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Abstract 
We propose a new method of testing stochastic dominance that improves on existing tests 
based on the standard bootstrap or subsampling. The method admits prospects involving infinite 
as well as finite dimensional unknown parameters, so that the variables are allowed to be 
residuals from nonparametric and semiparametric models. The proposed bootstrap tests have 
asymptotic sizes that are less than or equal to the nominal level uniformly over probabilities in 
the null hypothesis under regularity conditions. This paper also characterizes the set of 
probabilities that the asymptotic size is exactly equal to the nominal level uniformly. As our 
simulation results show, these characteristics of our tests lead to an improved power property in 
general. The improvement stems from the design of the bootstrap test whose limiting behavior 
mimics the discontinuity of the original test’s limiting distribution. 
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1 Introduction

There has been a growth of interest in testing stochastic dominance relations among vari-

ables such as investment strategies and income distributions. The ordering by stochastic

dominance covers a large class of utility functions and hence is more useful in general than

the notions of partial orderings that are specific to a certain class of utility functions. Mc-

Fadden (1986), Klecan, McFadden and McFadden (1991), Kaur, Prakasa Rao, and Singh

(1994), Anderson (1996) and Davidson and Duclos (1997, 2000) are among the early works

that considered testing stochastic dominance. Barret and Donald (2003) proposed a con-

sistent bootstrap test, for the special case of independent prospects, and showed that it

has an asymptotically exact size on the least favorable points in the null hypothesis. Lin-

ton, Massoumi, and Whang (2005) (LMW hereafter) suggested a subsampling method that

has asymptotically exact size on the boundary points in the null hypothesis and applies

to variables that are mutually dependent and contain unknown finite-dimensional parame-

ters. Recent works in this area also include, e.g., Horváth, Kokoszka, and Zitikis (2006) and

Bennett (2007).

This paper has three main contributions. First, we propose a new bootstrap test and show

that it is asymptotically similar over a much wider set of probabilities than the bootstrap test

of Barret and Donald (2003). For example, in the case of first order stochastic dominance,

the bootstrap test has an asymptotic size exactly equal to the nominal level as long as the

two distribution functions coincide on a set of a positive measure. This is a significant

improvement over the bootstrap test of Barret and Donald (2003) that has an asymptotic

size equal to the nominal level only when the two distribution functions coincide almost

everywhere. Hence as our simulation studies demonstrate, our bootstrap test has improved

power properties.

The basic method of this paper is to introduce estimation of what we call the "contact

set". In the case of first order stochastic dominance, the contact set is the subset of the

domain on which the two distribution functions coincide. The use of the estimated contact

set is similar to the general moment selection procedure in Chernozhukov, Hong ,and Tamer

(2007) and Andrews and Soares (2007) except that the object here is infinite dimensional. See

Hansen (2005) for a similar suggestion in testing predictive abilities among a finite number of

forecasting models and Bugni (2008) for a related bootstrap procedure in partially identified

moment inequality models.

Second, the bootstrap test is asymptotically valid uniformly over the probabilities in the

null hypothesis under certain regularity conditions. Unlike nonparametric or semiparamet-

ric tests that are based on the equality of functions, the convergence of test statistics of
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Kolmogorov-Smirnov type or Cramér-von Mises type is not uniform over the probabilities

under the null hypothesis. The asymptotic non-uniformity arises in many situations, such as

moment inequalities (Moon and Schorfheide (2007), Chernozhukov, Hong, and Tamer (2007),

Andrews and Guggenberger (2006), Fan and Park (2007)) and constructing confidence sets of

the coefficient of the autoregressive processes (Mikusheva (2007)). The non-uniformity raises

concerns about the validity of asymptotic approximations in the tests or estimators. Despite

the fact that the test statistic has a discontinuous limit behavior, the bootstrap test that this

paper proposes is uniformly asymptotically valid under the null hypothesis. The result is

related to the suggestion by Andrews and Soares (2007) who proposed a method to construct

uniformly valid confidence sets under a model defined by finite moment inequalities.

The third contribution of this paper’s proposal is that it accommodates the situation

where the object of interest depends on unknown parameters finite dimensional or infinite

dimensional. As we explain in the main text, this accommodation is useful when one attempts

to "explain" the observed stochastic dominance relationship through covariates. The paper’s

framework is quite flexible enough to encompass various semiparametric models.

We perform Monte Carlo simulations that compare three methods: the bootstrap based

on the least favorable configuration, subsampling method, and the bootstrap proposed by

this paper. The results verify the superior performance of our method.

It is also worth noting that in the appendix, we present a uniform continuous mapping

theorem and a result on bootstrap uniform Donsker classes. These tools are very general,

and can be useful in other contexts of methodological developments.

In Section 2, we define the null hypothesis of stochastic dominance and introduce nota-

tions. In Section 3, we suggest test statistics and develop asymptotic theory both under the

null hypothesis and local alternatives. Section 4 is devoted to the bootstrap procedure, ex-

plaining the method of obtaining bootstrap test statistics and establishing their asymptotic

properties. In Section 5, we describe Monte Carlo simulation studies and discuss results from

them. Section 6 concludes. All the technical proofs are relegated to the appendix.

2 Stochastic Dominance

2.1 The Null Hypothesis

Let {X0,X1} be a pair of continuous outcome variables that may, for example, represent
different points in time or different regions. Let Fk(x) be the distribution function of the
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k-th random variable Xk, k = 0, 1. Let D
(1)
k (x) ≡ Fk(x) and for each subsequent s,

D
(s)
k (x) ≡

Z x

−∞
D
(s−1)
k (t)dt.

Then we say that X0 stochastically dominates X1 at order s if D(s)
0 (x) ≤ D

(s)
1 (x) for all x.

This is equivalent to an ordering of expected utility over a certain class of utility functions

Us, see LMW.
The main focus of this paper is on whether a designated outcome variable X0 stochasti-

cally dominates X1. Let D
(s)
01 (x) ≡ D

(s)
0 (x) −D

(s)
1 (x). The null hypothesis of main interest

takes the following form:

H0 : D
(s)
01 (x) ≤ 0 for all x ∈ X , vs. H1 : D

(s)
01 (x) > 0 for some x ∈ X , (1)

where X denotes a (possibly unbounded) set contained in the union of the supports ofX1 and

X0. The null hypothesis represents the stochastic dominance of X0 over X1. The alternative

hypothesis corresponds to no such incidence.

The null hypothesis involves the sign of a function. It is convenient to formulate it in

terms of a scalar quantity that represents this. In particular, this paper focuses on a one-sided

Cramér-von Mises type functional

cs ≡
Z
X
max

n
D
(s)
01 (x), 0

o2
w(x)dx,

where w is a nonnegative integrable weighting function. The weighting function can be

chosen appropriately depending on the interest of the researcher. For instance, suppose that

X0 and X1 indicate household income for individuals in two different cohorts and the object

of main interest is to see if X0 stochastically dominates X1 for individuals with income

below the median μ of the whole population. In this situation, one may consider using

w(x) = 1{x ≤ μ}. Using this weighting function instead of w(x) = 1 generally increases

the power of the test against alternatives such that the stochastic dominance fails for X

restricted to below μ. Then the null hypothesis can be checked by looking at whether cs = 0

or cs > 0.

An alternative way of formulating the problem is through a one-sided Kolmogorov-

Smirnov type functional:

ds ≡ sup
x∈X

D
(s)
01 (x)w(x),

and check whether ds ≤ 0 or ds > 0. Obviously when ds ≤ 0, it follows that cs = 0. On the
contrary, when cs = 0, D

(s)
01 (x) ≤ 0, w(x)dx-a.e. Therefore, if D

(s)
0 and D

(s)
1 are continuous
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functions and w(x)dx is absolutely continuous with respect to the Lebesgue measure, the

statements ds ≤ 0 and cs = 0 are equivalent. For brevity, we do not pursue a formal

development of the one-sided Kolmogorov-Smirnov functional or other functionals in this

paper.

This paper’s framework allows for the case where Xk depends on unknown parameters.

Generically we let Xk(θ, τ) be specified as

Xk(θ, τ) = ϕk(W ; θ, τ), k = 0, 1, (2)

where W is a random vector in RdW and ϕk(·; θ, τ) is a real-valued function known up to
the parameter (θ, τ) ∈ Θ × T . Here we assume that Θ is contained in a finite-dimensional

Euclidean space and T is an infinite-dimensional space. Hence the specification Xk(θ, τ)

allows for many semiparametric models. Throughout this paper, we assume that θ and τ are

identified and can be consistently estimated, so that we use Xk(θ̂, τ̂) eventually in the test

statistic. For example, the variable Xk may be the residual from the partially parametric

regression Xk(θ0, τ 0) = Yk − Z>1kθ0 − τ 0(Z2k) or the single index framework Xk(θ0, τ 0) =

Yk − τ 0(Z
>
1kθ0). In the example of Xk(θ0, τ 0) = Yk − τ 0(Z

>
1kθ0), we take W = (Y, Z) and

ϕk(w; θ, τ) = yk − τ(z>k θ), w = (y, z).

2.2 Test Statistics and Asymptotic Theory

In this section, we specify the characteristics of the data generating process that define the

scope of this paper. Let BΘ×T (δ) ≡ {(θ, τ) ∈ Θ × T : ||θ − θ0|| + ||τ − τ 0||∞ < δ}. The
notations || · ||, || · ||P,2 and || · ||∞ denote the Euclidean norm, the L2(P )-norm and the sup
norm, respectively. We introduce a bounded weight function q(x) (see Assumption 3(iii))

and define

hx(ϕ) ≡
(x− ϕ)s−11{ϕ ≤ x}q(x)

(s− 1)! . (3)

The functions hx(ϕ) play a significant role here as they constitute the index space for the

empirical processes later. (See the discussions below (5).) Let N(ε,T , || · ||∞) denote the
ε-covering number of T with respect to || · ||∞, i.e. the smallest number of ε-balls that are
needed to cover the space T (e.g., van der Vaart and Wellner (1996)). The conditions in

Assumptions 1 and 2 below are concerned with the data generating process ofW and the map

ϕk. Let P be the collection of all the potential distributions of W that satisfy Assumptions

1-3 below.

Assumption 1 : (i) {Wi}Ni=1 is a random sample.

(ii) logN(ε,T , || · ||∞) ≤ Cε−d for some d ∈ (0, 1].
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(iii) For some δ > 0, supP∈PEP [sup(θ,τ)∈BΘ×T (δ)|Xki(θ, τ)|2((s−1)∨1)+δ] <∞, k = 0, 1.
(iv) For some δ > 0, there exists a functional Γk,P (x)[θ − θ0, τ − τ 0] of (θ − θ0, τ − τ 0),

(θ, τ) ∈ BΘ×T (δ), such that

|EP [hx(Xki(θ, τ))]−EP [hx(Xki(θ0, τ 0))]− Γk,P (x)[θ − θ0, τ − τ 0]|
≤ C1||θ − θ0||2 + C2||τ − τ 0||2∞, k = 0, 1,

with constants C1 and C2 that do not depend on P .

The entropy condition for T in (ii) is satisfied by many classes of functions. For example,
when T is a Hölder class of smoothness α with the common domain of τ(·) ∈ T that is

convex, and bounded in the dT -dim Euclidean space with dT /α ∈ (0, 1] (e.g. Corollary 2.7.1
in van der Vaart and Wellner (1996)), the entropy condition holds. In this case, we can

take d = dT /α. Condition (iii) is a moment condition with local uniform boundedness. The

moment condition is widely used in the semiparametric literature. In the example of single-

index models where Yk = τ 0(Z
>
1kθ0)+ εk, we can write ϕk(w; θ, τ) = τ 0(z

>
1kθ0)− τ(z>1kθ)+ εk.

If τ is uniformly bounded in the neighborhood of τ0 in || · ||∞, the moment condition is
immediately satisfied when supP∈P EP [|εi|2((s−1)∨1)+δ] <∞.We may check this condition for

other semiparametric specifications in a similar manner.

