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Abstract 

In many evolutionary algorithms, crossover is the main operator used in generating new 
individuals from old ones. However, the usual mechanism for generating offsprings in spatially 
structured evolutionary games has to date been clonation. Here we study the effect of 
incorporating crossover on these models. Our framework is the spatial Continuous Prisoner's 
Dilemma. For this evolutionary game, it has been reported that occasional errors (mutations) in 
the clonal process can explain the emergence of cooperation from a non-cooperative initial 
state. First, we show that this only occurs for particular regimes of low costs of cooperation. 
Then, we display how crossover gets greater the range of scenarios where cooperative mutants 
can invade selfish populations. In a social context, where crossover involves a general rule of 
gradual learning, our results show that the less that is learnt in a single step, the larger the 
degree of global cooperation finally attained. In general, the effect of step-by-step learning can 
be more efficient for the evolution of cooperation than a full blast one. 
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1 Introduction

The evolution of cooperation has been a challenging problem since Darwin
(Trivers, 1971; Axelrod & Hamilton, 1981; Maynard & Szathmáry, 1995;
Dugatkin, 1997; Nowak, 2006). With sophisticated tools of evolutionary
game theory, researchers from biology to behavioral sciences have attempted
to shed light on the underlying mechanisms that outperform the vulnera-
bility of cooperation of being cheated (Pennisi, 2005). Models with spatial
structures have been considered by these researches to mimic real popula-
tion where individuals do not interact with everybody else (Lieberman et al.,
2005). In these models, individuals are located on the nodes of a network,
play repeatedly with their neighbors, and update their strategies by copy-
ing (with occasional errors) the strategy of some more successful neighbor.
Different strategy update rules respond to the same evolutionary principle
of clonal reproduction of successful phenotypes (Szabó & Fáth, 2007) and
are usually implemented through two basic operators: Selection, in which
individuals identify whom to copy, and mutation, occasional errors in the
copy process.

Discrete-choice models, where cooperation is all or nothing, do not lead
mutation to generating new phenotypes into the population. However in
more realistic models, in which individuals can exhibit variable degrees of
cooperation, mutation can be certainly a source of generating diversity. The
study of cooperative behavior in a quantitative way rather than a qualita-
tive way has been crucial in dealing with the problem of evolution and the
stability of cooperation. The first studies on this issue (Verhoeff, 1993; Mar
& St Denis, 1994; Frean, 1996) considered the evolution of degrees of cooper-
ation by interpolating payoffs between the discrete outcomes of the classical
Prisoner’s Dilemma model (PD). Later, a natural approach to model vari-
able levels of cooperation was introduced by Doebeli & Knowlton (1998)
and Roberts & Sherratt (1998). Iteration and spatial structures based on
continuous cooperative investment have also been addressed by Killingback
et al. (1999); Wahl & Nowak (1999a,b); Sherratt & Roberts (1999); Koella
(2000); Killingback & Doebeli (2002); Le Gaillard et al. (2003); Ifti et al.
(2004). Sherratt & Roberts (2002) and Doebeli & Hauert (2005) provide
a complete review of previous researches on the stability in cooperation in
variable-investment systems. In the iterated models, it is still necessary
to have individuals capable of designing sophisticated strategies to play re-
peatedly using the past history. Such assumptions can be implausible in an
evolutionary scenario. Developing some of the ideas of Doebeli & Knowl-
ton (1998), and following the classical scheme of Nowak & May (1992) for
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spatial evolutionary games, Killingback et al. (1999) introduced the Con-
tinuous Prisioner’s Dilemma (CPD). The joint consideration of continuous
cooperative investments and spatial structured populations in their model
represents an important advance in explaining the evolutionary origin of
cooperation.

