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Abstract 

This paper considers the estimation of a dynamic ordered probit with fixed 
effects, with an application to self-assessed health status. The estimation of nonlinear 
panel data models with fixed effects by MLE is known to be biased when T is not very 
large. The problem is specially severe in our model because of the dynamics and 
because it contains two fixed effects: one in the linear index equation, interpreted as 
unobserved health status, and another one in the cut points, interpreted as heterogeneity 
in reporting behavior. The contributions of this paper are twofold. Firstly this paper 
contributes to the recent literature on bias correction in nonlinear panel data models by 
applying and studying the finite sample properties of two of the existing proposals to 
the ordered probit case. The most direct and easily applicable correction to our model is 
not the best one and still has important biases in our sample sizes. Secondly, we 
contribute to the literature that study the determinants of Self-Assesed Health measures 
by applying the previous analysis on estimation methods to the British Household Panel 
Survey. 
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1 Introduction

The estimation of nonlinear panel data models with �xed e¤ects is known to be

problematic with the panels usually available, since they do not have a very large

number of periods. This is even more severe when estimating dynamic models,

like the dynamic ordered probit model. This incidental parameters problem is

re�ected in the inconsistency of standard estimators like the maximum likelihood

estimator (MLE) when the number of individuals N goes to in�nity and T is �xed.

Even when T goes to in�nity, if it does at a smaller or the same rate as N, the

asymptotic normal distribution is not centered at zero due to the bias coming from

the incidental parameters. Moreover, this problem results in large �nite sample

biases of the MLE when using panels where T is not very large. The dynamic

ordered probit model is not an exception to this, specially if it contains more than

one individual speci�c parameter, as in our case.

An important part of the research on microeconometrics in recent years has

been concerned with �nding a solution to this problem, by developing bias-adjusted

methods to estimate those models. Given this fast growing literature, there are

several bias correction methods we could consider to estimate our model. These

methods can be grouped in three approaches.1 The �rst one is to construct an

analytical or numerical bias correction of a �xed e¤ect estimator. Hahn and Newey

(2004), Hahn and Kuersteiner (2004) and Fernandez-Val (2009), for example, take

this approach to the problem. The second approach is to correct the bias in moment

equations. An example of this is Carro (2007), which uses an estimator of this

type to correct the bias in dynamic binary choice models. The third approach

is to correct the objective function. Arellano and Hahn (2006) and Bester and

Hansen(2009) take this approach, with the latter including an application to a

dynamic ordered probit model.

Asymptotically all of the above methods reduce the order of the bias of the MLE

from the standard O(T�1) to O(T�2). Therefore, from this perspective we could

use any of the methods developed for dynamic models. A second criteria to choose

among the several alternatives is to check the easyness of implementation to our

model. From this criteria the estimator that corrects the objective function using a

penalty term based on a product of the sample scores and Hessian can be directly

applied without modi�cation to our speci�c model. Bester and Hansen(2009) refers

to it as the HS penalty. In contrast with the direct applicability of this estimator,

others are computationally more di¢ cult and require some transformation to be

1See Arellano and Hahn (2007) for a good review of this literature, detailed references and a
general framework in which the various approaches can be included.
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applied to our model, specially because our model contains two �xed e¤ects instead

of one as usually is the case in binary choice models. This does not mean that other

methods cannot be applied nor that we do not know their theoretical properties.

They have been developed for a quite general class of nonlinear panel data models

with �xed e¤ects.

Notwithstanding, a third and more important criteria is the �nite sample per-

formance of the method when estimating our model with the sample size we have.

The incidental parameters problem can be seen as a �nite sample bias problem in

panel data context. The incidental parameters problem is not very important when

T is large. However, since our panel does not have a very large number of periods

it is reasonable to wonder whether the good asymptotic properties when T goes

to in�nity are a good approximation to our �nite sample. Given this, we should

evaluate the �nite sample performance of the available methods we could use to

estimate our model. As usual, this comparison is done through Monte Carlo experi-

ments. Bester and Hansen (2009) do not compare the �nite sample properties of the

method they use with others for the ordered probit case because many of the other

methods will require some derivation to get the speci�c correction for this case.

They, however, make such a comparison using a static and a dynamic logit model.

Also, Carro (2006) and Fernandez-Val(2009) make Monte Carlo experiments for

logit and probit models with di¤erent sample sizes. The Monte Carlo experiments

made in these three papers allow us to compare a wide range of methods for the

dynamic logit and probit models. From all these comparisons we can conclude that

the HS penalty approach is clearly not the best one. We can also conclude that for

sample sizes with T smaller than 13 the reminding bias when using HS could still

be signi�cant, specially for the ordered probit Bester and Hansen (2009) simulate.

This result is also con�rmed in our simulations. Given this and that our empirical

application has T = 13, some other of the proposed methods should be considered,

in addition to the HS penalty approach. Interesting candidates are the corrections

discussed by Fernandez-Val(2009) and Carro (2006) since they are both equally

superior to other methods in the relevant existing monte Carlo experiments. In

this paper we derive explicit formulas of the modi�ed MLE used in Carro (2007)

for the model considered here, evaluate its �nite sample performance and compare

it with the HS penalty estimator. This exercise is a main contribution of this paper

since, as Arellano and Hahn (2007) point out in their conclusions, more research

is needed to know �how well each of the methods recently proposed work for other

speci�c models and data set of interest in applied econometrics.�Also, Greene and

Henshen (2008) comment on the lack of studies about the applicability to ordered
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choice models of the recent proposals for bias reduction estimators in binary choice

models.

Self-assessed health (SAH) has been used as a proxy for true overall individual

health status in many socioeconomic studies. Also, it has been shown to be a good

predictor of mortality and of subsequent demand of medical care. Motivated by

this importance and the high observed persistence in health outcomes, Contoyannis,

Jones and Rice (2004) study the dynamics and e¤ects of socioeconomic variables

on SAH for the British Household Panel Survey. Among other aims, they try to

know the relative contribution of state dependence and unobserved heterogeneity

in explaining the observed persistence in SAH. Given that SAH is a categorical

variable this is a case where the use of a dynamic order probit model is appropriate.

In addition to accounting for unobserved factors that a¤ect health status (index

shift), here we also have to take into account the possible heterogeneity in reporting

behavior (cut-point shift). The cut-point shifts occur if individuals use di¤erent

thresholds when assessing their health and reporting it in the SAH categorical

variable, so that they report a di¤erent value of SAH even though having the same

level of true health.2 To control for these two unobserved factors, which are possibly

correlated with other explanatory variables and between each other, we include

individual e¤ects not only in the levels of the order probit but also in the cut points.

As it happens with one individual e¤ect, we could take a �random e¤ects�approach.

