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a b s t r a c t

This paper develops new test methods for m-dependent data. Our approach is based on sample
splitting by regular sampling of the original data at lower frequencies, so that standard techniques for
testing independence can be used for each individual subsample. We then propose several alternative
statistics that aggregate information across subsamples and investigate their asymptotic and finite
sample properties. We apply our methods to test the predictability of excess returns in foreign exchange
markets.We also illustrate how our serial dependence tests can provide useful information for identifying
particular economic alternatives when testing the expectations hypothesis in foreign exchangemarkets.
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1. Introduction

In many contexts it is known or assumed that economic time
series arem-dependent. We say that a stochastic process {Xt}

∞

t=−∞

is m-dependent if for some integer m ≥ 0 and every n, the
collections

{. . . , Xn−1, Xn} and {Xn+m+1, Xn+m+2, . . .}

are independent. In such cases, usual independence is equivalent to
0 -dependence.m-dependence arises when data are sampledmore
finely than the forecasting interval (or maturity) for testing the
expectations or the efficientmarket hypotheses,whendifferencing
methods are applied to remove fixed effects, or when evaluating
the goodness-of-fit of a moving average (MA) model.

Our paper is inspired by testing the predictability of k-month
ahead excess returns, which is a key step when investigating the
expectations hypotheses of forward exchange rates or of the term
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structure of interest rates.2 If data are sampled more finely, for
example monthly, than the forecasting horizon, the forecasting
errors then display a MA structure and become m-dependent
(or (k − 1)-dependent, in this example) under the expectations
hypothesis.3 To take into account this dependency, Hansen and
Hodrick (1980) examined restrictions on a k-step ahead forecasting
regression andproposed corrected standard errors (see alsoNewey
and West (1987)). Researchers, however, have faced difficulties
in applying their methods to tests that are designed only for
independent data. For instance, Campbell and Dufour (1995) had
to assume that forecasting errors are independent to develop
tests of orthogonality based on signs and signed ranks. Escanciano
and Velasco (2006) who used nonlinear test methods also had to
assume unpredictable forecasting errors. The conditional test by
Jansson and Moreira (2006) and the Q -test by Campbell and Yogo
(2006) are other examples of this issue.

2 See Engel (1996) and Lewis (1995) for a survey of tests for the expectations
hypothesis in foreign exchange markets; and see Campbell and Shiller (1991) and
Cochrane and Piazzesi (2005) for tests of the expectations hypothesis of the term
structure of interest rates.
3 We use the notation of m-dependence for the general concept and (k − 1)-

dependence for a specific example throughout the paper. The notation of m-
dependence is from the statistical literature and the notation of k is from the
expectations hypothesis literature.
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In this paperwe develop new testingmethods form-dependent
data. Our approach first splits the original time series into m + 1
subsamples so that the observations within each subsample
are independent under the null hypothesis of m-dependence.
Then, we apply standard techniques for testing uncorrelation
to the individual subsamples. However, m-dependence induces
correlation between the subsamples that must be accounted for
when constructing test statistics to aggregate information from the
subsamples.

To apply our sample splitting methods, we focus on linear
methods based on the autocorrelations most stressed in practice.4
In particular, we apply them to three common serial dependence
tests: the variance ratio, the Box–Pierce portmanteau, and the
Fama and French (1988) tests. Specifically, we first propose Wald
type statistics exploiting joint distributions across subsamples.
Second, we use Bonferroni bounds to control the size of the
tests based on one-sided maximal deviations. Third, we design
new statistics that pool estimates from individual subsamples. To
improve the finite sample behavior of these test procedures, we
design a parametric bootstrapmethod that accounts for the effects
of the m-dependence and show that it provides very good size
accuracy even with long return horizons, for which the asymptotic
normal approximation usually performs poorly.

Our sample splitting methods have several advantages for
addressing m-dependent data compared to previous studies. The
residual-based methods using parameter estimates can be subject
to estimation errors. For example, for testing a linear MA (m)
model, the asymptotic distribution of goodness-of-fit statistics
based on residuals autocorrelationmight depend on the estimation
method employed.5 Regression-based methods also need to
account for this serial dependence through different variants of
autocorrelation robust standard errors. In contrast, our sample
splittingmethods guarantee exact independence of the data under
the null hypothesis ofm-dependence because they do not estimate
(or even specify) parametric models. Dufour and Torres (1998)
proposed sample splitting in the context of regression-based tests,
but used bound methods to conduct asymptotic inference, while
we explicitly account for the dependence among subsamples
avoiding possible efficiency losses due to these approximations.

We also distinguish our methods from the typical long-horizon
tests based on variance ratios for the random walk hypothesis of
asset prices.6 These tests mainly differ from ours in terms of the
assumption of m-dependent data. The random walk assumption
always implies 0-dependence, regardless of how finely the data
are sampled. However, maturities (or forecasting intervals) in
the expectations hypothesis induce m-dependence components
in excess returns. In this case, the expected value of the usual
variance ratio statistic is no longer 1, and is left unspecified.
Therefore, direct application of this and related predictability
tests requires adjusting the sampling time interval to maturity to
guarantee uncorrelated returns under the expectations hypothesis.
Consequently, this approach leads to inefficiencies due to an
effectively reduced sample size and poses a new problem of
aggregating information if several subsamples are used instead.

The rest of the paper is organized as follows. Section 2
presents the asymptotic theory of our sample splitting methods
and Section 3 provides the parametric bootstrap procedures. We

4 Our approach can also permit different characterizations of the independence
hypothesis, including the martingale difference and the white noise hypotheses.
5 Those statistics include theBox–Pierce, the LM, and the Tp statistics. SeeDelgado

and Velasco (2011) for a recent discussion.
6 See, for example, Lo and MacKinlay (1988) and Poterba and Summers (1988)

for stock prices, Liu and He (1991) for spot exchange rates, and Cochrane (1988) for
the U.S. output.
employ the sample splitting methods to tests for the expectations
hypothesis in foreign exchange markets in Section 4 and discuss
their size and power properties in Section 5. An empirical study for
testing the expectations hypothesis in foreign exchangemarkets is
provided in Section 6 and concluding remarks follow.

2. The asymptotic theory of sample splitting methods for m-
dependent data

In this section, we present sample splitting methods for
m-dependent data in the context of testing the expectations
hypothesis. We first characterize the notion of the lack of linear
predictability beyond a forecasting horizon k and introduce further
assumptions that lead to exact (k − 1)-dependence. We then
provide the asymptotic properties of the serial dependence tests
implemented in the presence of m-dependent data. We begin
with the typical variance ratio test. To compare our methods with
previous studies, we briefly state the distributional results of the
variance ratios when k = 1. Here, k = 1 means that the variance
test assumes0-dependent data under thenull hypothesis. Then,we
analyze the asymptotic properties of the variance ratio tests when
k > 1. Furthermore, we show that the t statistics of Fama and
French (1988) belong to the class of generalized variance ratios,
and we analyze their asymptotic properties in this context. We
also apply our methods to the Box and Pierce (1970) portmanteau
Q statistics. Finally, we relate our results to previous studies and
discuss the applications of our methods to other tests, possibly
capturing nonlinear dependence.

Let S = {ξ1|k, ξ2|k, . . . , ξT |k} be the original sample, where ξt|k
denotes the k-period excess return between period t−k and t . Sup-
pose a researcher wants to test the predictability of excess returns
beyond horizon k. Then, the data become (k − 1)-dependent un-
der the null hypothesis, and the usual methods for testing uncor-
relation or independence cannot be used directly. For example, if
data are collected at amonthly frequency and the researcherwants
to forecast excess returns for a holding period of three-months,
then k = 3. To address this dependence, we propose sample split-
ting methods. The main idea of our procedure is to first divide
the original sample into k subsamples in the following way. De-
fine each of the k subsamples by S1 = {ξ1|k, ξk+1|k, . . . , ξT−k+1|k},
S2 = {ξ2|k, ξk+2|k, . . . , ξT−k+2|k}, . . . , Sk = {ξk|k, ξ2k|k, . . . , ξT |k}.
Here, a subsample is constructed such that all ξt|k are uncorrelated
or unpredictable within the subsample under the null of no pre-
dictability but a subsample itself is correlated with other subsam-
ples. Thenweuse the usual tests for uncorrelation or independence
for each subsample. Finally, we propose several methods that ag-
gregate information across the subsample statistics.

2.1. An econometric framework

Assume that the k-period excess returns ξt|k are covariance
stationary and have autocorrelation sequence γk(i) = Cov(ξt|k,
ξt+i|k)/Var(ξt|k) satisfying γk (i) = 0 for |i| ≥ k. Then, from the
Wold decomposition, it holds that

H(k)0 : ξt+k|k = αk +

k
i=1

ciet+i,

where et is weak noise, i.e., E [et ] = 0, E

e2t


= σ 2 and E [etet−i] =

0 for any i ≠ 0, and σ 2
k = Var


ξt|k


= σ 2k
i=1 c

2
i >

0. Thus ξt|k follows a weak linear MA (k − 1) model. Here, the
hypothesis implies that information in or prior to ξt|k is not useful
to forecast ξt+k|k linearly and that the autocorrelation function is
truncated. However, the hypothesis does not restrict the possibility
of nonlinear relationships in higher ordermoments at any horizon.
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So et still can be nonlinearly predictable at any horizon or can
display conditional dynamic heteroscedasticity.

To build asymptotic theory on sample autocorrelations and
variance ratios, we need to further restrict the dependence of
the innovation process et . For this, we impose mixing conditions
plus one assumption on the higher joint moments restricting the
form of a possible ARCH structure, using Assumption H∗ of Lo and
MacKinlay (1988) provided next.

Assumption 2.1. 1. For all t , E [et ] = 0 and E [etet−τ ] = 0 for any
τ ≠ 0.

2. {et} is φ-mixing with coefficients φ(j) of size r/(2r − 1) or is
α-mixing with coefficients α(j) of size r/(r − 1), where r > 1,
such that for all t and for any τ ≥ 0, there exists some δ > 0
for which E|etet−τ |2(r+δ) < ∆ < ∞.

3. limT→∞
1
T

T
t=1 E


e2t


= σ 2 < ∞.
4. For all t , any nonzero j and iwhere j ≠ i

E

e2t et−jet−i


= 0. (1)

Assumption 2.1 guarantees that the linear projection of ξt+k|k
given ξt|k, ξt−1|k, . . . is constant. Themixing conditions in Assump-
tion 2.1.2 can be replaced by a martingale difference assump-
tion stating that E [et |et−1, et−2, . . .] = 0 for all t . This martin-
gale assumption on et would imply that the process ξt|k is not
predictable beyond horizon k under H(k)0 , i.e., the conditional ex-
pectation of ξt+k|k given ξt|k, ξt−1|k, . . . is constant. Note that (1)
allows for deterministic changes in the variance and for ARCH ef-
fects. In general, this condition implies that the sample autocorre-
lation coefficients of et at different lags are asymptotically uncor-
related, despite the presence of heteroscedasticity. Based on con-
dition (1), Lo and MacKinlay (1988) propose robust estimates of
the asymptotic variance of autocorrelation coefficients that lead
to asymptotic normal feasible inference for variance ratio tests. If
we further impose the homoscedasticity of et , the asymptotic vari-
ance expressions simplify, as is the case when we strengthen the
dependence conditions on et to exact independence as in the next
assumption.

Assumption 2.2. et is an iid random variable with mean zero,
variance σ 2 and finite fourth moment.

When Assumption 2.2 holds, the process ξt|k is exactly (k − 1)-
dependent under H(k)0 , but it also imposes a linear conditional
expectation for ξt|k up to the forecasting horizon k. Thus,H(k)0 under
Assumption 2.2 is strictly stronger than

H
(k)
0 :


ξt|k

is a stationary (k − 1) -dependent process.

Nevertheless, any type of (possibly nonlinear) dependence is ruled
out beyond horizon k in both cases.

Tests for H(k)0 can be designed using autocorrelations at lags
beyond k − 1, but their asymptotic properties are affected by
the (k − 1)-dependence. In the remainder of this section, we
investigate the asymptotic properties of several tests under H(k)0

and H
(k)
0 , first for k = 1, and then for k > 1 using sample splitting.