Condition (iv) requires pathwise differentiability of the functional
R
hx(Xk(θ, τ))dP in

(θ, τ) ∈ BΘ×T (δ). Suppose that Xki(θ, τ) = ϕk(Wi; θ, τ). When s ≥ 2, hx(ϕ) is Lipschitz

in ϕ with the coefficient bounded by C|x − ϕ|s−2q(x). Hence, Condition (iv) follows if the
moment condition in (iii) is satisfied, and

¯̄
ϕk(w; θ, τ)− ϕk(w; θ0, τ 0)− Γϕk,P (w)[θ − θ0, τ − τ 0]

¯̄
≤ C1||θ − θ0||2 + C2||τ − τ 0||2∞,

where Γϕk,P (w)[θ− θ0, τ − τ 0] is a measurable function linear in θ− θ0 and τ − τ 0. Indeed, in

this case, we can take

Γk,P (x)[θ − θ0, τ − τ 0] = E
£
Dhx(ϕk(W ; θ0, τ 0))Γ

ϕ
k,P (W )[θ − θ0, τ − τ 0]

¤
q(x)/(s− 1)!

where Dhx is the first-order derivative of hx.When s = 1, the lower level conditions for (iv)

can be obtained using the specification of ϕ(w; θ, τ). For example, suppose that ϕk(W ; τ , θ) =

Yk− τ(Z>1kθ). Define B(τ , δ) = {τ ∈ T : ||τ − τ 0||∞ ≤ δ} and B(θ0, δ) = {θ ∈ Θ : ||θ− θ0|| ≤
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δ}. Assume that each τ is twice continuously differentiable and that

supτ1∈B(τ,δ)E[supθ∈B(θ0,δ)|D
jτ 1(Z

>
1kθ)|2||Z1k||2] <∞, j = 0, 1, 2,

where Djτ denotes the j—th order derivative of τ . Furthermore, the conditional density

f(·|Z1k) of Yk given Z1k is assumed to exist and to be second order continuously differentiable
with bounded derivatives. Then, Condition (iv) is satisfied. To see this, first observe that

E[τ(Z>1kθ)− τ 0(Z
>
1kθ0)]

2

≤ 2E
£
supθ∈B(θ0,δ)|Dτ(Z>1kθ)|2||Z1k||2

¤
||θ − θ0||2 + 2E

£
τ(Z>1kθ0)− τ 0(Z

>
1kθ0)

¤2
+o(||θ − θ0||2 + ||τ − τ 0||2∞)

= O(||θ − θ0||2 + ||τ − τ 0||2∞).

Now, by applying the above bound,

P{Yk − τ(Z>1kθ) ≤ x|Z1k}− P{Yk − τ 0(Z
>
1kθ0) ≤ x|Z1k}

= f(x+ τ 0(Z
>
1kθ0)|Z1k)

£
τ(Z>1kθ)− τ 0(Z

>
1kθ) + τ 0(Z

>
1kθ)− τ 0(Z

>
1kθ0)

¤
+O(||θ − θ0||2 + ||τ − τ 0||2∞)

= f(x+ τ 0(Z
>
1kθ0)|Z1k)

£
τ(Z>1kθ)− τ 0(Z

>
1kθ) +Dτ 0(Z

>
1kθ0)Z

>
1k(θ − θ0)

¤
+O(||θ − θ0||2 + ||τ − τ 0||2∞).

Hence, we can take

Γk,P (x)[θ − θ0, τ − τ 0]

= E
£
f(x+ τ 0(Z

>
1kθ0)|Z1k)

£
τ(Z>1kθ)− τ 0(Z

>
1kθ) +Dτ 0(Z

>
1kθ0)Z

>
1k(θ − θ0)

¤¤
q(x).

The computation of the pathwise derivative can be performed similarly in many semipara-

metric models.

Assumption 2 : (i) X0i(θ0, τ 0) and X1i(θ0, τ 0) are continuous random variables.

(ii) Condition (A) below holds when s = 1, and Condition (B), when s > 1.

(A) There exist δ, C > 0 and a subvector W1 of W such that: (a) the conditional density of

W given W1 is bounded uniformly over (θ, τ) ∈ BΘ×T (δ) and over P ∈ P, (b) for each (θ, τ)
and (θ0, τ 0) ∈ BΘ×T (δ), ϕk(W ; θ, τ)− ϕk(W ; θ

0, τ 0) is measurable with respect to the σ-field
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of W1, and (c) for each (θ1, τ 1) ∈ BΘ×T (δ) and for each ε > 0,

sup
P∈P

sup
w1

EP

"
sup

(θ2,τ2)∈BΘ×T (ε)
|ϕk(W ; θ1, τ 1)− ϕk(W ; θ2, τ 2)|2 |W1 = w1

#
≤ Cε2s2 (4)

for some s2 ∈ (dλ/2, 1] with λ = 2× 1{s = 1}+ 1{s > 1} and d in Assumption 1(ii), where

the supremum over w1 runs in the support of W1.

(B) There exist δ, C > 0 such that Condition (c) above is satisfied with the conditional

expectation replaced by the unconditional one.

Assumption 2(ii) contains two different conditions that are suited to each case of s = 1

or s > 1. This different treatment is due to the nature of the function hx(ϕ) = (x −
ϕ)s−11{ϕ ≤ x}q(x)/(s−1)! that is discontinuous in ϕ when s = 1 and continuous in ϕ when
s > 1. Condition (A) can be viewed as a generalization of the set up of LMW. Condition

(A)(a) is analogous to Assumption 1(iii) of LMW. Condition (A)(b) is satisfied by many

semiparametric models. For example, in the case of a partially parametric specification:

Xk(θ0, τ 0) = Yk − Z>1kθ0 − τ 0(Z2k), we take W = (Y, Z1, Z2) and W1 = (Z1, Z2). In the

case of single index restrictions: Xk(θ0, τ 0) = Yk − τ 0(Z
>
k θ0), W = (Y, Z) and W1 = Z.

The condition in (4) requires the function ϕk(W ; θ, τ) to be (conditionally) locally uniformly

L2(P )-continuous in (θ, τ) ∈ BΘ×T (δ) uniformly over P ∈ P. When ϕk(W ; θ1, τ 1) is smooth

in (θ1, τ 1), the condition holds with s2 = 1. However, when ϕk(W ; θ, τ) is discontinuous in

(θ, τ), the condition may hold with s2 smaller than 1. Sufficient conditions and discussions

can be found in Chen, Linton, and van Keilegom (2003). We can weaken this condition to

the unconditional version when we consider only the case s > 1.

We now turn to the test statistics. Let F̄kN(x, θ, τ) ≡ 1
N

PN
i=1 1 {Xki(θ, τ) ≤ x} and

D̄
(s)
01 (x, θ, τ) ≡ D̄

(s)
0 (x, θ, τ)− D̄

(s)
1 (x, θ, τ) for s ≥ 1,

where D̄(1)
k (x, θ, τ) ≡ F̄kN(x, θ, τ) and D̄

(s)
k (x, θ, τ) is defined through the following recursive

relation:

D̄
(s)
k (x, θ, τ) =

Z x

−∞
D̄
(s−1)
k (t, θ, τ)dt for s ≥ 2. (5)

The numerical integration in (5) can be cumbersome in practice. Integrating by parts, we

have an alternative form

D̄
(s)
k (x, θ, τ) =

1

N(s− 1)!

NX
i=1

(x−Xki(θ, τ))
s−1 1{Xki(θ, τ) ≤ x}.
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Since D̄(s)
k and D(s)

k are obtained by applying a linear operator to F̄kN and Fk, the estimated

function D̄
(s)
k is an unbiased estimator for D(s)

k . From now on, we suppress the superscripts

(s) from the notations so that we write D̄k and Dk for D̄
(s)
k and D(s)

k . Similarly we write D01

and D̄01 instead of D
(s)
01 and D̄

(s)
01 .

The test statistics we consider are based on the weighted empirical analogues of cs,

namely,

TN ≡
Z
X
max

n
q(x)
√
ND̄01(x), 0

o2
w(x)dx,

where D̄01(x) ≡ D̄01(x, θ̂, τ̂). Regarding θ̂ and τ̂ and the weight function q, we assume the

following.

Assumption 3 : (i) For each ε > 0, supP∈PP{||θ̂ − θ0|| + ||τ̂ − τ 0||∞ > ε} = o(1) and

supP∈P P {τ̂ ∈ T }→ 1 as N →∞.

(ii) For each ε > 0, k = 0, 1,

sup
P∈P

P

(
sup
x∈X

¯̄̄̄
¯√NΓk,P (x)[θ̂ − θ0, τ̂ − τ 0]−

1√
N

NX
i=1

ψx,k(Wi; θ0, τ 0)

¯̄̄̄
¯ > ε

)
→ 0, (6)

where ψx,k(·) satisfies that there exist η, δ, C > 0 such that for all x ∈ X ,EP

£
ψx,k(Wi; θ0, τ 0)

¤
=

0,

sup
P∈P

EP

h
sup(θ,τ)∈BΘ×T (δ)supx∈X |ψx,k(W ; θ, τ)|2+η

i
<∞.

(iii) supx∈X
¡
1 + |x|(s−1)∨(1+δ)

¢
q(x) < ∞, for some δ > 0 and for q, nonnegative, first order

continuously differentiable function on X with a bounded derivative and the support of q(x)

contains X .
(iv) There exist a bounded function V on X and constants C, δ > 0 and s1 ∈ (d/2, 1] with
d in Assumption 1(ii) such that for each (x1, θ1, τ 1) ∈ X ×BΘ×T and for each ε > 0,

E[supx∈X :dV (x,x1)≤εsup(θ,τ)∈BΘ×T (δ):||θ−θ1||+||τ−τ1||∞≤ε|ψ
∆
x (W ; θ, τ)− ψ∆

x1
(W ; θ1, τ 1)|2] ≤ Cε2s1,

where dV (x, x0) ≡ |V (x)− V (x0)| and ψ∆
x (w; θ, τ) ≡ ψx,0(w; θ, τ)− ψx,1(w; θ, τ).

When θ̂ is obtained from anM-estimation problem, its uniform consistency follows from

the uniform convergence of the population objective function that is uniform over P ∈ P.
This latter convergence can be established by using the uniform law of large numbers that

are uniform in P ∈ P or even using the stronger result of uniform central limit theorem

that is uniform in P ∈ P. (See Giné and Zinn (1991) and Sheehy and Wellner (1992)).
The consistency of τ̂ uniform over P ∈ P can also be established by controlling the bias and
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variance part uniformly in P. In order to control the variance part, one may again employ the

framework of Giné and Zinn (1991) and establish the central limit theorem that is uniform

in P . The sufficient conditions for the last condition in (i) can be checked, for example, from

the results of Andrews (1994).

The condition in (6) indicates that the functional Γk,P at the estimators has an asymp-

totic linear representation. This condition can be established using the standard method

of expanding the functional in terms of the estimators, θ̂ and τ̂ , and using the asymptotic

linear representation of these estimators. The uniformity in P ∈ P is concerned with the

oP (1) term in the asymptotic linear representation. The asymptotic linear representation for

these estimators is available in many semiparametric models. Since our procedure does not

make use of its particular characteristic beyond the condition in (6), we keep this condition

at a high level for the sake of brevity and flexibility.

Condition (iii) is fulfilled by an appropriate choice of a weight function. The use of the

weight function is convenient as it enables us to allow X to be unbounded. Condition (iii) is

stronger than that of Horváth, Kokoszka, and Zitikis (2006) who under a set-up simpler than

this paper, imposed that supx∈X
¡
1 + (max(x, 0)(s−2)∨1

¢
q(x) <∞. Note that the condition

in (iii) implies that when X is a bounded set, we may simply take q(x) = 1. When s = 1

so that our focus is on the first order stochastic dominance relation, we may transform the

variable Xki(θ, τ) into one that has a bounded support by taking a smooth strictly monotone

transform. After this transformation, we can simply take q(x) = 1. Condition (iv) is a locally

uniform L2-continuity condition. (See Chen, Linton, and van Keilegom (2003)).

The first result below is concerned with the convergence in distribution of TN under the

null hypothesis. Let ν(·) be a mean zero Gaussian process on X with a covariance kernel

given by

C(x1, x2) ≡ Cov(Vx1(Wi; θ0, τ 0), Vx2(Wi; θ0, τ 0)), (7)

where

Vx(w; θ, τ) ≡ h∆x (w; θ, τ) + ψ∆
x (w; θ, τ) and (8)

h∆x (w; θ, τ) ≡ hx(ϕ0(w; θ, τ))− hx(ϕ1(w; θ, τ)).

The asymptotic critical values are based on this Gaussian process ν. Define a contact set

B(0) ≡ {x ∈ X : q(x)D01(x) = 0}. Let P0 be the collection of probabilities that satisfy H0.

We also define P00 ≡ {P ∈ P0 :
R
B(0)

w(x)dx > 0}.

Theorem 1 : Suppose that Assumptions 1-3 hold. Then under the null hypothesis, as
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N →∞,

TN →d

( R
B(0)

max{ν(x), 0}2w(x)dx, if P ∈ P00
0, if P ∈ P0\P00.

For each fixed P ∈ P00, the limiting distribution
R
B(0)

max{ν(x), 0}2w(x)dx of TN is

nondegenerate, but for each P ∈ P0\P00, it is degenerate. We call P00 the set of boundary
points and P0\P00 the set of interior points. Hence the limiting distribution of TN is dis-

continuous and the test statistic TN is not locally uniformly regular in P0 in the sense of
Bickel, Klassen, Ritov, and Wellner (1993). This phenomenon of discontinuity arises often

in moment inequality models. (e.g. Moon and Schorfheide (2006), Chernozhukov, Hong,

and Tamer (2007), and Andrews and Guggenberger (2006)). The statement of Theorem 1 is

not uniform over P ∈ P0. Clearly when we confine our attention to the case P ∈ P00 such
that

R
B(0)

w(x)dx > ε > 0 for a fixed ε > 0, it is possible to characterize the limit result in

Theorem 1 with uniformity. However, we do not need this at this point. We introduce the

following definition of a test having an asymptotically exact size.

