and seasonal variance function, while
the lower panel LHS shows the smoothed seasonal variance function over years. The series expan-
sion (1) and (2) failed though in the volatility peak seasons. Even incorporating an asymmetry
term for the dip of temperature in winter does not improve the closeness to normality.

One may of course pursue a �ne tuning of (1) and (2) with more and more periodic terms but this
will increase the number of parameters. We therefore propose a local parametric approach. The
seasonality Λs and σs are approximated with a Local Linear Regression (LLR) estimator:

arg min
e,f

365∑
t=1

{
T̄t − es − fs(t− s)

}2
K

(
t− s
h

)
, (3)

arg min
g,v

365∑
t=1

{
ε̂2
t − gs − vs(t− s)

}2
K

(
t− s
h

)
, (4)

where T̄t is the mean (over years) of daily averages temperatures, ε̂2
t the squared residual process

(after seasonal and intertemporal �tting), h the bandwidth and K(·) is a kernel. Note, that due
to the spherical character of the data, the kernel weights in (3) and (4) may be calculated from
�wrapped around observations� thereby avoiding boundary bias. The estimates Λ̂s, σ̂

2
s are given by

the minimisers ês, ĝs of (3) and (4). The upper panel of Figure 2 shows the seasonality in mean
and the bottom panel on the RHS the variance estimated with truncated Fourier series and local
linear regression using the quartic kernel. We observe high variance in winter and early summer
and low variance in spring and late summer.

The scale correction of the obtained residuals (after seasonal and intertemporal �tting) is appar-
ently not identical over the year. A very structured volatility pattern up to April is followed by
a moderately constant period until an increasing peak starting in September. This motivates our
research to localise temperature risk. The local smoothness of σ2

t is of course not only a matter
of one location (here Kaohsiung) but varies also over the di�erent cities around the world that we
are analysing in this study. Our study is local in a double sense: local in time and space. We
use adaptive methods to localise the underlying dynamics and with that being able to achieve
Gaussian risk factors. This will justify the pricing via standard tools that are based on Gaussian
risk drivers. The localisation in time is based on adjusting the smoothing parameter h. For a
general framework on local parametric approximation we refer to Spokoiny (2009). As a result we
obtain better approximations to normality and therefore less biased prices.

This paper is structured as follows. Section 2 describes the localising approach. In section 3, we
present the data and conduct the analysis to di�erent cities. Section 4 presents a forecasting exer-
cise and the following section is devoted to an application where the pricing of weather derivative

3



contract types is presented. Section 6 concludes the paper. All quotations of currency in this
paper will be in USD unless otherwise stated and therefore we will omit the explicit notion of
the currency. All the computations were carried out in Matlab version 7.6 and R. The tempera-
ture data for di�erent cities in US, Europe and Asia were obtained from the National Climatic
Data Center (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg Professional Service and
the Japanese Meteorological Agency (JMA). All data is converted to Celsius degrees. Weather
derivative data from CME was extracted from Bloomberg. To simplify notation, dates are denoted
with yyyymmdd format.
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Figure 2: Upper panel: Kaohsiung daily average temperature (black line), Fourier truncated
(dotted grey line) and local linear seasonality function (grey line), Residuals in lower part. Lower
left panel: truncated Fourier seasonal variation (Λ̂t) over time. Lower right panel: Kaohsiung
empirical (black line), truncated Fourier (dotted grey line) and local linear (grey line) seasonal
variance (σ̂2

t ) function.
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2 Model

Let us �rst re�ne our notation from t to (t, j), with t = 1, . . . , τ = 365 days, j = 0, . . . , J years.
The time series decomposition we consider is given as:

X365j+t = Tt,j − Λt,

X365j+t =
L∑
l=1

βljX365j+t−l + εt,j,

εt,j = σtet,j,

et,j ∼ N(0, 1),

ε̂t,j = X365j+t −
L∑
l=1

β̂ljX365j+t−l, (5)

where Tt,j is the temperature at day t in year j, Λt denotes the seasonality e�ect and σt the seasonal
variance. Motivation of this approach can be found in Campbell and Diebold (2005) (CD), who
proposes the model

Tt = Trendt + Seasonalityt +
L∑
l=1

ρt−lTt−l + σtεt,

Trendt =
M∑
m=0

βmt
m,

Seasonalityt =
P∑
p=1

[
δc,p cos

{
2πp

d(t)

365

}
+ δs,p sin

{
2πp

d(t)

365

}]
,

σ2
t =

Q∑
q=1

[
γc,q cos

{
2πq

d(t)

365

}
+ γs,q sin

{
2πq

d(t)

365

}]
+

R∑
r=1

{αr(σt−rεt−r)2 +
S∑
s=1

βsσ
2
t−s}.

We will use the CD model as a benchmark model for further analysis. Later studies, e.g., Benth
et al. (2007) and Härdle and López Cabrera (2011), have provided evidence that the parameters
βlj are likely to be j independent and hence estimated consistently from a global autoregressive
process model AR(Lj) with Lj = L. Since the stylised facts of temperature re-occur every year,
our focus is on the �exible estimation of Λt and σ

2
t , see Figure 2.

The seasonal trend function Λt and the seasonal variance function σ2
t a�ect, of course, the Gaus-

sianity of the resulting normalised residuals. The commonly used approaches 1. truncated Fourier
series, and 2. local polynomial regression (with �xed bandwidth) are rather restrictive and do not
�t the data well since they do not necessarily yield normal risk factors. These observations moti-
vated us to consider a more �exible approach. The main idea is to �t a local parametric model for
the trend and variance with adaptively chosen window sizes. Speci�cally, we use kernel smoothing
and employ an adaptive technique to choose the bandwidth over days. Other examples of this
technique can be found in Cízek, Härdle and Spokoiny (2009) and Chen, Härdle and Pigorsch
(2010).

5



2.1 How does the adaptation work?

The time series Tt,j are approximated at a �xed time point s ∈ [1, 365]. Our goal is to �nd a
local window that possesses certain optimality properties, to be de�ned below. Speci�cally, for
a speci�ed weight sequence, we conduct a sequential LRT to choose an appropriate bandwidth.
Di�erent procedures of estimating seasonality and volatility are studied. Suppose that the object
to be approximated is the seasonal variance θ(t) = {σ2

t }. A weighted maximum likelihood approach
is given by:

θ̃k(s)
def
= arg max

θ
L{W k(s), θ}

= arg min
θ

365∑
t=1

J∑
j=0

{log(2πθ)/2 + ε̂2
t,j/2θ}w(s, t, hk), (6)

with the �localising scheme� W k(s) = {w(s, 1, hk), w(s, 2, hk), . . . , w(s, 365, hk)}>, where w(s, t, hk)
= h−1

k K{(s− t)/hk}, k = 1, . . . , K, h1 < h2 < h3 < . . . < hK a prescribed sequence of bandwidths,
and K(u) = 15/16(1− u2)2I(|u| ≤ 1) (quartic kernel).