In any case, we focus on testing for linear dependence based on the
autocorrelations.7

2.2. Variance ratio statistics when k = 1

The null hypothesis H(1)0 can characterize both the expectations
and the random walk hypotheses, referring either to the levels of

7 This linear approach may lose consistency against some nonlinear dependence
alternatives. But, many general tests focusing on martingale difference conditions
could be adapted to the present context similar to the way we describe for
correlation-based statistics [see, for example, Escanciano and Velasco (2006)].
increments of a given process. So, the traditional variance ratio
tools are useful to measure the deviations from these hypotheses.
Define the population variance ratio VR1(q) of the one-period
excess return ξt|1, exploiting the fact that the variance of the sum
of q consecutive excess returns should be q times larger than that
of ξt|1 under the null hypothesis H(1)0 ,

VR1(q) =

Var
q−1

i=0
ξt+i|1


qVar(ξt|1)

= 1 + 2
q−1
i=1


1 −

i
q


γ1(i), (2)

where q is a positive integer aggregation value and γ1(i) =

Cov(ξt|1, ξt+i|1)/Var(ξt|1) denotes the autocorrelation of excess
returns between time t and t + i. VR 1(q) should be equal to one as
long as the excess returns are not serially correlated. If the returns
are positively (negatively) correlated,VR1(q) should be larger (less)
than one.

Now define the corresponding sample variance ratio statistic as

VR1(q) =
σ 2
b|1(q)σ 2

a|1
, (3)

whereσ 2
b|1(q) = (qg1(q))−1T

t=q(ξt|1 + ξt−1|1 + · · · + ξt−q+1|1 −

qα1)
2 andσ 2

a|1 = σ 2
b|1(1). Here, T is sample size, g1(q) = (T − q +

1)(1−q/T ) corrects the bias in the variance estimatorσ 2
b|1(q)under

the null, andα1 = T−1T
t=1 ξt|1. Because the mean and variance

of the q consecutive returns are linear in the aggregation interval
q under the null hypothesis H(1)0 ,σ 2

b|1(q) is an unbiased estimate of
the variance of a single return. In this sense, the variance ratio test
on uncorrelated excess returns shares the essence of the random
walk hypothesis test, which exploits that the variance of random
walk increments must be a linear function of the time interval.

Based on Lo and MacKinlay’s (1988) analysis, a variance ratio
test for the expectations hypothesis can be easily developed so that

z1(q) =
√
T
VR1(q)− 1

 2(2q − 1)(q − 1)
3q

−
1
2

follows the standardnormal distribution asymptotically underH(1)0
andAssumption 2.2, and further t statistics can be developedunder
Assumption 2.1.

Note that economic theories for both hypotheses do not
explicitly guide the choice of q. In the long-horizon predictability
tests for the random walk of asset prices, the choice of large
values of q is motivated by the desire to detect the effect of
a highly persistent component in asset prices on the return
predictability and thus to improve the power of these tests.
However, in principle, q = 2 can be enough to test the expectations
hypothesis, but examining the serial dependence pattern across
different q can provide useful information for the identification of
an alternative hypothesis as discussed in Section 4. Regardless of
the objectives of the study, the choice of q in both tests involves
the use of overlapping observations as is explicit in the definition
of σ 2

b|1(q). However, as shown in detail below, the nature of the
dependence arising in this context is different from that induced
by subsampling when k > 1. One of our objectives in this paper is
to address this difference.

2.3. Variance ratio statistics when k > 1

The above approach can only be used for the case in which the
maturity or the forecasting interval exactly matches the sampling
time interval. However, it is not uncommon for researchers to use
data that are sampled more finely than the forecasting interval
or maturity for testing the predictability of excess returns. In this
section, we assume k > 1. That is, we are concerned with the
case for testing the lack of linear predictability beyond a forecasting
horizon k.
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To address this m-dependent data, as shown in the beginning
of this section, the original sample is first split into k subsamples.
The traditional variance ratio test is then used for each subsample
because they contain uncorrelated observations under the null.
We now describe several methods to aggregate the information
contained in all of the subsamples: the Wald method, tests based
on extreme values and Bonferroni bounds, and pooled tests.
Most of the methods that we propose have standard asymptotic
distributions under the null, but could have different behavior
under general alternatives. These variations would lead to specific
recommendations in favor of some particular methods over others
in applied work. To develop these recommendations we conduct
extensive Monte Carlo experiments in Section 5.

We begin with a general result for the variance estimates
constructed from individual subsamples, where

Vj|k(q) =
1

qgk(q)

T/k
t=q


ξk(t−1)+j|k + ξk(t−2)+j|k

+ · · · + ξk(t−q)+j|k − qαj|k
2

and αj|k = (k/T )
T/k

t=1 ξk(t−1)+j|k depends only on subsample
j, j = 1, . . . , k. The factor gk(q) = ((T/k)− q + 1) (1 − q/(T/k))
corrects the biases in the variance estimatorVj|k(q) caused by both
the use of overlapping q-period excess returns and the mismatch
between forecasting and sampling intervals.8 The unbiasedness
can be easily checked becausewe constructVj|k(q) from subsample
j, which contains only uncorrelated observations under the null
hypothesis in an analogous way to Eq. (3).

Lemma 2.1. Under H
(k)
0 , Vj|k(q), j = 1, . . . , k are consistent and

unbiased for σ 2
k for each positive integer q.

Note that it is possible to test the null hypothesis by only
employing information in a given subsample, while dropping the
other observations, using the individual variance ratio statistics:

VR(j)k (q) =

Vj|k(q)Vj|k(1)
, j = 1, . . . , k.

However, a single subsample contains only T/k observations,
which is a fraction of the original sample. Instead, our modified
approaches shown below increase the effective sample size by
k times and can yield important efficiency gains. For example, k
is 3 when monthly observations are used for testing the three-
month excess return predictability but k becomes 13whenweekly
observations are used.

To exploit simultaneously all VR(j)k (q) available in a given data
set, we consider the asymptotic joint distribution of

Uk(q) =

√
T/k

√
2(q − 1)(2q − 1)/3q

×

VR(1)k (q)− 1, . . . , VR(k)k (q)− 1
′

. (4)

Denote as δ(a,b)k (i, j) the asymptotic covariance of sample autocor-
relations at lags i and j across the different subsamples a and b,

δ
(a,b)
k (i, j) = ACov


(T/k)1/2γ̂ (a)k (i), (T/k)1/2γ̂ (b)k (j)


.

Lemma 2.2. Under H
(k)
0 ,

Uk(q)∼a N (0,Σk(q)) ,

8 For notational simplicity we assume that T/k is integer.
where the diagonal elements of Σk(q) > 0 are 1, and in general,
1 ≤ b ≤ a ≤ k,

Σk(q)[a,b] =
1
σ 4
k


q−1
i=1


1 −

i
q

2

δ
(a,b)
k (i, i)

+

q−1
i=2


1 −

i
q


1 −

i − 1
q



×


δ
(a,b)
k (i, i − 1)+ δ

(a,b)
k (i − 1, i)


,

with σ 2
k = Var(ξt|k) and

δ
(a,b)
k (i, i) = E


ξ̄0ξ̄a−bξ̄ikξ̄ik+a−b


+ E


ξ̄0ξ̄a−b−kξ̄ikξ̄ik+a−b−k


, i > 0;

δ
(a,b)
k (i, i − 1) = E


ξ̄0ξ̄a−bξ̄ikξ̄ik+a−b−k


, i > 1;

δ
(a,b)
k (i, i + 1) = E


ξ̄0ξ̄a−b−kξ̄ikξ̄ik+a−b


, i > 0; (5)

for ξ̄t = ξt|k − αk, and δ
(a,a)
k (i, j) = 0, i ≠ j; δ(a,b)k (i, j) = 0,

|i − j| > 1.

The correlation among different subsamples is reflected in the
terms depending on δ(a,b)k (i, j) for a ≠ b inΣk(q). However, if a =

b, δ(a,a)k (i, i) = E

ξ̄ 20

E

ξ̄ 2ik


= E

ξ̄ 20
2

= σ 4
k , but δ

(a,a)
k (i, j) = 0

for i ≠ j under H
(k)
0 so that Σk(q)[a,a] = 1, recovering the usual

result under independence, k = 1.
In general, for any a, b, and i > 1, the first element in δ(a,b)k

(i, i) factorizes under H
(k)
0 , i.e., E


ξ̄0ξ̄a−bξ̄ikξ̄ik+a−b


= E


ξ̄0ξ̄a−b


E

ξ̄ikξ̄ik+a−b


= E


ξ̄0ξ̄a−b

2
, but does not factorize when i = 1

because it is not possible to isolate pairs of independent random
variables in E


ξ̄0ξ̄a−bξ̄kξ̄k+a−b


. However, all other expectations in

Σk(q) factorize for all values of i indicated:

E

ξ̄0ξ̄a−b−kξ̄ikξ̄ik+a−b−k


= E


ξ̄0ξ̄a−b−k


E

ξ̄0ξ̄k−a+b


= E


ξ̄0ξ̄a−b−k

2
, i > 0;

δ
(a,b)
k (i, i − 1) = E


ξ̄0ξ̄a−b


E

ξ̄0ξ̄a−b−k


, i > 1;

δ
(a,b)
k (i, i + 1) = E


ξ̄0ξ̄a−b−k


E

ξ̄0ξ̄a−b


, i > 0,

so that the right hand side of the above three terms does not
depend on i, and the estimation ofΣk(q) is simplified under H

(k)
0 .

If we impose linearity, but allow for general dynamic het-
eroscedasticity, the basic results on the asymptotic distribution of
Uk hold, but Σk(q) is affected. In particular, under H(k)0 , condition
(1) implies that E


ξ̄ 2t ξ̄t−jξ̄t−i


= 0 for |j − i| ≥ k, j > k, and i > k,

leading to the following corollary.

Corollary 2.3. Under H(k)0 and Assumption 2.1, the conclusions
of Lemma 2.2 hold, but the diagonal elements of Σk(q) are not
necessarily equal to one.

The main difference with respect to the case of exact m-
dependence in Lemma 2.2 is that all of the expectations in
the terms δ(a,b)k (i, j) depend now on i and j and on which
particular subsamples a and b are involved in. Therefore, no general
factorizations are possible in this case due to the possible presence
of conditional heteroscedasticity effects. For instance, even if a =

b, E

ξ̄0ξ̄a−bξ̄ikξ̄ik+a−b


= E


ξ̄ 20 ξ̄

2
ik


≠ σ 4

k , because of possible

correlation between ξ̄ 20 and ξ̄ 2ik (for all i > 0), so that Σk(q) has
no longer elements equal to one in the main diagonal.

However, if we impose both linearity and conditional ho-
moscedasticity then the following corollary follows, further ex-
ploiting these factorization properties.
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Corollary 2.4. Under H(k)0 and Assumption 2.2, the conclusions
of Lemma 2.2 hold with, 1 ≤ b ≤ a ≤ k,

Σk(q)[a,b] =
1
σ 4
k


E

ξ̄0ξ̄a−b

2
+ E


ξ̄0ξ̄k−a+b

2
+

4(q − 2)
2q − 1

E

ξ̄0ξ̄a−b


E

ξ̄0ξ̄k−a+b


, (6)

where E

ξ̄0ξ̄s


= σ 2k−s

i=1 cici−s, 0 ≤ s < k, and E

ξ̄0ξ̄k


= 0.

Lemma 2.2 and its corollaries provide many alternative ways
to devise tests using the entire sample of size T . One approach is
to use a Wald type statistic, as proposed by Richardson and Smith
(1991) in a related context. The class of Wald statistics is defined
by

Wk(q; R) = (RUk(q))′

RΣk(q)R′

−1 RUk(q), (7)

where R is a full row-rank non-random r × k matrix. Wk(q; R)
is asymptotically distributed as a χ2

k variable under the null forΣk(q)→pΣk(q).9 Consistent estimates Σk(q) can be obtained by
sample analogs of the expectations in δ(a,b)k . The standard case is
when R = Ik, involving tests for the joint hypothesis of all individ-
ual variance ratios being equal to one. Taking R = (1/k, . . . , 1/k)
we can test whether the average variance ratio across subsamples
is equal to one (see the detailed discussion below). Setting r = 1,
we can also provide t-tests for each individual variance ratio.