Definition 1 : (i) A test ϕα with a nominal level α is said to have an asymptotically exact

size if there exists a nonempty subset P 00 ⊂ P0 such that:

limsupN→∞supP∈P0EPϕα ≤ α, and (9)

limsupN→∞supP∈P00 |EPϕα − α| = 0. (10)

(ii) When a test ϕα satisfies (10), we say that the test is asymptotically similar on P 00.

The Gaussian process ν in Theorem 1 depends on the data generating process in the null

hypothesis, precluding the use of first order asymptotic critical values in practice. Barret

and Donald (2003) suggested a bootstrap procedure and LMW suggested a subsampling

approach. Both studies have not paid attention to the issue of uniformity in the convergence

of tests.

One might consider a standard bootstrap procedure for this situation. The difficulty for

a bootstrap test of stochastic dominance lies mainly in the fact that it is hard to impose the

null hypothesis upon the test. There have been approaches that consider only least favorable

subset of the models of the null hypothesis as in the following.

F0(x) = F1(x) for all x ∈ X . (11)

This leads to the problem of asymptotic nonsimilarity in the sense that when the true data

generating process lies away from the least favorable subset of the models of the null hypoth-
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esis, and yet still lie at the boundary points, the bootstrap sizes become misleading even

in large samples. LMW calls this phenomenon asymptotic nonsimilarity on the boundary.

Bootstrap procedures that employ the usual recentering implicitly impose restrictions that

do not hold outside the least favorable set and hence are asymptotically biased against such

probabilities outside the set. To illustrate heuristically why a test that uses critical values

from the least favorable case of a composite null hypothesis can be asymptotically biased,

let us consider the following simple example in the finite dimensional case. (For a related

result in the context of comparing predictabilities of forecasting models, see Hansen (2005)).

Example 1 : Suppose that the observations {Xi = (X0i, X1i) : i = 1, . . . , N} are mutu-
ally independently and identically distributed with unknown mean μ = (μ0, μ1) and known

variance Σ = diag(1, 1). Let the hypotheses of interest be given by:

H0 : μ0 ≤ 0 and μ1 ≤ 0 vs. H1 : μ0 > 0 or μ1 > 0. (12)

The "boundary" of the null hypothesis is given by BBD = {(μ0, μ1) : μ0 ≤ 0 and μ1 ≤
0} ∩ {(μ0, μ1) : μ0 = 0 or μ1 = 0}, while the "least favorable case (LFC)" is given by
BLF = {(μ0, μ1) : μ0 = 0 and μ1 = 0} ⊂ BBD. To test (12), one may consider the following
t-statistic:

TN = max{N1/2X0, N
1/2X1},

where Xk =
PN

i=1Xki/N. Then, the asymptotic null distribution of TN is non-degenerate

provided the true μ lies on the boundary BBD, but the distribution depends on the location
of μ. That is, we have

TN
d→

⎧⎪⎨⎪⎩
max{Z0, Z1} if μ = (0, 0)

Z0 if μ0 = 0, μ1 < 0

Z1 if μ0 < 0, μ1 = 0

,

where Z0 and Z1 are mutually independent standard normal random variables. On the

other hand, TN diverges to −∞ in the "interior" of the null hypothesis. Suppose that z∗α
satisfies P (max{Z0, Z1} > z∗α) = α for α ∈ (0, 1). Then, the test based on the least favorable
case is asymptotically non-similar on the boundary because, for example, limN→∞P (TN >

z∗α|μ = (0, 0)) 6=limN→∞P (TN > z∗α|μ = (0,−1)). Now consider the following sequence of
local alternatives: for δ > 0,

HN : μ0 =
δ√
N
and μ1 < 0.

12



Figure 1: The CDFs of Asymptotic Distributions of the Test Statistic TN under the Null (N(0, 1))
and the Alternative Hypotheses (N(0.2, 1) and N(1.5, 1)). The results show that the test is
asymptocally biased against HN for δ = 0.2.

Then, under HN , it is easy to see that TN
d→ N(δ, 1). However, the test based on the LFC

critical value may be biased against these local alternatives, because limN→∞ P (TN > z∗α) =

P (N(δ, 1) > z∗α) < α for some values of δ. To see this, in Figure 1, we draw the cdfs of

max{Z0, Z1} and N(δ, 1) for δ = 0.0, 0.2, and 1.5. Clearly, the distribution of max{Z0, Z1}
first-order stochastic dominates that of N(0.2, 1), i.e., TN is asymptotically biased against

HN for δ = 0.2.

3 Bootstrap Procedure

In this section we discuss our method for obtaining asymptotically valid critical values. We

propose a bootstrap procedure as follows. We draw {W ∗
i,b}Ni=1, b = 1, . . . , B, with replacement

from the empirical distribution of {Wi}Ni=1. Then, we construct estimators θ̂
∗
b and τ̂

∗
b , for each

b = 1, . . . , B, using the bootstrap sample {W ∗
i,b}Ni=1.Given the bootstrap estimators θ̂

∗
b and τ̂

∗
b ,

we define X̃∗
ki,b = ϕk(W

∗
i,b; θ̂

∗
, τ̂ ∗). The bootstrap estimators θ̂

∗
b and τ̂

∗
b should be constructed

so that their bootstrap distribution mimics the distribution of θ̂ and τ̂ . For example, when

θ0 and τ0 are identified through a moment condition:

E [Ziϕk(Wi; θ0, τ 0)] = 0, k = 0, 1,
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for some random vector Zi, one needs to consider the recentered moment conditions for the

bootstrap estimators. (See Hall and Horowitz (1996)). We do not detail the method of

constructing θ̂
∗
b and τ̂

∗
b as it depends on the way the parameters θ0 and τ 0 are identified. All

we require for these estimators is subsumed in Assumption 4 below.

Now, we introduce the following bootstrap empirical process

D̄∗
01,b(x) ≡

1

N

NX
i=1

(
hx(X̃

∗
0i,b)− hx(X̃

∗
1i,b)−

1

N

NX
i=1

{hx(X̂0i)− hx(X̂1i)}
)
, b = 1, 2, . . . , B,

where X̂ki = Xki(θ̂, τ̂). The quantity D̄∗
01,b(x) denotes the bootstrap counterpart of D̄01(x).

Take a sequence cN → 0 and cN
√
N →∞, and define

B̂ ≡
©
x ∈ X : q(x)|D̄01(x)| < cN

ª
. (13)

As for the weight function q(x), we may consider the following type of function. For z1 < z2

and for constants a, δ > 0, we set

q(x) =

⎧⎪⎨⎪⎩
1 if x ∈ [z1, z2]

a/(a+ |x− z2|(s−1)∨(1+δ)) if x > z2

a/(a+ |x− z1|(s−1)∨(1+δ)) if x < z1.

This is a modification of the weighting function considered by Horváth, Kokoszka, and Zitikis

(2006).

We propose the following bootstrap test statistic:

T ∗N,b ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R
B̂
max

n
q(x)
√
ND̄∗

01,b(x), 0
o2

w(x)dx, if
R
B̂
w(x)dx > 0

R
X max

n
q(x)
√
ND̄∗

01,b(x), 0
o2

w(x)dx, if
R
B̂
w(x)dx = 0.

(14)

The bootstrap critical values are obtained by c∗α,N,B ≡ inf{t : B−1ΣB
b=11{T ∗N,b ≤ t} ≥ 1 −

α}, yielding an α-level bootstrap test: ϕα ≡ 1{TN > c∗α,N,B}.
One of the main steps we need to justify the bootstrap procedure uniformly in P ∈

P under this general semiparametric environment is to establish the bootstrap uniform cen-
tral limit theorem for the empirical processes in the test statistic, where uniformity holds

over probability measures in P. The uniform central limit theorem for empirical processes

has been developed by Giné and Zinn (1991) and Sheehy and Wellner (1992) through the

characterization of uniform Donsker classes. The bootstrap central limit theorem for em-
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pirical processes was established by Giné and Zinn (1990) who considered a nonparametric

bootstrap procedure. See also a nice lecture note on bootstrap by Giné (1997). We use these

results for the proof of Theorem 2 below. Let GN be the σ-field generated by {Wi}Ni=1.

Assumption 4 : For ψx,k(·) in Assumption 3(ii), for any ε > 0,

P

(
sup
x∈X

¯̄̄̄
¯√N Γ̂k,P (x)−

1√
N

NX
i=1

(
ψx,k(W

∗
i,b; θ̂, τ̂)−

1

N

NX
i=1

ψx,k(Wi; θ̂, τ̂)

)¯̄̄̄
¯ > ε|GN

)
→P 0,

uniformly in P ∈ P,where Γ̂k,P (x) ≡ 1
N

PN
i=1{hx(X̃∗

ki,b)−hx(X̂∗
ki,b)} and X̂∗

ki,b ≡ ϕk(W
∗
i,b; θ̂, τ̂).

Assumption 4 assumes the bootstrap analogue of the asymptotic linearity of
√
NΓk,P (x)[θ̂−

θ0, τ̂−τ 0] with the same influence function ψx,k. (See e.g. Koul and Lahiri (1994)). This con-

dition is typically proved when one establishes the validity of bootstrap confidence sets for θ̂
∗

and τ̂ ∗. In this regard, the bootstrap validity of M -estimators is established by Arcones and

Giné (1992). Infinite dimensional Z-estimators are dealt with by Wellner and Zhan (1996).

See Abrevaya and Huang (2005) for a bootstrap inconsistency result for a case where the

estimators are not asymptotically linear.

We consider the asymptotic size properties of the bootstrap test based on (14). In

particular, we pay attention to the control of asymptotic rejection probabilities uniform in

P ∈ P. We introduce the following regularity conditions for Gaussian processes.

Definition 2 : A Gaussian process ν is regular on A ⊂ X if for any α ∈ (0, 1/2], there
exists ε̄ > 0 depending only on α such that

P

½Z
A

max{ν(x), 0}2w(x)dx < ε̄

¾
< 1− α (15)

and for any c > 0,

limsupη↓0supP∈P0P
½¯̄̄̄Z

A

max{ν(x), 0}2w(x)dx− c

¯̄̄̄
≤ η

¾
= 0. (16)

The regularity condition of the limiting Gaussian process ν is a weak condition. Condition

(15) excludes the situation where the distribution of
R
A
max{ν(x), 0}2w(x)dx has a large

point mass at zero to the extent that its (1 − α)-th quantile is zero. Condition (16) is a

uniform version of the continuity of the distribution function of
R
A
max{ν(x), 0}2w(x)dx. This

condition ensures that all the points c > 0 constitute continuity points for the distribution

of
R
A
max{ν(x), 0}2w(x)dx uniformly in probabilities in P0.
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We characterize the set of probabilities under which our bootstrap test has an asymptot-

ically exact size. The characterization involves regularity on r-enlargements of the contact

sets, B(r) ≡ {x ∈ X : q(x)|D01(x)| ≤ r}. Note that the set B(r) can be viewed as an
r-enlargement of the contact set B(0) = {x ∈ X : q(x)|D01(x)| = 0} with respect to the
pseudo norm ||x||(1) = q(x)|D01(x)|.

Definition 3 : (a) For each ε > 0, let P0(ε) be the collection of probabilities in P0 under
which ν in Theorem 1 is regular on BN for each N ≥ 1, where

BN =

(
B((1− ε)cN) if

R
B((1+ε)cN )

w(x)dx > 0 and

X if
R
B((1+ε)cN )

w(x)dx = 0.

(b) Given rN → 0, let P00(ε, {rN}) be the collection of probabilities in P0(ε) under which
for each N > 1/ε, ν in Theorem 1 is regular on B(N−1/2rN),Z

B((1−ε)cN )
w(x)dx > 0 and

Z
B((1+ε)cN )\B(N−1/2rN )

w(x)dx ≤ rN . (17)

Definition 3 contains classifications of P0. The regularity of ν in (a) ensures that the
bootstrap critical values are not arbitrarily close to zero. Note that the condition encom-

passes the case where the set B((1 + ε)cN) becomes empty. In this case, ν is not regular on

B((1 + ε)cN) and hence the condition requires regularity on X instead.

The test has asymptotic size equal to α only if B((1 − ε)cN) is nonempty in the limit.

This notion is incorporated by regularity on B(N−1/2rN) in (b) and the first condition of

(17). To see the role of the second condition in (17), let q(x) = 1 and X is bounded. Then,

the asymptotic similarity of the test is checked by comparing the distribution of

√
ND̄01(x) =

√
N
£
D̄01(x)−D01(x)

¤
+
√
ND01(x)

with that of the recentered bootstrap statistic
√
ND̄∗

01(x). Since for all x ∈ X\B((1 +
ε)cN),

√
ND01(x) → −∞, these x’s do not play a role in determining the limiting dis-

tribution of the test statistic. Hence we consider only those x’s in B((1 + ε)cN). When

x ∈ B(N−1/2rN),
√
ND01(x) → 0 and hence the distribution of

√
ND̄01(x) is roughly

equal to that of
√
ND̄∗

01(x) in the limit. This is not guaranteed, however, when x ∈
B((1 + ε)cN)\B(N−1/2rN). Therefore, the second condition in (17) ensures that the dis-

tributions of TN and T ∗N,b coincide in the limit by requiring that the w(x)dx-measure of

B((1 + ε)cN)\B(N−1/2rN) is negligible as N → ∞. This requirement excludes Pitman se-

quences such that D01(x) = δ(x)/
√
N, δ(x) ∈ (−∞, 0) from P00(ε, {rN}). In other words,
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our test is not asymptotically similar uniformly over these Pitman sequences because the

limiting distribution of the test depends on the shift δ.

