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Abstract

We study the location-then-price game played by two firms in a circular market when
consumers face non-linear transport costs. We show that for any convex transport cost
function there exists a concave one such that the location-then-price games induced by these
functions are strategically equivalent. Further, we provide a sufficient condition to guarantee
that a similar equivalence result holds under oligopolistic competition among equidistant
firms.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Salop’s (1979) circular market model has been widely used to study localized
competition (see, for instance, Anderson, 1986 and Economides, 1989). Competi-
tion on the circular market can be interpreted as competition around a lake or as
competition by companies offering daily services at a particular time of the day.
As with the linear market model, contributions using the circular model have
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generally considered specific convex transport cost functions whenever a multi-
stage game is proposed.

The purpose of this paper is to show that the convexity or concavity of the
transport cost function is not relevant for the competitive decisions of the firms
when the market is circular. More precisely, we show that for a given increasing
convex transport cost function there exists an increasing concave one such that the
location-then-price games induced by these functions are strategically equivalent.

In a circular market with two firms competing to sell their products, a consumer
located at x, x [ [0, 1), purchasing a product from firm located at x at price pi i

obtains utility

u(x, x ) 5 2 p 2 F(z ), (1)i i i

where z denotes the distance between x and x and where F stands for thei i

transport cost of travelling z , with F(0) 5 0. Clearly, if both firms always chargei

the same prices then a transformation in the transport cost function from convex to
concave results in a monotone transformation in the consumers utilities. Thus,
consumer theory tells us that the consumers decisions will not be modified by this
transformation, and, consequently, the firm’s competitive decisions will be not
modified either. However, whenever firms charge different prices then a trans-
formation in the transport cost does not induce a monotone transformation in the
consumers’ utilities. Nevertheless, the symmetry of the circular market allows one

¯to find for any consumer x facing C, another consumer x facing T whose utility is
]a monotone transformation of the utility of x. Consumer x facing T will hence buy

from the same firm that consumer x does, facing C. The above argument cannot be
extended to the linear market model.

The main result in the paper is hence an equivalence (or duality) result showing
that the game induced by a given convex transport cost C is strategically
equivalent to the game induced by a certain concave transport cost T. This result
may have some interest inasmuch as until now it has not been known how to
incorporate concave transport costs into the analysis of spatial competition.
Furthermore, the result has several implications. On one hand, it ensures that, for
the circular market, neither the existence of equilibrium nor the pattern of product
differentiation rely on the convexity of transport costs. On the other hand, it allows
one to translate any existence or uniqueness result for particular convex cost
functions into the corresponding result for the appropriate concave cost functions.

In a previous work (see De Frutos et al., 1999) we show that only two cost
2 2functions from the linear quadratic family — C(z) 5 z and T(z) 5 z 2 z — ensure

existence of a perfect equilibrium in pure strategies. One might think that this
result deprives our current results of generality. We do not take this view. Rather
we think that the contribution of this paper is to show that relaxing the widely used
assumption of convexity in the transport cost has no impact on the results. In
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particular, this implies that when searching for transport cost functions that yield
existence of equilibrium one can just focus on the family of convex functions.

The equivalence result hinges on the assumption of duopolistic competition.
Nevertheless, some of the insights from this analysis can be extended to
oligopolistic competition. In particular, under the proviso of limited consumer
information (consumers make comparisons only between the two firms that are
closest to them and then purchase from one of them), we provide an equivalence
result for Salop’s original model.

The paper is organized as follows. Section 2 presents the model. The
equivalence result is proved in Section 3. Finally, Section 4 analyzes oligopolistic
competition.

2. The model

In a circular market of length 1 there are two sellers, located on the
circumference of the circle at x and x , who charge mill prices p and p ,1 2 1 2

respectively. Both sellers supply a homogeneous product at zero marginal cost.
A continuum of consumers are spread uniformly with unit density on the circle.