The explicit solution of (6) is in fact a Nadaraya-Watson estimator:

θ̃k(s) =
∑
t,j

ε̂2
t,jw(s, t, hk)/

∑
t,j

w(s, t, hk)

=
∑
t

ε̂2
tw(s, t, hk)/

∑
t

w(s, t, hk),

with

ε̂2
t

def
= (J + 1)−1

J∑
j=0

ε̂2
t,j.

From a smoothing perspective we are in a comfortable situation here since the boundary bias
is not an issue, as we are dealing with a periodic function θ(t) = θ(t + 365). We use mirrored
observations: assume hK < 365/2, then the observation set, for example for the seasonal variance,
is extended to ε̂2

−364, ε̂
2
−363, . . . , ε̂

2
0, ε̂

2
1, . . . , ε̂

2
730, where

ε̂2
t

def
= ε̂2

365+t,−364 ≤ t ≤ 0,

ε̂2
t

def
= ε̂2

t−365, 366 ≤ t ≤ 730.

Since the location s is �xed, we drop s for simplicity of notation.

For ` < k, the accuracy of the estimation is measured by the �tted likelihood ratio (LR):

L(W `, θ̃`, θ̃k)
def
= L(W `, θ̃`)− L(W `, θ̃k). (7)

For the Gaussian risk factor situation the variance σ2
t (or trend Λt) estimation is carried out within

an exponential family framework, so the LR can be written in closed form:

L(W k, θ̃k, θ
∗)

def
= NkK(θ̃k, θ

∗)

= −{log(θ̃k/θ
∗) + 1− θ∗/θ̃k}/2, (8)
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where Nk = J
∑365

t=1 w(s, t, hk) and K(θ̃k, θ
∗) is the Kullback-Leibler divergence (9) between two

normal distributions with variances θ̃k and θ
∗. Note that (8) is the divergence for exactly this case.

For trend Λt estimation, it has to be replaced by (θ̃k − θ∗)2/(2σ2).

Recall that the Kullback-Leibler divergence of two distributions with densities p(x) and q(x) is

K{p(x), q(x)} def
= E p(.) log

p(x)

q(x)
. (9)

To guarantee the feasibility of the tests, we need moment bounds and con�dence sets for the LR
that will guarantee that the MLE is concentrated in the level set of the likelihood ratio process
(indexed by the number of observations) around the true parameter, see Polzehl and Spokoiny
(2006) and Mercurio and Spokoiny (2004). Below we state a result along this line for the variance
(a similar bound can be derived for the mean).

Theorem 2.1 [Spokoiny (2009)] Assuming that θ(t) = θ∗ for any t ∈ [1, 365], then for z > 0 and
k ∈ 1, . . . , K, r > 0, denote by Pθ∗(.) the measure corresponding to (6). We obtain

Pθ∗

{
L(W k, θ̃k, θ

∗) > z
}
≤ 2 exp (−z) (10)

and a risk bound for a power loss function:

E θ∗ |L(W k, θ̃k, θ
∗)|r ≤ rr, (11)

where rr = 2r
∫
z≥0

zr−1 exp(−z)dz. This polynomial bound applies to all localising schemes W k

simultaneously.

The risk bound (11) allows us to de�ne likelihood based con�dence sets since together with (10) it
tells us that the likelihood process is stochastically bounded. De�ne therefore con�dence sets with
critical values (CVs) zk to level α:

Eα,k = {θ : L(W k, θ̃k, θ) ≤ zk}. (12)

Equipped with con�dence sets (12), we launch the Local Model Selection (LMS) algorithm:

• Fix a point s ∈ {1, 2, . . . , 365}.

• Start with the smallest interval h1: θ̂1 = θ̃1

• For k ≥ 2, θ̃k is accepted and θ̂k = θ̃k if θ̃k−1 was accepted and θ̃k ∈ Eα,l,∀` = 1, . . . , k − 1,
i.e.

L(W k, θ̃`, θ̃k) ≤ z`,∀` = 1, . . . , k − 1.

Otherwise, set θ̂k = θ̂k−1, where θ̂k is the latest accepted after �rst k steps.

• De�ne k̂ as the kth step we stopped, and θ̂` = θ̃k̂, ` ≥ k.
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Figure 3: Illustration of the LMS

The LMS algorithm is illustrated in Figure 3. For every estimate θ̃k the corresponding con�dence
set is shown. If the horizontal line originating in θ̃k does not cross all the preceding intervals then
the selection algorithm terminates.

A further integrated approach is to consider an iterative algorithm, which iterates between esti-
mating the seasonal component and the variance θ(t) = {Λt, σ

2
t }. This algorithm can further cope

with heteroscedasticity in the corrected residuals after seasonality in mean and variance compo-
nent. The procedure is:

Step 1. Estimate β̂ in an initial Λ0
t using a truncated Fourier series or any other deterministic func-

tion;

Step 2. For �xed Λ̂s,ν = {Λ̂′s,ν , Λ̂
′′
s,ν}>, s = {1, . . . , 365} from last step ν, and �xed β̂, get σ̂2

s,ν+1 by

σ̂2
s,ν+1 = arg min

σ2

365∑
t=1

J∑
j=0

[{T365j+t − Λ̂
′

s,ν − Λ̂
′′

s,ν(t− s)

−
L∑
l=1

β̂lX365j+t−l}2/2σ2 + log(2πσ2)/2]w(s, t, h′k);

Step 3. For �xed σ̂2
s,ν+1 and β̂, we estimate Λ̂s,ν+1, s = {1, . . . , 365} via another local adaptive pro-

cedure:

Λ̂s,ν+1 = arg min
{Λ′,Λ′′}>

365∑
t=1

J∑
j=0

{
T365j+t − Λ′ − Λ′′(t− s)−

L∑
l=1

β̂lX365j+t−l

}2

w(s, t, h′k)/2σ̂
2
s,ν+1,

where {h′1, h′2, h′3, . . . , h′K′} is a sequence of bandwidths;