Theorem 2 : (i) Suppose that the conditions of Theorem 1 and Assumption 4 hold and fix
any α ∈ (0, 1/2]. Then for each ε > 0,

limsupN→∞supP∈P0(ε)P
©
TN > c∗α,N,∞

ª
≤ α.

(ii) Furthermore, for each decreasing sequence rN → 0 and ε > 0,

limsupN→∞supP∈P00(ε,{rN})
¯̄
P
©
TN > c∗α,N,∞

ª
− α

¯̄
= 0.

The first result of Theorem 2 says that the bootstrap tests have asymptotically correct

sizes uniformly over P ∈ P0(ε). The second result tells us that the bootstrap tests are
asymptotically similar on the subsets of the boundary P00(ε, {rN}) for any decreasing rN →
0. The second result combined with the first result establishes that the bootstrap tests have

exact asymptotic size equal to α. The result is uniform over P ∈ P0(ε).
To appreciate the situation where the asymptotic similarity arises, assume that ν is

regular on B(N−1/2rN) as in the definition of P00(ε, {rN}) and consider the following case:
for a fixed function δ(x) ∈ [−∞, 0],

D01(x) = δ(x)/
√
N. (18)

When δ(x) = 0 for all x ∈ A such that
R
A
w(x)dx > 0 and δ(x) = −∞ for all x ∈ X\A. Then,

clearly this case satisfies (17) and hence belongs to P00(ε, {rN}) for any rN → 0.When δ(x) ∈
(−∞,−ε) for all x ∈ X , the first condition in (17) is still satisfied because B((1+ε)cN) = X
from some large N on. However, the second condition in (17) fails because in this case,

B(N−1/2rN) = ∅ from some large N on and
R
B((1+ε)cN )\B(N−1/2rN )w(x)dx =

R
X w(x)dx > 0.

Therefore when we confine our attention to the Pitman drift types in (18), the conditions

for P00(ε, {rN}) require that the drift should take either 0 values or −∞ at most points of

x. However, considering only Pitman drifts is quite restrictive when the object is an infinite-

dimensional element. In this regard, the formulation of our asymptotic similarity is rendered

so that it can also cover numerous non-Pitman sequences. For example, suppose that for

some sequence AN ⊂ X such that lim inf N→∞
R
AN

w(x)dx > 0 and

D01(x) = δN(x),

with δN(x) ∈ [−∞, 0] satisfying that infx∈AN
δN(x)

√
N → 0 and supx∈X\AN

δN(x) < −(1 +
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ε)cN . Then, the conditions in (17) are satisfied similarly as before and hence this case belongs

to P00(ε, {rN}).

4 Asymptotic Power Properties

In this section, we investigate asymptotic power properties of the bootstrap test. First, we

consider consistency of the test.

Theorem 3 : Suppose that the conditions of Theorem 2 hold and that we are under a fixed
alternative P ∈ P\P0 such that

R
X max{q(x)D01(x), 0}2w(x)dx > 0. Then,

limN→∞P
©
TN > c∗α,N,∞

ª
→ 1.

Therefore, the bootstrap test is consistent against all types of alternatives. This property is

shared by other tests of LMW and Barret and Donald (2003) for example.

Let us turn to asymptotic local power properties. We consider a sequence of prob-

abilities PN ∈ P\P0 and denote Dk,N(x) to be Dk(x) under PN . That is, Dk,N(x) =

EPNhx(ϕk(W ; θ0, τ 0)) using the notation of hx and the specification of Xk in a previous

section, where EPN denotes the expectation under PN . We confine our attention to {PN}
such that for each k ∈ 0, 1, there exist functions Hk(·) and δk(·) such that

Dk,N(x) = Hk(x) + δk(x)/
√
N. (19)

We assume the following for the functions Hk(·) and δk(·).

Assumption 5: (i)
R
C01

w(x)dx > 0, where C01 ≡ {x ∈ X : H0(x)−H1(x) = 0}.
(ii) supx∈X (H0(x)−H1(x)) ≤ 0.
(iii)

R
C01
max{δ0(x)− δ1(x), 0}2w(x)dx > 0.

Assumption 5 enables the local sequences in (19) to constitute non-void local alternatives.

Note that whenHk(x) = EPhx(ϕk(W ; θ0, τ 0)) for some P ∈ P, these conditions forHk imply

that P ∈ P0, that is, the probability associated with Hk belongs to the null hypothesis, in

particular, the boundary points. When the distributions are continuous, the contact sets are

nonempty under the alternatives. If the contact sets satisfy the condition
R
B(0)

w(x)dx >

0, any local alternatives that converge to the null hypothesis will have a limit in the set

of boundary points. The conditions for δk(x) indicate that for each N, the probability PN

belongs to the alternative hypothesis P\P0. Therefore, the sequence PN represents local
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alternatives that converge to the null hypothesis (in particular, to the boundary points P00)
maintaining the convergence of Dk,N(x) to Hk(x) at the rate of

√
N in the direction of δk(x).

It is interesting to compare the asymptotic power of the bootstrap procedure that is

based on the least favorable set of the null hypothesis. Using the same bootstrap sample

{X∗
ki,b : k = 0, 1}ni=1, b = 1, . . . , B, this bootstrap procedure alternatively considers the

following bootstrap test statistics

T ∗LFN,b ≡
Z
X
max

n
q(x)
√
ND̄∗

01,b(x), 0
o2

w(x)dx. (20)

Let the bootstrap critical values be denoted by c∗LFα,N,∞. The results of this paper easily imply

the following fact that this bootstrap procedure is certainly inferior to the procedure that

this paper proposes.

Theorem 4 : Suppose that the conditions of Theorem 2 and Assumption 5 hold. Under

the local alternatives PN ∈ P\P0 satisfying the condition in (19),

limN→∞PN

©
TN > c∗α,N,∞

ª
≥ limN→∞PN

©
TN > c∗LFα,N,∞

ª
. (21)

Furthermore, assume that almost everywhere,Z
X
max {ν(x), 0}2w(x)dx >

Z
C01

max {ν(x), 0}2w(x)dx.

Then the inequality in (21) is strict.

The result of Theorem 4 is remarkable that the bootstrap test of this paper weakly

dominates the bootstrap in (20) regardless of the Pitman local alternative directions. Fur-

thermore, when the union of the closures of the contact sets is a proper subset of the interior

of X , our test strictly dominates the bootstrap in (20) uniformly over the Pitman local
alternatives. The result of Theorem 4 is based on the nonsimilarity of the bootstrap tests

in (20) on the boundary. In fact, Theorem 4 implies that the test based on the bootstrap

procedure using (20) is inadmissible. This result is related to Hansen (2003)’s finding in

an environment of finite-dimensional composite hypothesis testing that a test that is not

asymptotically similar on the boundary is asymptotically inadmissible.
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5 Monte Carlo Experiments

In this section, we examine the finite sample performance of our tests using Monte Carlo

simulations. First, we compare the size properties of our method, the subsampling method

and the recentered bootstrap method as we alter the data generating process gradually away

from the least favorable case. We consider the following generating process for this purpose.

Let U1 and U2 be U(0, 1) random variables. We define

X0 ≡ U1

X1 ≡ c−10 (U − a0)1{0 < U2 ≤ x0}+ U21{x0 < U2 < 1},

where c0 = (x0 − a0)/x0 ∈ (0, 1) and x0 ∈ (0, 1). Therefore, the distribution of X1 is given

by

P{X1 ≤ t} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, t ≥ 1
t, x0 < t < 1

c0t+ a0, −a0/c0 < t ≤ x0

0, t ≤ −a0/c0

,

The cdfs, F0 and F1, of X0 and X1 are shown in Figure 2. The cdf of X1 has a ”kink" at

X1 = x0 and the slope of the cdf changes from c0 to 1 at the kink point x0. The location of

x0 determines the size of the contact set B(0) over which the cdf’s of X0 and X1 are equal.

As x0 gets larger, given c0 > 0, the contact set gets smaller and hence the data generating

process moves away from the least favorable case into the interior of the null hypothesis.

The value of c0 determines the behavior of the cdf of Y outside of the contact set. As c0 gets

closer to 1, the cdf of X1 is closer to the cdf of X0 outside of the contact set.

In the simulations, we take x0 ∈ {0, 0.1, 0.2, ..., 0.9} and c0 ∈ {0.2, 0.4, 0.6, 0.8}. The
case x0 = 0 corresponds to the least favorable case. The sample size was fixed to be 500.

The number of Monte Carlo simulations was set to be 1,000 and the number of bootstrap

replications was 400. In constructing the test statistic, we took q(x) = 1 and for the bootstrap

test statistic, we found that using the estimated contact set with cN = cN−1/2 log logN,

where c ∈ {3.0, 3.2, . . . , 4.0} show the reasonable size properties comparable to the recentered
bootstrap under the least favorable configuration. The rejection probabilities for the c’s lay

between the two rejection probabilities with c = 3.0 and c = 4.0. Hence we report only the

results corresponding to c = 3.0 and c = 4.0 for simplicity.

The results are shown in Figure 3. The thick and thin solid lines represent the rejection

probabilities of our test, and the dashed and dotted lines, those of the subsampling and the
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Figure 2: The CDFs, F0 and F1, of X0 and X1 under the Null Hypothesis

recentered bootstrap respectively. When c0 is 0.8, the slope of the cdf of X1 is close to that

of X0. In this case, the data distribution is closer to the least favorable case, and hence the

discrepancy between the performances of our method and the recentered bootstrap is not

much. Nevertheless, when we increase x0, moving the data distribution into the interior, our

test shows less conservative rejection probabilities than the other methods. This contrast

becomes conspicuous in the case where c0 is 0.2. In this case, as we move into the interior

with increasing x0, our test shows fairly reasonable size properties even until x0 reaches 0.6

when other tests quickly becomes conservative. Both in the case of x0 = 0.4 and x0 = 0.2,

the rejection probability of the subsampling is reasonable as compared to the recentered

bootstrap, which is expected from the result of LMW. However, our test still improves on

the subsampling method.

Let us turn to the power properties of our method. As for the power properties, we

consider the following data generating process. Let X1 = U where U is a random variable

distributed Uniform(0,1). Then, we define

X0 = (U − ab1)1{ab1 ≤ U ≤ x}+ (U + ab2)1{x < U ≤ 1− ab2}

for a ∈ (0, 1). As a becomes closer to zero, the distribution of X0 becomes closer to the

uniform distribution. Then the distribution function of X0 becomes

P{X0 ≤ t} = t+ aδ(t),
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Figure 3: The Rejection Probabilities under the Null Hypothesis: : α = 0.05.
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Figure 4: The CDFs of X0 and X1 under the Alternatives

where

δ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ≤ 0
b1, 0 < t ≤ x0 − b1

x0, x0 − b1 < t ≤ x0 + b2

−b2, x0 + b2 < t ≤ 1
0, t > 1.

(22)

The shapes of F0(t) = P{X0 ≤ t} and F1(t) = P{X1 ≤ t} are depicted in Figure 4.

The scale a plays the role of the "distance" of the data distribution from the null hypoth-

esis. When a is large, the data distribution becomes further away from the null hypothesis

and when a = 0, the data distribution belongs to the null hypothesis under the least favor-

able configuration. The number x0 controls how fast the data distribution moves away from

the null hypothesis as we increase a.

The results are shown in Figure 5. When x0 = 0.3 and 0.5, our test significantly dom-

inates the recentered bootstrap test which relies on the least favorable configuration. This

is anticipated from our theoretical results on local power (Theorem 4). Compared with the

subsampling test, our test performs better, in particular when a is greater than 0.6. When

x0 = 0.7, the data generating process moves quickly away from the least favorable config-

uration as a increases. In this case, there is not big difference between our bootstrap and

the recentered bootstrap as expected because both tests are consistent. However, even in

this case, our test still dominates the other tests. In sum, the simulation results show that
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Figure 5: The Rejection Probabilities under the Alternatives: α = 0.05.
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our method overall performs well, dominating the two other existing methods under various

designs of alternative hypotheses.

6 Conclusion

This paper proposes a new method of testing stochastic dominance that improves on the

existing methods. Specifically, our tests have asymptotic sizes that are exactly correct uni-

formly over the entire null hypothesis under regularity conditions. In addition, we have

extended the domain of applicability of our tests to a more general class of situations where

the outcome variable is the residual from some semiparametric model. Our simulation study

demonstrates that our method works better than some existing methods for quite modest

sample sizes.

While our setting throughout has been i.i.d. data, many time series applications call for

the treatment of dependent data. In that case, one may use a block bootstrap algorithm in

place of our bootstrap method. We expect that similar results will obtain in that case.