Each consumer purchases one unit of good and has a reservation price large
enough so that she will always prefer to buy the good. Consumers will buy from
the seller with the lowest delivered or full price, mill price plus transport cost.

Transport costs are assumed to be non-negative, continuous and increasing in
1the (relative) distance, denoted by z, with zero cost when travelling zero distance.

We study a two-stage game where firms choose first locations and then compete
in prices. We assume, w.l.o.g., that firm 1 locates at x 5 0 and that firm 2 chooses1

a location in the interval [0, 1 /2]. For a given strategy profile (a pair of prices and
locations), the demand for the product of firm i, D , will be the mass of consumersi

that prefer to buy from firm i.
A consumer who faces the same full price from the two firms will be called an

indifferent consumer. Since the indifferent consumers determine the market
boundaries between the firms, we first study their locations. Under convex
transport cost we have the following:

If there exists only one indifferent consumer then either she is located at 1 /2
and then D 5 1, or she is located at 1 /2 1 x and then D 5 0.1 2 1

If there are two indifferent consumers, denoted by r and s, then r [ (1 /2,
1 /2 1 x ) and s [ (0, 1 /2) < (1 /2 1 x , 1) .s d2 2

More precisely, the dynamic of the market boundaries as firm 1 increases its
price is the following: one indifferent consumer moves monotonically from 1/2

1This spatial setting is completely analogous to a model of product differentiation where x and x1 2

are two different brands or product types and where the transport cost is now interpreted as the
disutility of not getting the most preferred product type
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Fig 1 Dynamics of the indifferent consumers when (a) transport costs are convex and (b) transport
costs are concave

towards 1/2 1 x clockwise, whereas the other indifferent consumer moves2

monotonically from 1/2 towards 1/2 1 x counter clockwise. Thus, under convex2

transport costs and positive demands, the market of firm i is an arc of the circle
such that it always contains the point 1 /2 1 x , and it never contains the pointj

1/2 1 x . Fig. 1(a) illustrates this dynamic.i

The location of the indifferent consumers under concave transport cost is as
follows:

If there exists only one indifferent consumer then either she is located at x and2

then D 5 1, or she is located at 0 and then D 5 0.1 1

If there are two indifferent consumers, denoted by r and s, then r [ (0, x ) and2

s 5 (x , 1).2

The dynamic of the market boundaries as firm 1 increases its price is the
following: one indifferent consumer moves monotonically from x towards 02

clockwise, whereas the other indifferent consumer moves monotonically from x2

towards 1 counter clockwise. Therefore, in the concave case, the market of firm i
is an arc of the circle such that it always contains the point x , and it never containsi

the point x . Fig. 1(b) illustrates this dynamic.j

In Section 5, we will consider a variant of this model which is inspired by
Salop’s oligopolistic model (1979). The details of this variant will be set out in
Section 5.

3. An equivalence result

In a circular market of length 1, the maximum distance that a consumer may
travel is 1 /2 and the minimum distance is zero. Thus, for an arbitrary cost function
F, all pairs (z, F(z)) lie in a rectangle with length 1/2 and height F(1 /2). Consider

4



this rectangle but with the origin located at the point (1 /2, F(1 /2)). With this new
˜origin, the graph of F(z) coincides with the graph that the function F(z) 5 F(1 /

2) 2 F(1 /2 2 z) generates when the origin is located at (0, 0). Using this
geometrical argument, it is easy to see that for any convex transport cost C there
exists a unique function T such that T coincides with C if the above change in the
origin is made. Formally, T(z) 5 C(1 /2) 2 C(1 /2 2 z). Note that T is concave with
T(0) 5 C(0) 5 0 and T(1 /2) 5 C(1 /2). Fig. 2 illustrates these statements.

We will use this result to show that for any arbitrary convex transport cost there
exists a (unique) concave transport cost such that the two location-then-price
games induced by these two functions are ‘equivalent.’