A further approach to summarize the information of variance
ratios in subsamples can be based on the extreme statistics of
Uk(q),

Maxzk(q) = maxUk(q), Minzk(q) = minUk(q). (8)

Using the max and min statistics we can perform one-sided tests,
right and left tests, respectively, based on the normal asymptotic
critical values with a significance level α/k, invoking Bonferroni
inequality. Alternatively, one might wish to further exploit the
information on excess returns contained in the distribution of
subsample variance ratios, by looking at other summary statistics.
Based on the joint distribution of subsamples, for example,
either calendar or seasonal effects on excess returns can also be
examined.

Finally, we describe a pooled variance ratio statistic using the
estimatesσ 2

b|k(1) andσ 2
b|k(q),

σ 2
b|k(1) =

1
k

k
j=1

Vj|k(1) and σ 2
b|k(q) =

1
k

k
j=1

Vj|k(q),

where σ 2
b|k(q) are consistent and unbiased for σ 2

k under the null
hypothesis. Then, the pooled sample variance ratio of the k-period
excess returns is given by

VRk(q) =
σ 2
b|k(q)σ 2
b|k(1)

, (9)

whose asymptotic distribution is described in the next lemma.

9 Richardson and Smith constructed the covariance matrix of variance ratios for
various values of q when k = 1. In contrast, we construct the covariance matrix of
variance ratios in subsamples for a given q. Their aim was to improve the efficiency
of the tests based on predictive regressions by using aggregated observations,
which will induceMA errors in the transformed regressions. In that framework, the
original prediction errors are uncorrelated, so the variance–covariancematrix of the
OLS slope estimates with a different number of aggregated observations does not
depend on further unknown parameters. However, this does not need to be the case
in the presence of a MA(k − 1) structure due to the mismatch between maturities
and sampling time intervals.
Lemma 2.5. Under H
(k)
0 ,

√
T (VRk(q)− 1)

√
2(q − 1)(2q − 1)/3q

∼a N (0,Λk (q))

whereΛk (q) > 0 with

Λk (q) =
6q

σ 4
k (q − 1)(2q − 1)

k
a=1

k
b=1

q
i=1

q∧i+1
j=1∨i−1


1 −

i
q


×


1 −

j
q


δ
(a,b)
k (i, j) ,

for δ(a,b)k (i, j) given in Eq. (5). Then,

zk(q) = Λk (q)−
1
2

√
T
VRk(q)− 1


√
2(q − 1)(2q − 1)/3q

(10)

follows the standard normal distribution asymptotically.

From Lemma 2.5, the following corollary on the asymptotic
distribution of the pooled variance ratio of k-period excess returns
under linearity is an immediate consequence.

Corollary 2.6. Under H(k)0 and Assumption 2.1, the conclusions of
Lemma 2.5 hold.

The expression for Λk (q) simplifies under linearity and condi-
tional homoscedasticity as given in the next corollary.

Corollary 2.7. Under H(k)0 and Assumption 2.2, Λk (q) = 1 +

Ωk(q) > 0, where

Ωk(q) =
2
σ 4
k

k−1
i=1

k − i
k


E[ξ̄0ξ̄i]

2
+ E[ξ̄0ξ̄k−i]

2

+
4(q − 2)
(2q − 1)

E[ξ̄0ξ̄i]E[ξ̄0ξ̄k−i]


.

The term Ωk (q) appears only due to the correlation between
the different k subsamples. Obviously, this term appears neither
in the asymptotic distribution of the individual variance ratios nor
in the tests for the random walk hypothesis that are used in the
typical long-horizon predictability tests.

Finally, it is easy to show that the average Wald statistic
Wk(q; R0) with R0 = (1/k, . . . , 1/k) in (7) is asymptotically
equivalent to the square of the zk(q) pooled statistic in (10). Note
thatΛk (q) = (1/k)

k
a=1

k
b=1Σk(q)[a,b] and

√
T
VRk(q)− 1


=

√
T
σ 2

b|k(q)−σ 2
b|k(1)


/σ 2

b|k(1) =
√
T
σ 2

b|k(q)−σ 2
b|k(1)


/σ 2

k +

op (1). A similar expression holds for R0Uk (q), up to scale, so that
only the standardization changes between both statistics.

2.4. The Fama–French test and generalized variance ratios

We have considered variance ratio statistics for testing serial
dependence. We now present two other serial dependence test
statistics, the Fama and French (1988) t-statistics and the Box
and Pierce (1970) Q statistics, and show how to implement them
in the presence of m-dependent data. We discuss the asymptotic
properties of the Fama and French (1988) t-statistics in this
subsection and those of the Box–Pierce statistics in the next
subsection.

Fama and French (1988) regress the n-period future returns
on the n-period past returns to capture a slowly mean reverting
component in stock prices:

ξ̃
n,k
t+nk = αn,k + βn,kξ̃

n,k
t + un,k

t+nk, for positive integer n, (11)

where ξ̃ n,kt =
n−1

i=0 ξt−ik|k denotes the stock returns between t
and t − (n − 1)k. The implication of the null hypothesis tested
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here is βn,k = 0 for each n. The Fama–French test was designed
to test the random walk hypothesis of stock prices, i.e., k = 1
is assumed in the regression. However, this test can also be used
form-dependent data, with a modification that takes into account
the mismatch between the forecasting horizon interval and the
sampling interval. Oneway to implement the test form-dependent
data is to run the OLS regression while the standard errors of the
slopes are adjusted for the (nk−1) autocorrelations in the residuals
using the method of either Hansen and Hodrick (1980) or Newey
and West (1987).

Note that the slope coefficient for the n-period future returns
from this Fama–French regression can be transformed into a
particular variance ratio deviation if the length of the base period
changes. This fact can be easily shownby rewriting the definition of
the least squares estimate in Eq. (11) using the population variance
ratio deviation of the one-period excess return, VR1(q = 2n, q′

=

n), analogous to Eq. (2), while taking into account the change in the
base period and assuming k = 1,

βn,1 =
Cov(ξ n,1t ,ξ n,1t+n)

Var(ξ n,1t )
=

Var(ξ n,1t +ξ n,1t+n)

2Var(ξ n,1t )
− 1

= VR1(q = 2n, q′
= n)− 1, (12)

where we define the class of generalized variance ratios by

VR1(q, q′) =

Var
q−1

i=0
ξt+i|1


/q

Var


q′−1
i=0

ξt+i|1


/q′

. (13)

In Eq. (13) q′ is the length of the base period, q is the aggregation
value, and VR1(q, q′) is defined such that it is equal to one if the
excess returns are not serially correlated. When q′

= 1, we obtain
the usual variance ratio.

Then, analogous to Eq. (3), the corresponding sample variance
ratio can be defined by

VR1(q, q′) =
σ 2
b|1(q)σ 2
b|1(q′)

,

which leads to asymptotically equivalent tests of the Fama–French
regression,with potential differences in the calculation of standard
errors. Finally, we summarize the basic asymptotic properties of
the generalized ratio statistics for k = 1 in the next result, which
is a direct extension of Lo and MacKinlay’s (1988) results.

Lemma 2.8. Under H(1)0 and Assumption 2.2,

√
T (VR1(q, q′)− 1)∼a N


0,

2(q − q′)(2qq′
− 2q′2

+ 1)
3qq′


.

When q = 2q′ and q′
= n, the asymptotic variance of VR1(q, q′)

is (1 + 2n2)/3n, which increases with n. One important issue is
whether there is any potential advantage to choosing q′ > 1 in
terms of power. The problem is that, for a given q,σ 2

b|1(q
′) can also

change under the alternative. For example, suppose that the excess
returns only have a nonzero first order autocorrelation. Then, bothσ 2
b|1(q

′) andσ 2
b|1(q) incorporate this correlation for all q > q′ > 1,

i.e.,

σ 2
b|1(q)→p Var


ξt+i|k


+

2 (q − 1)
q

Cov

ξt|k, ξt+1|k


,

so that

VR1(q, q′)− 1→p
2

q − q′


q′q

γ1 (1) ,
and the probability limit of the corresponding t-statistic (scaled by
(q/T )1/2) is
2(q − q′)(2qq′

− 2q′2
+ 1)

3qq′

−1/2 2

q − q′


q′

γ1 (1) ,

which gets smaller in absolute value as q′ increases. For instance,
if q′

= 1, q = 2n, this limit is ((4n − 1) / (6 (2n − 1)))−1/2 γ1 (1) ,
which tends to (1/3)−1/2 γ1 (1) as n increases, while if q′

= n, q =

2n, the limit is

2n2

+ 1

/6
−1/2

γ1 (1), which is smaller for any
n > 1 and tends to zero as n increases. Our experiments suggest
that this analysis still holds for a wide range of cases in which
there are nonzero higher order correlations, but we do not pursue
a general result further.

The results in Lemma 2.8 can be easily extended to the cases of
k > 1 following the methods in Section 2.2. We do not follow this
line of research given the potential disadvantages of letting q′ > 1.

2.5. Autocorrelations and the Box–Pierce test

Variance-ratio statistics can be obtained as weighted averages
of sample autocorrelations from lag 1 up to lag q − 1, as in Eq.
(2). The sign of VRk(q), however, can be unclear when the null
hypothesis fails but true autocorrelations have different signs over
q. This implies that the autocorrelations of different sign can cancel
out when calculating variance ratio statistics over q. To alleviate
the problem that arises when there is no predominant sign in the
autocorrelation structure of returns, we can use statistics that do
not depend on the sign of γ̂k(i). One of the simplestways to achieve
this property is to use the Box and Pierce (1970) portmanteau
statistic,

Q (q) = T
q

i=1

γ̂ (i)2,

or the variant by Ljung and Box (1978), which aggregates squared
autocorrelations with changing weights to improve asymptotic χ2

approximations,

L (q) = T
q

i=1

T + 2
T − i

γ̂ (i)2.

Because the distribution of Q (q) and L (q) can be approximated
by a χ2

q variable under the null of iid returns, these statistics
lead to one-sided tests that are consistent against any deviation
from the null which implies nonzero autocorrelations up to lag
q. In fact, the Box–Pierce test is asymptotically equivalent to the
LagrangeMultiplier test for correlations up to order q in a Gaussian
environment [for example, see Godfrey (1978)].

However, in the presence of m-dependence, the Box–Pierce
type tests cannot be used directly to test the null hypothesis of
unpredictable excess returns. To resolve this issue, we propose the
same approach as that used for the variance ratio statistics, namely,
we decompose the original sample into k subsamples consisting
of uncorrelated data under the null and then explore different
aggregation methods based, for example, on the joint distribution
of individual subsample Box–Pierce statistics,

Q (a)
k (q) =

T
k

q
i=1

γ̂
(a)
k (i)2, a = 1, . . . , k, (14)

each of them being χ2
q asymptotically.

We then devise tests using the maximum of the individual
statistics in Eq. (14),

MaxQk(q) = max
a

Q (a)
k (q). (15)
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The null asymptotic distribution of eachQ (a)
k (q) is stillχ2

q , but these
statistics are no longer independent across subsamples under m-
dependence. Tests based on MaxQk(q) using Bonferroni adjusted
asymptotic critical values of individual Q (a)

k (q) will provide a
conservative testing procedure, but bootstrap methods can be
easily applied to exploit the joint distribution as discussed in
Section 3.

Alternatively, we can build pooled Box–Pierce statistics based
on the joint estimation of autocorrelations,

Qk (q) = T
q

i=1

γ̂k(i)2,

where

γ̂k(i) =
1
k

k
a=1

γ̂
(a)
k (i).

Here, the pooled autocorrelations γ̂k(i) are also asymptotically
normal, and a modified version of Qk (q) accounting for the
appropriate standardization of all γ̂k(i) is still asymptotically χ2

q
as described in next lemma.

Lemma 2.9. Under H(k)0 and Assumption 2.1 or H
(k)
0 , the asymptotic

distribution of the modified pooledQk (q) statistic isQk (q) = T γ̂
′

kΞk (q)−1 γ̂k ∼a χ
2
q (16)

where γ̂k =

γ̂k(1), . . . , γ̂k(q)

′ and the elements of Ξk (q) are

Ξ
(i,j)
k (q) =

1
k2

k
a=1

k
b=1

δ
(a,b)
k (i, j) , i, j = 1, . . . , q,

with δ(a,b)k (i, j) given in Eq. (5).

To apply this statistic to the cases where conditional het-
eroscedasticity is allowed, Ξ (i,j)

k can be estimated by plugging in
the estimates of the asymptotic covariances δ(a,b)k (i, j) of the sam-
ple autocorrelations.