7 Appendix

7.1 Uniform Continuous Mapping Theorem
In this section, we establish a uniform continuous mapping theorem that applies to sequences that are weakly
convergent uniformly in P. We introduce some notations. Let N = {1, 2, · · ·} be a set of positive integers
and S = RdW . Define P to be a collection of probabilities on the Borel σ-field S of S. Let Wi : S

N → S

be the coordinate functions, and {Wi}∞i=1 are i.i.d. with respect to the product measure PN for every
P ∈ P. Suppose that UN is a sequence of random variables on the probability space (SN,SN, PN). Then,
we say that UN = OP (1) uniformly in P ∈ P if for any ε > 0, there exist M > 0 and N0 > 0 such that
supP∈P P {|UN | > M} < ε for all N > N0. Similarly, we say that UN = oP (1) uniformly in P ∈ P if for any
ε > 0, supP∈P P {|UN | > ε}→ 0. Sometimes, we use short-hand notations, OP(1) and oP(1).

Let us introduce uniform Donsker classes. The brief exposition here follows Giné and Zinn (1991) who
obtained pioneering results regarding this notion. See also Sheehy and Wellner (1992). For a given class
of S-measurable functions F on S, let l∞(F) be the collection of bounded maps on F , equipped with the
sup norm || · ||F : ||ν||F =supf∈F |ν(f)|. The focus of main interest is the following empirical process as an
l∞(F)-valued random element on the probability space (SN,SN, PN) :

νPN ≡
1√
N

NX
i=1

(δWi − P ),

where δWi is point mass atWi. For a given P ∈ P and a class of functions F on S, letGP be a Brownian bridge
process on F , a Gaussian process whose covariance function is given by EGP (f)GP (g) = EP (fg)−EP fEP g,
and let LF(GP ) be the distribution of GP .We say that a class F is uniformly pregaussian if GP has a version
with ρP -uniformly continuous sample paths, supP∈P E||GP ||F < ∞ and limδ→0supP∈PE||GP ||F(δ,ρP ) = 0,

25



where F(δ, ρP ) ≡ {f − g : f, g ∈ F , ρP (f, g) ≤ δ} and ρ2P (f, g) ≡ EP (f − g)2 − {EP (f − g)}2. We introduce
the following class of functionals on l∞(F):

BLF ≡
n
H : l∞(F)→ R : ||H||∞ ≤ 1 and supx,y∈l∞(F)|H(x)−H(y)|/||x− y||F ≤ 1

o
.

Let μ1 and μ2 be two probability measures on subsigma fields of Borel subsets of l∞(F). Then, using the
dual Lipschitz bounded class BLF , we define the following metric

dBL(μ1, μ2) ≡ supH∈BLF |
Z ∗

Hdμ1 −
Z ∗

Hdμ2|,

where
R ∗ ·dμ indicates the outer integral with respect to μ. Then, we say that a class F is a uniform Donsker

class in P ∈ P if F is uniformly pregaussian and

limN→∞supP∈PdBL(LP,F(νPN ),LF(GP )) = 0,

where LP,F(νPN ) denotes the distribution of νPN under PN. In this case, we say that νPN weakly converges
to GP in l∞(F) uniformly in P ∈ P. We conclude this section by presenting a uniform continuous mapping
theorem.

Lemma A1 : Let νPN be an l∞(F)-valued empirical process that weakly converges to GP uniformly in P ∈ P.
For each N = 1, 2, · · · and P ∈ P, let fN,P be a (possibly stochastic) continuous functional on l∞(F) living
on (SN,SN, PN) such that for some (possibly stochastic) number CN,P ∈ R,

|fN,P (ν1)− fN,P (ν2)| ≤ CN,P ||ν1 − ν2||F , P -a.e., for each ν1, ν2 ∈ l∞(F). (23)

Furthermore, assume that there exists a set A ⊂ R such that

limη→0limsupN→∞supP∈PP{|fN,P (GP )− c| ≤ CN,P η} = 0, for each c ∈ A. (24)

Then, for each c ∈ A ⊂ R,

limsupN→∞supP∈P
¯̄
P{fN,P (νPN ) ≤ c}− P{fN,P (GP ) ≤ c}

¯̄
= 0. (25)

The lemma formulates a continuous mapping theorem in terms of distribution functions when the mapping
depends on N. The approximation is uniform in P ∈ P. For this uniformity, we use Lipschitz continuity
on the continuous mapping. The Lipschitz coefficient CN,P is allowed to change with N and depend on
P. Condition (24) is related to the fact that the continuous mapping theorem holds only for P -continuity
sets. This condition eliminates points c at which fN,P (GP ) has a point mass.

Proof of Lemma A1 : Throughout the proof, we simply write fN = fN,P , and CN = CN,P . Fix any
arbitrarily small number η1 > 0 and take m0 such that for all m > m0,

limsupN→∞supP∈PP{|fN (GP )− c| ≤ CN/m} ≤ η1. (26)

Condition (24) ensures that we can choose such m0 independent of P. By the assumed uniform weak con-
vergence of νPN , it is satisfied that for all sequences of bounded Lipschitz functionals gN ∈ BLF possibly
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depending on P,

supP∈P
¯̄
EP gN (ν

P
N )−EP gN (GP )

¯̄
= supP∈P

¯̄̄̄Z
gN (ν

P
N )dP

N −
Z

gN (GP )dP

¯̄̄̄
(27)

≤ supP∈PsupH∈BLF

¯̄̄̄Z
H(νPN )dP

N −
Z

H(GP )dP

¯̄̄̄
→ 0.

Take F ≡ {r ∈ R : r ≤ c} and define FN ≡ f−1N (F ). The set FN is closed because fN is continuous.
Introduce for ν1 ∈ FN ,

lm,N (ν1) ≡ (m× infν2∈F c
N
||ν1 − ν2||∞) ∧ 1,

um,N (ν1) ≡ 1− (m× infν2∈FN ||ν1 − ν2||∞) ∧ 1.

Then, lm,N and um,N are bounded and Lipschitz continuous functionals with Lipschitz coefficients bounded
by m. Now, observe that

limsupN supP∈P
¯̄
P (νPN ∈ FN )− P (GP ∈ FN )

¯̄
≤ limsupN supP∈P

¯̄
EPum,N (ν

P
N )−EP lm,N(GP )

¯̄
.

We bound the last supremum by

supP∈P
¯̄
Eum,N (ν

P
N )−Eum,N(GP )

¯̄
+ supP∈P

¯̄
Elm,N (ν

P
N )−Elm,N (GP )

¯̄
(28)

+supP∈P |Eum,N (GP )−Elm,N (GP )| .

For every m, the first two terms vanish as N →∞ by the previous result in (27). As for the last term, note
that the absolute value is not zero only when GP ∈ Jm,N where Jm,N ≡ {ν1 ∈ l∞(F) :infν2∈F c

N
||ν1−ν2||F <

1/m and infν2∈FN ||ν1 − ν2||F < 1/m}. Observe that

1{infν2∈F c
N
||ν1 − ν2||F < 1/m} = 1{infν2:fN(ν2)>c||ν1 − ν2||F < 1/m} (29)

≤ 1{infν2:fN (ν1)>c−CN ||ν1−ν2||F ||ν1 − ν2||F < 1/m}.

The set {ν2 : fN (ν1) > c − CN ||ν1 − ν2||F} is increasing in ||ν1 − ν2||F . If every ν2 such that fN (ν1) >
c − CN ||ν1 − ν2||F satisfies ||ν1 − ν2||F ≥ 1/m, infν2:fN(ν1)>c−CN ||ν1−ν2||F ||ν1 − ν2||F ≥ 1/m rendering
the last indicator in (29) to be zero. Hence the event in this indicator implies that among ν2’s such that
fN (ν1) > c − CN ||ν1 − ν2||F , we can find ν2 such that ||ν1 − ν2||F < 1/m. In this case, fN (ν1) >

c− CN ||ν1 − ν2||F > c− CN/m. Hence the last indicator in (29) is bounded by

1 {fN (ν1) > c− CN/m} .

Similarly, 1{infν2∈FN ||ν1 − ν2||F < 1/m} is equal to

1{infν2:fN (ν2)≤c||ν1 − ν2||F < 1/m} ≤ 1{infν2:fN(ν1)≤c+CN ||ν1−ν2||F ||ν1 − ν2||F < 1/m}
≤ 1 {fN (ν1) ≤ c+ CN/m} .
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Therefore, the event of GP ∈ Jm,N is contained in the event that

fN (GP )− c ≤ CN/m and fN (GP )− c > −CN/m

or that |fN (GP ) − c| ≤ CN/m. By (26), the limsupN→∞ of the probability of the last event is bounded by
η1. As the choice of η1 was arbitrary, we conclude that limsupN→∞supP∈P |Eum,N (GP )−Elm,N (GP )| = 0.

7.2 Bootstrap Uniform Donsker Classes
In this section, we introduce a bootstrap version of uniform Donsker classes for bootstrap empirical processes
following Giné and Zinn (1990) and Giné (1997). These papers were originally concerned with a pointwise
consistency of the bootstrap empirical measure. However, modifying the results of Giné and Zinn (1990,
1991), we will show that when F is a uniform Donsker class for P, the bootstrap empirical measure is
consistent uniformly in P ∈ P.

Suppose that {Wi}∞i=1 is i.i.d. living on a probability space (SN,SN, PN). Given {Wi}∞i=1, define the
empirical measure:

PN (ω) ≡
1

N

NX
i=1

δWi(ω), ω ∈ SN.

Let P̂N (ω) be the empirical measure based on {Ŵi(ω)}Ni=1 which is an i.i.d. draw from PN (ω). Then, the
main object of interest is the limit behavior of the bootstrap empirical measure:

νP̂N(ω) ≡
√
N
n
P̂N (ω)− PN (ω)

o
.

We view νP̂N (ω) as an l∞(F)-valued random elements conditional on ω, and let L(νP̂n (ω)) be the conditional
distribution of νP̂n (ω) given ω ∈ SN. We introduce the metric dBL as before. For a given collection of
probabilities P, consider a class of measurable functions F such that supP∈P EP [|f(W )|2] <∞ and for each
P ∈ P, let GP be a Brownian bridge process associated with F . We say that F is bootstrap uniform Donsker
if F is uniformly pregaussian and for any ε > 0,

limN→∞supP∈PP
n
dBL(L(νP̂n (ω)),L(GP )) > ε

o
= 0.

This definition is a uniform version of Definition 2.1 of Giné (1997). In the following we show that when
F is a uniform Donsker class, it is bootstrap uniform Donsker. The result follows by slightly modifying the
proof of Theorem 2.2. of Giné (1997). For the sake of transparency and future references, we formalize this
result and provide the proof here.

Lemma A2 : If F is a uniform Donsker class, then F is also bootstrap uniform Donsker.

Proof of Lemma A2 : Let E∗ denote the expectation with respect to the bootstrap distribution L(νP̂N (ω))
conditional on ω. Assume that F is a uniform Donsker class. By Theorem 2.1 of Sheehy and Wellner (1992),
(F , ρP ) is totally bounded uniformly in P ∈ P. Hence given ε > 0, there is a map πε : F → F which takes
N(ε) <∞ values and ρP (πεf, f) < ε and N(ε) does not depend on P. Then, for any H ∈ BLF , we consider:¯̄̄

E∗H(νP̂N )−EH(GP )
¯̄̄
≤

¯̄̄
E∗H(νP̂N )−EH(νP̂N ◦ πε)

¯̄̄
+
¯̄̄
E∗H(νP̂N ◦ πε)−EH(GP ◦ πε)

¯̄̄
(30)

+ |E∗H(GP ◦ πε)−EH(GP )| .
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The uniform pregaussianity of F implies that GP ◦πε weakly converges to GP in l∞(F) uniformly in P ∈ P
as ε→ 0. Therefore, the last term vanishes as ε→ 0 uniformly in P ∈ P. For each fixed ε, the second term
vanishes by the bootstrap CLT in RN(ε). The bootstrap CLT in RN(ε) uniform in P ∈ P can be proved using
a finite dimensional CLT uniform in P which is given in Lemma 2.1 of Giné and Zinn (1991). We are left with
the first part on the right-hand side of (30). In order to show that it converges to zero uniformly in P ∈ P,
it suffices to prove that supP∈P P{E∗||νP̂N ||F(δ,ρP ) > ε} → 0, as N → ∞ and δ → 0 for any ε > 0 or that
E[E∗||νP̂N ||F(δ,ρP )] → 0 as N → ∞ and δ → 0, where F(δ, ρP ) = {f − g ∈ F : ρP (f, g) ≤ δ, f, g ∈ F}. To
show the latter convergence, we follow the steps of the proof of Theorem 2.2 of Giné and Zinn (1991) using
Le Cam’s poissonization lemma to deduce the following:

E[E∗||νP̂N ||F(δ,ρP )] = EE∗

°°°°° 1√
N

NX
i=1

³
δŴi
− PN

´°°°°°
F(δ,ρP )

≤ e

e− 1E
°°°°° 1√

N

NX
i=1

(Ni − 1) (δWi
− PN )

°°°°°
F(δ,ρP )

≤ e

e− 1

⎧⎨⎩E
°°°°° 1√

N

NX
i=1

(Ni − 1)δWi

°°°°°
F(δ,ρP )

+E

"¯̄̄̄
¯ 1√N

NX
i=1

(Ni − 1)
¯̄̄̄
¯ kPNkF(δ,ρP )

#⎫⎬⎭ ,

where e = exp(1) and {Ni}Ni=1 is i.i.d. Poisson random variables with parameter 1 independent of {Wi}Ni=1. Since
F is a uniform Donsker class, the last two expectations converge to zero uniformly in P ∈ P as N →∞ and
δ → 0.