To make the notion of ‘equivalent games’ precise let us focus on the second
stage of the game or price subgame. Let G(F; x , x ) represent the price subgame1 2

Ginduced by the cost function F and by the pair of locations (x , x ). Let D ( p)1 2 i

denote the market for firm i when p 5 ( p , p ) is played in the game G.1 2

9 9Definition 1. Two price subgames G(F; x , x ) and G9(F9; x , x ) are fully1 2 1 2
2equivalent iff for every firm i, and for any strategy profile p [ R , it is the case1

that

G G9D ( p) 5 D ( p). (2)i i

Finally, two location-then-price games are fully equivalent if all their price
subgames are fully equivalent. This notion of equivalence is taken from Myerson

2(1991) where it is defined in a more general framework.
To illustrate the notion of equivalence consider the following example. Let the

2firms’ locations be (0, 1 /4). Consider the price subgames G(10z ; 0, 1 /4) and

Fig 2 Transport costs

2 9Two games in strategic form G N, (S ) (u ) and G 9 N, (S ) (u ) are fully equivalent iff,s d s di i[N, i i[N i i[N, i i[N

for every player i, there exist numbers A and B such that for any strategy profile s 5 (s ) it is thei i i i[N

9case that u (s) 5 A u (s) 1 Bi i i i
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2 ]G9(10(z 2 z ); 0, 1 /4). For the strategy profile p 5 (2, 3), the indifferent
consumers are located at 0.32 and 0.56 if firms play G, and at 0.19 and 0.42 if

G G9 G] ] ]firms play G9. We then have D (p) 5 D (p) 5 0.77 and, consequently, D (p) 51 1 2
G9 ]D (p) 5 0.23. It is important to emphasize that while market demands coincide in2

the two games (i.e., the mass of consumers buying from each firm is the same for
both transport costs), market segments do not (i.e., the locations of the consumers
buying from each firm differ).

In order to show that the result in this example holds true for any pair of
locations and prices we first provide an auxiliary result.

9 9Lemma 1. The games G(F; x , x ) and G9(F; x , x ) are fully equivalent if and1 2 1 2

only if the distance between the two firms is the same in both games, where F is
either convex or concave.

Proof. We first suppose that F is a convex function. By the symmetry of the
9 9market, let us assume, w.l.o.g., that x 5 x 5 0, and 0 # x # x # 1/2. Suf-1 1 2 2

9ficiency follows straightforwardly because same distance implies x 5 x . We2 2

prove necessity by way of contradiction. Consider a pair of strategies such that
y 5 1/2 is an indifferent consumer when firms are located at (0, x ). Recall from2

GSection 2 that this implies D 5 1. Now, y will strictly prefer to buy from firm 21
G99when the firms locate at (0, x ), hence D , 1. Since there exist a pair of2 1

strategies for which firms have different demands in the two games, the games
cannot be equivalent.

The proof when F is concave is an analog. Notice that arguments above can
now be replicated for price strategies such that y 5 x is an indifferent2

consumer. h

Theorem 2. The games G(C; x , x ) and G9(T; x , x ) are fully equivalent, where1 2 1 2

C(z) is an arbitrary convex transport cost function, and T(z) 5 C(1 /2) 2 C(1 /2 2

z).

Proof. The proof of the theorem relies on the following two auxiliary results.
9 9(a) The games G(C; x , x ) and G0(T; x 5 x 1 1/2, x 5 1/2) are equivalent.1 2 1 2 2

39 9(b) The games G0(T; x 5 x 1 1/2, x 5 1/2) and G9(T; x , x ) are equivalent.1 2 2 1 2

9We first prove (a). For an arbitrary consumer located at x, let z and z denotei i

the distances between the consumer and firm i in the games G and G0,
9respectively. Since x and x are diametrically opposite each other on the circle2 1

9(recall that x 5 x 1 1/2), then for any point x on the circle, the distance from x1 2