Step 4. Repeat steps 2 and 3 until both |Λ̂t,ν+1− Λ̂t,ν | < π1 and |σ̂2
t,ν+1− σ̂2

t,ν | < π2 for some constants
π1 and π2.
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Our empirical implementation suggests that one iteration is enough. The LMS methods require
CVs zk, which de�ne the signi�cance for the LR statistics L(W `, θ̃`, θ̃k) or alternatively the length
of the con�dence interval (see (10)) at each step. The CVs are calibrated from the �propagation
condition� below which ensures a desired level of type one error. To be more speci�c, for every
step k, de�ne θ̂k as the �survived estimator� after the kth step (if the estimator is not rejected
up to step k, then θ̂k = θ̃k, else if the estimator has been rejected at step l < k, then θ̂k = θ̃l).
Measure the closeness of θ̃k and θ̂k by

E θ∗|L(W k, θ̃k, θ̂k)|r ≤ αrr (13)

for k = 1, . . . , K with rr the parametric risk bound in (11) and α a control parameter corresponding
to the type one error. In fact

E θ∗ |L(W k, θ̃k, θ̂k)|r → Pθ∗(θ̃k 6= θ̂k)

for r → 0, therefore α can be interpreted as a false alarm probability.

More precisely, if step k is accepted as described in Figure 3, then θ̃k = θ̂k and a nonzero loss
Eθ∗ L(W k, θ̃k, θ̂k) can only occur if the estimator has been rejected before or at step k, which under
the homogeneous parametric model case, is denoted as a �false alarm�.

With the �propagation condition� (13) CVs are constructed as follows:

• Consider �rst z1 and let z2 = z3 = . . . = zK−1 = ∞. This leads to the estimates θ̂k(z1) and
the value z1 is selected as the minimal one for which

sup
θ∗
E θ∗ |L{W k, θ̃k, θ̂k(z1)}|r ≤ αrr

K − 1
, k = 2, . . . , K. (14)

• Suppose z1, . . . , zk−1 have been �xed, and set zk = . . . = zK−1 = ∞. With estimate
θ̂m(z1, . . . , zk) for m = k + 1, . . . , K. select zk as the minimal value which ful�lls

sup
θ∗
E θ∗|L{Wm, θ̃m, θ̂m(z1, . . . , zk)}|r ≤

kαrr
K − 1

(15)

for m = k + 1, . . . , K.

Inequality (14) describes the impact of the k CV to the risk, while the factor kα
K−1

in (15) en-
sures that every zk has the same impact. The values of (α, r, h1, . . . , hK) are prespeci�ed hyper-
parameters for which robustness and sensitivity issues will be discussed in Section 3. The following
theorem provides insight into the form of zk.

A risk bound for a constant model (θ(t) = θ∗) has been given in (13). In order to expand this to
a nonparametric θ(t), the �Small Modeling Bias (SMB)� condition is employed:

∆(θ)
def
=

365∑
t=1

K{θ(t), θ} I{w(s, t, hk) > 0} ≤ ∆,∀k < k∗, (16)

where k∗ is the maximum k satisfying (16), also called �oracle�. Consequently the estimation risk
for θ(t) is described for k ≤ k∗ by the �propagation� property:

E θ(·) log{1 + |L(W k, θ̃k, θ̂k)|r/rr} ≤ ∆ + α. (17)

9



An estimate for the oracle k∗ is given via the adaptive estimate θ̂k̂. The estimate θ̂k̂ behaves

similarly to the oracle estimate θ̃k∗ since it is �stable� in the sense that even if the described
selection scheme (14), (15) overshoots k∗, the resulting estimate θ̂k̂ is still close to the oracle θ̃k∗ .
In fact the attained quality of estimation during �propagation� is not lost at further steps:

L(W k∗ , θ̃k∗ , θ̂k̂) I{k̂ > k∗} ≤ zk∗

In other words, θ̂k̂ lies in the con�dence set of θ̃k∗ . A combination of the propagation and stability
property leads to the �oracle� property:

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ)|r

rr

}
≤ ∆ + 1,

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ̂k̂)|r

rr

}
≤ ∆ + α + log

{
1 +

zk∗

rr

}
,

for θ with ∆(W k, θ) ≤ ∆ and k ≤ k∗. These bounds show that the risk of estimating adaptively is
composed into three parts: the SMB, the false alarm rate, and a small term corresponding to the
risk of overshooting.

3 Empirical analysis

We conduct an empirical analysis of temperature patterns for di�erent cities (Figure 4). The data
set contains the daily average temperatures for di�erent cities in Europe (1900-2011), Asia (1900-
2011), and the US (1900-2011): Atlanta, Beijing, Berlin, Essen, Houston, Kaohsiung, New York,
Osaka, Portland, Taipei, and Tokyo.

 

Buy SmartDraw!- purchased copies print this 
document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Figure 4: Map of locations where temperature are collected

We �rst check seasonality, intertemporal correlation, and seasonal variation. Table 1 provides the
coe�cients of the Fourier truncated seasonal function (1) for some cities for di�erent time periods.
The coe�cient a can be seen as the average temperature, the coe�cient b as an indicator for global
warming. The latter coe�cients are stable even when the estimation is done in a window length
of 10 years. In the sense of capturing volatility peak seasons, the left panel of Figure 5 visualises
the power of capturing volatility peak seasons by the seasonal local smoother (3) using the quartic
kernel over the estimates modeled under Fourier truncated series (1).
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City Period â b̂ ĉ1 d̂1 ĉ2 d̂2 ĉ3 d̂3
Berlin (19480101�20080527) 9.2173 0.0000 9.8932 -157.9123 0.2247 261.2850 0.1591 -127.7303

(19730101�20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19730101�20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19830101�20080527) 9.4581 0.0001 10.0969 -161.7129 0.5205 -51.9929 0.3734 42.0874
(19930101�20080527) 9.5923 0.0002 10.1995 -162.9774 0.6564 -37.1548 0.4241 41.9970
(20030101�20080527) 9.6948 0.0007 10.1954 -162.3343 0.5554 -43.2293 0.3269 1.5998

Kaohsiung (19730101�20081231) 24.2289 0.0001 0.9157 -145.6337 -4.0603 -78.1426 -1.0505 10.6041
(19730101�19821231) 24.4413 0.0001 2.1112 -129.1218 -3.3887 -91.1782 -0.8733 20.0342
(19830101�19921231) 25.0616 0.0003 2.0181 -135.0527 -2.8400 -89.3952 -1.0128 20.4010
(19930101�20021231) 25.3227 0.0003 3.9154 -165.7407 -0.7405 -51.4230 -1.1056 19.7340