7.3 The Proofs of the Main Results
For any class of functions F with a pseudo metric d, let N[](ε,F , d) denote the bracketing number of F with
respect to d, i.e. the smallest number of ε- brackets that are needed to cover the space F (e.g. van der Vaart
and Wellner (1996)).

Lemma B1 : For a bounded map V (x) : X → [−M,M ], M ∈ (0,∞), let us introduce a pseudo metric
dV (x, x

0) ≡ |V (x)− V (x0)|. Then, for each ε ∈ (0, 1],

logN(ε,X , dV ) ≤ C{1− log(ε)}.

Proof of Lemma B1 : Fix ε > 0 and partition [−M,M ] = ∪Nj=1Ij , where Ij is an interval of length ε

and N = 2M/ε. Then, choose {vj}Nj=1 to be the centers of Ij , j = 1, . . . , N, so that the sets Vj ≡ {x ∈ X :

|V (x) − vj | ≤ ε/2}, j = 1, . . . , N, cover X . These sets Vj have radius bounded by ε/2 with respect to dV .
Redefining constants, we obtain the inequality.

Lemma B2 : Let F ≡ {hx(ϕk(·; θ, τ)) : (x, θ, τ) ∈ X ×BΘ×T (δ)} . Then, for each ε ∈ (0, 1],

supP∈P logN[](ε,F , || · ||P,2) ≤ Cε−dλ/s2 .

Proof of Lemma B2 : Let H ≡ {hx : x ∈ X} and γx(y) ≡ 1{y ≤ x}. Simply write ϕ = ϕk. Define
Φ ≡ {ϕ(·; θ, τ) : (θ, τ) ∈ BΘ×T (δ)}. Suppose s = 1. Then by the local uniform L2-continuity condition in
Assumption 2(ii)(A)(c), we have

logN[](ε,Φ, || · ||P,2) ≤ logN(Cε1/s2 , BΘ×T (δ), || · ||+ || · ||∞) ≤ Cε−d/s2 . (31)
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Choose ε-brackets (ϕj ,∆1,j)
N1
j=1 of Φ such that

R
∆21,jdP ≤ ε2. For each j, let Qj,P be the distribution of

ϕj(W ), where W is distributed as P. By Assumption 2(ii)(A)(b), we can take ∆1,j such that ∆1,j(W ) is
measurable with respect to the σ-field of W1.

We let V (x) ≡ xq(x) and h(x) ≡ (log x)s2/d. Fix ε > 0. For some δ > 0, |V (x)xδ| < ∞ as |x| → ∞
by Assumption 3(iii). Hence for some C > 0, V (x) < C/h(x) for all x > 1. Put x = h−1(2C/ε) where
h−1(y) ≡inf{x : h(x) ≥ y : x ∈ X}, so that we obtain

V (h−1(2C/ε)) < ε/2.

Then, we can choose L(ε) ≤ Ch−1(2C/ε) such that L(ε) ≥ 1 and sup|x|≥L(ε)V (x) < ε/2. Partition
[−L(ε), L(ε)] into intervals {Im}Nm=1of length ε with the number of intervals N not greater than 2L(ε)/ε.
Let X0 = X\[−L(ε), L(ε)] and Xm = Im ∩X . Then (∪Nm=1Xm)∪X0 constitutes the partition of X with the
number of partitions bounded by 2L(ε)/ε+ 1 or by Ch−1(2C/ε)/ε+ 1.

Now, choose any (ϕ, x) ∈ Φ × X and let (ϕj , xm) be such that |ϕ − ϕj | < ∆1,j and xm is the center
of Im if x ∈ Xm for some m ≥ 1 and xm is any arbitrary member of Xm if x ∈ Xm with m = 0 Define
Φj = {ϕ ∈ Φ : |ϕ− ϕj | ≤ ∆1,j}. Then observe that

supϕ∈Φj supx∈Xm
¯̄
γx(ϕ(w))q(x)− γxm(ϕj(w))q(xm)

¯̄
(32)

≤ supϕ∈Φj supx∈Xm
¯̄
γx(ϕ(w))q(x)− γxm(ϕj(w))q(x)

¯̄
+supϕ∈Φj supx∈Xm

¯̄
γxm(ϕj(w))q(x)− γxm(ϕj(w))q(xm)

¯̄
= ∆∗m,j(w), say.

As for the first term on the right-hand side of the inequality,

E[supϕ∈Φj supx∈Xm |γx(ϕ(W ))− γxm(ϕj(W ))|2q(x)2|W1]

≤ E[supx∈Xm1{x−∆1,j(W1)− |x− xm| ≤ ϕj(W ) ≤ x+∆1,j(W ) + |x− xm|}q(x)2|W1]

≤ supx∈X0q(x)
21{m = 0}+ C {ε+∆1,j(W )} 1{m ≥ 1}

≤ Cε21{m = 0}+ C {ε+∆1,j(W )} 1{m ≥ 1} ≤ Cε+ C∆1,j(W ).

The second inequality is obtained by splitting the supremum into the casem = 0 and the casem ≥ 1. Here we
also used the fact that ∆1,j(W ) is measurable with respect to the σ-field of W1. The third inequality follows
by Assumption 2(ii)(A)(a) and by the fact that supx∈X0 q(x)

2 = sup|x|>L(ε) q(x)
2 ≤ sup|x|>L(ε) |x|2q(x)2 =

sup|x|>L(ε) V
2(x) ≤ ε2/4. Note also that

E
h
supϕ∈Φj supx∈Xm

¯̄
γxm(ϕj(W ))q(x)− γxm(ϕj(W ))q(xm)

¯̄2 |W1

i
≤ C|q(x)− q(xm)|2 ≤ Cε2,

because q is Lipschitz continuous and supx∈X0 q(x)
2 ≤ ε2/4 as we saw before. We conclude that ||∆∗k,j ||P,2 ≤

Cε1/2. Hence by taking appropriate constants C, and using (31),

supP∈P logN[](Cε
1/2,F , || · ||P,2) ≤ logN[](Cε,Φ, || · ||P,2) + log

¡
Ch−1(2C/ε)/ε+ 1

¢
≤ C{ε−d/s2 − log(ε)}.

Suppose s > 1. Then (x− ϕ)s−1γx(ϕ)q(x) is Lipschitz continuous in ϕ with the coefficient bounded by

30



C|x− ϕ|s−2q(x). Therefore, using Assumption 1(iii), we deduce that

logN[](ε,F , || · ||P,2) ≤ logN[](Cε,Φ, || · ||P,2).

Observe that the constants above do not depend on the choice of the measure P . Combined with (31), we
obtain the wanted result.

Proof of Theorem 1 : For h∆x defined in (8), we write

√
Nq(x)D̄01(x, θ̂, τ̂)−

√
NEh∆x (Wi; θ0, τ0)

=
1√
N

NX
i=1

©
h∆x (Wi; θ0, τ0)−Eh∆x (Wi; θ0, τ0)

ª
+
√
N(Γ0,P − Γ1,P )(x)[θ̂ − θ0, τ̂ − τ0] + ζ1N + ζ2N ,

where

ζ1N ≡
√
Nq(x)

n
D̄01(x, θ̂, τ̂)− D̄01(x, θ0, τ0)− (D01(x, θ̂, τ̂)−D01(x, θ0, τ0))

o
and

ζ2N ≡
√
Nq(x)(D01(x, θ̂, τ̂)−D01(x, θ0, τ0))−

√
N(Γ0,P − Γ1,P )(x)[θ̂ − θ0, τ̂ − τ0].

By Assumption 3(ii), ζ2N = oP(1). We now show that ζ1N = oP(1). Fix any decreasing sequence δN → 0

and let H ≡ {h∆x (·; θ, τ)− h∆x (·; θ0, τ0) : (x, θ, τ) ∈ X ×BΘ×T (δN )}. The bracketing entropy of this class at
ε ∈ (0, 1] is bounded by Cε−dλ/s2 by Lemma B2. It is easy to show that the L2(P )-norm of its envelope
is O(δλs2/2N ) = o(1). Hence by using the maximal inequality and using the fact that dλ/s2 < 2, we obtain
ζ1N = oP(1). Hence using Assumption 3(ii) and noting that Eh∆x (Wi; θ0, τ0) = q(x)D01(x),

√
Nq(x){D̄01(x, θ̂, τ̂)−D01(x)} = ηN (x) + oP(1), uniformly in x ∈ BΘ×T (δN ), (33)

where

ηN (x) ≡
1√
N

NX
i=1

n
(h∆x + ψ∆x )(Wi; θ0, τ0)−E

h
(h∆x + ψ∆x )(Wi; θ0, τ0)

io
. (34)

We turn to ηN (x). Define H0 ≡ {h∆x (·) : x ∈ X} and Ψ ≡ {ψ∆x (·) : x ∈ X}. Consider the class of
functions F ≡ {h + ψ : (h,ψ) ∈ H0 × Ψ}. Using Assumption 3(iv), Lemma B1 and following the proof of
Lemma B2 above, we can show that supP∈P logN[](ε,F , L2(P )) < C log ε. By Theorem 2.3 of Sheehy and
Wellner (1991) (See also Theorem 2.8.4 of van der Vaart and Wellner (1996).), F is a uniform Donsker class.
The computation of the covariance kernel of the limiting Gaussian process is straightforward. Therefore, ηN
weakly converges to ν uniformly in P ∈ P.

In the following, we use the usual bootstrap stochastic convergence notations oP∗ and OP∗ with respect
to the conditional distribution given GN . Let l∞(X ) be the space of real bounded functions on X . Let
Vx(w; θ, τ) be as defined in (8) and denote

ν∗(x; θ, τ) ≡ 1√
N

NX
i=1

(
Vx(W

∗
i,b; θ, τ)−

1

N

NX
i=1

Vx(Wi; θ, τ)

)
. (35)

Lemma B3 : Suppose that the assumptions of Theorem 2 hold.
(i)
√
ND̄∗01,b(x) = ν∗(x, θ̂, τ̂) + oP∗(1), in P uniformly in P ∈ P.
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(ii) For any δ > 0, ν∗(·; θ̂, τ̂)→ ν weakly in l∞(X ) conditional on GN in P uniformly in P ∈ P, where ν is
a Gaussian process on X whose covariance kernel is given by C(·, ·).

Proof of Lemma B3 : (i) We write

√
ND̄∗01,b(x) =

1√
N

NX
i=1

h∆x (W
∗
i ; θ̂
∗
, τ̂∗)− 1√

N

NX
i=1

h∆x (W
∗
i ; θ̂, τ̂)

+
1√
N

NX
i=1

h∆x (W
∗
i ; θ̂, τ̂)−

1√
N

NX
i=1

h∆x (Wi; θ̂, τ̂)

= Γ̂0,P (x)− Γ̂1,P (x) +
1√
N

NX
i=1

h∆x (W
∗
i ; θ̂, τ̂)−

1√
N

NX
i=1

h∆x (Wi; θ̂, τ̂),

where Γ̂k,P (x) is as defined in Assumption 4. By Assumption 4, the leading term Γ̂0,P (x)− Γ̂1,P (x) is written
as

1√
N

NX
i=1

(
ψ∆x (W

∗
i ; θ̂, τ̂)−

1

N

NX
i=1

ψ∆x (Wi; θ̂, τ̂)

)
+ oP∗(1). (36)

Hence we obtain the wanted result.