However, this approach has the drawback of imposing either independence, or a

speci�c and restrictive functional form for the relation between the unobserved

heterogeneity and other explanatory variables. It also has the drawback of having to

deal with the so-called initial conditions problem. Taking a ��xed e¤ects�approach

we leave unrestricted (i.e. nonparametric) the joint distribution of the two kind of

individual e¤ects and their correlation with the explanatory variables. Moreover,

there is not initial conditions problem. Despite these advantages, there have been

only few applications in health economics of nonlinear panel models with �xed

e¤ects, as can be seen by reading Jones�(2007) handbook chapter. This is due to

the di¢ culty of solving the incidental parameters problem addressed by this paper

and the related literature.

The rest of the paper proceeds as follows. We �rst present our model and its

estimation problems. We comment on the possible solutions from the nonlinear

bias correction literature for nonlinear panel data models with �xed e¤ects. We

use simulations to evaluate the �nite sample performance of two of the alternatives

2See Lindeboom and van Doorslaer (2004) for a test about the existence of these two di¤erent
kinds of shifts.
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and use this as �nal criteria for choosing our estimator. In Section 3, we apply

all that to the study self-assessed health status in the British Household Panel

Survey. There we �rst present the data and variables we include in our model. The

estimates and comments on them follow. Last section concludes.

2 The Model and Estimation Method

We consider a dynamic panel data ordered probit with �xed e¤ects:

h�it = �i + �11 (hi;t�1 = 1) + ��11 (hi;t�1 = �1) + x0it� + "it; i = 1; :::; N , t = 0; ::; T
(1)

h�it is the latent variable (e.g. health status), and the observed variable (hit) is

determined according to the following thresholds:

hit =

8><>:
�1 if h�it < �ci
0 if �ci < h�it � 0
1 if y�it > 0

(2)

For instance, in our empirical application, hit = �1 corresponds to poor health,
hit = 0 to fair health and hit = 1 to good health. �i and ci are the model�s �xed

e¤ects, and "it �
iid
N(0; 1). Note that in addition to the usual scale normalization in

discrete choice models, here we are also normalizing one of the two cut points to

be zero. The, somehow more conventional, normalization of setting the intercept

in the linear index equal to zero is not available to us because with the �xed e¤ects

approach the distribution of the intercept, including its mean, is unrestricted. An

alternative normalization is to put the two �xed e¤ects in the two cut point and

leave the linear index equation without any intercept.

From this discussion on normalization it is clear that it is not possible to sep-

arately identify individual e¤ects a¤ecting only h�it from the individual e¤ects af-

fecting the cut points. Having only the �xed e¤ect in the linear index (�i) will

also allow for heterogeneity in the cut points, but in a very restrictive way. In

particular, by introducing only one individual e¤ect (�i), we would be assuming

that the unobserved heterogeneity must have e¤ects of opposite sign in Pr(hit = 1)

and Pr(hit = �1); and also we would be restricting how these two e¤ects di¤er
in magnitude for all individuals. Having two �xed e¤ects as in (2), we are not

imposing any restrictions on the cut-point shifts as well as on the index shift.
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From (1), (2) and the assumption about "it, we have that

Pr(hit = �1jxit; hit�1; ci; �i) = 1� � (ci + �it)
Pr(hit = 0jxit; hit�1; ci; �i) = � (ci + �it)� � (�it)
Pr(hit = 1jxit; hit�1; ci; �i) = 1� Pr(hit = �1j:)� Pr(hit = 0j:) = � (�it) (3)

where

�it = �i + �11 (hi;t�1 = 1) + ��11 (hi;t�1 = �1) + x0it� (4)

Conditioning on the �rst observation, the log-likelihood is:

l(�1; ��1; �; �; c) =
NX
i=1

T�1X
t=1

f1 fyit = �1g log [1� � (ci + �it)]+

1 fyit = 0g log [� (ci + �it)� � (�it)] + 1 fyit = 1g log [� (�it)]g;
(5)

2.1 Estimation problem and possible solutions

Using standard MLE to estimate models like (2) is well known to be biased, since

we do not have a large number of periods. The MLE is inconsistent when T is

not going to in�nity because the �xed e¤ects are acting as incidental parameters.

Furthermore, existing Monte Carlo experiments with nonlinear models similar to

this shows that the MLE has large bias. In fact, simulations of a dynamic ordered

probit in Bester and Hansen(2009) and, in following sections, we show that the

bias is non-negligible even with T as large as 20. As mentioned in the introduction,

several bias-correction methods have been recently developed that could overcome

this problem. Arellano and Hahn (2007) summarize the di¤erent approaches.

The methods can be grouped in three approaches based on the object that is

corrected. The �rst one is to construct an analytical or numerical bias correction of

a �xed e¤ect estimator. Fernandez-Val (2009), among others, takes this approach

to the problem and applies his analytical bias correction and a jackknife automatic

correction to dynamic binary choice models. The second group are those that

correct the bias in moment equations. An example of this is Carro (2007) that

uses an estimator of this type to correct the bias in dynamic binary choice models.

The third group are those that correct the objective function. Arellano and Hahn

(2006) and Bester and Hansen(2009) take this approach, with the latter including

an application to a dynamic ordered probit model. Given that our model of interest

is also a dynamic ordered probit, and that other alternatives will require some sort
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of transformation or derivations to be applied to our case, the HS-penalty estimator

studied in Bester and Hansen(2009) is the �rst option we should consider. In

addition to that, this estimator has the advantages of being simpler to compute

than the Modi�ed MLE in Carro (2007) and than the Bias Correction in Fernandez-

Val (2009) because the HS does not require the calculation of expectations and the

other two do. This advantage is more relevant in our case, because it has two �xed

e¤ects. The HS is also obviously much less computationally costly than a jackknife

automatic correction.

Arellano and Hahn (2007) shows the relations between the diferent type of

approaches. Asymptotically all the methods and approaches are always reducing

the order of the bias of the MLE from the standard O(T�1) to O(T�2) for the

general classes of models they were developed. However there may be di¤erences

when they are applied to speci�c cases . The following very simple example, used in

Carro (2007), Arellano and Hahn (2007), and Bester and Hansen (2009), illustrates

this point. Consider the model where yit �
iid
N(�i; �

2
0). The ML estimator of �

2
0

is b�2MLE =
1
NT

P
i

P
t (yit � b�i)2. It is well known that b�2MLE is not a consistent

estimator of �20 when N !1 with �xed T , since it converges to T�1
T
�20. In this case

the whole problem is very easy to �x. 1
N(T�1)

PN
i=1

PT
t=1 (yit � b�i)2 is the �xed T

consistent estimator of �20. The MMLE from Carro(2007) produces this very same

estimator, correcting not only the O(T�1) term of the bias, but all the asymptotic

bias in this special example. The jackknife automatic correction gives the �xed

T consistent estimator too. The HS removes the O(T�1) term of the bias, but it

does not attain the �xed-T consistent estimator. The one-step bias correction to

the ML estimator from Fernandez-Val (2009) does not produce a �xed-T consistent

estimator either, but its iterated form does. So, di¤erences may appear between

the di¤erent approaches when applied to speci�c models.