2.6. Discussion

We have focused on applying our aggregation methods across
subsamples to three serial dependence tests. The same idea can
also be used for other tests such as regression and general
non-parametric tests. For example, we can employ our methods
to regression (11) or to regression-based predictability tests by
implementing theWald, maximum/minimum, or pooledmethods,
based on the different coefficient estimates, such as OLS, Campbell
and Yogo (2006) and Jansson and Moreira (2006).

Furthermore, one can adapt these methods to the sign and
signed rank test by Campbell and Dufour (1995) under m-
dependence in a similar way. Campbell and Dufour proposed con-
ditional independence tests with exact finite sample distribution
under the null. These are nonparametric tests based on signs and
ranks that replace observed data and residuals, being valid under
general forms of non-normality and conditional heteroscedastic-
ity. In the presence of m-dependent disturbances, these tests can
only be used directly on subsamples, leading to the usual aggrega-
tion problem.

From a related perspective, the variance ratio statistics using
the ranks of Wright (2000)10 can be especially useful in the

10 Wright provides several alternative variance ratio tests using the ranks and
signs of a time series. In principle, our methods can be applied to all of his tests.
For the sake of simplicity, we only discuss the application of rank-based variance
ratio tests.
presence of data with either outliers or important non-normality
features that can affect the precision of the asymptotic results or
even their validity if higher ordermoments are not finite. Let rj(ξt|k)
be the rank of ξt|k among all elements ξj|k, ξk+j|k, . . . , ξT−k+j|k in
subsample j. Then, a simple linear transformation of the ranks
rj(ξt|k) is defined by

rt =


rj(ξt|k)−

T/k + 1
2


(T/k − 1)(T/k + 1)

12

−1/2

,

where rt is standardized with sample mean 0 and variance 1.
The rank-based variance ratio statistic V r

j|k(q) = (qgk(q))−1T/k
t=q


rk(t−1)+j + · · · + rk(t−q)+j

2 in subsample j is obtained by
simply substituting rt for ξt|k inVj|k(q). Let

U r
k (q) =

√
T/k

√
2(q − 1)(2q − 1)/3q

V r
1|k(q)− 1, . . . ,V r

k|k(q)− 1
′
.

The denominator V r
j|k(1), corresponding to Vj|k(1) in Uk(q) in

Eq. (4), is omitted because it is equal to 1 by construction. Then,
the rank-based maximum, minimum, and median variance ratios
are calculated by

Maxzrk(q) = maxU r
k (q), Minzrk(q) = minU r

k (q),
Medzrk(q) = median U r

k (q).
(17)

Wenow relate our results to the long-horizon tests based on the
variance ratios. It is now well established that the finite-sample
distribution of variance ratios and autocorrelation statistics can
be quite different from the usual asymptotic approximations due
to overlap in the returns data, in particular with a small number
of non-overlapping asset returns. For example, Richardson and
Stock (1989) show that sample variance ratios are not consistent if
q/T approaches some constant and that asymptotic results based
on fixed q theory perform poorly in finite samples. Our sample
splitting methods would not solve this problem and should be
limited to cases in which q/(T/k) is reasonably small. To avoid
any confusion, we emphasize that the efficiency gains from our
methods are achieved by exploiting all subsamples for a given
value of q/(T/k), which can work well in testing the expectations
hypothesis with relatively small values of q.11 If there is concern
regarding the poor finite sample properties of the conventional
variance ratios bootstrap methods can alternatively be used to
alleviate those size distortions in finite samples. We show that a
parametric bootstrapmethod presented in the next section obtains
quite reasonable size properties even for longer return horizons in
a variety of situations.

We finally discuss some possible power disadvantages of
our sample splitting methods. If higher order dependence only
occurs at some specific lags, e.g., over lag k + 1, the tests
based on our methods might not detect this dependence. One
solution to this identification problem is to use sampling at longer
intervals such as k + 1, k + 2, etc., which renders subsamples
with independent observations under the null and spans wider
ranges of dependence. These alternative sample splitting schemes
still generate dependence between subsamples, which could be
accounted for using similar methods.

11 Richardson and Stock (1989) assume that asset prices follow a random walk so
that the analysis is limited to k = 1. In this case, increasing T using higher frequency
data would not solve the issue because q will also increase proportionally. See, for
example, Campbell et al. (1997, p. 79) for the discussion on thismatter. On the other
hand, our focus is on cases of k > 1, which is dictated, e.g., by maturity (but not a
research choice). So, the use of higher frequency data can obtain power gains by
exploiting information from increasing the number, k, of subsamples.



150 S. Moon, C. Velasco / Journal of Econometrics 173 (2013) 143–159
3. Bootstrap approximations

The asymptotic tests based on variance ratios are liable to have
important size distortions for several reasons. The distribution
of variance ratios is asymmetric because they are bounded by
zero from below. The use of large q relative to sample size T
can affect the finite sample properties of estimates of Ωk or Σk.
The maximum deviation tests based on the Bonferroni inequality
are very conservative in some circumstances. The finite sample
properties of Box–Pierce and regression-based tests can also be
poorly approximated by the asymptotic distribution in situations
with a small number of non-overlapping excess returns. Therefore,
it is worth pursuing better approximations of the actual joint
distribution of those statistics, which also permit a wider range of
tests in applications to be conducted.

We use bootstrap techniques to improve the finite sample
performance of those serial dependence tests that depend on
the joint distribution of subsample statistics and to provide an
approximation of the asymptotic distribution of any particular
continuous functional. One possibility in the present context is to
use the block bootstrap method by Künsch (1989), which allows
for the approximation of the asymptotic distribution of statistics
based on a weak dependent time series, such as m-dependent
series under the nonparametric null hypothesis H

(k)
0 . However,

we instead adopt the parametric bootstrap procedures based on
the null H(k)0 under Assumptions 2.1 and 2.2. This approach avoids
selecting the order of an approximating parametric model, such
as the autoregressive sieve bootstrap of Bühlmann (1997), because
the dependence horizon is known in our case.

To conserve space, we only provide a description of our boot-
strap procedure for the statistics that are continuous functionals
of the subsample variance ratios, VR(j)k , j = 1, . . . , k, but similar
ideas apply to pooled estimates or other statistics depending on
the autocovariances of subsamples.
1. Fit anMA (k−1)model with an intercept to the original sample

S = {ξ1|k, ξ2|k, . . . , ξT |k} and obtain residuals êt , t = 1, 2, . . . , T
setting the initial values to zero.

2. Obtain an independent resample of size 2T , {ẽ∗

1, ẽ
∗

2, . . . , ẽ
∗

2T }

from the empirical distribution of the centered residuals ẽt =

êt − ēT , where ēT = T−1T
t=1 êt .

3. Take the moving averages y∗
t of the resampled errors ẽ∗

t from
step 2 using the estimated parameter values in step 1 and
construct a bootstrap sample S∗

= {ξ ∗

1 , ξ
∗

2 , . . . , ξ
∗

T } =

{y∗

T+1, y
∗

T+2, . . . , y
∗

2T }.
4. Divide the bootstrap sample into k subsamples, S∗

1 =

{ξ ∗

1 , ξ
∗

k+1, . . . , ξ
∗

T−k+1}, . . . , S
∗

k = {ξ ∗

k , ξ
∗

2k, . . . , ξ
∗

T−k+k}. Then,

calculate variance ratios
√
T/k(VR(j)∗k (q)− 1), j = 1, . . . , k and

construct any test statistic of interest from these.
5. Repeat steps 2 to 4 B times.
6. Obtain estimates of the critical values for the one-sided and

two-sided tests based on the empirical distribution of the
corresponding bootstrap statistics.

These estimated critical values can be compared to the
test statistics obtained from the data. Note that this bootstrap
algorithm simulates the distribution of variance ratio statistics
under the null H(k)0 by imposing a MA (k − 1) structure on the
independent resampled residuals. In step 2, we obtain a sample of
size 2T to eliminate the influence of the initial values, which are
set to zero.

The next lemma formally justifies that our bootstrap method
can be applied to the statistics introduced in the previous section
when the parameter estimates of the invertible MA structure are
asymptotically equivalent to the maximum likelihood estimates,
following similar procedures to those in Bose (1990) andKreiss and
Franke (1992).
Lemma 3.1. Under H(k)0 and Assumption 2.2, and if the roots of the
MA (k − 1) polynomial with ck = 1 are outside the unit circle, c1 ≠ 0,
√
T/k(VR(j)∗k (q)−1), j = 1, . . . , k converges in distribution a.s. to the

same asymptotic distribution as
√
T/k(VR(j)k (q)− 1), j = 1, . . . , k.

Given that Vj|k(1) and Vj|k(q) have different limits for q > 1
under the alternative, the consistency of the bootstrap procedure
follows if the roots of the estimated MA (k − 1) polynomial are
chosen outside the unit circle. Then, the bootstrap distribution
converges to a well-defined limit and the estimated quantiles are
finite asymptotically.

The same bootstrap method as in Lemma 3.1 can be justified
for all tests described in Section 2 based on the sample
autocorrelations. These bootstrap procedures can be expected to
improve over the asymptotic χ2

k distribution of the Wald statistic,
Wk(q), and to closely approximate the asymptotic distribution of
Minzk(q) and the related max statistic, replacing the conservative
asymptotic critical values based on the Bonferroni inequality. The
bootstrap approximation for the finite sample distributions of the
minimum and maximum statistics should be able to capture the
induced skewness in extreme value distributions. This skewness
provides feasible and powerful methods by exploiting right (left)
hand side tests based on the maximum (minimum) of individual
variance ratios.

To account for the presence of conditional heteroscedasticity
in our bootstrap approximation as allowed by Assumption 2.1,
we first need to specify a parametric form for the conditional
variance of the innovations in the MA specification. For that, we
assume that the disturbances et follow a flexible GARCH(p1, p2)
parameterization,

et = εtσt (18)

with εt being iid (0, 1) and

σ 2
t = θ0 +

p1
i=1

θ1,ie2t−i +

p2
j=1

θ2,jσ
2
t−j. (19)

Note that et is a martingale difference sequence, while condition
(1) holds for symmetric GARCH processes. Then, we can adapt the
first three steps of the previous bootstrap procedure accordingly
under appropriate conditions on the stationarity of (19).

1. Fit an MA (k − 1)-GARCH(p1, p2) model by quasi maximum
likelihood with an intercept to the original sample S =

{ξ1|k, ξ2|k, . . . , ξT |k} and obtain (standardized) residuals ε̂t , t =

1, 2, . . . , T setting initial values to zero.
2. Obtain an independent resample of size 2T , {ε̃∗

1, ε̃
∗

2, . . . , ε̃
∗

2T },
from the empirical distribution of the centered residuals ε̃t =

ε̂t − ε̄T , where ε̄T = T−1T
t=1 ε̂t .

3a. Simulate a GARCH(p1, p2) series ẽ∗
t of size 2T with parameter

values from the estimates of step 1 and resampled errors ε̃∗
t

from step 2 as innovations.
3b. Compute the moving averages y∗

t of the simulated het-
eroscedastic errors ẽ∗

t from step 3a using the estimated pa-
rameter values in step 1 and construct a bootstrap sample
S∗

= {ξ ∗

1 , ξ
∗

2 , . . . , ξ
∗

T } = {y∗

T+1, y
∗

T+2, . . . , y
∗

2T }.

Then, the procedure continues as before in steps 4–6. The
justification of the bootstrap methods for the statistics of GARCH
processes under regularity conditions on θ and εt follows from
Hidalgo and Zaffaroni (2007) [see also Assumption A and the
discussion in Corradi and Iglesias (2008)], but we omit the details.

4. An application: uncovered interest parity

We now apply the econometric methods developed in the
previous sections to the tests of uncovered interest rate parity
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(UIP), that is, the expectations hypothesis in foreign exchange
markets. Under the assumptions of rational expectations and risk-
neutral preferences, UIP is defined by

Et [st+k] − st = it|k − i∗t|k, for each maturity k,

where Et [·] denotes the mathematical expectation given the
information set available at time t , st is the log of the spot exchange
rate, or the log of the home currency price of foreign currency at
time t , and it|k(i∗t|k) is the nominal interest rate on home (foreign)
deposits with a maturity of k periods. Assuming that covered
interest rate parity holds,

ft|k − st = it|k − i∗t|k, for each maturity k,

where ft|k is the log of the forward exchange rate, or the time t
home currency price of the foreign currency delivered at time t+k.
Then, UIP is equivalent to the unbiasedness hypothesis of forward
exchange rates defined by

Et [st+k] = ft|k, for each maturity k. (20)

In this sense, UIP implies that the foreign excess return between t
and t +k, st+k − ft|k, should be unpredictable using any variables in
the time t information set. As the definition of the foreign excess
return indicates, any predictability tests need to take into account
the (k − 1)-dependence of excess returns, which might motivate
the use of our sample splitting methods.

