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Abstract

Several regulatory authorities worldwide have imposed forward contract commitments on

electricity producers as a way to mitigate their market power. In this paper we analyze the impact

of such commitments on equilibrium outcomes in a model that re�ects important institutional

and structural features of electricity markets. We show that, when �rms are asymmetric, the

distribution of contracts amongst �rms matters. In the case of a single dominant �rm, the

regulator can be con�dent that allocating contracts only to that �rm will be pro-competitive.

When the asymmetries are less extreme, however, certain contract allocations can yield anti-

competitive outcomes by eliminating the more competitive equilibria. Our analysis thus suggests

that forward contracts should be allocated so as to (virtually) reduce asymmetries across �rms.
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1 Introduction

Concerns over the exercise of market power in electricity markets have led several competition and

regulatory authorities to impose forward contract commitments on the dominant producers.1 Such

contracts have taken various forms, but they all have one important feature in common: they commit

producers to receiving a �xed price for a certain fraction of their output before wholesale market

competition takes place. The �vesting contracts�introduced at privatization in the British electricity

market or the �Competition Transition Costs�for stranded costs recovery in Spain, provide two well-

known examples of such forward commitments.2 More recently, several regulators worldwide have

been forcing large electricity producers to auction o¤�virtual power plants�(VPPs), which essentially

work as forward sales. VPPs have also been used as antitrust remedies in several competition policy

cases, including merger control proceedings and abuse of dominance investigations.3 More generally,

several authors have blamed the poor performance of some electricity markets on the lack of su¢ cient

forward contracting, and propose to foster it for these markets to deliver e¢ cient outcomes (Wolak

(2007b) and Bushnell et al. (2008)).

In this paper we investigate how such forward contract commitments a¤ect �rms� strategic

behavior and equilibrium outcomes in electricity markets.4 As compared to the no-contracts case,

forward contracts can potentially result in higher prices if su¢ ciently many forward contracts are

awarded to �rms with little but yet some market power. However, such anti-competitive e¤ects never

arise whenever contracts are awarded to the dominant �rm in the market. Therefore, the relevant

question is how to allocate forward contracts among �rms to avoid their potential anti-competitive

e¤ects while enhancing their pro-competitive role. In this respect, the current paper provides a

clear policy answer: forward contracts should be awarded in ways that align all �rms�interests by

(virtually) reducing their asymmetries. This can be achieved not only by mitigating the dominant

�rms�incentives to increase prices through contract sales, but also by encouraging the medium-sized

�rms to purchase such contracts in order to counterbalance the market power of the bigger �rms.5

Our analysis re�ects important institutional and structural features of electricity markets. Firstly,

�rms compete by submitting supply functions with a �nite number of steps, as it is the case in all

1Market power concerns in electricity markets have also fostered the establishment and promotion of forwards

markets, as in the Pennsylvania-New Jersey-Maryland market (PJM) or in the Australian National Electricity Market.

However, these are not the subject of this paper to the extent that participation in such markets is typically voluntary

and hence endogenous.
2See Wolfram (1999) for a description of the �rst, and Fabra and Toro (2005) and Kühn and Machado (2006) for

a description of the second.
3For instance, VPPs have been used in the mergers cases EDF/EnBW in 2000 and Nuon/Reliant in 2003, in the

alleged price-squeeze case involving EDF/Direct Energy in 2007, or in the abuse of dominance by ENEL in 2006. In

Spain and Portugal, VPPs have also been used in an attempt to make the market more competitive. For a description

and analysis of VPPs, see Schultz (2007) and Federico and López (2009). Some unconventional forms of forward

contracts have been used in other competition policy settings, such as certain voluntary operating restrictions adopted

by �rms in antitrust lawsuits, see Borenstein (1996).
4Such contractual arrangements encompass several types of vertical commitments, including vertical integration.

To the extent that they can be considered to be exogenous (Bushnell et al. (2008)), our paper also sheds light on their

e¤ects.
5This is in contrast to the Spanish experience with VPPs, as the medium-sized �rms were not allowed to buy such

contracts.
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electricity markets in practice; secondly, �rms own a portfolio of several production technologies,

thus giving rise to (weakly) increasing marginal cost functions that might di¤er across �rms; and

thirdly, �rms are allowed to hold exogenously given forward contracts, which are �nancially settled

once the market closes.6

Despite the complexity of the problem, we show that all the equilibria have a simple pattern: all

�rms but one (referred to as non-price-setters) behave as price-takers, i.e., they produce the same

as if they bid at marginal costs,7 while the remaining �rm (referred to as the price-setter) sets the

price at the level that maximizes its pro�ts over the residual demand (Theorem 1).8 Therefore,

there are as many candidate equilibrium outcomes as �rms in the market, all of which di¤er in the

identity of the price-setter. In general, the resulting equilibria cannot be Pareto-ranked as, all else

equal, �rms prefer to be non-price-setters rather than price-setters.