On the other hand, the incidental parameters problem can be seen as a �nite

sample bias problem in panel data context. The problem is not very important

when T is large. However, since our panel does not have a large number of periods

it is reasonable to wonder whether the good asymptotic properties when T goes to

in�nity are a good approximation to our �nite sample. As a matter of fact, our

problem is that the MLE has large biases when T is not very large. It seems from

simulations that we would need panels with a much larger number of time periods

than those usually found in practice. This also implies that we should look at the

�nite sample performance of the estimators for our model and sample sizes. In the

methods considered here this is done through Monte Carlo experiments. Unfor-

tunately, Bester and Hansen (2009) do not compare the �nite sample properties
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of the method they use with others for the ordered probit case because many of

the other methods will require some derivation to get the speci�c correction for

this case. They, however, make such a comparison using a binary choice (probit

and logit) models. Also, Carro (2006) and Fernandez-Val(2009) make Monte Carlo

experiments for logit and probit models with di¤erent sample sizes (both in T and

N), allowing us to compare a wide range of methods for these models. From these

comparisons we can conclude that the HS penalty approach is clearly not the best

one and for sample sizes with T smaller than 13 the reminding bias can still be

signi�cant. Given this result, we should consider other of the proposed methods to

estimate our ordered probit and evaluate its �nite sample properties. Interesting

candidates are the corrections discussed by Fernandez-Val(2009) and Carro (2006)

since they are equally superior to other alternatives in �nite sample performance

in the relevant existing comparisons. In the next subsection we derive explicit for-

mulas of the modi�ed MLE used in Carro(2007) for the model considered here and

evaluate its �nite sample performance.

2.2 MMLE for a dynamic order probit with two �xed ef-

fects

The model to be estimated is de�ned in (1) and (2), and its log-likelihood is (5). Let

= (�; �1; ��1) and �i = (�i; ci). Partial derivatives will be denoted by the letter

d, so the �rst order conditions will be d�i(; �i) � @li(;�i)
@�i

and di(; �i) � @li(;�i)
@

.

Bold letters represent vectors.

The MLE of �i for given , �i(), solves d�i(; �i) = 0. Then, the MLE of  is

obtained by maximizing the concentrated log-likelihood (
PN

i=1 li(; �i())), i.e. by

solving the following �rst order condition:

1

T N

NX
i=1

di(; �i()) = 0 (6)

where di(; �i()) =
@li(;�i)
@

���
�i=�i()

.

To reduce the bias of the estimation, we follow Carro (2006) in modifying the

score of the concentrated log-likelihood adding a term that takes away the �rst

order term of the asymptotic bias in T . By doing this, we get that the MMLE of
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the  parameters of model (2) is the value that solves the following score equation:

dMi() = di(; �i())�
1

2

1

d��idcci � d�ci2
�
d��i

�
dcci + d�cci

@b�i
@

+ dccci
@ĉi
@

�
+dcci

�
d��i + d���i

@b�i
@

+ d��ci
@ĉi
@

�
�2d�ci

�
d�ci + d��ci

@b�i
@

+ d�cci
@ĉi
@

��
� @

@�i

�
E(dci)E(d�ci)� E(dcci)E(d�i)
E(d��i)E(dcci)� [E(d�ci)]2

�����
�i=�i()

� @

@ci

�
E(d�i)E(d�ci)� E(d��i)E(dci)
E(d��i)E(dcci)� [E(d�ci)]2

�����
�i=�i()

= 0 (7)

where di(; �i()) is the standard �rst order condition from the concentrated log-

likelihood, as in (6). dci = @2li
@@ci

, d��i = @2li
@�2i
, d�ci = @3li

@@ci@�i
, and so on. b�i()

and bci() are obtained from the �rst order conditions of �i and ci, as it is done in

order to concentrate the log-likelihood.

We show in appendix A how this modi�cation on the score of the concentrated

log-likelihood in (7) is a �rst order adjustment on the asymptotic bias of the ML

score, so the �rst order condition is more nearly unbiased and the order of the bias

of the estimator is reduced from O(T�1) to O(T�2).

2.3 Simulations

We simulate model (1 - 2) with following value of the parameters: � = 1, �1 = 0:5,

and ��1 = �0:5. The error follows a normal distribution: "it � N(0; 1). The �xed
e¤ects are constructed as follows:

�i =
1

4

4X
t=1

xit (8)

ci = jzij; where zi � N(xi0; 1): (9)

so that they are correlated with the explanatory variables.3 xit follows a Gaussian

AR(1) with autoregresive parameter equal to 0:5. Initial conditions are xi0 �
N(0; 1) and h�i0 = ai+�0 xi0+"i0. We perform 1000 replications, with a population

of N = 250 individuals. For each simulation we estimate the MLE, the MMLE

given by equation (7) and the HS estimator de�ned in Bester and Hansen (2009).

3Note that Bester and Hansen (2009) only consider in their simulations of an order probit
the case where the �xed e¤ects are independent of the covariates. Correlation of the unobserved
heterogeneity, as here, makes the problem more severe. The estimators are likely to perform
worse, but we consider this situation to be more realistic. We want to evaluate the alternatives
in a realisctic setting.
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Table 1: Monte Carlo Results. Dynamic Order Probit parameters

Parameter � �1 ��1
True value 1 0:5 �0:5
Estimator Mean Bias RMSE Mean Bias. RMSE Mean Bias RMSE

T = 4
MLE 0:827 0:838 �0:553 0:588 0:581 0:619
HS 0:808 0:819 �0:473 0:513 0:493 0:537
MMLE 0:177 0:187 �0:285 0:309 0:296 0:322

T = 8
MLE 0:331 0:337 �0:174 0:202 0:210 0:234
HS 0:242 0:250 �0:102 0:141 0:139 0:171
MMLE 0:068 0:083 �0:052 0:100 0:084 0:120

T = 10
MLE 0:251 0:257 �0:131 0:159 0:163 0:187
HS 0:164 0:172 �0:068 0:108 0:106 0:136
MMLE 0:047 0:062 �0:025 0:082 0:059 0:098

T = 12
MLE 0:200 0:205 �0:109 0:134 0:137 0:158
HS 0:118 0:125 �0:053 0:091 0:087 0:115
MMLE 0:032 0:049 �0:016 0:072 0:046 0:085

T = 16
MLE 0:145 0:149 �0:082 0:106 0:101 0:124
HS 0:072 0:079 �0:036 0:073 0:063 0:092
MMLE 0:020 0:036 �0:008 0:062 0:030 0:072

T = 20
MLE 0:114 0:118 �0:064 0:086 0:079 0:100
HS 0:050 0:058 �0:025 0:060 0:047 0:075
MMLE 0:014 0:031 �0:003 0:054 0:019 0:061

That is, the HS estimator is the value of the parameters that maximize the following

penalized objective function:

NX
i=1

lki (�; �1; ��1; �i; ci)�
NX
i=1

1

2
trace

�bI�1�ci bV�ci�� k2 (10)

where lki is the log likelihood of i, bI�ci is the sample information matrix for ei =
(�i; ci)

0, bV�ci is a HAC estimator of V ar � 1p
T

@li
@ei

�
, and k = dim(ei)

Results from this experiment for di¤erent T are reported in Table 1, which

shows the mean bias and the Root Mean Squared Error (RMSE). We �nd that for

all T , the MMLE performs much better than the other two estimators. Comparing
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it with the HS, the di¤erences are of greater magnitude for T = 4 and T = 8,

where the HS is closer to the MLE than to the MMLE. When using the MMLE

the bias is small than 10% of the true values with T = 10 for all but for one

of the � parameters. With T = 12 the bias when using the MMLE is already

negligible whereas the HS contain biases and RMSE larger than the MMLE with

T = 10. Even with T = 16 the HS exhibit mean biases greater than the MMLE

with T = 10. It is not until T = 20 that the HS has small biases and RMSE.

So HS needs a larger number of periods (at least larger than 16) to have small

�nite sample biases. Given this and the fact that the sample sizes we have in the

empirical application of this paper are smaller than T = 14, we will use MMLE.

3 Empirical application: self-assessed health sta-

tus in the British Household Panel

Self-assessed health (SAH) measures have been used as a proxy for true overall

individual health status in many socioeconomic studies. Also, it has been shown

to be a good predictor of mortality and of subsequent demand of medical care.

This motivates the study of dynamics and potential explanatory factors of SAH.

Moreover, SAH measures exhibit high persistence and it is interesting to know the

relative contributions of state dependence and heterogeneity to it. In this section

we estimate a dynamic ordered probit of SAH with two �xed e¤ects, using MMLE

whose properties has been studied in previous sections.

Our model, in contrast with previous studies like Contoyannis, Jones and Rice

(2004), includes two �xed e¤ects: one in the linear index equation and another one

in the cut points. The motivation for doing this is to account for heterogeneity in

reporting behavior (cut-points) among individuals, in addition to accounting for

unobserved factors that a¤ect health status (index shift). The cut-point shifts occur

if individuals use di¤erent thresholds when assessing their health and reporting it

in the SAH categorical variable, so that they report a di¤erent value of SAH even

though having the same level of true health. To control for these two, possibly

correlated with other explanatory variables and between each other, unobserved

factors, we include individual e¤ects not only in the levels of the order probit but

also in the cut points.

The model we estimate is as in (1) and (2):

h�it = �i + �11 (hi;t�1 = 1) + ��11 (hi;t�1 = �1) + x0it� + "it (11)

10



where h�it is the unobserved true health status of person i at period t, and the

observed variable (hit) is determined according to the following thresholds:

hit =

8><>:
�1 if h�it < �ci
0 if �ci < h�it � 0
1 if y�it > 0

(12)

where, hit = �1 corresponds to the situation where poor health is reported, hit = 0
to fair health and hit = 1 to good health. �i and ci are the model�s �xed e¤ects,

and "it �
iid
N(0; 1). The explanatory variables included in the model are described

in the following subsection.

3.1 Data and variables

For our empirical analysis, we use the British Household Panel Survey (BHPS). This

is a longitudinal survey of private households in Great Britain, and was designed as

an annual survey of each adult (16+) member of a nationally representative sample

of more that 5,000 households, with a total of approximately 10,000 individual

interviews. The same individuals are re-interviewed in successive waves and, if

they split o¤ from their original households are also re-interviewed along with all

adult members of their new households. Similarly, new members joining sample

households become eligible for interview and children are interviewed as they reach

the age of 16. Currently, sixteen waves of data for the years 1991 - 2006 are

available. We take into account individuals who gave a full interview at each wave.

An unbalanced panel of individuals who were interviewed in at least 8 subsequent

waves is used. Our sample consists of 74,451 observations from 6,255 individuals.

SAH is de�ned for waves 1-8 and 10-16 as the response to the question �Com-

pared to people of your own age, would you say your health over the last 12 months

on the whole has been: excellent, good, fair, poor, very poor?�At wave 9 the SAH

question and categories were reworded. This makes the comparison with other

waves di¢ cult and wave 9 is not used in our empirical analysis.

The original �ve SAH categories were collapsed to a three-category variable,

creating a new SAH variable, that will be our dependent variable, with the following

codes: poor (hit = �1) for individuals who reported either �very poor�or �poor�
health; fair (hit = 0) for individuals who reported �fair�health; and Good (hit = 1)

for individuals who reported �good�or �excellent�health.

The explanatory x variables in (11) can be grouped in three categories:

1. Socioeconomic variables: three dummy variables representing marital status
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(Married, Widowed, Divorced/Separated), with Single as the reference cate-

gory; six dummy variables representing employment (Self employed, In paid

employment, Unemployed, Retired, Looking after family or home, Long term

sick or disabled), with Other (On maternity leave, On a government training

scheme, Full-time student/at school, Something else) as the reference cat-

egory; and size of the household (the number of people living in the same

household). The income variable is the logarithm of equivalised real income,

adjusted using the Retail Price Index and equivalised by the McClement�s

scale to adjust for household size and composition, and consists on the sum

of non-labour income and labour income in the reference year.

2. Health variables: Among the explanatory variables of overall self-assesed

heath status, we include information on objective health problems. The

BHPS contains several questions about health problems and health care de-

mand, but many of them can be induced by a self valuation that might di¤er

from true health as much as SAH, and in an unobserved way. For example

the number of visits to the doctor can be determined by a perception of a

health problem rather than a true health problem. To avoid this endogeneity

bias, we have selected only those questions that we regard as measuring more

objective health situations and, therefore, are not a¤ected by personal health

assessments. We introduce the following variables:

- Health problems: This is a dummy variable, which takes the value 1 if

the individual reports he/she has at least one of the following permanent

health problems or disabilities: arthritis or rheumatism, di¢ culty in hearing,

allergies, asthma, bronchitis, blood pressure, diabetes, migraine or frequent

headaches, cancer and stroke, among others.

- Health limits daily activities: This is a dummy variable, which takes the

value 1 if the individual answers �yes�to the following question: does your

health in any way limit your daily activities, compared to most people of

your age? Examples of daily activities included are: doing the housework,

climbing stairs, dressing yourself, walking for at least 10 minutes, etc.

- Health limits ability to work: Similar to previous question.

- Number of days in a Hospital as an in-patient in the reference year.

- Number of cigarettes smoked per day.

3. Other controls: We include year dummies (excluding the necessary number to

avoid prefect colinearity), age and age square. Note that the question about
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SAH that we use to construct our dependent variable asks for a comparison

with the health of people with the same age as the respondent. However, there

is a trend for SAH to become worse over time in the raw sample data that

may indicate that the age e¤ect over health is not being totally discounted by

the respondents. This can be seen in table 3.4 This is the reason for including

age as explanatory variable.