The alternative hypothesis we are interested in has the
following form:

Et [st+k] = ft|k − pt|k, for each maturity k, (21)

where pt|k is a deviation from UIP interpreted as a risk premium
or as an expectational error. In this paper, we mainly consider
these two alternatives because they have been widely used in
the literature.12 Furthermore, Moon and Velasco (2011) argue
that these two alternatives in the literature tend to generate the
opposite sign of serial dependence of excess returns, which can be
used to judge the performance of economic models. For example,
they show that the rational expectations risk premium models
generate negative serial dependence patterns, while the models of
expectational errors tend to generate positive serial dependence
patterns.

As a data-generating process, we use the typical monetary
model of exchange rates.13 In the model, the home money market
relationship is given by

lnMt = ln Pt + γy ln Yt − φkit|k, (22)

where M, P , and Y are the home money supply, the price level,
and the output, respectively. γy is the income elasticity of money
demand and φk is the interest semi-elasticity of money demand,
which varies with maturity k. We assume that a similar equation
holds in the foreign country. The corresponding foreign variables
are denoted by asterisks and the parameters of themoney demand
are the same in both countries. From (21), covered interest
parity, the home money market relationship (22) and its foreign
counterpart, we derive a setup for the determination of the
exchange rate:

st = bEt [st+k] + bpt|k + (1 − b)wt + (1 − b)ϖt , (23)

12 There are other explanations in the literature that are mainly related to small
sample problems such as the peso problem, learning, and statistical biases. The
variance ratio tests employed in the paper are robust to the statistical biases that
typically arise in the regression-based tests.
13 See, e.g., Engel andWest (2005) and Obstfeld and Rogoff (2002) for the rational
expectations models and Frankel and Froot (1990) for the expectational errors
models. See also the references therein.
where b =
φk

1+φk
is the discount factor,wt is the linear combination

of the fundamental variables, wt = lnMt − lnM∗
t − γy(ln Yt −

ln Y ∗
t ), and ϖt is the log of the real exchange rate defined by

ϖt = st + ln P∗
t − ln Pt . Eq. (23) implies that the model generates

spot rates of st , st+k, st+2k, . . .. Therefore, when k > 1, we can
obtain k populations that correspond to k subsamples in Section 2.
Assuming PPP holds, the ‘‘no-bubbles’’ solution to Eq. (23) is

st = (1 − b)
∞
i=0

biEt [wt+ik] + b
∞
i=0

biEt [pt+ik|k]. (24)

In this present value model, the spot exchange rate st is expressed
as the discounted sum of the current and expected future
fundamentals as well as deviations from UIP.

For the Monte Carlo simulations in the next section, we use
four different models. One model assumes UIP and the other three
specifications consider a deviation from UIP: one for the rational
expectations risk premium and the others for the expectational
errors. Although all of the models considered in this section
share the setup for the exchange rate (23) and the present value
relationship (24), they are different in terms of modeling the
deviation from UIP.

To generate st , we need to model the processes for wt and pt|k,
which is beyond the scope of the current paper. Instead,we present
reduced form expressions for those processes. We begin with the
process for fundamentals, wt , which is assumed to be identical in
all four models. We choose a random walk model forwt

14

wt = wt−1 + et , (25)

where et is iid(0, σ 2). Here, we assume that the process for wt
is formulated at, for example, weekly frequency; while adhering
to the UIP conditions, all of the models for the spot and forward
exchange rates are built at ‘‘k-week’’ frequency.

Assume UIP holds (pt|k = 0). Then, from Eqs. (24) and (25), we
obtain

st = wt .

Because Eqs. (20) and (25) imply ft|k = wt , the foreign excess
return between t and t + k is

st+k − ft|k =

k
j=1

et+i. (26)

We call this result Model 1 in our Monte Carlo simulations in the
next section.

We present a risk premium alternative in Model 2. The process
for the time varying risk premium between t and t + k is given by

pt|k = (1 − ϕk)p + ϕkpt−k|k + νt + · · · + νt−k+1, (27)

where 0 < ϕk < 1 and νt is iid(0, σ 2
ν ). The process for the risk

premium is modeled such that it conforms with a maturity k in
Eq. (21). Using Eqs. (24), (25) and (27), the expression for the spot
exchange rate is obtained as

st = wt +
b

1 − bϕk
pt|k, (28)

14 Several processes for fundamentals, wt , have been used in the literature,
although the particular use depends on the objective of the study. For example,
Tauchen (2001) uses a stationary AR(1) model, Engel and West (2005) consider
an integrated AR(1) model, and Baillie and Bollerslev (2000) assume a fads
model which is the sum of random walk and stationary AR(1) components.
Obviously, the size of the serial dependence tests used would be identical in those
fundamental processes. Furthermore, the relative power performance among the
aggregation methods introduced in the previous sections remains unchanged in
these fundamental processes. So, we choose the randomwalk model for simplicity.
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where the constant terms are omitted for simplicity. Here, the
spot exchange rate is expressed by the sum of a random walk
fundamental and a stationary risk premium, mirroring a well-
known fadsmodel for studying the long-run predictability of stock
returns in Fama and French (1988) and Poterba and Summers
(1988). The forward exchange rate is derived from Eqs. (21), (25),
(27) and (28)

ft|k = Et [st+k] + pt|k = wt +
1

1 − bϕk
pt|k.

Then, the foreign excess return between t and t + k under the risk
premium alternative is

st+k − ft|k =

k
i=1

et+i +
b

1 − bϕk

k
i=1

νt+i − pt|k, (29)

where the first two terms in the right-hand side of Eq. (29) are
rational forecasting errors: et is from the fundamental process
and νt is from the risk premium process. Eq. (29) can be
viewed as a reduced form expression for the excess return that
is derived from the time-varying risk premium models in the
literature. The expression shows that the forecasting errors will be
correlated with the future values of the risk premium, reflecting
a feedback mechanism that mainly determines the sign of the
autocorrelations of excess returns. As shown in Moon and Velasco
(2011), this model tends to generate a negative autocorrelation of
excess returns for a reasonable range of parameter values.15

We now present an expectational error alternative based on
Frankel and Froot (1990) that generates a positive autocorrelation
of excess returns. There are three types of agents. One type is
portfolio managers who participate in currency transactions. The
other two, fundamentalists and noise traders (chartists), merely
issue the forecasts of future exchange rates and do not participate
in the transactions. The portfolio managers’ expectation, which
equals the market expectation, is given by a weighted linear
combination of the forecasts of the other two agents

Em
t [st+k] = (1 − λ)Et [st+k] + λEn

t [st+k], (30)

where Et [·] is the expectation of fundamentalists whose expecta-
tion is rational, En

t [·] is the expectation of noise traders, and 0 ≤

λ ≤ 1. We assume that the noise traders’ expectations are regres-
sive toward a long-run equilibrium exchange rate, st ,

En
t [st+k] = (1 − g)st + gst , (31)

where st is the difference in the consumer price indexes between
domestic and foreign countries and 0 ≤ g < 1 is the adjustment
speed of st towards st .16 We denote the k-week real exchange rate
ϖt|k = st − st , which is assumed to follow a stationary process,

ϖt|k = (1 − ψk)ϖ + ψkϖt−k|k + ηt + · · · + ηt−k+1, (32)

where ϖ is the constant long-run level of the real exchange rate,
0 < ϕk < 1, and ηt is iid(0, σ 2

η ). Analogous to the risk premium
process, the process for the real exchange rate is modeled such

15 We restrict to 0 < ϕk < 1 following the convention in the literature.
However, as shown inMoon and Velasco (2011), the results would go through even
when ϕk = 0. Furthermore, ϕk = 1 will provide additional information for the
identification because it implies that the autocovariance of excess returns between
time t and t+q is not reverting toward zero as q increases and is always the same as
that between t and t+1. Furthermore,whenϕk < 0, the sign of the autocorrelations
oscillates, which can also be used for the identification.
16 Frankel and Froot (1987) presented several empirically-relevant formulations
for the noise traders’ expectations such as distributed lag expectations and adaptive
expectations. We choose one of them.
that it conforms with a maturity k. We also assume that there is
no market risk premium so that

ft|k = Em
t [st+k] = Et [st+k] + pet|k for each k, (33)

where pet|k = Em
t [st+k] − Et [st+k] is an expectational error due

to the presence of noise traders and represents a deviation from
UIP. Then, analogous to the risk premium model, we have a setup
for determining the exchange rate under the expectational error
alternative using
st = bEt [st+k] + bpet|k + (1 − b)wt + (1 − b)ϖt|k.

Note that the main difference from the previous setup under the
rational expectations risk premium is that the risk premium pt|k is
replaced by the expectational error. Using the definition of pet|k and
Eqs. (30)–(32), we can rewrite the above equation as

st = bEt [st+k] + bpet|k + (1 − b)wt , (34)

where b =
b(1−λ)
1−bλ and pet|k =

1−b(1+λg)
b(1−λ) ϖt|k. The discount factor, b,

is now related not only to the interest semi-elasticity of themoney
demand but also to the weight of the noise traders’ expectation, λ,
in the market expectation.

Assuming no-bubble solutions, the foreign excess return is
derived from Eqs. (25) and (30)–(34)

st+k − ft|k =

k
i=1

et+i +
1 − b(1 + λg)

1 − bλ− b(1 − λ)ψk

k
i=1

ηt+i − pet|k. (35)

For the sake of simplicity, we relegate the derivation of Eq. (35) to
Appendix B. We call this Model 3 in the simulations. Analogous to
the risk premium alternative, the forecasting errors are correlated
with the future values of pet|k, illustrating the feedbackmechanism.
However, the excess returns now exhibit positive autocorrelations
for a reasonable range of parameter values.17

The power pattern of the variance ratio test with q would be
quite similar between the risk premium and the expectational
errors alternatives because both alternatives follow stationary
AR(1) processes, although rejections mainly occur at the opposite
tail. That is, the power of the test will initially increase and
then decrease with q [see, e.g., Lo and MacKinlay (1989)]. For
comparison, we consider another alternative that generates a
different power pattern with q by modifying the noise traders’
expectation in Eq. (31) in the following way: En

t [st+k] = Et−k[st ].
Assuming PPP holds, then the foreign excess return between t and
t + k is

st+k − ft|k = (1 − bλ)
k

i=1

et+i + λ

k−1
i=0

et−i. (36)

Again, we relegate the derivation to Appendix B. We call this
specification Model 4. As shown in the Monte Carlo experiments,
Eq. (36) generates not only positive autocorrelations but also a
uniformly declining power of the serial dependence tests with q.

5. Monte Carlo simulations

WeconductMonte Carlo experiments to study the finite sample
properties of the test statistics for m-dependent data developed
in Section 2. We explore the properties of both asymptotic and
parametric bootstrap tests for each statistic. To improve the
numerical efficiency in the simulations of bootstrap asymptotic
size and power, we use the method of Giacomini et al. (2012),
where each simulation generates only one bootstrap resample and
a single critical value is estimated from all of the resamples.

17 Here, we confine our attention to the case where the real exchange rate is mean
reverting in the long run. However, allowing ψk = 1 would only strengthen the
result.
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5.1. Econometric frameworks for Monte Carlo simulations

Tomeasure the size and power of the test statistics, we use four
models presented in Section 4:

• Model 1 uses Eqs. (25) and (26).
• Model 2 uses Eqs. (25), (27) and (29).
• Model 3 uses Eqs. (25), (32) and (35).
• Model 4 uses Eqs. (25) and (36).

Model 1 generates excess returns under UIP, so the rejection
rates provide the empirical size of the test statistics. The remaining
models generate excess returns, which exhibit either negative or
positive serial dependence. The rejection rates from these models
measure the power of the tests. Model 2 generates a negative serial
dependence of excess returns, whileModel 3 andModel 4 generate
a positive serial dependence but with different power patterns
over the aggregation value q.