A central result of the paper is that not all candidate equilibria might be sustainable (Corollary

2). A �rm that is willing to set a very high price when everyone else behaves competitively might

have incentives to deviate from any candidate equilibria at which the price-setter chooses a very low

price: the deviating �rm would lose output, but such output loss might be more than compensated

by the price increase. This limits the set of �rms that can act as price-setters in equilibrium.

The equilibrium set is nevertheless non-empty, as no �rm wants to deviate from the highest price

candidate equilibrium (Corollary 1).

The main results of the paper are contained in Proposition 4, which shows that the impact of

forward contracts on equilibrium prices derives from two e¤ects: the change in the price-setter�s

pro�t-maximizing price, and the change in the non-price-setters�deviation incentives. On the one

hand, the price-setter�s pro�t-maximizing price is lower with contracts given that market prices only

a¤ect its uncovered sales. On the other hand, a lower price also makes it more attractive for a non-

price-setter to deviate to a higher price. If contracts are symmetrically distributed across symmetric

�rms, the only relevant e¤ect of contracts is the one on the price-setter�s pro�t-maximizing price.

Hence, an increase in contracts up to �rms�competitive quantities is unambiguously pro-competitive

(Lemma 5). However, this prediction may be reversed when �rms are asymmetric, as the e¤ects

of contracts on the non-price-setters�deviation incentives, and thus on equilibrium existence, start

to play a role. Indeed, a novel result from the paper - namely, that an increase in the contract

coverage of the price-setter can lead to higher prices- comes exactly from the impact of contracts

on equilibrium existence. The increase in the price-setter�s contract coverage, which lowers its

pro�t-maximizing price, may trigger a deviation by some other �rm, thus making such equilibrium

disappear. This result is therefore related to a shrinking of the set of equilibrium outcomes and is

not a standard type of comparative static result.

The above conclusions support the main message of the paper: since contract distribution and

6Nyborg and Strebulaev (2004) also study auctions where bidders have exogenously given forward contracts. How-

ever, in that paper short-sellers face the risk of being squeezed in the secondary market, thus a¤ecting the auction

itself. Short-squeezes are not an issue in our setting as electricity markets are typically very liquid and most contracts

are settled by di¤erences with respect to the spot market price.
7To be more precise, this holds true as long as no �rm has an excessive amount of contracts. Otherwise, the

non-price-setters might produce in an ine¢ cient manner. This is analyzed in detail in Section 6.
8Using data from the UK electricity market, Crawford et al. (2007) have shown that this pattern of asymmetric

bidding is observed in practice.
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contract volume are crucial in determining the e¤ects of forward contracts, there is scope for making

them pro-competitive. In markets with large asymmetries across �rms, only the dominant �rm

should be forced to hold forward contracts; getting contract volume right is less critical, as contracts

in this case would at worst be ine¤ective. Regulators should be more cautious in the presence of mild

asymmetries between large and medium-sized �rms, as it is in such cases when the potential anti-

competitive e¤ects of contracts are more likely to arise. Still, it is in these contexts when contracts

may have a stronger role to play, as encouraging the smaller �rms to purchase such contracts may

further mitigate the market power of the bigger �rms.

In order to illustrate our theoretical results, we have performed a simulation exercise that uses

a rich data set of the Spanish electricity market. Assuming that contract volume remains �xed

while demand varies over the year, the analysis shows that the pro-competitive e¤ect of contracts

dominates over the anti-competitive one. Still, the latter shows up in the simulations at certain

hours, depending on contract volume and contract allocation.

There is already a large body of theoretical work on the impact of forward trading on the

performance of oligopolistic markets.9 However, existing papers are not fully applicable to the

problem at hand, to the extent that they assume that ex-ante symmetric �rms choose their contracts

prior to competing either à la Cournot (Allaz and Vila (1993) and Bushnell (2007)) or à la Bertrand

(Mahenc and Salanié (2004)).10 Instead, forward contract commitments are not endogenously chosen

by �rms but rather imposed by regulators. Also, costs and capacity asymmetries are pervasive among

electricity producers. These two di¤erences explain why and when our predictions di¤er. In the

existing papers, and regardless of whether �rms compete à la Cournot or à la Bertrand, forward

sales (purchases) induce �rms to compete (less) more �ercely given that spot market prices only

a¤ect their net-selling (net-buying) positions. However, once contracts are endogenized, the Cournot

model predicts that contracts are pro-competitive because all �rms are net-sellers at the subgame

perfect equilibrium, whereas the opposite holds true under the Bertrand model. In contrast, our

model predicts that exogenously given contracts might have anti-competitive e¤ects even if �rms

are net-sellers.11

As a by-product, our analysis also contributes to the literature on share auctions.12 In a common

value setting, Wilson (1979) shows that there exist equilibria with prices below the common value.