9 9to x plus the distance from x to x equals the distance from x to x , that is, 1 /2.1 2 1 2
99So z 5 1/2 2 z . A similar argument shows that z 5 1/2 2 z .2 1 1 2

3 9 9Notice that G0(T; x 5 x 1 1/2, x 5 1/2) and G9(T; x , x ) coincide when locations are1 2 2 1 2

symmetric, i e , if x 5 0 and x 5 1/21 2
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From the above relations and the definition of T(z), it is easily deduced that
9 9T(z ) 5 C(1 /2) 2 C(z ) and T(z ) 5 C(1 /2) 2 C(z ). Consequently, the sign of1 2 2 1

9 9[ p 1 C(z )] 2 [ p 1 C(z )] and the sign of [ p 1 T(z )] 2 [ p 1 T(z )] are the1 1 2 2 1 1 2 2

same (in fact both expressions are equal). This implies that any consumer who
prefers firm 1 in the game G also prefers firm 1 in the game G0. Therefore each
firm faces the same demand in the two games, and the two games are equivalent.

Now (b) follows immediately from Lemma 1, one only has to notice that in
either game the distance between firms is equal to x .2

Since G is equivalent to G0 and G0 is equivalent to G9 it follows that G and G9

are equivalent. h

Corollary 3. The location-then-price game induced by C is fully equivalent to the
4game induced by T.

The equivalence result hinges on two key points. On one hand, it is necessary to
find the appropriate transformation of the cost function which must take into
account the maximum distance that a consumer may travel. On the other hand, the
market is assumed circular which allows one to find, for any x facing C, a

¯ ¯ ¯consumer x facing T such that u(x, x ) 2 u(x, x ) 5 u(x, x ) 2 u(x, x ). Hence, it is1 2 1 2

important to assess the impact of changing the way the market is modeled.

In the linear market the maximum distance that a consumer may travel is 1, and
consequently, the appropriate transformation is T(z) 5 C(1) 2 C(1 2 z). For this
transformation the next example illustrates the failure of the equivalence result.
Consider the strategy profile x 5 0.25, x 5 0.75, p 5 2 and p 5 3. For C(z) 51 2 1 2

2 210z we have D 5 0.6 whereas for T(z) 5 10(2z 2 z ) we have D 5 0.533.1 1

4. Oligopolistic competition

In this section we suppose that n firms, equi-spaced around the circle, compete
in prices. Without loss of generality, we assume that firm i is located at

5x 5 (i 2 1) /n. Notice that in this model there is no competition in locations. Thisi

assumption is appropriate when location is regulated.

4In De Frutos et al (1999) this argument is used to show that the game induced by the concave
2transport cost function T(z) 5 z 2 z has a unique subgame perfect equilibrium The equilibrium

strategies are x 5 0, x 5 1/2, p 5 p 5 1/4 Notice that these strategies constitute the unique1 2 1 2
2subgame perfect equilibrium of the game induced by C(z) 5 z

5Economides (1989) has shown that equidistant locations is a subgame perfect equilibrium of the
2game induced by the cost function C(z) 5 z irrespective of the number of firms in the market For an

excellent review of oligopolistic competition in the circle model see Chapter 6 in Anderson et al
(1992)
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With oligopolistic competition the demand of firm i is the intersection of the
(n 2 1) market demands resulting from duopolistic competition between firm i and
each of the (n 2 1) other firms operating in the market, i.e., D 5 > D , j ± i. Ifi ij

transport costs are convex, recall Section 2, then 1/2 1 x [⁄ D for any j. If theyi ij

are concave, then x [⁄ D for any j. In the former case, D is a connected setj ij i

whereas in the latter case it may not be connected. These statements rely on the
following mathematical fact: if the intersection of arcs of the circle is non
connected then the union of these arcs is the entire circle. With convex transport
costs, the union of the duopolistic demands cannot be the entire circle. In contrast,
when transport costs are concave the union of the duopolistic demands may be the
entire circle, since, a priori, it is not possible to single out a point on the circle that
does not belong to any of those demands. We now provide an example where this
is indeed the case.