Table 2: Number of individuals that reports each category of SAH by number of
times it is reported.

Number Excellent or good Fair Poor or very poor
of times Freq. % Freq. (N) % Freq. (N) %

0 245 3.92 2062 32.97 4346 69.48
1 161 2.57 1105 17.67 878 14.04
2 173 2.77 842 13.46 360 5.76
3 186 2.97 628 10.04 202 3.23
4 227 3.63 468 7.48 130 2.08
5 268 4.28 364 5.82 91 1.45
6 386 6.17 261 4.17 68 1.09
7 454 7.26 196 3.13 45 0.72
8 670 10.71 144 2.3 39 0.62
9 554 8.86 79 1.26 30 0.48
10 523 8.36 57 0.91 28 0.45
11 482 7.71 20 0.32 13 0.21
12 539 8.62 20 0.32 8 0.13
13 670 10.71 5 0.08 8 0.13
14 717 11.46 4 0.06 9 0.14

Total 6255 100 6255 100 6255 100

Variables that are time-constant and speci�c for individuals, like the level of

education and gender are not included in the set of explanatory variables since they

can not be separately identi�ed from the permanent unobserved heterogeneity.

Therefore, the �xed e¤ects account for these variables as well as for unobserved

characterictics, and we cannot separate their e¤ects. Sometimes this is seen as

a drawback of the �xed e¤ects approach. However, the random e¤ects approach

only separately identi�es the e¤ect of these variables because of the unrealistic

assumption that the unobserved characteristics are independent from them (for

example that unobserved healthy life style is independent of education). Even with

a correlated random e¤ects approach, if correlation is allowed in a Mundlak (1978)

4See Contoyannis, Jones and Rice (2004) for further discussion on this.
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Table 3: Proportion (in %) of each category of SAH by several characteristics

Characteristics and their SAH categories
Sample Proportions Excellent or good Fair Poor or very poor

All 73.74 19.23 7.03
By age group
39.90 <40 78.81 16.32 4.87
43.80 40-64 73.77 18.67 7.56
16.29 65+ 61.24 27.87 10.88
By sex
47.23 Male 75.43 18.32 6.25
52.77 Female 72.23 20.04 7.72
Smoke
23.95 Yes 68.06 22.22 9.72
76.05 No 75.53 18.29 6.18
By marital status
63.56 Married 74.55 18.67 6.78
8.81 Divorced 70.80 19.26 9.94
6.46 Widowed 59.33 28.68 11.99
21.17 Single 76.94 18.02 5.05
Health problems
58.13 Yes 61.31 27.13 11.56
41.87 No 91.00 8.26 0.73
Health limits daily activities
12.80 Yes 23.08 39.55 37.37
87.20 No 81.18 16.25 2.58
Health limits work
15.84 Yes 30.50 38.63 30.87
84.16 No 81.88 15.58 2.54

and Chamberlain (1984) style and initial conditions are controlled for following the

proposal in Wooldridge (2005), it is not possible to separately identify the e¤ect of

these time constant variables from the e¤ect of the unobserved factors correlated

with them. For instance, Contoyannis, Jones and Rice (2004) follows Wooldridge

(2005) proposal and they comment about this impossibility of separating the e¤ect

of variables like education from the e¤ect of the unobservables correlated with

them.

Tables 2, 3 and 4 contain some descriptive numbers of the self-assesed heath

reported in our sample. The most frequent category is excellent or good with more

than 70% of the answers corresponding to this category. Also, there is high per-

sistence in SAH reported, as can be seen in table 4, which shows the transition
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Table 4: Sample transition probabilities from SAH in t-1 to SAH in t

SAH in t
Excellent or good Fair Poor or very poor Total

SAH Excellent 86.03 11.76 2.21 100
in Fair 43.60 45.18 11.22 100
t� 1 Poor or very poor 18.45 32.05 49.50 100

Proportion 73.34 19.51 7.15 100

probabilities. In this table, the largest numbers are in the diagonal for all three

values of SAHt�1. Table 3 presents the variation on SAH across di¤erent charac-

teristics and health variables. People that smokes tend to select worse self-assesed

health categories than those that do not smoke. Married or single people respond

the excellent or good health category more frequently than widows or divorced.

The three objective health measures in table 3 alter the SAH responses in the ex-

pected direction and in greater magnitude than the socioeconomic variables also

presented in the table.

Although there are clear connections, this empirical application does not substi-

tute Contoyannis, Jones and Rice (2004) since the latter contains a more detailed

data description, makes further discussion of the estimated model and address other

issues, like sample attrition, that are not considered in this paper. However our

paper complements Contoyannis, Jones and Rice (2004) in several ways:

(i) We use more periods from the BHPS than them. They only use the �rst

eight waves because the ninth contains a di¤erent question and categorization

about SAH. While we drop the 9th wave too, we incorporate the waves after

the 9th in our estimation. Since the model speci�ed includes only one lag of

hit, we have all the variables we need for the 11th to 16th waves. For the 10th

wave we have all the variables but hit�1 as it happens with the �rst wave.

We treat the 10th wave like an initial observation and we condition it out in

our likelihood leaving the probability of that observation totally unrestricted.

Contoyannis, Jones and Rice (2004) can not do this because of their way of

solving the initial conditions problem and the use of random e¤ects.

(ii) In our model we have two individual speci�c e¤ects: one in the linear index and
one in the cut points. Lindeboom and van Doorslaer (2004) tests the existence

of cut-point shifts and �nd clear evidence of di¤erent reporting behavior

(cut-point shifting) for gender and age. Given that Contoyannis, Jones and
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Rice (2004) are imposing homogeneous cut points, they estimate di¤erent

models by gender to allow for that di¤ering reporting behavior, but they

do not allow unrestricted di¤erent behavior by age. Our approach is robust

to heterogenous cut points freely correlated with any of the determinants of

SAH.

(iii) Use of �xed e¤ects instead of random e¤ects approach. The main advantages
of this are that no arbitrary restriction is imposed in the correlation between

the permanent unobserved heterogeneity and the observable variables, and

that there is no initial conditions problem.

(iv) As an additional complement, our study includes some objective health mea-
sures, so we can see how much it is explained by the socioeconomic variables

and by state dependence even after these measures are included.