New York (19490101�20081204) 53.1473 0.0001 18.6810 -143.4051 -3.3872 271.5072 -0.4203 -16.3125
(19730101�20081204) 53.6992 0.0001 18.0092 -148.4124 -3.5236 279.6876 -0.4756 -21.8090
(19730101�19821204) 53.6037 -0.0000 17.7446 -155.2453 -3.7769 289.7932 -0.8326 -4.2257
(19830101�19921204) 54.8740 -0.0003 17.6924 -152.7461 -3.4245 284.6412 -0.4933 -218.9204
(19930101�20021204) 53.8050 0.0003 17.6942 -153.3997 -3.4246 285.7958 0.5753 -315.2792
(20030101�20081204) 52.9177 0.0012 17.8425 -151.2977 -3.8837 287.2022 -0.1290 -216.7298

Tokyo (19730101�20081231) 15.7415 0.0001 8.9171 -162.3055 -2.5521 -7.8982 -0.7155 -15.0956
(19730101�19821231) 15.8109 0.0001 9.2855 -162.6268 -1.9157 -16.4305 -0.5907 -13.4789
(19830101�19921231) 15.4391 0.0004 9.4022 -162.5191 -2.0254 -4.8526 -0.8139 -19.4540
(19930101�20021231) 16.4284 0.0001 8.8176 -162.2136 -2.1893 -17.7745 -0.7846 -22.2583
(20030101�20081231) 16.4567 0.0001 8.5504 -162.0298 -2.3157 -18.3324 -0.6843 -16.5381

Table 1: Seasonality estimates Λ̂t of daily average temperature. All coe�cients are nonzero at 1%
signi�cance level.

City Period ADF KPSS

Atlanta 19480101�20081204 -55.55+ 0.21***
Beijing 19730101�20090831 -30.75+ 0.16***
Berlin 19480101�20080527 -40.94+ 0.13**
Essen 19700101�20090731 -23.87+ 0.11*
Houston 19700101�20081204 -38.17+ 0.05*
Kaohsiung 19730101�20091210 -37.96+ 0.05*
New York 19490101�20081204 -56.88+ 0.08*
Osaka 19730101�20090604 -18.65+ 0.09*
Portland 19480101�20081204 -45.13+ 0.05*
Taipei 19920101�20090806 -32.82+ 0.09*
Tokyo 19730101�20090831 -25.93+ 0.06*

Table 2: ADF and KPSS-Statistics for the detrended daily average temperature time series for
di�erent cities. '+', '*', '**' and '***' corresponds to signi�cance levels of 0.01, 0.1, 0.05 and 0.01
respectively.
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Figure 5: The empirical (black line), the Fourier truncated (dotted grey line), and the local linear
(grey line) seasonal mean (left panel) and variance component (right panel) using quartic kernel
and bandwidth h = 4.49.
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After removing the local linear seasonal mean (3) from the daily average temperatures (Xt =
Tt−Λt,LLR), we check that Xt is a stationary process with the Augmented Dickey-Fuller (ADF) and
the KPSS tests. The analysis of the partial autocorrelations and the Akaike Information criterion
(AIC) suggest that an AR(3) model �ts the temperature evolution well. Table 2 presents the
results of the stationarity tests. The empirical seasonal variation (square residuals after seasonal
and intertemporal �tting), the seasonal variation curves (2) and (4) are displayed on the right
panel in Figure 5, while normality tests for the residuals are displayed in Table 5 (see there
truncated Fourier method). All seasonal variance estimators lead to residuals that are far from
being normally distributed. These facts are of course not an ideal platform for risk neutral pricing
(based on standard stochastic �nancial models). The heavytailedness, as seen in Figure 1, may
be attributed to an unsatisfactory extraction of the heteroscedasticity (or mean) function. As a
solution we employ a localisation scheme.

The adjustment in the smoothing parameter h will provide the localisation in time. The bandwidth
sequences are selected from six candidates: (1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 5, 7, 10, 13), (3, 5, 7, 9, 11, 13,
15), (3, 5, 8, 12, 17, 23, 30), (5, 7, 10, 14, 19, 25, 32), and (7, 9, 11, 14, 17, 10, 24). These candidates
are chosen according to the lowest Anderson�Darling (AD) statistic. The best candidate for
the bandwidth sequence is the one which yields a residual distribution closest to the normal
one. Smoothing the selected bandwidths gives another adaptive estimator, implemented, but
not discussed here, due to space limitations.

The CVs as calibrated from (14) and (15) are given in Figure 6. The left side provides CVs
simulated from a sample of 10000 observations for a quartic kernel for both mean with θ∗ = 0 and
variance with θ∗ = 1, r = 0.5 and di�erent values of signi�cance level α. The CVs for di�erent
bandwidth sequences are displayed in the right side of Figure 6. The CVs, as one observes, are
relatively robust to the choice of r and α.

5 10 15 20 25 30

0.
00
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20
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30

0 5 10 15 20 25 30

0.
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0.
10
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20
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30

Figure 6: Simulated CVs for likelihood of seasonal variance (6) with θ∗ = 1, r = 0.5, MC = 10000
with α = 0.3 (dotted), 0.5 (dashed), 0.7 (solid) for the bandwidth sequence (3, 5, 8, 12, 17, 23, 30) on
the left plot and with α = 0.3 and for sequences (3, 5, 7, 9, 11, 13, 15) (solid), (3, 5, 8, 12, 17, 23, 30)
(dashed), (5, 7, 10, 14, 19, 25, 32) (dotted), and (7, 9, 11, 14, 17, 10, 24) (dot-dashed) on the right
plot.
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A one year period is considered in the �rst place for demonstration purposes, while later we show
how the results change with di�erent time length periods. Figures 7, 8, 9, and 10 present the
general results for di�erent cities under di�erent adaptive localising schemes for seasonal mean
(Me) and seasonal variance (Va): with �xed bandwidth curve (�), adaptive bandwidth curve (ad),
and truncated Fourier (Fourier) for di�erent time intervals. The seasonal mean is estimated jointly
over the years, using α = 0.7 and power level r = 0.5.