The strategy update rule considered in the seminal work of Nowak & May
(1992) was originally designed for the discrete PD, where clonation is the
only way to generate offsprings. However, clonal reproduction is relatively
rare among higher organisms, where crossover is the form of reproduction.
Here we investigate the effect of introducing crossover in the strategy up-
date rule of the spatial CPD. In particular, we use arithmetic crossover,
the most elemental and universal crossover operator when phenotypes are
represented by real numbers (Eiben & Smith, 2007), such as investments
considered in the CPD. Thus, the investment of an offspring is generated
by merging the investments of her parents. In a social and economic con-
text, where the copying (or imitation) is interpreted as learning (Ifti et al.,
2004), arithmetic crossover can be viewed as a process of gradual learning. It
seems natural that individuals hesitate to unconditionally imitate the invest-
ment of a neighbor. In adverse conditions in which costs for cooperation are
high, individuals have reason to avoid the blind imitation of higher-investing
partners, despite how successful they can be. Counterintutively, we show
that this wariness leads gradual learning to being more efficient than a full
blast imitation precisely in regimes of non-low costs of cooperation. For
our analysis we require a deep review of the CPD. The paper is organized
as follows: In section 2, we introduce the basic model, as well as general
assumptions and the notation used throughout the paper. In section 3, we
characterize the different payoff regimes according to the asymptotic be-
havior of the CPD. In particular, we prove that previous results in which
it is reported that cooperation gradually increases from a non-cooperative
state correspond to particular payoff regimes that we classify as regimes of
low cost. In section 4, we introduce crossover in the original model and
explain how this mechanism operates for the maintenance and promotion
of cooperation. We also provide the conditions in which higher-investment
mutants can invade a population of selfish individuals. Section 5 summaries
our conclusions.
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2 The CPD in spatially structured populations

In the CPD, if an individual, who invests x, interacts with another, who
invests y, the former receives a payoff equal to S(x, y) = B(y)−C(x) and the
latter S(y, x) = B(x)−C(y). The function B(·) specifies the benefit that an
individual obtains from the investment made by the other in their pairwise
interaction, and the function C(·) specifies the cost incurred by her. As
standard assumptions, functions B(·) and C(·) are increasing and concave,
with B(0) = C(0) = 0, and B(x) ≥ C(x) for any feasible investment x
(Doebeli & Hauert, 2005). In order to determine the maximal possible
investment, it is required to compute the optimal mutual investment xmax
that maximizes B(x)− C(x). In general, for all 0 < x < y < xmax, one can
verify the inequalities shown by Killingback et al. (1999)

S(y, x) < S(x, x) < S(y, y) < S(x, y), (1)

which are continuous versions of the well known conditions for the payoffs
of the classical Prisoner’s Dilemma (Killingback & Doebeli, 2002).

To avoid the problem of comparing investments in different scales, we
only consider investments in [0,1]. For that, it is sufficient to have xmax ≥ 1,
therefore (1) holds for any pair of investments 0 < x < y < 1.

Although the main results of this work cover general increasing-concave
functions, the simulations shown throughout this paper are based on lin-
ear costs, namely, C(x) = Cx, and benefit functions of the form B(x) =
a[1 − exp(−bx)], with a, b > 0. These functions are typical of what might
be expected in real biological situations (Wilkinson, 1984; Hart & Hart.,
1992) and are basis functions in the literature of the CPD (Killingback et
al., 1999; Killingback & Doebeli, 2002; Ifti et al., 2004). For these basis
functions, one has xmax = − log(C/(ab))/b, thus, xmax ≥ 1 if and only if
C < ab exp(−b). In our parametric analysis, we fix a and b and vary C
between 0 and ab exp(−b). One additional remark:

a
(

1− exp−bx
)
→ Bx, (2)

when b→ 0+ and a→ +∞, with ab→ B <∞. In fact, for any investment
0 < x < 1, the convergence is very fast. Therefore, linear benefit functions,
used by Wahl & Nowak (1999a,b), are an interesting limit case of the basis
functions and, because of their simplicity, are especially considered in our
analysis.