Kremer and Nyborg (2004) demonstrate that these kind of equilibria can be eliminated in a discrete

setting, similar to the one employed in the current paper, where quantities must be discrete though

prices need not. Restricting bidders to submit a �nite number of price-quantity pairs implies that

there is a positive mass at the margin, so that competition for the margin destroys the underpricing
9There is also extensive empirical literature which con�rms that contracts a¤ect the performance of spot markets.

See Bushnell, Mansur and Saravia (2008), Fabra and Toro (2005), Hortacsu and Puller (2008), Kühn and Machado

(2006), Mansur (2007) or Wolak (2000, 2007).
10Newbery (1998) and Green (1999) obtain mixed results in models in which �rms compete by choosing continuous

supply functions. Various papers analyze the dynamic e¤ects of contracts (Ferreira (2003); Green and Le Coq (2006);

Liski and Montero (2006)), and tend to conclude that they have anti-competitive e¤ects.
11 It is simple to show that, in a Cournot model with exogenously given contracts and asymmetric �rms, forward

contracting is always (weakly) pro-competitive, regardless of contract distribution.
12 In most of the papers in this literature, bidders submit demand functions (to buy some underlying good) rather

than supply functions (to supply electricity), as in the current paper. However, as it is well known, whether one casts

the model in terms of demand or supply functions is immaterial because demand and supply games are isomorphic.
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equilibria found by Wilson. In the current paper, in contrast, bidders can exploit the fact that

(weakly) increasing marginal costs lead to downward sloping residual demand functions, in the

same way as bidders can engage in demand reduction in a setting à la Wilson (see also Ausubel and

Cramton (2002)). In sum, by relaxing the �at common value assumption, our paper recovers the

ine¢ ciencies in Wilson in a discrete setting à la Kremer and Nyborg.13

The paper is structured as follows. In Section 2 we describe the general model, a simple ex-

ample of which is solved in Section 3. Sections 4 to 6 are devoted to the analysis of the general

model, including the characterization of �rms�optimal behavior, equilibrium outcomes, equilibrium

existence and multiplicity, and the impact of forward contracts. Section 7 contains a simulation

exercise, while Section 8 concludes. All proofs are contained in the Appendix.

2 Description of the Model

We consider a model in which N � 2 �rms compete to supply a perfectly divisible good. Market

demand, D(p); can be either price-inelastic or downward-sloping, D0(p) � 0; and its inverse function
is denoted P (q).

Firm n�s productive capacity Kn; n = 1; :::; N; is made up of several units. Each unit has

constant marginal costs of production up to its capacity limit. We impose no constraints on the

number of units �rms have (other than it must be �nite), and allow for all types of asymmetries

(both in size and cost) among the units owned by a �rm, as well as across �rms. By stacking

�rm n�s units in increasing cost order, we construct its marginal cost curve, cn(q); which is a left-

continuous non-decreasing step function.14 We use Cn(q) to denote �rm n�s cost function, i.e.,

Cn(q) =
R q
0 cn(z)dz. In line with the literature on electricity auctions, we assume that information

on �rms�costs is complete because electricity generators share similar production technologies, and

are thus well aware of the e¢ ciencies of their plants and the cost of the fuels.

Firms compete by simultaneously submitting a �nite number of price-quantity pairs. Prices

cannot exceed the �market-reserve price�pR (which, for simplicity but without loss of generality, is

assumed to exceed the highest marginal cost), and �rms cannot produce above their capacities. Note

that restricting �rms to submit a �nite number of price-quantity pairs implies that �rms�strategies

are left-continuous non-decreasing step functions with a �nite number of steps. We assume that both

the �height�(prices) and �length�(quantities) of the steps are continuous choice variables.