The upper panel of each variance plot in Figures 7�10 shows the sequence of bandwidths; the bot-
tom panel displays the variance estimation with �xed bandwidth (dashed line), Fourier truncated
method (dotted line), and adaptive bandwidth (solid black line). In all countries, one observes
signi�cant di�erences between the estimates. In particular, in cities like Kaohsiung and New York,
one observes more variation of the seasonal variance curves during peak seasons (winter and sum-
mer times). The triangles and circles in the bottom panel of each variance plot help us trace the
source of the non-normality over time, since they correspond to ten dots of the upper and lower
tails of the QQ-plots of square residuals respectively (see Figure 11 for the Berlin results). The
left top plots of Figures 7� 10 show the mean case. Unlike the seasonal variance function, we do
not observe a big variation of smoothness in the mean function. One can see that in all cities, the
bandwidths vary over the yearly cycle with a slight degree of non homogeneity for Kaoshiung.

An approach to cope with the non normality brought in by more observations is to estimate mean
functions year by year (SeMe), and then aggregate the residuals for variance estimation. We there-
fore estimate the joint/separate seasonal mean (JoMe/SeMe) and seasonal variance (Va) curves
with �xed bandwidth curve (�), adaptive bandwidth curve (ad). The variance plots in Figures 7�
10 display the behaviour of the variance function estimation when the period length changes. The
average over years acts as a smoother when we consider more years. The estimated AR(L) param-
eters for di�erent cities using joint/separate mean (JoMe/SeMe) with di�erent bandwidth curves
are illustrated in Table 3. The results again show that an AR(3) �ts well the stylised facts of
temperature.

We tackle the problem of loosing information when considering estimates at the individual level or
averaging mean functions over time, with a re�ned approach that considers the minimum variance
between the aggregation of yearly local mean function estimates and an optimal local estimate θo.
Once the sets of local mean functions have been identi�ed, the aggregated local function can be
de�ned as the weighted average of all the observations in a given time set. Formally, if θ̂j(t) is the
localised observation at time t of year j, the aggregated local function is given by:

θ̂ω(t) =
J∑
j=1

ωj θ̂
j(t). (18)

With this aggregation step across J , we give the same weight to all observations, even to ob-
servations that were unimportant at the yearly level. Then a reasonable optimised estimate will
be:

arg min
ω

J∑
j=1

365∑
t=1

{θ̂ω(t)− θ̂oj (t)}2 subject to ΣJ
j=1ωj = 1;ωj > 0, j = 1, . . . , J, (19)

where the weights are assumed to be exogenous and nonstochastic, and θ̂oj is de�ned as one of

the following: 1 (Locave), θ̂oj (t) = J−1
∑J

j=1 σ̂
2
j (t), the average of seasonal empirical variances over

years, 2, (Locsep) θ̂oj (t) = σ̂2
j (t), the yearly empirical variances, 3, one of above two approaches with

18
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Figure 11: QQ-plot for standardised residuals from Berlin using di�erent methods for the data
from 2005-2007 (3 years).
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Method KS JB AD

1
Y
ea
r JoMe adMe adVa 0.033 0.233 0.200

JoMe �Me �Va 0.033 0.300 0.333
Fourier 0.066 0.633 0.600
CD 0.066 0.733 0.700 KS JB AD

2
Y
ea
rs

JoMe adMe adVa 1.000 0.466 0.366

3
Y
ea
rs

0.900 0.600 0.600
JoMe �Me �Va 0.966 0.766 0.633 0.700 0.866 0.866
SeMe adMe adVa 1.000 0.233 0.266 1.000 0.300 0.400

SeMe �Me �Va 1.000 0.666 0.533 0.866 0.766 0.800
Locave 0.033 0.366 0.333 0.200 0.533 0.633
Locsep 0.033 0.366 0.333 0.200 0.533 0.633
Locmax 0.066 0.266 0.300 0.166 0.566 0.566
Fourier 0.266 0.800 0.766 0.333 0.866 0.900
CD 1.000 0.833 0.866 1.000 0.900 0.900

4
Y
ea
rs

JoMe adMe adVa 0.666 0.633 0.633

5
Y
ea
rs

0.566 0.800 0.766
JoMe �Me �Va 0.500 0.933 0.933 0.533 0.933 0.933
SeMe adMe adVa 0.900 0.400 0.500 0.600 0.566 0.600

SeMe �Me �Va 0.633 0.800 0.866 0.400 0.933 0.866
Locave 0.233 0.633 0.600 0.400 0.700 0.700
Locsep 0.233 0.633 0.600 0.400 0.700 0.700
Locmax 0.200 0.633 0.600 0.333 0.733 0.700
Fourier 0.500 0.933 0.933 0.600 1.000 0.933
CD 1.000 0.933 0.933 1.000 1.000 0.900

Table 4: Rejection rates of the normality at 5% level for 30 cities with di�erent history, methods
of estimation and normality tests. Tests for normality are Kolmogorov�Smirnov (KS), Jarque�
Bera (JB) and AD. Methods used: joint/separate mean (JoMe/SeMe) with �xed/adaptive (�/ad)
bandwidth for the mean/variance (Me/Va), Locave, Locsep, Locmax, truncated Fourier (Fourier)
and CD model. Highlighted with italic are models with smallest rejection rate for each goodness-
of-�t (GoF) test and each history.

maximised p-values over year. One may interpret this normalisation of weights as an optimisation
with respect to di�erent frequencies (yearly, daily).

Kolmogorov�Smirnov (KS), Jarques�Bera (JB) and AD normality tests are taken to test the nor-
mality of the corrected residuals (after seasonal mean and variance). For each city, a rejection at
0.05 level is counted as 1 (else 0). The rejection rates over all cities under di�erent estimation tech-
niques are displayed in Table 4. Also the results are compared for di�erent periods (1− 5 years).
A higher rejection rate would indicate a poorer performance of the relevant method. To make our
conclusion more general, we add 18 cities more selected all around the world, including, Cordoba
(Argentina), Adelaide (Australia), Sydney (Australia), Brasilia (Brazil), Larnaca (Cyprus), Cairo
(Egypt), Paris (France), London (UK), Manchester (UK), Wellington (New Zealand), Moscow
(Russia), Perm (Russia), Barcelona (Spain), Borlange (Sweden), Zurich (Switzerland), Istanbul
(Turkey), Kyiv (Ukraine) and Lusaka (Zambia). The additional data is taken from NNDC Cli-
mate Data Online from 1999 − 2012. Results for only 12 original cities can be found in the
Supplementary material. We observe a superior performance of SeMe adMe adVa (for the AD and
JB tests) and Locmax (best for the KS test and second best for the AD and JB tests) methods over
the other alternatives like truncated Fourier, CD method and methods with �xed bandwidth. More
detailed information on the p-values is represented in the Table 5 for the cities Berlin, Kaohsiung,
New-York and Tokyo. Results on other 8 cities is given in the Supplementary material.
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4 Forecast and comparison

In this section we compare the forecasting accuracy of the proposed models to the CD model. CD
mentioned that their point forecasts were always at least as good as the persistence and climato-
logical forecasts, although not so good as the judgementally adjusted NWP forecast produced by
EarthSat for a horizon of eight days. Therefore, good performance of the technique presented here
could potentially suggest that our time series model is relevant for weather derivatives.