In the spatial CPD, individuals are placed on the nodes of a network
and recollect payoffs from their pairwise interactions with their neighbors
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accordingly with a CPD. The fitness of each individual is given by the sum
of these payoffs. At each time step (generation), each individual updates her
investment by imitating the investment of her neighbor (including herself)
with the highest fitness. The resulting individual (the offspring) responds to
the evolutionary principle concerning the clonal reproduction of the pheno-
type with the highest fitness (Nowak & May, 1992). Additionally, and this
is an important ingredient in the model, Killingback et al. (1999) consider
occasional errors at the imitation moment (mutations) that can change the
investment of some offspring. It is clear that mutation and limited local in-
teractions are crucial in promoting (even to keep) cooperation in the spatial
CPD. In fact, if each individual interacts with the whole population and
there is no mutation, each offspring always invests the lowest value from the
initial generation. Spatial structures that promote cooperation in the CPD
have been previously studied by Killingback et al. (1999); Koella (2000);
Ifti et al. (2004). However, as occurs in the standard Prisoner’s Dilemma
on regular networks (Doebeli & Hauert, 2005; Hauert, 2006; Jiménez et al.,
2008), we argue for the spatial CPD that the spatial structure is capable
of sustaining cooperation only in limited cost/benefit regimes. To study
this issue, we consider in the spatial CPD on a square lattice with periodic
boundary conditions, with individuals interacting with their four nearest
neighbors (von Neumann neighborhood) and synchronous updating.

3 Asymptotics for different cost regimes

Let us analyze the evolution of the social network defined in Section 2 in
the simplest scenario. First, we consider an initial condition with a single
individual that invests x < y in a group of y-individuals (individuals who
invest y) and assume no mutations. In that case, the update rule is deter-
ministic and we can compute analytically the evolution of the system. More
precisely:

(i) If C(y) − C(x) < (B(y) − B(x))/4, the x-individual invades only its
four nearest neighbors.

(ii) If (B(y)−B(x))/4 < C(y)−C(x) < (B(y)−B(x))/2, the x-individual
spreads over the lattice, reaching a structure with the same shape of
the cross with sawtooth boundaries showed by Jiménez et al. (2008).

(iii) If C(y) − C(x) > (B(y) − B(x))/2, the x-individual spreads until the
extinction of the y-individuals.
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Assuming that cost and benefit are differentiable functions, and using
the fact that they are increasing and concave, it is easy to establish

C ′(1)
B′(0)

<
C(y)− C(x)
B(y)−B(x)

<
C ′(0)
B′(1)

, (3)

for all 0 < x < y < 1. Thus, the quotients C ′(1)/B′(0) and C ′(0)/B′(1)
provide sufficient and necessary conditions, regardless of the values x and
y, to determine which absorbing state is reached. For all 0 < x < y < 1,
from a lattice of y-individuals, except one who that invests x, the condition
C ′(0) > B′(1)/4 is necessary for the spread over all the lattice of the smallest
investment and the condition C ′(1) > B′(0)/4 is sufficient. Additionally,
C ′(1) > B′(0)/2 is sufficient for the extinction of the highest investment. In
our study, we discriminate accordingly the different payoff regimes:

• Low cost, when C ′(0) < B′(1)/4.

• Low-medium cost, if B′(1)/4 < C ′(0) and C ′(1) < B′(0)/4.

• High-medium cost, ifhen C ′(1) > B′(0)/4.

• High cost, if C ′(1) > B′(0)/2.

For simplicity, sometimes we will not distinguish between low-medium and
high-medium costs and we refer to both as medium costs. Notice that if the
benefit is a linear function, namely B(x) = Bx, the only low-medium cost
is the linear function Cx, with C = B/4. In that case, B/4 and B/2 are
threshold values to determine the region of low, medium and high costs.

3.1 Asymptotics from random initial conditions without mu-
tation

If a lower-investing individual spreads into a lattice of higher-investing in-
dividuals), two lower-investing individuals do the same. Furthermore, for
high-medium costs, if there are different low investments into a lattice of
higher-investing individuals, at least the lowest spreads over the whole sys-
tem and other low investments can locally do the same. If the initial in-
vestments are randomly chosen, the previous argument, and the fact that
investments are initially well-mixed on the network, allow us to conjecture
that high-medium cost is sufficient for the spreading of lower investments
from random initial conditions. On the other hand, as we argued above,
at high costs the smallest investment always dominates the network. In
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contrast, if the cost is low, the small investments do not spread on the sys-
tem and limited local interactions of the lattice are capable of maintaining
cooperation. If the cost is low-medium, we do not provide arguments for
determining the asymptotic behavior of the system from a random initial
condition. For this reason, it is advisable to first take a look at the lin-
ear benefit case, where low-medium costs are reduced only to one threshold
value.