Let four firms compete in the market charging prices p 5 0.1, p 5 p 5 0.23,1 2 4

and p 5 0.25. Transport costs are given by T(z) 5 C(1 /2) 2 C(1 /2 2 z), where3
2C(z) 5 z . Straightforward computations show that D is the non-connected set [0,1

0.21) < (0.36, 0.39) < (0.6, 0.63) < (0.78, 1). Notice that firm 1 shares one
indifferent consumer with each of its competitors, we hence have non-localized
competition as firm 1 is in direct competition with more than two other firms. In

2contrast, when the transport cost function is C(z) 5 z , we have localized
6competition as D 5 (0.61, 1) < [0, 0.38).1

The above example shows that the equivalence result does not hold under
oligopolistic competition unless further restrictions are imposed. Nevertheless, it
suggests that when competition is indeed localized some sort of equivalence result
may hold. This turns out to be the case. We now provide a sufficient condition to
guarantee localized competition which will allow us to obtain an equivalence
result.

7Assumption L. No consumer is willing to travel more than 1/n.

8Assumption (L) holds when there exists limited consumer information. It implies

6The fact that competition is localized when transport costs are convex but may not be localized
when they are concave is pointed out in Anderson et al (1992)

7The maximum distance that a consumer may now travel is 1 /n Consequently, the natural
transformation to get equivalent price games is T(z) 5 C(1 /n) 2 C(1 /n 2 z) Unfortunately, this
transformation depends on the number of firms, and this could make it more difficult to do comparative
statics in the number of firms for a given concave transport cost

8Competition in a circular market when consumers have limited information has been studied in
Peitz (1999) He provides the following explanation ‘Consider a market of differentiated goods which
are ordered as 1, 2, , n Each pair of goods (i, i 1 1) is observed by an equal share of consumers
1/n, i e consumers draw a good i with probability 1 /n (independently over consumers) and then with
probability 1 /2 one of the neighboring goods This consumer information can be best understood as
arising when consumers who enter a shop select only among a pair of neighboring goods they
encounter in the shelf’
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that consumers make comparisons only between the two firms that are closest to
them and then purchase from one of them.

Proposition 4. If Assumption (L) holds, for any convex transport cost C(z) there
exists a concave transport cost, T(z) 5 C(1 /n) 2 C(1 /n 2 z), such that the price
games induced by these two transport cost functions are fully equivalent.

Proof. To prove the proposition it is enough to show that the demand of firm i
C Tunder C coincides with the demand of firm i under T, i.e. D ( p) 5 D ( p).i i

Moreover, since competition is assumed localized, demand of firm i will only
depend on the prices charged by firm i and by its two neighboring firms, i.e., firms
i 2 1 and i 1 1.

Let x be a consumer located between firm i and one of its two neighboring
firms. Let z (respectively, z ) represent the distance between x and firm ii j

(respectively, firm j, j 5 i 2 1, i 1 1). Notice that z 1 z 5 1/n. It is nowi j

straightforward to see that

p 1 C(z ) 2 p 1 C(z ) 5 p 1 T(z ) 2 p 1 T(z ) . (3)s d s di i j j i i j j

Therefore, any consumer who prefers to buy from firm i when transport cost are
convex will also prefer to buy from this firm when transport cost are concave.

C TConsequently, D ( p) 5 D ( p). hi i

Corollary 5. Under equidistant locations, if assumption (L) holds, then the
2 22

]transport cost functions C(z) 5 z and T(z) 5 z 2 z induce two fully equivalentn

price games. Moreover, these two games have a unique symmetric equilibrium
2*given by p 5 (1 /n) .

Proof. The result follows from previous proposition and from Corollary 1 in
Economides (1989). h
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