In Figures 12 and 13 we compare the out-of-sample forecast performance between �ve methods,
namely SeMe adMe adVo, Locave, JoMe adMe adVo, truncated Fourier and CD. The comparison
is provided at di�erent time horizons (1, . . . , 15 days) for Berlin, Kaohsiung, New York and Tokyo
using 2 (Figure 12) and 3 (Figure 13) years of history. These �gures contain information both on
point forecast and interval forecast. The top panel of each plot shows the absolute deviation of
the forecasted temperature from the true one, averaged over 1000 simulation pathes. This may
be considered as the quality of the point forecast. In this terms, as we see in most cities and
over all time horizons, we have at least one localising method better than or as good as the CD
method. However, the CD model dominates others in the case of Kaohsiung. Bottom panel of
each plot shows the averaged width of the point-wise con�dence interval based on 1000 sample
pathes. These curves represent the e�ciency of the models. Although the truncated Fourier series
method also look quite competitive in the point forecast, it usually has a very wide con�dence
interval, which is a sign of low e�ciency. Other methods in this context are strictly better. The
middle panel is showing the coverage of the true temperature by the con�dence interval, where
larger values represent higher quality. We do not see an outperforming behavior of the CD method
over proposed adaptive techniques in almost all 12 cities. CD method performs well in Kaohsiung
in terms of interval forecast, as one can see that it has a high coverage probability with a narrow
con�dence interval. As a conclusion, we do not claim strict superiority over the CD method in
forecasting, but conclude, that both methods are quite competitive.

5 A temperature pricing example

Based on a model for the daily temperature evolution, futures and European options written
on temperature indices traded at the Chicago Mercantile Exchange (CME) can be calibrated.
Temperature futures are contracts written on di�erent temperature indices measured over speci�ed
periods [τ1, τ2] such as weeks, months, or quarters of a year. Temperature futures allow one party
to pro�t if the realized index value is greater than a predetermined strike level and the other party
bene�ts if the index value is below. The owner of a call (put) option written on futures F (t, τ1, τ2)
with exercise time t ≤ τ1 and measurement period [τ1, τ2] will receive max {F (t, τ1, τ2)−K, 0}
(max {K − F (t, τ1, τ2), 0}), where K denotes the strike level. In other words, in exchange for the
payment of the premium, the call (put) option gives the buyer a payo� based upon the di�erence
between the realized index value and the strike level.

The most common temperature indices I(τ1, τ2) are: Heating Degree Day (HDD), Cooling Degree
Day (CDD), Cumulative Averages Temperatures (CAT) or Average Accumulative Temperatures
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(a) Berlin (2006-2007)
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(b) Kaohsiung (2007-2008)
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(c) New York (2006-2007)

0
2

4
6

0
.0

0
.4

0
.8

2 4 6 8 10 12 14

3
5

7

2 4 6 8 10 12 14

3
5

7
2

3
4

5
0

.0
0

.4
0

.8

2 4 6 8 10 12 14

3
5

7
9

2 4 6 8 10 12 14

3
5

7
9

2
6

1
0

0
.0

0
.4

0
.8

2 4 6 8 10 12 14

2
.0

3
.5

5
.0

k
a

o
h

s
iu

n
g

2 4 6 8 10 12 14

2
.0

3
.5

5
.0

1
2

3
4

0
.0

0
.4

0
.8

2 4 6 8 10 12 141
.0

2
.5

4
.0

to
k
y
o

2 4 6 8 10 12 141
.0

2
.5

4
.0

(d) Tokyo (2007-2008)

Figure 12: h = 1, . . . , 15 days (X axis) ahead forecast for Berlin, Kaohsiung, New York and Tokyo
(left to right, top to bottom); averaged absolute error (Y axis, upper panel), averaged coverage
days (Y axis, middle panel), averaged width of the con�dence 95% intervals (Y axis, lower panel),
SeMe adMe adVo (blue), Locave (grey), JoMe adMe adVo (green), truncated Fourier (red), CD
(black), �tted using 2 years of historical data and 1000 samples.
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(b) Kaohsiung (2006-2008)
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(d) Tokyo (2006-2008)

Figure 13: h = 1, . . . , 15 days (X axis) ahead forecast for Berlin, Kaohsiung, New York and Tokyo
(left to right, top to bottom); averaged absolute error (Y axis, upper panel), averaged coverage
days (Y axis, middle panel), averaged width of the con�dence 95% intervals (Y axis, lower panel),
SeMe adMe adVo (blue), Locave (grey), JoMe adMe adVo (green), truncated Fourier (red), CD
(black), �tted using 3 years of historical data and 1000 samples.
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(AAT). The CAT index takes the accumulated average temperature over [τ1, τ2]:

CAT (τ1, τ2) =

∫ τ2

τ1

Tudu,

where Tu = (Tu,max+Tu,min)/2 denotes the daily average temperature. The measurement period is
usually de�ned in months or season. The HDD index measures the cumulative amount of average
temperature below a threshold (typically 18◦C or 65◦F) over a period [τ1, τ2]:

∫ τ2
τ1

max(c−Tu, 0)du.
Similarly, the CDD index accumulates max(Tu − c, 0). At CME, CAT/CDD futures are traded
for European cities, CDD/HDD for US, Canadian, and Australian cities, and AAT for Japanese
cities. Note that these temperature indices are the underlying and not the temperature itself. The
options at CME are cash settled, i.e., the owner of a future receives 20 times the Degree Day Index
at the end of the measurement period, in return for a �xed price. At time t, CME trades di�erent
contracts i = 1, . . . , N with measurement period 0 ≤ t ≤ τ i1 < τ i2 (usually the length between τ i1
and τ i2 is one month). For example, a contract with i = 7 is six months ahead from the trading
day t. For the US and Europe CAT/CDD/HDD futures, N is usually equal to 7 (April�November
or November�April), while for Asia, N = 12 (January�December).