The type of social network that we are studying typically reaches a steady
state where the mean investment lightly fluctuates around a value, called
the asymptotic mean investment. Thus, the promotion or sustaining of co-
operation can be contrasted by comparing the asymptotic mean investment
with the initial one. Figure 1 shows the typical evolution in time of the
mean investment as well as the investment configuration at the steady state
for the different cost regimes. For this illustration, we considered the same
random initial configuration, uniformly distributed on [0,1] random vari-
ables placed on the 100 × 100 lattice. For low costs, the figure displays
the previously reported clusterization of high investments and consequent
promotion of cooperation. However, the figure also illustrates the spread of
small investments for medium cost regimes as well as the domination of the
lowest for high costs. That is, the square lattice is only capable of promot-
ing (even sustaining) cooperation in low cost regimes. To have an overview
of the asymptotic behavior of the investments for different costs we consid-
ered different basis functions and varied the cost along its range. For each
parametric set, we perform simulations for 100 initial random configurations
until the steady state. Although the asymptotic mean investment depends
on the initial condition, we noted that its slope, in terms of the cost, is
strongly independent. For this reason, we use the average, over the initial
random conditions, as a smooth indicator of the relation between costs and
the asymptotic mean investment. The slope for four illustrative cases are
displayed in Figure 2. We remark that for costs above the threshold cost
B′(0)/2 = ab/2 the lowest investment dominates the network from any ran-
dom initial conditions. Note that the transition between significant high
asymptotic levels of cooperation to low levels occurs in low-medium costs,
namely B′(1)/4 < C < B′(0)/4. This transition is discontinuous if the
benefit is the linear function Bx. In that case, the phase transition occurs
at the threshold cost B/4. The bifurcation of the mean investment time
series around this critical cost can be observed in Fig. 1, by comparing the
resulting time series for costs B/4− δ and B/4− δ, with small δ.
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Figure 1: Time series of mean investments and configuration of the lat-
tices at the steady state for linear benefit and low (solid lines), medium
(dashed lines) and high (bottom solid line) costs, from the same random
initial investments. The figure illustrates the typical behavior close to the
threshold costs and in the middle values. The top solid lines and the first
three snapshots correspond, respectively, to low costs, {δ, 1

8B,
1
4B− δ}, with

δ = B/1000. The dashed lines and the last three snapshots to medium costs
{1

4B+δ, 3
8B,

1
2B−δ}. The bottom solid line corresponds to high cost 1

2B+δ
(its snapshot at the steady state is omitted, a complete black square). The
gray scale used to represent the investments on the lattice is linear between
black = 0 and white =1.
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Figure 2: Asymptotic mean investment as function of the cost. The left
solid line corresponds to the linear benefit B(x) = x and the right one to
B(x) = 8x/5. Left dashed line corresponds to the benefit function B(x) =
5(1− exp(−2x/9)) and the right one to B(x) = 8(1− exp(−2x/9)).

3.2 Asymptotics from small initial investment with mutation

The mutation mechanism introduced by Killingback et al. (1999) corre-
sponds to neutral variations in the investment pool. Specifically, they con-
sider normal errors, at the imitation moment, with variance equal to 10%
of the expected investment. Without mutation, the mean investment of the
network remains into the range of the initial investments. The main result
of Killingback et al. (1999) is that starting from arbitrary low investments,
occasional mutations can increase the mean investment to significant lev-
els, after a long runtime. Their simulations are based on a parametric set
that we have characterized as low cost. Namely, B(x) = 8(1 − exp(−x)),
C(x) = 0.7x, and xmax ≈ 2.4361. Performing simulations with the same
mutation rate per individual (1/100) and modeling errors in the same way,
we confirm their main result for any low cost, when the benefit function is
not linear. Moreover, we are now prepared to explain why mutation raises
cooperation for this cost/benefit regime: When costs are low, our results
show that negative mutations (i.e. mutations with lower investments than
their expectations) do not spread on the system and that higher-investing
clusters invade lower-investment ones. To see this, notice that individuals
in the boundaries of the higher-investing cluster outperform the individu-
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als in the boundaries of the lower-investing cluster. On the other hand,
interactions with eventual positive mutations (mutations with investments
higher than their expectations) can give origin to a small cluster of higher
investments, again in the low cost regime. For a strictly concave benefit
function, the lower the investment the higher the additional payoff that a
positive mutant adds to their neighbors. Additionally, the more concave the
benefit function is, the stronger such effect is. To sum up, in this unbeatable
cost/benefit framework (e.g. low cost and very concave benefit function), a
positive mutant can gradually invade a world of low investors until obtaining
a high mean investment at the steady state. However, the less concave the
benefit function is the lower the mean investment reached is. This pattern
coincides with the results of Le Gaillard et al. (2003), who analyze different
regimes of physiological costs in a related adaptive dynamics with the CPD.
Our results complement the analysis for lattice-structured population. In
fact:

1. If the benefit is linear, the lattice-structured population is only capable
of sustaining the mean investment around the initial one, even if the
cost is low.

When significant costs are considered, other asymptotic results occur:

2. If the cost is low-medium, for any basis benefit function (linear or
strictly concave), the lattice is only capable of sustaining the mean
investment around the initial one. This occurs with and without mu-
tation. A mutation (negative or positive) does not have any effect on
the lattice.

3. In high-medium cost regimes, the mutation mechanism works against
cooperation, by favoring negative mutations (i.e. mutations with lower
investments than the expectations). Thus, if there are not mutations,
the lattice can sustain low levels of cooperation, but cannot stop the
fall of investments if any occasional negative mutation appears on the
lattice.

4. For high costs, the investments nose dive, with or without mutation.

Summarizing, small mutations promote cooperation only in very partic-
ular scenarios of low costs of cooperation.
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4 Effect of Crossover in the evolution of coopera-
tion

The above analysis was obtained when the strategy update rule is based on
clonation. Now we consider arithmetic crossover (Eiben & Smith, 2007) as
the way to update investments. Instead of focal individuals copying the best
neighbor, each individuals updates her investment with a new one “between”
her own investment and the investment of her successful neighbor. Into
the spatial CPD, arithmetic crossover operates as follows: If an individual
invests x and her successful neighbor invests y, in the next generation, the
former will invest

αx+ (1− α)y (4)

plus a possible error, for some α ∈ [0, 1]. In an economic and social scenario,
the parameter α can be viewed as a factor of resistance to learning or as
a measure of wariness. When α = 0, there is no resistance, individuals
copy the strategy of their neighbors with the highest payoff. However, when
0 < α < 1 the individuals gradually learn from their most successful partner.
Whereas if α = 1 individuals refuse to learn.

4.1 Supporting cooperation in adverse cost regimes

As in Section 3, we analyze first the evolution in time of the social network
without errors in the update rule. Similar to the previously studied case,
the lattice reaches a steady state where the mean investment lightly fluctu-
ates around a constant. Figure 3 shows the typical evolution in time of the
mean investment for different resistance levels in medium and high costs.
It is noteworthy how the presence of resistance to learning can increase the
asymptotic mean investment to higher levels when investments are costly.
To have a better understanding of the effect of resistance to learning, we
considered different cost/benefit functions and varied the resistance along
its range. For each parametric set, we performed simulations for 100 initial
random configurations until the steady state was reached. We observe that
only small variations on the asymptotic mean investments were observed.
Thus, the average, over the initial random conditions, is a robust estimator
of this asymptotic mean investment, regardless the initial condition. In gen-
eral, in low cost regimes, resistance neither favors cooperation nor dulls it.
However, for any medium or high cost, resistance to learning strongly favors
cooperation. Moreover, the higher the resistance to learning is the larger
the mean investment asymptotically reached. Figure 4 characterizes the
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Figure 3: Time series of mean investments for medium (a) and high (b) cost
with different resistances to learning. Top solid lines correspond to α = 0.8,
dashed lines to α = 0.2 and bottom solid line to α = 0. The benefit function
is linear, and the costs considered are to the right of the thresholds 1

4B and
1
2B.
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behavior for the different cost regimes. We conclude that cautious learning
is more efficient than hasty learning when the cost is medium or high and
it is necessary to sustain cooperation (even in low levels) for high costs.