3.2 Estimates

Table 5 presents the coe¢ cient estimates for the dynamic ordered probit model

based on three di¤erent estimators, that also includes di¤erent speci�cation of the

heterogeneity. The �rst estimated model (column I) is a pooled model without

individual speci�c e¤ects. The second (column II) is a correlated random e¤ects

speci�cation with an individual e¤ect in the linear index equation (the �i parame-

ter in (11), but with homogeneous cut points. Here, �i = �0 + �01hi1 + �
0
2xi + ui,

where xi is the average over the sample period of the exogenous variables, and

ui � N(0; �2u) independently of everything else. This is the kind of speci�cation

estimated in Contoyannis, Jones and Rice (2004) that accounts for the correlated

heterogeneity and the initial condition following Wooldridge (2005). The last spec-

i�cation (column III) is the speci�cation described in previous subsections, that is

the model in (11) and (12) treating �i and ci as �xed e¤ects. It is estimated by

MMLE. The estimated value of the coe¢ cients is not directly comparable. To com-

pare magnitudes of the e¤ects of di¤erent variables and estimates we look at the

relative e¤ects (i.e. ratio of coe¢ cients), and at the average and median marginal

e¤ects reported in tables 6 and 7 for the variables with a coe¢ cient signi�cantly

di¤erent from zero.5

The pooled model exacerbates the state dependence e¤ect due to the lack of

permanent unobserved heterogeneity. It also interesting to note that smoking more
5The marginal e¤ects are averaged (or calculated their median) across the �rst eight waves

of the panel as well as across individuals to obtain summary measures of the marginal e¤ect
representative of the situation of the population.
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Table 5: Estimates

I II III
Variables Pooled Random E¤ects MMLE
Health in t-1: Good 0.8329*** (0 .0131) 0.3396*** (0 .0234) 0.3739*** (0 .0231)

Health in t-1: Poor -0.5704*** (0 .0212) -0.3005*** (0 .0343) -0.2732*** (0 .0307)

Age 0.0087*** (0 .0023) 0.0033* (0 .0019) -0.0180 (0 .0291)

Age square 0.0000 (0 .0000) -0.0003** (0 .0001) -0.0003*** (0 .0001)

Married -0.0349* (0 .0185) 0.1043 (0 .0752) 0.0600 (0 .0699)

Separated/Divorced -0.0572** (0 .0246) 0.1141 (0 .1028) 0.0480 (0 .0847)

Widowed -0.0443 (0 .0288) 0.2136 (0 .1329) 0.0478 (0 .1134)

Self employed 0.0652 (0 .0410) 0.0353 (0 .0839) -0.0058 (0 .0885)

In paid employment 0.0186 (0 .0357) 0.0137 (0 .0639) 0.0832 (0 .0691)

Unemployed -0.0094 (0 .0478) 0.0485 (0 .0786) 0.0949 (0 .0907)

Retired -0.0088 (0 .0426) -0.0645 (0 .0891) 0.1111 (0 .0864)

Looking after family -0.0161 (0 .0403) -0.0768 (0 .0784) -0.0470 (0 .0795)

Household size -0.0124* (0 .0064) 0.0538*** (0 .0189) 0.0071 (0 .0157)

Household Income 0.0355*** (0 .0082) -0.0233 (0 .0191) -0.0033 (0 .0170)

Male 0.0035 (0 .0120) -0.0370 (0 .0265)

Non-white -0.1306*** (0 .0327) -0.1057 (0 .0709)

Higher/1st degree 0.2082*** (0 .0216) 0.2490*** (0 .0466)

HND/A level 0.1460*** (0 .0171) 0.1862*** (0 .1862)

CSE/O level 0.1382*** (0 .0156) 0.1933*** (0 .0327)

Long term sick or disa. -0.2683*** (0 .0493) -0.2510** (0 .1093) -0.2315** (0 .0999)

Health problems -0.6181*** (0 .0140) -0.6244*** (0 .0281) -0.7780*** (0 .0340)

Health limits daily acti. -0.6462*** (0 .0196) -0.6067*** (0 .0341) -0.6837*** (0 .0303)

Health limits work -0.4403*** (0 .0186) -0.4337*** (0 .0331) -0.4949*** (0 .0310)

Cigarettes per day -0.0077*** (0 .0007) 0.0034 (0 .0026) 0.0042* (0 .0023)

Hospital days -0.0312*** (0 .0013) -0.0372*** (0 .0021) -0.0351*** (0 .0008)

Cut point 1 -1.2934*** (0 .0885) -1.2519*** (0 .2169)

Cut point 2 0.0344 (0 .0344) 0.2623 (0 .2165)

Standard errors are reported in parenthesis.
* signi�cant at 10% ; ** signi�cant at 5% ; *** signi�cant at 1%
Estimates of year dummies in all models and within means of variables in random
e¤ects are not reported.
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Table 6: Average Marginal E¤ects on Probability of reporting good and poor health
for signi�cant variables.

(a) Good
I II III

Random
Pooled E¤ects MMLE St. Error

Health in t-1: Good 0.2419 0.0742 0.1138 0.0080
Health in t-1: Poor -0.2012 -0.0765 -0.0820 0.0227
Age 0.0020 -0.0044 -0.0127 0.0083
Long term sick or disabled -0.0671 -0.0535 -0.0661 0.0292
Health problems -0.1353 -0.1279 -0.2287 0.0524
Health limits daily activities -0.1791 -0.1451 -0.2043 0.0336
Health limits work -0.1103 -0.0985 -0.1472 0.0139
Cigarettes per day -0.0017 0.0007 0.0012 0.0007
Hospital days -0.0075 -0.0075 -0.0100 0.0003

(b) Poor
I II III

Random
Pooled E¤ects MMLE St. Error

Health in t-1: Good -0.0713 -0.0186 -0.0678 0.0927
Health in t-1: Poor 0.1077 0.0226 0.0635 0.0676
Age -0.0007 0.0014 0.0082 0.0161
Long term sick or disabled 0.0237 0.0151 0.0483 0.0567
Health problems 0.0395 0.0291 0.1206 0.1746
Health limits daily activities 0.0648 0.0403 0.1486 0.1703
Health limits work 0.0378 0.0264 0.1009 0.1216
Cigarettes per day 0.0006 -0.0002 -0.0008 0.0010
Hospital days 0.0026 0.0021 0.0065 0.0079

cigarettes per day has a negative and signi�cant e¤ect over SAH (i.e. reduces the

probability of reporting good health) in the pooled estimates. That correspond with

the sample correlation between smoking and SAH in Table 3. However that e¤ect is

positive and signi�cant once we allow for unobserved heterogeneity (columns II and

III). This means that, once we have controlled for unobserved heterogeneity and

everything else equal, smoking increases the probability of reporting good health

as self-assessed health measure. This indicates that we should interpret the e¤ect

of smoking over SAH not as an objective health impact, but as an e¤ect over the

subjective perception over health. Though not reported, we also estimated by MLE

model in (11) and (12). As seen in the simulations it is severely biased, and that

bias implies estimating much lower state depedance e¤ects and higher e¤ect of the
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Table 7: Median Marginal E¤ects on Probability of reporting good and poor health
for signi�cant variables.