(ii) Let H(δ) ≡ {Vx(·; θ, τ) : (x, θ, τ) ∈ X × BΘ×T (δ)} and let H be an envelope of H(δ) such that
supP∈P ||H||P,2+ε <∞ for some ε > 0. We later show the following:

Z 1

0

supP∈P
q
1 + logN[](ε||H||P,2,H(δ), || · ||P,2)dε||H||P,2 <∞ (37)

which implies Pollard’s entropy condition. Then by Proposition 3.1 of Giné and Zinn (1991), H is finitely
uniform pregaussian and hence by Corollary 2.7 of Giné and Zinn (1991), it is a uniform Donsker class. The
bootstrap uniform CLT for the process {ν∗(x; θ, τ) : (x, θ, τ) ∈ X ×BΘ×T (δ)} follows from Lemma A2 above.
Similarly, by considering Vx(·; θ, τ)− Vx(·; θ0, τ0) in place of Vx(·; θ, τ), we can show that

sup(x,θ,τ)∈X×BΘ×T (δ) |ν
∗(x; θ, τ)− ν∗(x; θ0, τ0)| = oP∗(1)

in P uniformly in P ∈ P. The bootstrap uniform CLT applied to ν∗(x; θ0, τ0) gives us the wanted result.
Let us show (37). Certainly by Assumptions 1(iii) and 3(ii), we can take H such that supP∈P ||H||P,2 <

∞. Therefore, in proving (37), we put ||H||P,2 = 1 without loss of generality. We split the proof of (37)
into that for H1(δ) ≡ {h∆x (·; θ, τ) : (x, θ, τ) ∈ X × BΘ×T (δ)} and that for H2(δ) ≡ {ψ∆x (·; θ, τ) : (x, θ, τ) ∈
X ×BΘ×T (δ)}. As we saw in the proof of Theorem 1 the bracketing entropy of H1(δ) is bounded by Cε−dλ/s2
by Lemma B2. Introduce a pseudo metric dV (x, x0) ≡ |V (x) − V (x0)|. By the local uniform L2-continuity
condition for the elements in H2(δ) (Assumption 3(iv)), we deduce that

supP∈P logN[](ε,H2(δ), || · ||P,2) ≤ CsupP∈P logN(ε
1/s1 ,X , dV ) (38)

+CsupP∈P logN[](ε
1/s1 , BΘ×T (δ), || · ||+ || · ||∞)

≤ −C log(ε) + Cε−d/s1 ,

by Lemma B1. By applying Theorem 6 of Andrews (1994) and using the condition that d/s1 < 2 and
dλ/s2 < 2, we obtain (37).
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Define ν∗(x; θ, τ) as in (35) and let ν∗0(x) ≡ ν∗(x; θ0, τ0) for short. Define also ν̄(x) ≡ q(x)
√
N{D̄01(x)−

D01(x)}. Introduce a functional: for BN ⊂ X ,

f(v;BN ) ≡
Z
BN

max {v(x), 0}2w(x)dx.

Let

c̄α,N (BN ) ≡ inf {c : P{f(ν̄;BN ) ≤ c} ≥ 1− α}
c̄∗α,N,∞(BN ) ≡ inf {c : P{f(ν∗0;BN ) ≤ c|GN} ≥ 1− α}
cα,∞(BN ) ≡ inf {c : P{f(ν;BN ) ≤ c} ≥ 1− α} ,

where ν is the Gaussian process in Theorem 1.

Lemma B4 : Suppose that ν is regular on BN ⊂ X for all N ≥ 1, under probabilities in P 0 ⊂ P. Then,
for each α ∈ (0, 12 ],

c̄α,N (BN ) = cα,∞(BN ) + o(1) (39)

= c̄∗α,N,∞(BN ) + oP0(1).

Proof of Lemma B4 : The Gaussian process ν is tight uniformly over P ∈ P. Hence for any η > 0, we can
take M independent of P ∈ P such that supP∈P P{supx∈X |ν(x)| > M} < η. Since ν̄ weakly converges to ν
uniformly in P ∈ P, for any η > 0, we can also choose M such that limsupN→∞ supP∈P P{supx∈X |ν̄(x)| >
M} < η. Similarly for ν̄∗, applying Lemma B3, for any η, we can also take M such that

limsupN→∞ sup
P∈P

P {P{supx∈X |ν∗0(x)| > M |GN} < η} = 1.

Hence throughout the proof, we confine our attention to the event that supx∈X |ν(x)| ≤M, supx∈X |ν̄(x)| ≤
M, and supx∈X |ν∗0(x)| ≤M conditional on GN . This means that it suffices to consider lM∞(X ) = {v ∈ l∞(X ) :
supx |v(x)| ≤M} for potential realizations of ν, ν̄ and ν∗0.

We show only the second equality of (39). The first equality follows similarly by the uniform CLT in the
proof of Theorem 1. Write simply c̄∗α,N,∞ and cα,∞, suppressing the argument of BN . By regularity of ν,
we can take ε > 0 such that

supP∈P0P

½Z
BN

max{ν(x), 0}2w(x)dx ≤ ε

¾
≤ 1− α.

Hence cα,∞ ≥ ε. Fix ε1 ∈ (0, ε/2) and let EN be the event that
¯̄
c̄∗α,N,∞ − cα,∞

¯̄
> ε1. In this event either

c̄∗α,N,∞ − cα,∞ > ε1 or cα,∞ − c̄∗α,N,∞ > ε1. Suppose that the first case holds. Then, define f1 : lM∞(X )→ R

by
f1(v) ≡ f(v)− cα,∞ − ε1.

We would like to apply Lemma A1 to f1(ν∗) and f1(ν). It is easy to check that

|f1(v1)− f1(v2)| ≤ 2M ×
Z
X
w(x)dx× supx∈X |v1(x)− v2(x)| ≤ Csupx∈X |v1(x)− v2(x)|.
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Furthermore, note that since cα,∞ + ε1 > ε > 0,

supP∈P0(ε)P {|f1(ν)| ≤ Cη} = supP∈P0(ε)P
½¯̄̄̄Z

BN

max {ν(x), 0}2w(x)dx− cα,∞ − ε1

¯̄̄̄
≤ Cη

¾
→ 0

as η → 0 by Condition (16). Hence we can apply Lemma A1 with A = {0} so that for any ε > 0,

supP∈P0P {|P {f1(ν∗) ≤ 0|GN}− P {f1(ν) ≤ 0}| > ε} = o(1).

Therefore, recalling that cα,∞ + ε1 < c̄∗α,N,∞,

α ≥ P{f(ν) > cα,∞} ≥ P{f(ν∗) > cα,∞|GN}+ oP0(1) ≥ P{f(ν∗) > c̄∗α,N,∞ − ε1|GN}+ oP0(1),

contradicting the definition of c̄∗α,N,∞.
Suppose that the second case that cα,∞ − c̄∗α,N,∞ > ε1 holds. Then, we define f2 : lM∞(X )→ R by

f2(v) ≡ f(v)− cα,∞ + ε1.

We can check the condition for Lemma A1 similarly as before, using the fact that cα,∞−ε1 > ε/2 > 0. Now,
by applying Lemma A1 with A = {0},

supP∈P0P {|P {f2(ν∗) ≤ 0|GN}− P {f2(ν) ≤ 0}| > ε} = o(1).

Now, since cα,∞ − c̄∗α,N,∞ > ε1,

α ≥ P{f(ν∗) > c̄∗α,N,∞|GN} ≥ P{f(ν∗) > cα,∞ − ε1|GN} = P{f(ν) > cα,∞ − ε1}+ oP0(1),

contradicting the definition of cα,∞. Hence supP∈P0 PEN → 0. Since ε1 > 0 was arbitrary, the proof is
complete.

Suppose that aN is any sequence of real numbers and aN 0 with {N 0} ⊂ N is a subsequence. We define

limsup{N 0}aN = limk→∞sup{aN : N ∈ {N 0}, N ≥ k} and
liminf{N 0}aN = limk→∞inf{aN : N ∈ {N 0},N ≥ k}.

Lemma B5 : Let {aN 0
1
} and {aN 0

2
} be two subsequences of {aN}, i.e., {N 0

1} ⊂ N and {N 0
2} ⊂ N. Further-

more, assume that for some a ∈ R,

limsup{N 0
1}aN = liminf{N 0

1}aN = liminf{N 0
2}aN = limsup{N 0

2}aN = a.

Then, we have
limsup{N 0

1}∪{N 0
2}aN = liminf{N 0

1}∪{N 0
2}aN .
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Proof of Lemma B5 : Observe that

limsup{N 0
1}∪{N 0

2}aN = limk→∞max (sup{aN : N ∈ {N 0
1},N ≥ k}, sup{aN : N ∈ {N 0

2}, N ≥ k})
= max (limk→∞sup{aN : N ∈ {N 0

1}, N ≥ k}, limk→∞sup{aN : N ∈ {N 0
2}, N ≥ k})

= max
³
limsup{N 0

1}aN , limsup{N 0
2}aN

´
= limsup{N 0

1}aN = liminf{N 0
1}aN

= min
¡
liminf{N 0

1}aN , liminf{N 0
2}aN

¢
= liminf{N 0

1}∪{N 0
2}aN .

The second and the last equalities follow because the mappings ‘max’ and ‘min’ are continuous.

Proof of Theorem 2 : Recall the definition ν̄(x) ≡ q(x)
√
N{D̄01(x)−D01(x)} and let

ν̄∗(x) ≡ q(x)
√
ND̄∗01,b(x).

We can invoke Lemma B3 and follow the proof of Lemma B4. Hence it suffices to consider lM∞(X ) = {v ∈
l∞(X ) : supx |v(x)| ≤ M} for potential realizations of ν, ν̄ and ν̄∗. For any sequence of events AN and
collections of probabilities P 0, we say that "AN arises wp→P0 1” if infP∈P0P {AN}→ 1.

Recall the definition: ν∗0(x) ≡ ν∗(x; θ0, τ0). For any set A ∈ X , let us denote

ã∗(A) ≡
Z
A

max{ν̄∗(x), 0}2w(x)dx,

â∗(A) ≡
Z
A

max{ν∗(x; θ̂, τ̂), 0}2w(x)dx,

a∗(A) ≡
Z
A

max{ν∗0(x), 0}2w(x)dx, and

a(A) ≡
Z
A

max{ν(x), 0}2w(x)dx.

We will show the following at the end of the proof:

Claim 1 : P{B((1− ε)cN ) ⊂ B̂ ⊂ B((1 + ε)cN )}→ 1, uniformly in P ∈ P.
Claim 2 : For any sequence of subsets BN ⊂ X , |ã∗(BN )− a∗(BN )| = oP∗(1) in P, uniformly in P ∈ P.

Define π∗N ≡
R
X max{q(x)

√
ND̄∗01,b(x), 0}2w(x)dx and write T ∗N,b = ã∗(B̂)1̂N + π∗N (1 − 1̂N ), where

1N ≡ {
R
B((1−ε)cN )w(x)dx > 0}, 1̄N ≡ {

R
B((1+ε)cN )

w(x)dx > 0}, and 1̂N ≡ {
R
B̂
w(x)dx > 0}. Let

T
−(1)
N,b ≡ ã∗(B((1− ε)cN))1N + π∗N (1− 1N ),

T
−(2)
N,b ≡ ã∗(B((1− ε)cN))1̄N + π∗N (1− 1̄N ),

T
+(1)
N,b ≡ ã∗(B((1 + ε)cN))1N + π∗N (1− 1N ), and

T
+(2)
N,b ≡ ã∗(B((1 + ε)cN))1̄N + π∗N (1− 1̄N ).

By Claim 1, wp→P 1, the conditional probability given GN of

min{T−(1)N,b , T
−(2)
N,b } ≤ T ∗N,b ≤ max{T

+(1)
N,b , T

+(2)
N,b } (40)

is equal to one.
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Now, let us turn to the proof of the theorem. We simply write P00(ε) = P00(ε, {rN}). We show that for
each P ∈ P0(ε),

P
©
TN > c∗α,N,∞

ª
≤ α+ ε1N (P ), (41)

where supP∈P0(ε) ε1N (P ) = o(1), and that for each P ∈ P00(ε),¯̄
P
©
TN > c∗α,N,∞

ª
− α

¯̄
= ε2N (P ) (42)

where supP∈P00(ε) ε2N (P ) = o(1).

(i) : Given each P ∈ P0(ε), and for ε1N (P ) in (41), for any subsequence {ε1N 0} of {ε1N}, we can always divide
the subsequence into further subsequences of two types {ε1N 00

1
} and {ε1N 00

2
} such that

R
B((1+ε)cN00

1
)
w(x)dx = 0

(Type 1) and
R
B((1+ε)cN00

2
)
w(x)dx > 0 (Type 2). Hence, by Lemma B5, it suffices to assume that without loss

of generality, we have infinitely many such N 00
1 ’s and N

00
2 ’s, and show (41) with supP∈P0(ε) ε1N 00

j
(P ) = o(1) for

both types of subsequences, j = 1, 2.

(Type 1 Subsequence) : Select N ’s such that
R
B((1+ε)cN)

w(x)dx = 0 and confine our attention only to
such sequences. Note that 0 = 1̄N ≥ 1N . Hence π∗N ≤ T ∗N,b, wp→P0(ε) 1. This implies that

c∗α,N,∞ ≥ c̃∗α,N,∞, wp→P0(ε) 1, (43)

where c̃∗α,N,∞ denotes the (1− α)-th quantile of the conditional distribution of π∗N given GN .
Now, observe that

TN =

Z
X
max{

√
Nq(x)D̄01(x), 0}2w(x)dx (44)

=

Z
X\B((1−ε)cN )

max{
√
Nq(x)(D̄01(x)−D01(x) +D01(x)), 0}2w(x)dx

+

Z
B((1−ε)cN)

max{
√
Nq(x)(D̄01(x)−D01(x) +D01(x)), 0}2w(x)dx.

As for the first term, observe that for any sequence r0N → 0,

P

(Z
X\B((1−ε)cN)

max{
√
Nq(x)(D̄01(x)−D01(x) +D01(x)), 0}2w(x)dx > r0N

)

≤ P

(Z
X\B((1−ε)cN)

max{
√
Nq(x)(D̄01(x)−D01(x))−

√
N(1− ε)cN , 0}2w(x)dx > r0N

)

≤ P

½
sup
x∈X

√
Nq(x)(D̄01(x)−D01(x)) >

√
N(1− ε)cN

¾
→ 0.