To understand how resistance works to favor cooperation in medium/high
cost regimes, let us consider again the simplest initial condition with a single
x-individual in a lattice occupied with y-individuals, with x < y. Notice that
the x-investment spreads on the lattice (or dominates it) if individuals have
no resistance to learning. For this initial configuration, let the epicenter be
the individual with initial investment x and the front of the wave be the
y-individuals closer to the epicenter. It is easy to show that while individu-
als gradually learn from the individual with the least investment (expansion
of the wave), the investment at the front of the wave of the generation k
changes to y − (1 − α)k(y − x) in the next generation. Thus, if the lattice
is big enough, there exists a resistance value such that these individuals
at the front of wave learn from their neighbors with higher investments, in
some generation, producing a reflection of the wave. An immediate conse-
quence of this result is that the expansive wave generated by the x-agent is
reflected by a barrier of y-individuals when those have enough resistance to
learning. The reflected wave is propagated towards the epicenter making an
increment of the mean investment of the system. Thus, if the lattice is big
enough and individuals have enough resistance to learning, the system can
asymptotically recover high investments (defection absorption); even if there
is not enough resistance to learning, the wave can be attenuated producing
a diminishment in the mean investment (defection attenuation). Moreover,
the absorption/attenuation effect, illustrated in Figures 5 and 6, can locally
operate for random initial configuration until producing the rebound in the
mean investment evolution showed in Figure 3(a).

4.2 The origin of cooperation: Learning errors and resis-
tance to learning

The most amazing results occur when there are occasional errors in the
gradual learning rule. To study this phenomenon, we performed simulations
by covering low, medium and high costs and linear and strictly concave
benefit functions. As in Section 3.2, we considered low initial investments,
uniformly distributed between zero and 1/10, and error rate of 1%, Gaussian
distributed with variance equal to 10% of the expected investment. Our
study is conclusive as to the effect of the resistance to learning:

1. In medium costs (low-medium and high-medium) as well as in low
costs with linear benefits, where the model with learning errors and
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Figure 4: Asymptotic mean investment as a function of α for the benefit
function Bx. Low costs in (a): top dashed line 1

8B, solid line 1
6B, and

bottom dashed line 1
5B. Medium costs in (b): top dashed line 1

4B+ δ, solid
line 3

10B, and bottom dashed line 2
5B. High costs in (c): top dashed line

1
2B + δ, solid line 3

5B, and bottom dashed line 3
4B. To consider costs close

to the thresholds we make δ = 1/1000.
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Figure 5: Attenuation of a 0-investor for a pool of 1-investors with low
resistance to learning at time generations 10, 20, 100, 300, 1000 and 3000.
B(x) = 4(1 − exp(−x/2)), C = 0.8, and α = 0.25. The asymptotic mean
investment in the stationary state is around 0.67. Note: for this parametric
set, the 0-invertor dominates the system if there is no resistance to learning.

Figure 6: Absorption of a 0-investor for a pool of 1-investors with enough
resistance to learning at time generations 10, 20, 100, 300, 1000 and 3000.
B(x) = 4(1− exp(−x/2)), C = 0.8, α = 0.65. The asymptotic mean invest-
ment in the stationary state is almost 1.

without resistance is only capable of sustaining cooperation in the
initial investment range, gradual learning leads to significant higher
asymptotic mean investment.

2. In high costs, occasional errors work against cooperation and even the
resistance to learning is unable to maintain cooperation.

Figure 7 shows the typical effect of the resistance to learning in adverse
conditions in which simple mutations in the structured population are not
sufficient to trigger high levels of cooperation. In these scenarios of low
and medium costs, with linear or strictly concave benefits, there always
exists a value for the resistance parameter to raise cooperation to higher
levels. Moreover, we observed through simulations, that any resistance level
(0 < α < 1)) is enough to promote cooperation when costs are low. Medium
levels of resistance may be required when costs are medium; the closer the
cost is to the high cost threshold, the higher the level of resistance required.