(a) Good
I II III

Random
Pooled E¤ects MMLE

Health in t-1: Good 0.2454 0.0744 0.1194
Health in t-1: Poor -0.2126 -0.0793 -0.0882
Age 0.0020 -0.0035 -0.0122
Long term sick or disabled -0.0673 -0.0536 -0.0702
Health problems -0.1304 -0.1184 -0.2413
Health limits daily activities -0.1828 -0.1483 -0.2183
Health limits work -0.1120 -0.0997 -0.1573
Cigarettes per day -0.0017 0.0007 0.0013
Hospital days -0.0075 -0.0074 -0.0105

(b) Poor
I II III

Random
Pooled E¤ects MMLE

Health in t-1: Good -0.0525 -0.0072 -0.0633
Health in t-1: Poor 0.1003 0.0119 0.0631
Age -0.0003 0.0003 0.0074
Long term sick or disabled 0.0129 0.0054 0.0471
Health problems 0.0188 0.0085 0.1057
Health limits daily activities 0.0430 0.0190 0.1501
Health limits work 0.0226 0.0110 0.0989
Cigarettes per day 0.0003 -0.0001 -0.0007
Hospital days 0.0012 0.0006 0.0061

other explanatory variables.

More interesting it is the comparison between the correlated random e¤ects

model (column II) and the MMLE (column III). In the MMLE case the e¤ect

of all explanatory variables (with a signi�cant e¤ect) increases in absolute value

with respect to the random e¤ects model. That includes also the e¤ect of the

state dependence (e¤ect of hit�1). Comparing columns II and III we can also see

that the e¤ect of hit�1 increases proportionally less than the e¤ect of the other

relevant explanatory variables. In the Random e¤ects speci�cation the ratio of the

coe¢ cient of �health problems�over the coe¢ cient of 1 (hi;t�1 = good) is around 1:8,

whereas in the MMLE that ratio is 2:1. In any case, this increase in the e¤ect of

the explanatory variables, specially in the e¤ect of state dependence, is remarkable
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because in the model in column III we are allowing for more, and more �exible

permanent unobserved heterogeneity than in column II.6 This is an indication that

ignoring the added dimension of heterogeneity and the �exibility in the distribution

of the �xed e¤ects matters when estimating the model and the marginal e¤ects of

variables. It is not only a matter of the amount of heterogeneity but also a matter

of the other restrictions being imposed in the model in column II.

Table 8: Proportion of individuals with marginal e¤ects (on the probability of
reporting good and poor) that are signi�cantly di¤erent from zero at 10%.

Variable
Proportion

Good Poor
Health in t-1: Good 51.41% 12.64%
Health in t-1: Poor 50.54% 21.73%
Age 30.97% 5.13%
Long term sick or disabled 37.33% 14.01%
Health problems 49.24% 11.05%
Health limits daily activities 51.34% 19.42%
Health limits work 50.47% 17.83%
Cigarettes per day 23.54% 7.51%
Hospital days 49.46% 18.12%

Focusing on the MML estimates, the two indicators of hit�1 and the variables

that capture objective health problems have a signi�cant e¤ect over SAH, with the

expected signs. As in Contoyannis, Jones and Rice (2004) we also �nd evidence

of strong positive state dependence, even after including more heterogeneity and

the objective health measures. Apart from age and the interpretation of the e¤ect

of smoking already commented, no socioeconomic variable has a signi�cant e¤ect.

This is in contrast with apparent correlation in the sample between these variables

and SAH described in table 3.

In addition to looking at the average and median marginal e¤ects reported in

tables 6 and 7, we look at how many individuals have a signi�cant marginal e¤ect in

the sample given their particular situation and unobserved characteristics. Table ??
presents the proportion of individuals with a signi�cant (at 10%) marginal e¤ects

over the probability of reporting good and bad health, for the same variables as in

table 6. Notice that although the average marginal e¤ects are signi�cant, there is

a great deal of heterogeneity so that for half of the population the marginal e¤ects

6Remember here that permanent unobserved heterogeneity, state dependence and persistence
in observable variables are alternative explanations of the observed high persistence in hit.
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Figure 1: Distribution (histogram) of the �xed e¤ects from MML estimates.

over the probability of reporting good health is not signi�cantly di¤erent from zero

for many of these variables.

Lastly, we look at the unobserved heterogeneity both in the linear index equa-

tion and in the cut point shift. Figure 1 displays the estimated distribution (his-

togram) of both �xed e¤ects in the population. Both exhibit important variation.

The average for �i is 2:70 and 1:27 for ci. The standard deviations are 1:14 and

0:62 respectively. Focusing on the heterogeneity on the cut points, though not a

formal test, we can compare the estimated cut points in the model (12) with the

estimated cut points in the random e¤ects model. In (12) the second cut point

have been normalized to be zero. Interestingly its estimate in the random e¤ects

model it is not signi�cantly di¤erent from zero. With respect to the �rst cut point,

the average of �ci is very close to the estimate of the �rst cut point in the random
e¤ects speci�cation. However, as can be seen in the right panel of �gure 1 there is

important variation in ci among individuals and the distribution is clearly asym-

metric. A normal density, i.e. the continuous lines in Figure 1, does not �t the

distribution of the �xed e¤ects.

4 Conclusion

In this paper we have considered the estimation of a dynamic ordered probit with

�xed e¤ects of a self-assessed health status, which includes two �xed e¤ects: one

in the linear index equation, interpreted as unobserved health status, and another

one in the cut points, interpreted as heterogneity in reporting behavior. Based on
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our best estimates, the two �xed e¤ects exibit important variation and it is rele-

vant to �exible account for both when estimating the e¤ect of other variables. Our

estimates shows the state dependence is very important even though we have con-

trolled for unobserved heterogeneity and some forms of objective health measures.

The latter are the variables with higher marginal e¤ects.

The recent literature in bis-adjusted methods of estimation of nonlinear panel

data models with �xed e¤ects has produced several potentially equivalent estima-

tors. Here we �nd that the most directly and easily applicable correction to our

model, which is the HS estimator proposed in Bester and Hansen (2009), has still

important biases in our sample size. This lead us to consider the Modi�ed MLE

proposed in Carro (2007). We derive the expression of the MMLE in our case,

and perform Monte Carlo experiments to evaluate its �nate sample properties and

compare it with the HS. The MMLE has a negligeble bias in our sample size. These

Monte Carlo experiments contribute to the mentioned literature on bias-adjuted

methods of estimation by showing how well two of the proposed methods work for

a speci�c model and sample size. Also, this will be a useful information for other

applications when having to choose among the several correction methods.
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A Appendix: Reduction of the order of the bias
In this appendix we show that the modi�ed score presented above is less biased than the original

score. This follows Carro (2006), adapting it to our model with two �xed e¤ects.

The notation used is the same as before: we denote partial derivatives by the letter d; bold

letters are used to denote vectors; the derivatives evaluated at the true values of the parameters

are represented by including a 0 in the sub-index (e.g. d�i0 = d�i(0; �i0)).