By ordering �rms�price-quantity pairs in increasing price order, we construct their bid functions,

i.e., for �rm n;

bn = f(pns; qns)g�ss=1 ; pns 2
�
0; pR

�
with pns+1 � pns; qns+1 � qns with qn�s � Kn;

13To be sure, the reasons why we recover the underpricing equilibria are similar to the ones that explain why the

competitive outcome is not sustainable under Bertrand competition with capacity constraints, even though it consti-

tutes the unique equilibrium outcome under pure Bertrand competition. Within the electricity auctions literature,

simpli�ed versions of our model also lead to a similar prediction (von der Fehr and Harbord (1993), García-Díaz and

Marín (2003), Fabra et al. (2006), and Crawford et al. (2007)).
14As will become clear in Section 4, the possibility that �rms have increasing marginal cost functions is a key

ingredient of the model, as it implies that �rms face step-wise downward sloping residual demand functions when rival

�rms bid at marginal costs.

4



where �s < 1 is the maximum number of admissible steps in a �rm�s bid function. Consistently

with actual rules in electricity markets, we will assume that the number of admissible steps does

not constrain �rms from bidding each unit at its own marginal cost, i.e., �s is large enough so as to

allow �rms to at least replicate their marginal cost curves.15 At each step s in �rm n�s bid function,

pns speci�es the minimum price at which the �rm is willing to produce up to quantity qns. For a

given bid pro�le b = fbngNn=1 ; we construct the aggregate supply function, denoted S (q) ; which
determines the lowest price at which all �rms in the market are willing to produce up to quantity q:

The stop-out price, p�, at which all transactions take place, is de�ned as follows,

p� = max
q
fp = S (q) jS (q) � P (q)g :

In words, the stop-out price p� is the point on the aggregate supply function, S (q), at which the

market clears. If the demand function P (q) is downward-sloping, it need not always intersect the

(possibly) discontinuous aggregate supply function, in which case p� is the highest price on the

aggregate supply function at which there is excess demand. To the contrary, if demand is inelastic,

there are potentially many market-clearing prices when the demand function intersects the supply

function at the right end of a step. In this case, p� is the lowest price at which the market clears,

given that it must be on the (left-continuous) aggregate supply function.16

Firms are called to produce in increasing price order up to p�. We use q�n to denote the quantity

allocated to �rm n: If there is excess supply at p�; we assume e¢ cient rationing on-the-margin, i.e., if

several units have been bid at p�, they split residual demand proportionally to the quantities o¤ered

at exactly p�, unless their marginal costs di¤er, in which case the low cost units are dispatched �rst.17

By using e¢ cient rationing, the set of equilibria of our game approximates the set of equilibria of a

game in which rationing pro-rata on-the margin is used but where �rms choose their bid prices on

a �nite grid, which is what occurs in real markets. In contrast, assuming rationing pro-rata on-the

margin in our set-up would lead to a problem of non-existence of equilibrium similar to the one that

arises under a Bertrand game with asymmetric costs.

We label prices and quantities as either competitive or non-competitive. The competitive price,

denoted pc; is the point on the aggregate cost function at which demand and competitive supply

intersect. As before, if they do not intersect, we assume that pc is the highest price on the aggregate

15The limit on the number of bids is typically set for each production unit rather than at the �rm level. For instance,

in the original market design in England and Wales, �rms were allowed to submit up to 3 incremental prices per unit;

up to 25 price-quantity pairs per unit in Spain; and up to 40 per unit in Texas. In practice, �rms use even fewer

bidpoints than the ones they are allowed to (Hortacsu and Puller (2008)).
16These assumptions are consistent with most auction rules in practice. For instance, in the Spanish electricity

market, demand bids cannot determine the stop-out price (see www.omel.es). The fact that the auctioneer chooses

the lowest market-clearing price whenever there are multiple market-clearing prices is reasonable to the extent that

it is the most favourable one from consumers�point of view. This is also assumed in Kremer and Nyborg (2004) and

Kastl (2008)- note however that in these papers the stop-out price is assumed to be the highest market-clearing price
as the auctioneer is selling rather than buying the underlying good.
17Several papers in the electricity auctions literature also assume e¢ cient rationing on-the-margin (see García-Díaz

and Marín (2003) and Fabra et al. (2006), among others). Instead, papers in the Treasury auctions literature typically

adopt the rationing pro rata on-the-margin rule, which rations the marginal bids at p� proportionally to the total

quantity o¤ered at exactly p�; regardless of their marginal costs (see Back and Zender (1993) and Kastl (2008), among

others).
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cost function at which there is excess demand. Formally,

pc = max
q
fp = C (q) jC (q) � P (q)g :

The resulting competitive quantities are denoted (qc1; :::; q
c
N ). All other prices and quantities are

referred to as non-competitive. Similar labels are used to classify market outcomes.