Our simulations use the following parameterization. For each of
the four models, we consider two specifications for et in Eq. (25).
One specifies that et follows an iid normal distribution with mean
zero. The other specification assumes that et follows the process in
Eqs. (18)–(19) with p1 = 1, p2 = 0 and θ1,1 = 0.5, which allows
for the conditional dependence in the fourth moment of et . The
sample size for each simulation is T = 33 ∗ 52, which corresponds
to the currently available sample size in weekly floating exchange
rates. k is set at 13 so that it represents one quarter. The quarterly
interest semi-elasticity of money demand φk is set at 20. We set
ϕk in Eq. (27) at 0.81, based on the median estimate of the first
order autocorrelations of the three-month forward premium in our
sample in the next section. We set ψk in Eq. (32) at 0.95, using
the median value of the first order autocorrelations of the U.S.
bilateral quarterly real exchange rates in our sample. The weight λ
is set at 0.3 and the speed of adjustment g is set at 0.25, following
the estimation results of Frankel and Froot (1987). The correlation
between et and νt is set at 0 inModel 2 and the correlation between
et and ηt is set at 0.5 in Model 3. We assume σ = σν = ση and
set so that the variance of the excess return broadly matches the
data in the next section. With these parameter values, the present
value model generates spot and forward exchange rates whose
time series properties, in terms of persistency and volatility, are
broadly consistent with the data.

5.2. Simulation results

Tables 1 and 2 report the results of the simulation experiments
from Model 1, while Tables 3–5 report the results from Models
2, 3, and 4, respectively. Table 1 reports the test results based
on the asymptotic critical values, while the other tables report
the results based on the critical values from the parametric
bootstrap empirical distribution constructed using the procedures
in Section 3. Panel A of each table reports the results from the
models in which et is iid, while Panel B reports those from the
models in which et is conditionally heteroscedastic. We conduct
statistical tests at conventional significance levels against both the
right-tail and left-tail alternatives but only report the results of the
tests at the 5% significance level to conserve space. The results in
the tables are the rejection rates obtained from10,000 simulations.
The range of aggregation values is set such that themaximumvalue
of q is 10 years relative to a base period of a quarter and includes
2, 4, 8, 12, 16, 20, 32, and 40 quarters. For comparison, we also set
n = q, the holding period horizon in the Fama–French regression,
except that q = 2 is replaced with n = 1.

5.2.1. Size
Panel A in Table 1 reports the rejection rates of the serial

dependence tests based on asymptotic critical values for the
iid excess returns. We use three types of serial dependence
tests: variance ratio, Box–Pierce portmanteau, and Fama–French
regression tests. For the variance ratio tests, we use several
aggregates based on the pooled method, Bonferroni bounds, and
the Wald method. Overall, most tests have a reasonable size at the
right-tail for the smaller aggregation value q, while the variance
ratio tests under-reject at the left-tail.

We begin with the test results at the right-tail. The empirical
sizes of the t-statistic of pooled variance ratios, zk(q), appear to
be reasonable at the-right tail over all q considered, although the
test slightly over-rejects for large q. For example, the rejection rates
associated with the aggregation values q = 2, 4, 8, 12, 16, 20, 32,
and 40 quarters, are 4, 5, 6, 7, 7, 7, 8, and 9% at the right-tail,
respectively. The size of the Bonferroni maximum variance ratio
test is close to the nominal value even for large q: its rejection rates
are approximately 5% for q = 32 and 40. The right-tail t-test from
the Fama–French regression also has a reasonable size over all q,
while the Box–Pierce pooled statistic tends to slightly over-reject
for large q.

However, the empirical sizes of the t-statistics of the pooled
variance ratios become distorted for large q at the left-tail. For
example, the rejection rates of the left-tail test are 2% and 1% for
q = 32 and q = 40 quarters, respectively. Similarly, the Bonferroni
minimum variance ratio test appears not to reject at all over most
values of q. As in Richardson and Stock (1989), one possible reason
for this size distortion can be that the variance ratios become
inconsistent for large q relative to the sample size T .

Panel B in Table 1 reports the rejection rates of the serial
dependence tests in the presence of conditional heteroscedasticity
in excess returns. All of the tests produce quite similar rejection
patterns to those in Panel A.

Table 2 reports the rejection rates of the serial dependence
tests based on the critical values obtained from the parametric
bootstrap method. In contrast to the asymptotic tests, there are no
size distortions at both tails even for large q. The empirical sizes of
all the tests are close to their nominal value at both tails and for
all q considered. For example, the rejections rates of the t statistics
of estimated pooled variance ratios are all 5% at both tails for each
aggregation value q. The results are almost identical even in the
presence of conditional heteroscedasticity.

From now on, we will focus on the results from the parametric
bootstrap method because it corrects the potential size distortions
of the serial dependence tests from both skewness and Bonferroni
inequality. Furthermore, we will mainly discuss the results from
the models with iid et because the tests produce similar size and
power properties for both specifications of et .18

5.2.2. Power
We now discuss the power properties of the serial dependence

tests. In general, the power of the tests is sensitive to the
parameterization of the simulated models. However, the two
important features that we are interested in, the sign of the
autocorrelations of the excess returns and the power pattern over
q, are not sensitive for a broad range of parameter values. Nor is
the relative performance over tests considered. Therefore, we do
not provide further sensitivity analysis on the power of the tests
with respect to changes in the parameter values.

18 We also conduct the rank-based variance ratio tests because their size and
power properties are not known for the m-dependent time series data, although
their size is exact in finite samples for the 0-dependence data as in Wright
(2000). We find that all three aggregates of rank-based variance ratios such as the
minimum, maximum, and median have the size close to the nominal value. These
results are available upon request.
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Table 1
The size of the tests based on asymptotic critical values: Model 1.

k = 13

q Variance ratio Box–Pierce Fama–French
Pooled Bonferroni max Bonferroni min Wald Pooled Regression

zk Maxzk Minzk Wk Qk tβn,k
5%-L 5%-R 5%-R 5%-L 5%-R 5%-R 5%-L 5%-R

Panel A. et is iid Normal

2 0.08 0.04 0.02 0.02 0.10 0.06 0.11 0.06
4 0.08 0.05 0.03 0.00 0.07 0.08 0.17 0.05
8 0.07 0.06 0.03 0.00 0.04 0.10 0.24 0.05
12 0.05 0.07 0.04 0.00 0.03 0.11 0.30 0.04
16 0.05 0.07 0.04 0.00 0.02 0.11 0.38 0.04
20 0.04 0.07 0.04 0.00 0.02 0.12 0.44 0.04
32 0.02 0.08 0.05 0.00 0.02 0.12 0.62 0.06
40 0.01 0.09 0.05 0.00 0.02 0.11 0.69 0.08

Panel B. et is conditional heteroscedastic

2 0.08 0.04 0.03 0.02 0.14 0.06 0.11 0.06
4 0.07 0.05 0.04 0.00 0.10 0.06 0.16 0.05
8 0.06 0.06 0.04 0.00 0.07 0.06 0.22 0.05
12 0.05 0.07 0.04 0.00 0.06 0.06 0.28 0.04
16 0.04 0.07 0.04 0.00 0.05 0.06 0.36 0.04
20 0.03 0.08 0.05 0.00 0.05 0.06 0.43 0.04
32 0.01 0.08 0.05 0.00 0.04 0.05 0.62 0.06
40 0.00 0.09 0.05 0.00 0.03 0.04 0.69 0.08
T 1716 1716 1716 1716 1716 1716 1716 1716

Notes: The notes presented here are applied to Tables 1–5. Each table displays rejection rates of the serial dependence tests at the 5% significant level, obtained from 10,000
simulations. The rejection rates range between 0 and 1 including bounds. Table 1 reports the results using the conventional asymptotic critical values, while Tables 2–5
report the results using bootstrap critical values based on the parametric bootstrap method. Panel A reports the results from the models in which et follows an iid Normal
process, while Panel B reports those in which et follows Eqs. (18)–(19) with p1 = 1, p2 = 0 and θ1,1 = 0.5. ‘5%-L’ represents the rejection rates of the 5% left-tail test and
‘5%-R’ represents those of the 5% right-tail test. k = 13 represents a maturity of 13 weeks (or one quarter). q is an aggregation value which represents a holding period of
quarters relative to a base period of one-quarter. T represents sample size of weekly observations.
The t statistic of pooled variance ratios, zk , is defined in (10); the t statistics of Bonferroni maximum/minimum variance ratios,Maxzk andMinzk , are defined in (8); theWald
variance ratio statistic, Wk , is defined in (7) with R = Ik; the Box–Pierce pooled statistic, Qk , is defined in (16); and the t statistic ofβn,k from the Fama–French regression
(11) is obtained calculating the Newey and West standard errors with n ∗ k − 1 lag lengths. We set n = q except that q = 2 is replaced with n = 1. In Tables 2–5, the t
statistics of the maximum/minimum variance ratios, Maxzk , and Minzk , are defined in (8); the Box–Pierce maximum statistic, MaxQk , is defined in (15). We slightly abuse
the notation for the t statistics of the maximum/minimum variance ratios, Maxzk and Minzk , to save space. We also define the t statistic of the median variance ratios by
Medzk(q) = median{Uk(q)} based on the ordered statistics of Uk(q) in (4).
Table 2
The size of the tests based on the parametric bootstrap method: Model 1.

k = 13

q Variance ratio Box–Pierce Fama–French
Pooled Median Max Min Wald Pooled Max Regression

zk Medzk Maxzk Minzk Wk Qk MaxQk tβn,k
5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-R 5%-R 5%-R 5%-L 5%-R

Panel A. et is iid Normal

2 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
8 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
12 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05
16 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05
20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.06
32 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.06
40 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05

Panel B. et is conditional heteroscedastic

2 0.05 0.05 0.06 0.05 0.06 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05
4 0.05 0.05 0.06 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05
8 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05
12 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.06 0.04 0.05 0.05 0.05 0.05
16 0.06 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05
20 0.05 0.05 0.05 0.05 0.06 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.04
32 0.05 0.05 0.05 0.05 0.06 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.04
40 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05
T 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716
Negative serial dependence
Table 3 reports the results of the serial dependence tests from

Model 2. The rejections mainly occur at the left-tail and the
simulated variance ratios are less than 1, suggesting that the excess
returns generated fromModel 2 exhibit negative autocorrelations.
Furthermore, the tests produce a hump-shapedpower pattern over
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Table 3
The power of the tests based on the parametric bootstrap method: Model 2.

k = 13

q Variance ratio Box–Pierce Fama–French
Pooled Median Max Min Wald Pooled Max Regression

zk Medzk Maxzk Minzk Wk Qk MaxQk tβn,k
5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-R 5%-R 5%-R 5%-L 5%-R

Panel A. et is iid Normal

2 0.29 0.00 0.29 0.00 0.27 0.00 0.26 0.00 0.03 0.28 0.19 0.29 0.00
4 0.45 0.00 0.44 0.00 0.43 0.00 0.43 0.00 0.02 0.27 0.19 0.45 0.00
8 0.60 0.00 0.60 0.00 0.59 0.00 0.58 0.00 0.01 0.23 0.16 0.40 0.00
12 0.67 0.00 0.67 0.00 0.66 0.00 0.66 0.00 0.01 0.20 0.15 0.28 0.00
16 0.70 0.00 0.71 0.00 0.71 0.00 0.69 0.00 0.00 0.19 0.13 0.19 0.00
20 0.71 0.00 0.70 0.00 0.71 0.00 0.70 0.00 0.00 0.17 0.13 0.14 0.00
32 0.64 0.00 0.64 0.00 0.65 0.00 0.62 0.00 0.00 0.17 0.12 0.06 0.01
40 0.58 0.00 0.58 0.00 0.59 0.00 0.57 0.00 0.00 0.16 0.12 0.03 0.01

Panel B. et is conditional heteroscedastic

2 0.29 0.00 0.26 0.00 0.26 0.00 0.23 0.00 0.02 0.25 0.16 0.28 0.00
4 0.42 0.00 0.40 0.00 0.40 0.00 0.38 0.00 0.01 0.23 0.15 0.44 0.00
8 0.59 0.00 0.56 0.00 0.56 0.00 0.55 0.00 0.01 0.19 0.13 0.40 0.00
12 0.67 0.00 0.65 0.00 0.65 0.00 0.62 0.00 0.00 0.17 0.12 0.30 0.00
16 0.69 0.00 0.66 0.00 0.67 0.00 0.64 0.00 0.00 0.16 0.11 0.20 0.00
20 0.69 0.00 0.66 0.00 0.66 0.00 0.63 0.00 0.00 0.16 0.11 0.15 0.00
32 0.63 0.00 0.61 0.00 0.61 0.00 0.57 0.00 0.00 0.14 0.11 0.05 0.01
40 0.58 0.00 0.56 0.00 0.56 0.00 0.53 0.00 0.00 0.14 0.11 0.03 0.01
T 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716
q: the rejection rates initially increase and then decrease with q.
For example, the rejection rates of a pooled variance ratio test
associated with the aggregation values q = 2, 4, 8, 12, 16, 20, 32,
and 40 quarters, are 30, 44, 58, 67, 70, 70, 65, and 60% at
the left-tail, respectively. The presence of the strongly persistent
component (the risk premium) in the exchange rates generated
from Model 2 explains this non-monotonic power pattern of the
variance ratio tests consistent with Lo and MacKinlay (1989), who
show that a mean reverting component in asset prices generates
this nonmonotone power pattern.