A.1 Deriving the leading term of the bias of the score in

the MLE
We start by deriving the �rst term of the bias in the score of the original unmodi�ed concentrated

log-likelihood. Expanding this score around �i0, and evaluating it at 0 we get:

di(0; �i(0)) = di0 + dai0(âi(0)� ai0) (A1)

+ dci0(ĉi(0)� ci0)

+
1

2
daai0(âi(0)� ai0)2 +

1

2
dcci0(ĉi(0)� ci0)2

+ daci0(âi(0)� ai0)(ĉi(0)� ci0) +Op(T�1=2) + : : :

Now we need expressions for (âi(0) � ai0) and (ĉi(0) � ci0), for which we do asymptotic
expansions, following Rilstone, Srivastava and Ullah (1996):

(âi(0)� ai0) = ba�1=2 + ba�1 +Op(T�3=2) (A2)

(ĉi(0)� ci0) = bc�1=2 + bc�1 +Op(T�3=2) (A3)

where

ba�1=2 =
1
T dci0E

�
1
T daci0

�
� 1

T dai0E
�
1
T dcci0

�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2 (A4)

bc�1=2 =
1
T dai0E

�
1
T daci0

�
� 1

T dci0E
�
1
T daai0

�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2 (A5)

It is also useful to obtain:

(âi(0)� ai0)2 = (ba�1=2)2 +Op(T�3=2) (A6)

(ĉi(0)� ci0)2 = (bc�1=2)2 +Op(T�3=2) (A7)

(âi(0)� ai0) (ĉi(0)� ci0) = ba�1=2 bc�1=2 +Op(T�3=2) (A8)
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With respect to the squares of ba�1=2 and b
c
�1=2, we get:

(ba�1=2)
2 =

�
1
T dai0

�2
E
�
1
T dcci0

�2
+
�
1
T dci0

�2
E
�
1
T daci0

�2 � 2 1
T dai0

1
T dci0E

�
1
T daci0

�
E
�
1
T dcci0

��
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2�2
(bc�1=2)

2 =

�
1
T dci0

�2
E
�
1
T daai0

�2
+
�
1
T dai0

�2
E
�
1
T daci0

�2 � 2 1
T dai0

1
T dci0E

�
1
T daai0

�
E
�
1
T daci0

��
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2�2
Substituting by expectations, and using the information matrix identity (E(daci) = �E(daidci)),

we get:

(ba�1=2)
2 = � 1

T

E
�
1
T dcci0

�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2 +Op(T�3=2) (A9)

(bc�1=2)
2 = � 1

T

E
�
1
T daai0

�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2 +Op(T�3=2) (A10)

Following the same procedure for the cross-product, we get:

ba�1=2 b
c
�1=2 =

1

T

E
�
1
T daci0

�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2 +Op(T�3=2) (A11)

With respect to ba�1 and b
c
�1, we follow the same procedure (replace by expectations and use
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the information matrix identity) to get:

ba�1 =
1

2T

1�
E
�
1
T daai0

�
E
�
1
T dcci0

�
� E

�
1
T daci0

�2�2 (A12)

(
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�2�
E
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+ E
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��
E

�
1

T
dacci0

�
+ 2E

�
1

T
dci0daci0
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Introducing all these expressions in (A1), and taking expectations, we get: :

E(dgi(g0; êi(g0))) = (A15)
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The remainder of this expression is O(T�1) because Op(T�1=2) terms have zero mean. This

means that the score of the original concentrated likelihood has a bias of order O(1), whose

expression is in the previous formulae.
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A.2 Modi�ed Score
The modi�ed score in (7) can be decomposed in three terms, dMi() = A+B + C, such that:

A = di(; �i()) (A16)

B = �1
2

1

daaidcci � daci2
(A17)�

daai

�
dcci + dacci

@âi
@

+ dccci
@ĉi
@

�
+ dcci

�
daai + daaai

@âi
@

+ daaci
@ĉi
@

�
�2daci

�
daci + daaci

@âi
@

+ dacci
@ĉi
@

��
C = � @

@ai

�
E(dci)E(daci)� E(dcci)E(dai)
E(daai)E(dcci)� [E(daci)]2

�����
�i=�i()

(A18)

� @

@ci

�
E(dai)E(daci)� E(daai)E(dci)
E(daai)E(dcci)� [E(daci)]2

�����
�i=�i()

A is the score of the original un-modi�ed concentrated log-likelihood. So, we now analyze B

and C:

Part B. We �rst want to derive expression for @âi=@ and @ĉi=@. Di¤erentiating the

score of the concentrated log-likelihood, d�i(; �i()), with respect to  we get a system of two

equations with two unknowns. Solving for @âi=@ and @ĉi=@ we get:

@âi()

@
=
dcidaci � dccidai
daaidcci � d2aci

(A19)

@ĉi()

@
=
daidaci � daaidci
daaidcci � d2aci

(A20)

evaluating at 0 and replacing by expectations:
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Introducing in (A17) and rearranging terms:
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daaidacci + dccidaaai � 2dacidaaci
2(daaidcci � d2aci)

� daaidacci + dccidaaai � 2dacidaaci
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�1=2)
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Evaluating at 0, using the fact that �i() = �i0 + Op(T
�1=2), adding 1=T 2 in numerators and

denominators and replacing by expectations:
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Finally, taking the expected value of this expression will not change anything, except that

the remainder would be O(T�1) instead of Op(T�1=2).

Part C. To analyze C, we need the following result:

@

@ai
E (dci) = E (daci) + E (dcidai) (A26)

This works with other derivatives of expectations as well.
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We are interested in the following derivative, which we will call Ca:

Ca = � @

@ai

�
E(dci)E(daci)� E(dcci)E(dai)
E(daai)E(dcci)� [E(daci)]2

�
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Working with the derivative and using the above rule, we get:

Ca = � 1

E(daai)E(dcci)� [E(daci)]2

fE(dci) [E(daaci) + E(dacidai)] + E(daci) [E(daci) + E(dcidai)]

�E(dcci) [E(daai) + E(daidai)]� E(dai) [E(dacci) + E(dccidai)]g

+
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(E(daai)E(dcci)� [E(daci)]2)2

fE(daai) [E(dacci) + E(dccidai)] + E(dcci) [E(daaai) + E(daaidai)]

�2E(daci) [E(daaci) + E(dacidai)]g

Likewise, for Cc we have:

Cc = � 1
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We then evaluate at 0 and take the expected value of these expressions.

Putting everything together. If we, �nally, add all the terms of B and C from before,

which is equal to dMi() � di(; �i()) = B + C, we get exactly minus (A15). Therefore,

the modi�ed score equal the standard score minus the �rst order term of the bias, because we

are substracting it with the modi�cation B + C: The reminder of this expansion for dMi() is

O(T�1); as opposed to O(1) that is the order of magnitude of the bias of di(; �i()). This

shows that MMLE reduced the order of the bias of the MLE.
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