The convergence to 0 in the last term is uniform in P ∈ P because
√
Nq(x)(D̄01(x)−D01(x)) is asymptotically

tight uniformly over P ∈ P as shown in the proof of Theorem 1. The first inequality follows because when
x ∈ X\B((1 − ε)cN), q(x)|D01(x)| > (1 − ε)cN . Since we are under the null hypothesis, q(x)D01(x) <

−(1− ε)cN , which yields the first inequality in the above display. Therefore, for any sequence r0N → 0,Z
X
max{

√
Nq(x)D̄01(x), 0}2w(x)dx =

Z
B((1−ε)cN )

max{
√
Nq(x)D̄01(x), 0}2w(x)dx+OP (r

0
N )
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where OP (r
0
N ) is uniform over P ∈ P. Since D01(x) ≤ 0, the last integral is bounded byZ

B((1−ε)cN )
max{

√
Nq(x){D̄01(x)−D01(x)}, 0}2w(x)dx (45)

≤ supx∈X
¯̄̄√

Nq(x){D̄01(x)−D01(x)}
¯̄̄
×
Z
B((1−ε)cN)

w(x)dx = oP(1),

because
R
B((1−ε)cN )w(x)dx ≤

R
B((1+ε)cN )

w(x)dx = 0. We conclude that TN = oP(1).
On the other hand, let c̃α be the (1 − α)-th quantile of

R
X max{ν(x), 0}2w(x)dx. Since ν is regular on

X , we can apply Lemma B4 to deduce that

c̃∗α,N,∞ = c̃α + oP0(ε)(1) and c̃α ≥ η, (46)

for some small η > 0 that does not depend on P. Hence by (43),

P
©
TN > c∗α,N,∞

ª
≤ P

©
TN > c̃∗α,N,∞

ª
+ o(1)

= P {TN > c̃α}+ o(1).

The last probability converges to zero because TN = oP(1) from (45) and because c̃α ≥ η > 0 from (46).
This establishes (41) for Type 1 subsequences.

(Type 2 Subsequence) : Select N ’s such that
R
B((1+ε)cN)

w(x)dx > 0 and confine our attention only to
such sequences. In this case, one can divide the subsequence into further subsequences of two types, eitherR
B((1−ε)cN )w(x)dx > 0 or

R
B((1−ε)cN )w(x)dx = 0. Consider the first case. Then, wp →P0(ε) 1, a∗(B((1 −

ε)cN )) ≤ T ∗N,b. Let c̄
∗
α,N,∞ and cα,∞ be as defined prior to Lemma B4 with BN = B((1− ε)cN ). Since ν is

regular on B((1− ε)cN )), we apply Lemma B4 to deduce that

c∗α,N,∞ ≥ c̄∗α,N,∞ + oP0(ε)(1) = cα,∞ + oP0(ε)(1). (47)

On the other hand, using (44) and following the steps thereafter, we obtain that for any sequence r0N → 0,

TN =

Z
B((1−ε)cN )

max
n√

Nq(x)(D̄01 −D01)(x) +
√
Nq(x)D01(x), 0

o2
w(x)dx+OP(r

0
N )

≤
Z
B((1−ε)cN )

max
n√

Nq(x)(D̄01 −D01)(x), 0
o2

w(x)dx+OP(r
0
N ).

By Lemma B4 and (47),

P
©
TN > c∗α,N,∞

ª
≤ P

n
TN > cα,∞ + oP0(ε)(1)

o
≤ P

(Z
B((1−ε)cN)

max {ν(x), 0}2 w(x)dx > cα,∞ + oP0(ε)(1)

)
+ o(1)

≤ α+ o(1).

Now, suppose that
R
B((1−ε)cN )w(x)dx = 0. In this case, the Gaussian process ν is not regular on

B((1− ε)cN ). Hence this case is excluded by the definition of P0(ε).

(ii) : Since
R
B((1−ε)cN )w(x)dx > 0 for all N > 1/ε, we have

R
B((1+ε)cN)

w(x)dx > 0 for all N > 1/ε, implying
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that 1N = 1̄N = 1. From (40),

ã∗(B((1− ε)cN )) ≤ T ∗N,b ≤ ã∗(B((1 + ε)cN )), wp→P00(ε) 1.

Therefore,

¯̄
T ∗N,b − ã∗(B((1− ε)cN ))

¯̄
≤ |ã∗(B((1 + ε)cN ))− ã∗(B((1− ε)cN ))|
≤ |a∗(B((1 + ε)cN ))− a∗(B((1− ε)cN ))|+ oP∗(1)

= oP∗(1),

uniformly in P ∈ P00(ε), by Claim 2 and (17). This implies that

T ∗N,b = ã∗(B((1− ε)cN )) + oP∗(1) = a∗(B(N−1/2rN )) + oP∗(1) in P , uniformly in P ∈ P00(ε),

by Claim 2 and (17) again. Hence T ∗N,b = f(ν∗0) + oP∗(1) in P , uniformly in P ∈ P00(ε), where

f(v) ≡
Z
B(N−1/2rN )

max {v(x), 0}2w(x)dx.

Let c̄∗α,N,∞ ≡ inf {c : P{f(ν∗0) ≤ c|GN} ≥ 1− α} and cα,∞ ≡ inf {c : P{f(ν) ≤ c} ≥ 1− α} . By Lemma B4,
we have

c̄∗α,N,∞ = cα,∞ + oP00(ε)(1), (48)

due to the regularity of ν on B(N−1/2rN ).We turn to the original test statistic TN . Using (44) and the steps
thereafter, we obtain that for any sequence r0N → 0,

TN =

Z
B((1−ε)cN )

max
n√

Nq(x)(D̄01 −D01)(x) +
√
Nq(x)D01(x), 0

o2
w(x)dx+OP(r

0
N )

=

Z
B((1−ε)cN )\B(N−1/2rN )

max
n√

Nq(x)(D̄01 −D01)(x) +
√
Nq(x)D01(x), 0

o2
w(x)dx

+

Z
B(N−1/2rN)

max
n√

Nq(x)(D̄01 −D01)(x), 0
o2

w(x)dx+OP(max{r2N , r0N}).

The third to the last term is bounded byZ
B((1−ε)cN )\B(N−1/2rN )

max
n√

Nq(x)(D̄01 −D01)(x), 0
o2

w(x)dx = OP00(ε)(rN ) = oP00(ε)(1),

by (17) and the uniform asymptotic tightness of
√
Nq(D̄01−D01).We conclude that TN = f(ν̄)+oP00(ε)(1).

Let the (1−α)-th quantile of the distribution of f(ν̄) be c̄α,N . Then by applying Lemma B4, we obtain that

c̄α,N = cα,∞ + oP00(ε)(1).

Combined with (48), this implies that

P
©
TN ≤ c∗α,N,∞

ª
= P {TN ≤ cα,∞}+ o(1) = P {TN ≤ c̄α,N}+ o(1) = 1− α+ o(1),

uniformly in P ∈ P00(ε). Therefore, we obtain the wanted result.
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(Proof of Claim 1): Since the empirical process
√
Nq(x){Dk(x)− D̄k(x)} is asymptotically tight for each

k = 0, 1, P{supx(q(x)|D0(x) − D̄0(x)| + q(x)|D1(x) − D̄1(x)|) > εcN} → 0 by the choice of cN → 0 and
cN
√
N →∞. For any x ∈ B((1− ε)cN ), by the triangular inequality,

q(x)
¯̄
D̄01(x)

¯̄
≤ (1− ε)cN + q(x)

¯̄
D0(x)− D̄0(x)

¯̄
+ q(x)

¯̄
D1(x)− D̄1(x)

¯̄
≤ cN ,

with probability approaching one. Thus we deduce that P{B((1− ε)cN ) ⊂ B̂}→ 1. Now, for any x ∈ B̂, by
the triangular inequality,

q(x) |D01(x)| ≤ cN + q(x)
¯̄
D0(x)− D̄0(x)

¯̄
+ q(x)

¯̄
D1(x)− D̄1(x)

¯̄
≤ (1 + ε)cN ,

with probability approaching one. Therefore, P{B̂ ⊂ B((1 + ε)cN )} → 1. The convergence uniform over
P ∈ P follows from the fact that

√
Nq(x){Dk(x)− D̄k(x)} is asymptotically tight uniformly over P ∈ P.

(Proof of Claim 2): Take δN = CN−1/4+ε → 0 for ε > 0 and consider only those events such that
||θ̂ − θ0|| + ||τ̂ − τ0||∞ ≤ δN . By Lemma B3(i), we have |ã∗(BN )− â∗(BN )| = oP∗(1). By using a2 − b2 =

(a+ b)(a− b) and the Cauchy-Schwartz inequality, the above term is bounded by

E [|â∗(BN )− a∗(BN )| |GN ] ≤
½
E

∙Z
BN

|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)|2w(x)dx|GN
¸¾1/2

×
½
E

∙Z
BN

|ν∗(x, θ̂, τ̂) + ν∗(x, θ0, τ0)|2w(x)dx|GN
¸¾1/2

=

½
E

∙Z
BN

|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)|2w(x)dx|GN
¸¾1/2

×OP (1),

because both the processes ν∗(·, θ̂, τ̂) and ν∗(·, θ0, τ0) are asymptotically tight by the weak convergence result
of Lemma B3(ii). Using Fubini’s theorem, the last expectation is written asZ

BN

E[|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)|2|GN ]w(x)dx.

Now, by using Theorem 2.14.5 of van der Vaart and Wellner (1996), we deduce that for some p > 2,

n
E[|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)|2|GN ]

o1/2
≤

n
E[|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)|p|GN ]

o1/p
≤ CE[|ν∗(x, θ̂, τ̂)− ν∗(x, θ0, τ0)||GN ] + CN−1/2+1/p,

where CN−1/2+1/p = o(1). Using Le Cam’s poissonization lemma and following the proof of Theorem 2.2 of
Giné (1997), we obtain that for e = exp(1),

E
³
E[sup(θ,τ)∈BΘ×T (δN )|ν

∗(x, θ, τ)− ν∗(x, θ0, τ0)||GN ]
´

(49)

≤ e

e− 1E
"
sup(θ,τ)∈BΘ×T (δN )

¯̄̄̄
¯ 1√N

NX
i=1

(Ni − 1){Vx(Wi, θ, τ)− Vx(Wi, θ0, τ0)}
¯̄̄̄
¯
#

+
e

e− 1E
"¯̄̄̄
¯ 1√N

NX
i=1

(Ni − 1)
¯̄̄̄
¯× sup(θ,τ)∈BΘ×T (δN )

¯̄̄̄
¯ 1N

NX
i=1

{Vx(Wi, θ, τ)− Vx(Wi, θ0, τ0)}
¯̄̄̄
¯
#
,
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where Vx(Wi, θ, τ) is defined in (8) and {Ni} is i.i.d. Poisson random variables of parameter 1 and independent
of {Wi}Ni=1.

Redefine H(δ) as in the proof of Lemma B3(ii) with Vx(·, θ, τ) replaced by Vx(·, θ, τ)−Vx(·, θ0, τ0). Then
by Assumption 2(ii) and Assumption 4, we can take an envelope of H(δN ), whose L2(P )-norm is bounded by
C(δ

λs2/2
N +δs1N ). Using the maximal inequality, we can obtain that the expectation in (49) is oP (1). Therefore,

E [|â∗(BN )− a∗(BN )| |GN ] = oP (1)×
Z
BN

w(x)dx = oP (1)

because w is integrable.

Proof of Theorem 3: From the proof of Theorem 2, c∗α,N,∞ = cα + oP (1). However, the test statistic
diverges to infinity under the alternative hypothesis as we can see in the proof of Theorem 1. Hence the
rejection probability converges to one.

Proof of Theorem 4: Since the test statistics are the same, it suffices to compare the bootstrap critical
values as B →∞. By the construction of the local alternatives, we are under the probability on the boundary.
Since this bootstrap test statistic T ∗LFN,b is recentered, it converges in distribution (conditional on GN ) to the
distribution of

R
X max{ν(x), 0}2w(x)dx, while the distribution of the bootstrap test statistic T ∗N,b converges

to that of
R
C01

max{ν(x), 0}2w(x)dx. Note that

Z
X
max{ν(x), 0}2w(x)dx ≥

Z
C01

max{ν(x), 0}2w(x)dx

because C01 ⊂ X . Hence c∗LFα,N,∞ ≥ c∗α,N,∞ + oP (1). This implies that under the local alternatives,

limN→∞PN
©
TN > c∗α,N,∞

ª
= P

½Z
C01

max {ν(x) + δ(x), 0}2w(x)dx > c∗α,N,∞

¾
(50)

≥ P

½Z
C01

max {ν(x) + δ(x), 0}2w(x)dx > c∗LFα,N,∞

¾
.

Now, when
R
X max {ν(x), 0}

2
w(x)dx >

R
C01

max {ν(x), 0}2w(x)dx almost everywhere, c∗LFα,N,∞ > c∗α,N,∞ +

oP (1). Hence the inequality in (50is strict.
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