5 Conclusions

In this paper we have studied the effect in the evolution of cooperation of
introducing arithmetic crossover, instead of clonation, in the strategy up-
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Figure 7: Time series of mean investments with resistance (top lines) and
without resistance (bottom lines): (a) linear benefit (B = 1), low cost (C =
0.2) and low resistance (α = 0.1). (b) strictly concave benefit (B(x) =
4[1−exp(−x/2)]), medium cost (C = 0.4) and medium resistance (α = 0.5).
Gaussian mutation, with variance equal to 10% of the expected investment
and mutation rate 1%. Initial investments are uniformly distributed on
[0, 1

10 ].
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date rule of the spatial CPD. We have reviewed this evolutionary game in
detail when the strategy update rule is based on clonation. First, we have
studied the model without errors in the copying process. For this case, we
have found a simple classification of the payoff regimes (low, low-medium,
high-medium, and high costs) which allows us to determine the asymptotic
mean behavior of a population structured on a square lattice. From random
initial conditions, the spatial structure promotes high investments only in
low cost regimes. We observed fast transitions to low mean investments in
low-medium costs. It is interesting to notice that these transitions are dis-
continuous when the payoffs are linear functions. In regimes of high-medium
cost the spatial structure is unable to keep the initial mean cooperation in-
vestment. The lowest investment in the initial state dominates the system
for any high-cost regime. When occasional errors in the copying process
are considered, cooperation emerges from a non-cooperative initial state
only under a particular regime of low cost and strictly concave benefit. To
observe this emergence, previously reported in the literature of the spatial
CPD (Killingback et al., 1999; Koella, 2000; Ifti et al., 2004), negligible costs
of cooperation (Le Gaillard et al., 2003) are required. For the rest of the
regimes, the essential problem of cooperation remains: Occasional errors
have no effect on the evolution of cooperation when costs are low and the
benefit function is linear or when costs are low-medium. Moreover, they
work against cooperation in high-medium and high costs.

Arithmetic crossover can be viewed as a step-by-step learning mechanism
in the strategy update process that can prevent individuals from their costly
acts. Amazingly, it is this aspect that offers important insight into the
problem of origin and sustainment of cooperation. Our analysis explains
how cooperation evolves and is maintained when gradual learning works
in the spatial CPD. We have proved that the resistance to learning has
a significant effect on medium (low-medium and high-medium) cost and
high cost regimes: The less that is learnt in a single step, the greater the
degree of global cooperation finally attained. When learning errors can
occur on an arbitrarily non-cooperative population, we have showed that a
higher-investment mutant spreads all over the system raising cooperation to
significant levels in regimes of low costs (with linear or non-linear benefits)
and medium costs. The larger the cost, the greater the resistance to learning
needed in a single step. However, in more adverse conditions of high costs,
occasional errors work against cooperation and even the resistance is unable
to maintain cooperation.

We call attention to the fact that gradual learning can be introduced
in a straightforward way into the strategy update rule of any continuous
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evolutionary game, such as the continuous Snowdrift game (Doebeli et al.,
2004) and the spatial ultimatum game (Page et al., 2000). Gradual learn-
ing can also operate jointly with different selection mechanisms to identify
from whom to learn. To compare results with previous literature on spatial
the CPD, we have considered learning from the successful neighbor, but the
crossover operator can be easily fitted to random selection criterions (Szabó
& Fáth, 2007). We have only considered arithmetic crossover, because it
is the natural rule when phenotypes are represented by real numbers, such
as cooperative investments. But different schemas of crossover can be con-
sidered when strategies are not scalar. Our formulation is quite simple and
can be applied in a wide range of scenarios. We hope that this work will
contribute to highlighting the relevant role of this evolutionary principle for
the study of cooperation.

In conclusion, resistance to learning provides a natural solution to the
evolutionary riddle of the origin and maintenance of cooperation in a world
governed by selective forces. It is a fast mechanism for generating diversity,
allowing adaptation to transitory changes. Our results suggest that pop-
ulations which learn slowly from successful partners are, in the long term,
more efficient in the sense that they allow for higher cooperative invest-
ments. Thus, our model provides an evolutionary version of the tortoise
and the hare fable when the goal is cooperation.
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