Although the temperature data is usually given in a discrete scale, temperature itself develops
continuously over time. Thus, a continuous model for the futures price dynamics can be clearly
formulated. We propose, as also suggested in Benth et al. (2007) and Härdle and López Cabrera
(2011), a mean reverted Ornstein-Uhlenbeck process for the modeling of detrended temperature
variations in continuous time CAR(L):

dXt = AXtdt+ eLσtdBt, (20)

where σ2
t > 0 is a bounded deterministic seasonal variation, Xt ∈ RL for L ≥ 1 denotes a vectorial

Ornstein-Uhlenbeck process, ek a kth unit vector in RL for k = 1, . . . , L, Bt a Brownian motion,
and an L× L-matrix A:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1
−αL −αL−1 . . . −α2 −α1

 .

In this framework, the autoregressive process AR(L) in (5) can be seen as a discretely sampled con-
tinuous time process (CAR(L)) (20) driven by one dimensional Brownian motion. The continuous
time process (20) is Markov and allows therefore standard applications of pricing tools. The last
three columns of Table 3 display the CAR(3) parameters for the temperature data. The fact that
temperature's random factor is close to the normal distribution, as disclosed in the analysis of the
residuals before, motivates the use of a Brownian motion as the noise in the Ornstein-Uhlenbeck
process. This suggests us that the non-Gaussian shocks found in the literature are the result of the
model mis-speci�cation. The continuous analogue of the CD model is however di�cult to estimate.
Thus the model in (20) is simpler than CD's one and provides better �t to the data.

The temperature futures price is the risk adjusted index, given today's �ltration Ft

FI(t, τ1, τ2) = E
Q [I(τ1, τ2)|Ft] , (21)
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with I(τ1, τ2) being one of the indices CAT, HDD or CDD. The expectation is computed under
a risk neutral pricing probability Q and is equivalent to the physical measure P under which
the discounted temperature index is a Q-martingale. To evaluate (21), we need to know the
temperature index dynamics under Q. We restrict the class of pricing probabilities to those that
can be parametrized via Q = Qλ, where equivalent changes of measures are simply associated with
changes of drift. Thus, in the modeling of the dynamics of futures prices written on temperature
indices, it is natural to de�ne a parameter measuring the market price of risk (MPR) λt, which
can be calibrated from traded (CAT/CDD/HDD) derivative type contracts. The temperature
dynamics in (20) under Qλ become:

dXt = (AXt + eLσtλt)dt+ eLσtdB
λ
t , (22)

where Bλ
t is a Brownian motion for any time before the end of the trading time and a martingale

under Qλ. Then, for 0 ≤ t ≤ τ1 < τ2, the explicit form of an CAT futures price is given by:

FCAT (t, τ1, τ2,Λt, σt, λt) = E
Qλ

[∫ τ2

τ1

Tudu|Ft
]

=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t

λuσuat,τ1,τ2eLdu

+

∫ τ2

τ1

λuσue
>
1 A

−1 [exp {A(τ2 − u)} − IL] eLdu, (23)

with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}] and IL the L× L identity matrix. Sim-

ilarly one can compute the price dynamics of CDD and HDD, see Benth et al. (2007). The CAR
model (20) provides the analytical formula (23). Note that all constituents except λt in the left
and right side of (23) are known or estimable (Λt and σt are estimated as in the previous section),
hence the calibration of the MPR from market data turns out to be an inverse problem in terms
of λt.

Assuming that the parametrization of the MPR is of a constant form for each observed contract
(λu = λt,τ i1,τ i2 in (23) for u ∈ [τ1, τ2]), one can calibrate the MPR for every combination of (t, τ i1, τ

i
2),

i = 1, . . . , N contracts, by inverting the pricing formulae in (23) with the observed CME market
prices at time t, (Ft,i,CME) with respect to λ as:

λ̂t,τ i1,τ i2 = arg min
λ
|FCAT (t, τ i1, τ

i
2, Λ̂t, σ̂t, λ)− Ft,i,CME|. (24)

We name λ̂t,τ i1,τ i2 as implied MPR. For �xed time t, assuming that λt remains the same for di�erent

contracts with di�erent maturities, one can also obtain λ̂t,OLS for all contracts i = 1, . . . , N :

λ̂t,τ i1,τ i2,OLS = λ̂t,OLS = arg min
λ

N∑
j=1

{FCAT (t, τ j1 , τ
j
2 , Λ̂t, σ̂t, λ)− Ft,j,CME}2. (25)

Moreover, to evaluate the estimation of λ̂t for a particular contract i, the observed price Ft,i,CME

for this contract can be excluded for the estimation. We have then the cross validated estimation:

λ̂t,τ i1,τ i2,CV = arg min
λ

N∑
j=1;j 6=i

{FCAT (t, τ j1 , τ
j
2 , Λ̂t, σ̂t, λ)− Ft,j,CME}2. (26)
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Other speci�cations of the MPR for temperature derivatives have been explored in Härdle and
López Cabrera (2011), where the authors argue that a constant MPR is su�cient for pricing
purposes. This might be compared with complete markets, where the MPR is minus the Sharp
ratio (µt− r)/σFt , where µt and σFt denote the mean and standard deviation of traded futures, and
r is the risk free interest rate. From now on, pricing follows (23) with an MPR from (24), (25)
or (26) and with Λt and σt estimated via the localisation techniques.

Observe that calibration (24), (25) or (26) is only valid if there exists a weather derivative market,
like e.g. for Berlin and Tokyo. In order to price temperature derivatives for regions with no
weather derivative markets, like Kaohsiung, one can use the implied MPR of traded futures of a
neighbour market, e.g. Tokyo AAT futures. Thus, by �nding a relationship between the MPR and
the seasonal variance one can use this as a proxy to price over the counter (OTC) AAT futures
for Kaohsiung. This is acceptable since stylized facts of temperature in Tokyo reveal similarity to
that in Kaohsiung. But generally, we are aware of arbitrage opportunities across the two di�erent
markets, therefore this approach cannot be generalized for every two weather derivative markets.
Considering that the MPR is a risk premium per unit of volatility, one can project the implied
MPR on the state variables related to volatility. An insight for Tokyo AAT futures, which can
be employed for the Kaohsiung case, is by regressing the averaged implied MPR (24) against the
variation:

λ̂τ i1,τ i2 = 4.08− 2.19σ̂2
τ i1,τ

i
2

+ 0.28σ̂4
τ i1,τ

i
2
,

where λ̂τ i1,τ i2
def
= (τ i2 − τ i1)−1

∑τ i2
t=τ i1

λ̂t,τ i1,τ i2 , σ̂
2
τ i1,τ

i
2

def
= (τ i2 − τ i1)−1

∑τ i2
t=τ i1

σ̂2
t , σ̂

4
τ i1,τ

i
2

def
= (τ i2 − τ i1)−1

∑τ i2
t=τ i1

σ̂4
t

and R2
adj = 0.71. Plugging the corresponding σ̂2

t , σ̂
4
t values for Kaohsiung into this equation let us

price such a non CME traded weather derivative via (23).