We compare the power of three serial dependence tests.
The variance ratio tests, except for the Wald method, are more
powerful than the Box–Pierce and Fama–French regression tests
in that the power of the former is greater than those of the latter
for each q. Furthermore, the maximum power of the former is
much greater than the latter. For example, the largest rejection
rate of the variance ratio tests over q is approximately 70%, while
those of the Box–Pierce portmanteau and Fama–French t-tests are
approximately 29% and 45%, respectively. The variance ratio tests
based on the pooled, median, maximum, and minimum methods
have similar power properties in terms of rejection rates and
power patterns, while the Wald method performs much worse,
with much less power for each aggregation value q. For example,
the rejection rates of the Wald variance test associated with the
aggregation values are all under 3%.

Positive serial dependence
Table 4 reports the results from Model 3. Here, the rejections

mainly occur at the right-tail and the simulated variance ratios
are greater than one, suggesting that the excess returns generated
from Model 3 display positive autocorrelations. Furthermore, the
power of the tests initially increases and then decreases with
q. This non-monotonic power pattern is produced because the
expectational error is persistent in Model 3, like the risk premium
in Model 2.

Similar to Model 2, the variance ratio tests, except for the Wald
method, are more powerful than the Box–Pierce and Fama–French
regression tests. For example, themaximum power of the variance
ratio tests is approximately 47%, while those of the Box–Pierce
portmanteau and Fama–French t-tests are approximately 18% and
36%, respectively. Again, the variance ratio tests based on the
pooled, median, maximum, and minimum methods have similar
power properties.

Table 5 reports the results from Model 4 which also generates
the positive autocorrelations of excess returns but a different
power pattern from Model 3. All of the serial dependence tests
reject the null most strongly when q = 2 and then their power
uniformly decreases with q. For example, the rejection rates of the
pooled variance ratio test associated with the aggregation values
are 100, 87, 50, 34, 26, 22, 14, and 13% at the right-tail. These results
suggest that not only the sign of serial dependence but also the
power pattern over q can be used to identify a particular economic
alternative.

In contrast to Model 2 and Model 3, the Box–Pierce tests are
now more powerful than the variance ratio and Fama–French
regression tests. Furthermore, the power of the former is
decreasing relatively more slowly over q. For example, the
rejection rates of the Box–Pierce maximum statistic, MaxQk,
associated with the aggregation values are 99, 99, 92, 84, 77,
71, 60, and 55% at the right-tail, while the rejection rate of the
Fama–French test is already approximately 10% for q = 4.

6. Tests for the expectations hypothesis in foreign exchange
markets

In this section,weuse our serial dependence tests for testing the
predictability of three-month foreign excess returns from January
1975 to December 2007 using 1716 weekly observations.19 The
log foreign excess returns st+k − ft|k are measured over a holding
period of k = 13 weeks and annualized by (st+k − ft|k) ∗ 5200/k.
Our sample includes weekly spot prices of the U.S. dollar against
the German mark, the British pound, and the Japanese yen as well
as three-month prices (forward exchange rates) of the U.S. dollar.

19 Wednesday’s closing price is selected to form our sample. If the following
Wednesday is missing, then Thursday’s price is used (or Tuesday’s if Thursday’s is
missing).
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Table 4
The power of the tests based on the parametric bootstrap method: Model 3.

k = 13

q Variance ratio Box–Pierce Fama–French
Pooled Median Max Min Wald Pooled Max Regression

zk Medzk Maxzk Minzk Wk Qk MaxQk tβn,k
5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-R 5%-R 5%-R 5%-L 5%-R

Panel A. et is iid Normal

2 0.01 0.28 0.01 0.28 0.01 0.25 0.01 0.25 0.09 0.10 0.15 0.01 0.26
4 0.01 0.37 0.01 0.37 0.01 0.34 0.01 0.36 0.09 0.10 0.16 0.01 0.36
8 0.01 0.45 0.01 0.45 0.01 0.42 0.01 0.45 0.12 0.10 0.18 0.01 0.33
12 0.01 0.47 0.01 0.47 0.01 0.43 0.01 0.47 0.16 0.09 0.17 0.01 0.26
16 0.01 0.47 0.01 0.47 0.01 0.43 0.01 0.47 0.21 0.08 0.16 0.02 0.21
20 0.01 0.46 0.01 0.47 0.01 0.43 0.01 0.47 0.22 0.07 0.15 0.02 0.16
32 0.01 0.43 0.01 0.43 0.01 0.40 0.01 0.44 0.23 0.05 0.13 0.04 0.11
40 0.01 0.41 0.01 0.41 0.01 0.38 0.01 0.42 0.23 0.04 0.12 0.07 0.10

Panel B. et is conditional heteroscedastic

2 0.01 0.26 0.01 0.26 0.01 0.22 0.01 0.25 0.11 0.10 0.15 0.01 0.24
4 0.01 0.34 0.01 0.34 0.01 0.30 0.01 0.33 0.10 0.14 0.16 0.01 0.34
8 0.01 0.41 0.01 0.42 0.01 0.37 0.01 0.42 0.11 0.15 0.16 0.01 0.32
12 0.01 0.44 0.01 0.44 0.01 0.39 0.01 0.44 0.12 0.14 0.16 0.02 0.25
16 0.01 0.44 0.01 0.44 0.01 0.40 0.01 0.44 0.14 0.13 0.15 0.02 0.19
20 0.01 0.44 0.01 0.43 0.01 0.39 0.01 0.44 0.13 0.12 0.14 0.03 0.14
32 0.01 0.41 0.01 0.41 0.01 0.37 0.01 0.42 0.15 0.10 0.12 0.04 0.11
40 0.01 0.40 0.01 0.40 0.01 0.35 0.01 0.40 0.16 0.09 0.11 0.07 0.10
T 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716
Table 5
The power of the tests based on the parametric bootstrap method: Model 4.

k = 13

q Variance ratio Box–Pierce Fama–French
Pooled Median Max Min Wald Pooled Max Regression

zk Medzk Maxzk Minzk Wk Qk MaxQk tβn,k
5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-L 5%-R 5%-R 5%-R 5%-R 5%-L 5%-R

Panel A. et is iid Normal

2 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.14 1.00 0.99 0.00 1.00
4 0.00 0.91 0.00 0.91 0.00 0.87 0.00 0.92 0.04 0.99 0.99 0.02 0.10
8 0.00 0.63 0.00 0.63 0.00 0.57 0.00 0.66 0.01 0.85 0.92 0.04 0.06
12 0.00 0.49 0.00 0.48 0.00 0.43 0.00 0.51 0.02 0.61 0.84 0.04 0.06
16 0.00 0.39 0.00 0.39 0.00 0.34 0.00 0.42 0.02 0.40 0.77 0.04 0.06
20 0.00 0.34 0.00 0.33 0.01 0.29 0.00 0.36 0.03 0.26 0.71 0.04 0.06
32 0.01 0.24 0.01 0.24 0.01 0.20 0.00 0.26 0.03 0.10 0.60 0.06 0.06
40 0.01 0.21 0.01 0.21 0.01 0.18 0.00 0.23 0.04 0.07 0.55 0.05 0.05

Panel B. et is conditional heteroscedastic

2 0.00 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.13 0.99 0.98 0.00 1.00
4 0.00 0.91 0.00 0.90 0.00 0.84 0.00 0.91 0.03 0.98 0.95 0.01 0.15
8 0.00 0.65 0.00 0.62 0.00 0.54 0.00 0.66 0.01 0.89 0.86 0.04 0.07
12 0.00 0.48 0.00 0.46 0.00 0.39 0.00 0.50 0.01 0.76 0.79 0.04 0.05
16 0.00 0.39 0.00 0.38 0.00 0.31 0.00 0.42 0.01 0.62 0.72 0.04 0.05
20 0.00 0.33 0.00 0.32 0.01 0.27 0.00 0.35 0.01 0.48 0.68 0.05 0.05
32 0.01 0.24 0.00 0.24 0.01 0.20 0.00 0.26 0.01 0.26 0.57 0.05 0.05
40 0.01 0.22 0.01 0.21 0.01 0.18 0.00 0.23 0.02 0.19 0.53 0.05 0.05
T 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716 1716
The data are simultaneously collected from London close bid and
ask prices and obtained from Global Insight. The mid prices are
used for the empirical study. These are major currencies in foreign
exchange markets and have been widely used for testing UIP, the
expectations hypothesis in foreign exchange markets.

Table 6 reports the p-values of the test statistics obtained
from the parametric empirical bootstrap distributions. The table
also reports the pooled variance ratios, VRk(q), defined in
Eq. (9).20 Overall, the expectations hypothesis in the foreign

20 The variance ratios are slightly different among the aggregation methods. For
brevity, we only report the pooled variance ratios.
exchange markets is rejected for the three-month excess returns,
confirming the previous empirical evidence on the predictability of
foreign excess returns. In addition, the patterns of variance ratios
over the aggregation values suggest that the foreign excess returns
exhibit positive autocorrelations.

The variance ratio tests reject the expectations hypothesis at
the 5% level against the right-tail alternative up to the aggregation
values q = 12 to 16 quarters relative to a three-month base period.
Furthermore, the p-values initially decrease and then increase or
they tend to be almost zero up to a certain q and then start
to increase. For example, the right-tail p-values of the minimum
variance ratio test associated with aggregation values q = 2, 4, 8,
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Table 6
Predictability of three-month foreign excess returns: p-values.

q VRk Variance ratio Box–Pierce Fama–French
Pooled Median Max Min Pooled Max tβn,k
zk Medzk Maxzk Minzk Qk MaxQk

Panel A. German mark excess returns: k = 13

2 1.11 0.06 0.03 0.17 0.02 0.21 0.41 0.07
4 1.35 0.02 0.01 0.05 0.00 0.12 0.14 0.03
8 1.73 0.01 0.00 0.03 0.00 0.37 0.15 0.36
12 1.88 0.02 0.01 0.04 0.00 0.61 0.31 0.52
16 1.91 0.04 0.01 0.08 0.00 0.55 0.19 0.75
20 1.96 0.05 0.02 0.10 0.01 0.67 0.37 0.68
32 1.33 0.24 0.19 0.43 0.08 0.70 0.65 1.00
40 1.10 0.34 0.31 0.58 0.12 0.71 0.65 0.43

Panel B. British pound excess returns: k = 13

2 1.11 0.08 0.06 0.06 0.13 0.25 0.13 0.10
4 1.22 0.11 0.07 0.12 0.05 0.58 0.06 0.22
8 1.36 0.12 0.10 0.09 0.09 0.48 0.03 0.34
12 1.49 0.11 0.08 0.07 0.08 0.62 0.05 0.70
16 1.50 0.14 0.10 0.10 0.11 0.60 0.06 0.82
20 1.31 0.24 0.20 0.19 0.19 0.37 0.01 0.87
32 0.79 0.50 0.52 0.53 0.52 0.36 0.02 0.86
40 0.62 0.57 0.64 0.65 0.62 0.41 0.02 0.24

Panel C. Japanese yen excess returns: k = 13

2 1.17 0.01 0.01 0.03 0.00 0.06 0.08 0.01
4 1.31 0.04 0.03 0.02 0.02 0.00 0.06 0.19
8 1.51 0.06 0.03 0.04 0.03 0.01 0.17 0.58
12 1.55 0.10 0.06 0.08 0.05 0.03 0.48 0.77
16 1.42 0.18 0.14 0.17 0.12 0.01 0.30 0.57
20 1.24 0.28 0.25 0.30 0.20 0.02 0.12 0.33
32 1.13 0.34 0.32 0.39 0.26 0.60 0.17 0.55
40 1.33 0.26 0.24 0.29 0.18 0.39 0.26 0.40
T 1716 1716 1716 1716 1716 1716 1716 1716

Notes: This table displays the right tail p-values of the tests obtained from the parametric empirical bootstrap distributions. VRk denotes the estimated pooled variance ratios
defined in Eq. (9). See also Notes in Table 1.
12, 16, 20, 32, and 40 quarters are 2, 0, 0, 0, 0, 1, 8, and 12% for the
three-month German mark excess return against the U.S. dollar.

As predicted from our Monte Carlo simulations, the Fama–
French regression test is not able to reject the null for most values
of q. On the other hand, the Box–Pierce pooled and maximum Q
statistics reject the null for the British pound and Japanese yen
excess returns. The p-values of these statistics tend to decrease
and then to increase over q. These results further confirm the
conclusions from the variance ratio tests.

7. Concluding remarks

This paper investigates both the asymptotic and the finite
sample properties of the serial dependence tests for m-dependent
data.We propose a general econometric framework that first splits
the original sample into m + 1 subsamples and then aggregates
information across them. These aggregation methods include the
pooled, median, maximum, minimum, and Wald methods. Our
Monte Carlo simulations show that all of these methods except for
the Wald perform similarly in terms of size and power.

Using these methods, we conduct tests for the expectations
hypothesis in foreign exchange markets and confirm the empirical
evidence from previous studies. In addition, we show that the
serial dependence tests further provide information regarding
the rejections of the null hypothesis. Evidence on positive serial
dependence of foreign excess returns supports an expectational
error alternative.
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Appendix A. Proofs

Proof of Lemma 2.2. The central limit theorem for Uk (q) follows
by the Cramer–Wold device and by a standard central limit
for m-dependent processes, e.g. Diananda (1955), since linear
combinations of the cross products involved in autocovariances
for different subsamples are also finite dependent for fixed lags.
For the asymptotic variance calculation, consider VR(a)k (q) = 1 +

2
q−1

i=1


1 −

i
q


γ̃
(a)
k (i)/σ 2

k with γ̃ (a)k (i) being the lag i sample

autocovariance of ξ̄t = ξt|k − αk in subsample awhich centers ξt|k
around the true mean αk. Then, both VR(a)k (q)− 1 and VR(a)k (q)− 1
have the same asymptotic distribution since γ̃ (a)k (0)→p σ

2
k for all

a = 1, . . . , k and α̂k = αk + Op

T−1/2


under the null. Therefore,

from direct calculation from the definition of VR(a)k (q)− 1, it holds
under the null that, for 1 ≤ b ≤ a ≤ k,

2(q − 1)(2q − 1)σ 4
k

12q
Σk(q)[a,b]

=

q−1
i=1


1 −

i
q

2

δ
(a,b)
k (i, i)+

q−1
i=1


j≠i


1 −

i
q



×


1 −

j
q


δ
(a,b)
k (i, j) , (37)

where δ(a,b)k (i, j) is the asymptotic covariance between γ̃ (a)k (i) and
γ̃
(b)
k (j), i, j > 0, normalized by (T/k)1/2, given by (5) for j =
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i ± 1, while δ(a,b)k (i, j) = 0 for |j − i| > 1 and a ≠ b because
in this case the collection


ξ̄tk, ξ̄rk+a−b, ξ̄(t+i)k, ξ̄(t+j)k+a−b


always

contains one (zero mean) component independent of the other
three ones for any t, r = 1, . . . , T/k, and a, b = 1, . . . , k. Similarly
δ
(a,a)
k (i, j) = 0 for i ≠ j, because


ξ̄tk, ξ̄rk, ξ̄(t+i)k, ξ̄(t+j)k


always

contains independent individual ξ̄t . �

Proof of Corollary 2.3. It follows as Lemma 2.2 using Theorem 3
in Lo and MacKinlay (1988) to exploit condition (1) for obtaining
the asymptotic variance of autocovariancesΣk(q). �

Proof of Corollary 2.4. Under H(k)0 and Assumption 2.2, using the
iid assumption on the innovations of theMA (k − 1)model,

E

ξ̄t ξ̄t+a−bξ̄t+ikξ̄t+ik+a−b


= E


ξ̄t ξ̄t+a−b


E

ξ̄t+ikξ̄t+ik+a−b


= E


ξ̄0ξ̄a−b

2
E

ξ̄t ξ̄t+a−b−kξ̄t+ikξ̄t+a−b−k+ik


= E


ξ̄t ξ̄t+a−b−k


× E


ξ̄t+ikξ̄t+a−b−k+ik


= E


ξ̄0ξ̄k−a+b

2
E

ξ̄t ξ̄t+a−b−kξ̄t+ikξ̄t+ik+a−b


= E


ξ̄t ξ̄t+a−b−k


E

ξ̄t ξ̄t+a−b


= E


ξ̄0ξ̄k−a+b


E

ξ̄0ξ̄a−b


for i ≥ 1, while for i ≥ 2,

E

ξ̄t ξ̄t+a−bξ̄t+ikξ̄t+ik+a−b−k


= E


ξ̄t ξ̄t+a−b


E

ξ̄t+ikξ̄t+ik+a−b−k


= E


ξ̄0ξ̄a−b


E

ξ̄0ξ̄k−a+b


,

by (k − 1)-dependence, where the pairwise expectations of ξ̄t do
not depend on i by stationarity. Note that for i = 1, the first
expectation can be calculated as

E

ξ̄t ξ̄t+a−bξ̄t+kξ̄t+k+a−b


= E


ξ̄t ξ̄t+a−b


E

ξ̄t+kξ̄t+k+a−b


+ E


ξ̄t ξ̄t+k+a−b


E

ξ̄t+a−bξ̄t+k


+ E


ξ̄t ξ̄t+k


E

ξ̄t+a−bξ̄t+k+a−b


+ κ


ξ̄t , ξ̄t+a−b, ξ̄t+k, ξ̄t+k+a−b


,

where κ indicates joint cumulant. Now E[ξ̄t ξ̄t+a−b]E[ξ̄t+kξ̄t+k+a−b]

= E

ξ̄0ξ̄a−b

2
, but E


ξ̄t ξ̄t+k+a−b


= E


ξ̄t ξ̄t+k


= 0, so the second

and third terms are zero. Finally the joint cumulant is also zero
because it can be written as a (weighted) sum of joint cumulants
of the serially independent innovations et . Note that all indexes of
et cannot be the same because ξ̄t and ξ̄t+k+a−b are independent.

A similar analysis can be done for a < b, so that δ(a,b)k

(i, i − 1) = δ
(b,a)
k (j, j + 1) , i > 1, j > 0, only depends on |a − b|.

Then, the result follows by simple algebra noting that (37) is
equal to

δ
(a,b)
k (i, i)

q−1
i=1


1 −

i
q

2

+ 2δ(a,b)k (i, i − 1)

×

q−1
i=2


1 −

i
q


1 −

i − 1
q


,

because δ(a,b)k does not depend on i, q2
q−1

i=1


1 −

i
q

2
= (q − 1)

q (2q − 1) /6 for q > 1, and q2
q−1

i=2


1 −

i
q

 
1 −

i−1
q


=

(q − 1) q (2q − 4) /6 for q > 2. Finally, for s > 0,

E

ξ̄0ξ̄s

2
=

k
i=1

k
j=1

cicjE

ei−kes+j−k


= σ 2

k−s
i=1

cici−s,

since the expectation is only different from zero for j = i − s,
and the sum is zero when k − s < 1, i.e. s ≥ k. The fact that
Σk(q) is positive definite follows from stationarity and the non
perfect correlation among subsamples underm-dependence. �

Proof of Lemma 2.5. It follows from direct calculation from
Lemma 2.2, where i = a − b > 0, and noting that the asymptotic
variance of

√
T VRk(q) is equal to that of 1

k

k
j=1

√
T VR(j)k (q)because

it is not affected by standardization using different, but consistent,
estimates of σ 2

k . Then, Λk (q) > 0 follows from Σk(q) > 0, cf.
Lemma 2.2, and Bartlett’s weights (k − i) /k in the definition of
Λk (q). �

Proof of Corollary 2.6. It follows from Lemma 2.5 and Corol-
lary 2.3. �

Proof of Corollary 2.7. It follows from Lemma 2.5 and Corol-
lary 2.4. �

Proof of Lemma 2.9. The proof is similar to that of Lemmas 2.2
and 2.5, noting that γ̂k is asymptotically normal and using directly
the variance structure of γ̂ (a)k (i) to deriveΞ (i,j)

k (q). �

Proof of Lemma 3.1. We show that the bootstrap versions of VR
statistics have the same asymptotic distribution conditional on
the sample, as the original VR statistics. Since the bootstrapped
residuals ẽ∗

t are iid conditional on the sample, and the estimates
ĉi of ci are a.s. consistent under H(k)0 and Assumption 2.2, see Yao
and Brockwell (2006), the bootstrapped ξ ∗

t follow an MA (k − 1)
model (up to a negligible initial condition, see e.g. Eq. (2.1) in Bose
(1990)). Then, to apply a central limit theorem to VR(j)∗k (q), j =

1, . . . , k, or to any finite collection of subsample autocovariances
built with this particular (k − 1)-dependent series, we only need
to check the moment condition E∗


ξ ∗4
t


= O (1) a.s., where E∗

denotes expectation conditional on the sample. For that we note
that E∗


ξ ∗
t

4
= E∗


y∗

T+t

4, where

ξ ∗

t = y∗

T+t =

k
i=1

ĉiẽ∗

T+t+i−k,

and ĉk = 1 for identification. Then, we have that

E∗

ξ ∗4
t


=

k
i1=1

· · ·

k
i4=1

ĉi1 · · · ĉi4E
∗

ẽ∗

T+t+i1−k · · · ẽ∗

T+t+i4−k


,

and E∗


ẽ∗

T+t+i1−k · · · ẽ∗

T+t+i4−k


≤ E∗


ẽ∗
t

4
= T−1T

t=1 ẽ
4
t ,

with ẽt = êt − ēT . Finally,

êt = ξt −

t−1
i=1

β̂iξt−i,

where β̂i are the coefficients of β̂ (L) = 1/(1 + ĉk−1L + · · · +

ĉ1Lk−1). For large T , |β̂i| ≤ Cδik a.s. for some 0 < δk < 1. Then,
T−1T

t=1


ẽt
4

→ E

e4t

< ∞ a.s., and the moment condi-

tion holds. The covariance structure of subsample bootstrap au-
tocovariances could be checked using the same methods, see,
e.g., Lemma 3.1. in Bose (1990), and the lemma follows. �

Appendix B. Derivations for Section 4

Derivation of Eq. (35).
The ‘‘no-bubbles’’ solution to Eq. (34) is

st = (1 − b)
∞
i=0

b
i
Etwt+i∗k + b

∞
i=0

b
i
Etpet+i∗k|k. (38)
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Using Eqs. (25), (32) and (38), the expression for the spot exchange
rate is obtained

st = wt +
b

1 − bψk
pet|k. (39)

The forward exchange rate is derived from Eqs. (25), (30)–(33) and
(39)

ft|k = wt +


bψk

1 − bψk


pet|k + pet|k, (40)

where pet|k = −(
λb(ψk−1)
1−bψk

)pet|k−λgϖt . Finally, we derive the foreign
excess return in (35) by combining (39) with (40). �

Derivation of Eq. (36).
Assuming that PPP holds and En

t [st+k] = Et−k[st ], we have a
setup for st ,

st = bEt [st+k] + bpet|k + (1 − b)wt , (41)

where pet|k = Em
t [st+k] − Et [st+k] = −λ(Et [st+k] − Et−k[st ]). By

taking conditional expectations on the information set at t − k in
both sides of Eq. (41) and solving forward, we have

Et−k[st ] = (1 − b)
∞
i=0

b
i
Et−kwt+i∗k. (42)

From (25) and (42), we have Et−k[st ] = wt−k. Inserting this into
(41), we have

st = (1 − bλ)wt + bλwt−k. (43)

Here, st is a weighted average of wt and wt−k where the weight is
determined by λ. And the forward exchange rate is

ft|k = Em
t [st+k] = (1 − λ)wt + λwt−k. (44)

Finally, we derive the foreign excess return in (36) by using (43)
and (44). �
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