We compare the prices obtained with localisation procedures ('localised' prices) for Λt and σt
(SeMe adMe adVo (AdaptBW), Locmax) with prices estimated under �xed bandwidth (SeMe
�Me �Vo (FixedBW)) and truncated Fourier series. As a benchmark, we compute the index values
from realized temperatures I(τ1, τ2) and compare them with our model prices and with CME data
obtained from Bloomberg for the period 2009-2011. Note that prices from Benth et al. (2007),
later denoted as Benth, assumed MPR equal to zero and truncated Fourier series for seasonal mean
and variance. These prices are estimated out of sample.

Table 6 shows CME prices, realized indices for Berlin, Essen, London and Tokyo contracts, as
well as their di�erences between CME and model prices. We o�er both in sample �tting prices
calculated with λ̂t,τ i1,τ i2,OLS (25) and cross validated prices λ̂t,τ i1,τ i2,CV for �xed time t and contract

i (26). When MPR is di�erent from zero (λt = λ), our estimated prices both with λ̂t,τ i1,τ i2,CV and

λ̂t,τ i1,τ i2,OLS are close to the CME prices in most of the cases. 'Localised' prices with calibrated
nonzero MPR are closer to CME market futures prices and o�er an improvement over the �xed
bandwidth and the truncated Fourier method. Our calibrated MPR embeds information on the
risk and uncertainty in the market, which is helpful in analyzing market risk. Also, as mentioned
before, this information may help to price OTC derivatives in the same market.

To judge the performance of the models, we compute the root mean squared errors (RMSE)
between the indices of realized temperatures RT = I(τ1, τ2) (benchmark) and the estimated model
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prices FI(t, τ
i
1, τ

i
2, Λ̂t, σ̂t, λ̂t,τ i1,τ i2) (i = 1, . . . , N):

RMSE(τ i1, τ
i
2) =

√
|T|−1

∑
t∈T

{
FI(t, τ i1, τ

i
2, Λ̂t, σ̂t, 0)− I(τ1, τ2)

}2

,

in Table 7, where T is the set of days when the contract i with the measurement period (τ i1, τ
i
2) was

traded. In addition the RMSE between models' prices and FCME is also presented in Table 7. The
results show smaller RMSE when future prices are estimated via localisation techniques, which in
general outperforms the prices based on the truncated Fourier series (Benth).

When considering the MPR equal to zero (λt = 0) our model's prices behave similar to the realized
temperature indices and thus may be used as the weather forecast. The small di�erence between
'localised' prices with zero MPR to realized prices, suggests that our model's prices have learned
the market condition of past weather surprises.

This brings, of course, investment opportunities: an investor who purchased a futures CAT contract
for Berlin on 20070316 with τ1 = 20070401 and τ2 = 20070430 would have paid the value of the
index 288 points (see CME column and �rst row in Table 6 ) or 5,760 EUR (1 index point = 20
EUR per contract). The realized temperature index, however resulted in 362.9 points (see RT
column in Table 6), which is equivalent to 7,258 EUR. If the contract holder holds the contract
until expiration, he would receive a payo� of 1,498 EUR (7,258-5,760 EUR). Taking one of the
models from Table 6 as personal forecast, an investor could be tempted to act according to the
di�erence between the CME price and his forecasted price. When the di�erence is positive, the
strategy would be to go short on the future, and go long for a negative di�erence. Thus, if the
personal forecast is based on the AdaptBW with λt = 0, then investor will go long, and had a pro�t
of 1,498 EUR, otherwise, using Benth method as a personal forecast, will lead to a short position,
thus loosing 1,498 EUR. More formally, the unit pro�t PR from the contract can be calculated as

PR = sign{Ft,i,CME − FCAT (t, τ i1, τ
i
2, Λ̂t, σ̂t, 0)} · |Ft,i,CME − I(τ i1, τ

i
2)|. (27)

In a more general example, let us consider an investor, who invests in all the 39 contracts (one
unit per contract) with λt = 0 from the Table 6. Without transaction costs and interest rate, the
total pro�t will be a summation of the pro�ts from each of the 39 contracts under di�erent model
speci�cations. Total pro�t for AdaptBW, FixedBW or Locmax models results in 11,836 EUR,
while using the Benth model only into 10,328 EUR.

These results provide important insights on how weather is priced at CME and how the observed
prices conform with the stylized facts (seasonal e�ect, inter-temporal correlation, etc.) of weather
data. The meaning of the terms in the CAT futures price con�rm this statement. To illustrate this
point, consider, for example, the purchase of a May CAT contract for Berlin on 20070427, which
starts measurement at time τ1 = 20070501 and �nished at τ2 = 20070531. Setting a constant MPR
(for example λ = 0.20), the �rst term of (23) is equal to 431.060, the second, third and fourth
terms lead to 11.531, 0.8690 and 13.5390 respectively. The seasonal e�ect Λt plays an important
role in the level of the futures price, as it explains almost 94% of the market price which is 457.
However, as we get closer to the measurement period, temperature variations have more impact
on the price, since the last two terms with the MPR contribute to the CAT futures price more.
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6 Conclusions

We showed that temperature risk stochastics are closer to Gaussian when applying adaptive sta-
tistical methods for seasonal mean and seasonal variance. This suggest us that the non-Gaussian
shocks found in the literature are truly a result of mis-speci�cation. We found that the localisa-
tion method performs well, and it is robust to the speci�cation given for Λt or σt. The proposed
adaptive technique shows good performance over a calibration window of two years, for a longer
calibration interval of three years. We also observed in most of the cases, that the proposed method
outperforms the standard estimation methods. Finally, our results provide important insights on
how weather is priced at CME and how the observed prices conform with the stylized facts of
weather data.
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