An important feature of the model is that �rms might be subject to forward contracts. We use

�n to denote �rm n�s contract price, and xn � 0 to denote �rm n�s contract quantity;18 both �n and
xn are �xed when �rms submit their bids. Consequently, when the stop-out price is p� and �rm n�s

dispatched quantity is q�n; �rm n�s pro�ts are given by

�n (p
�; q�n) = p

�q�n � Cn(q�n) + [�n � p�]xn; (1)

where the �rst two terms give the �rm�s market pro�ts, and the last term gives the �rm�s contract

pro�ts.19 To �x ideas, one can think of these contracts as being purely �nancial, i.e., �rm n

continues to supply all its quantity q�n to the market at p
� and the contract�s counterpart, e.g. a

big customer, continues to buy all its demand from the market at p�. The contract requires �rm n

to pay (receive) the di¤erence between the contract price and the stop-out price times the contract

quantity, [�n � p�]xn; whenever positive (negative). Re-writing the above expression as

�n (p
�; q�n) = p

� [q�n � xn]� Cn(q�n) + �nxn; (2)

shows that �rms�bidding incentives depend on their net-positions, [q�n � xn] ; which are positive for
the net-sellers, q�n > xn; and negative for the net-buyers, q

�
n < xn. The last term, �nxn; is �xed when

�rms compete in the spot market; as such, it has no e¤ect on bidding incentives (indeed, one could

set �n = 0 without loss of generality). We will assume that total contract volume never exceeds

demand at the competitive price,
P
n xn � D (pc) ; thus ruling out the cases in which xn � qcn holds

for all �rms n (with at least one strict inequality).

Firm n�s problem is to choose a �nite number of price-quantity pairs that maximize �n given its

rivals�supply functions. We focus on Nash equilibria in pure strategies. All aspects of the model

are common knowledge among �rms.20

Before we proceed, it is convenient to set some terminology and notation. We �rst de�ne which

�rms are marginal :

18We adopt the convention that xn > 0 corresponds to �rm n selling contracts (i.e., taking a short-position). We

do not allow �rms to buy forward contracts since in real markets regulators typically impose sale obligations.
19 In models of vertical integration, the �rst two terms would represent the pro�ts of the upstream subsidiary, while

the third term would accrue to the downstream subsidiary.
20When applied to electricity markets, it could be argued that �rms face demand uncertainty (or demand variation)

at the bidding stage. However, this issue depends on the duration of bids as compared to the frequency of market

clearing: for instance, when �rms�submit supply functions that remain valid for a single period of market clearing,

there will be little or no relevant variation in demand; however, with bids that remain good for a whole day, demand

will vary considerably over the pricing period. Accordingly, our paper applies to the �rst case, which is typically

referred to as the short-lived bids case (as opposed to the second case, referred to as long-lived bids case). The former

is in place in most electricity markets in practice (see Fabra et al. (2006) and García-Díaz and Marín (2003)). Last,

the contracting stage may be a¤ected by demand variation, as contracts typically remain �xed for longer periods of

time. However, this has no e¤ect on the bidding stage as long as the features described above are met.
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De�nition 1 For an arbitrary bid function pro�le resulting in an outcome fp�; (q�1; :::; q�N )g ; �rm
n is marginal if its bid function has some step s at the stop-out price, pns = p�:

We use the above de�nition to also classify �rms as either price-setters or non-price-setters:21

De�nition 2 For an arbitrary bid function pro�le resulting in an outcome fp�; (q�1; :::; q�N )g ; �rm
n is a price- setter if it is a marginal �rm and if it is at least partly dispatching its marginal step,

q�n 2 (qns�1;qns]. Otherwise, �rm n is a non-price-setter.

Finally, both the stop-out price and the dispatched quantities depend on the demand, D(p); and

the bid function pro�le, b. However, in order to simplify notation, we suppress these arguments

whenever clear from the context.

3 Illustrative Example

We start by analyzing a simple example to convey the intuitions of the main results of the paper. In

particular, we �x N = 2 and assume that demand is perfectly inelastic at D = 3: There exist four

types of units, each with capacity normalized to one, whose marginal costs are 0, 1, 2 or 2:5. Firm 1

owns 4 units, one of each cost type, while �rm 2 only has 3 units, not owning the unit with marginal

costs 2. More speci�cally, their marginal cost functions are c1 = f(0; 1) ; (1; 2) ; (2; 3) ; (2:5; 4)g and
c2 = f(0; 1) ; (1; 2) ; (2:5; 3)g : Accordingly, �rms 1 and 2 will be respectively referred to as the �large
�rm�and the �small �rm�. Finally, we assume without loss of generality that the contract price is

zero, �n = 0:

We �rst show that in the absence of contracts, the competitive outcome cannot be sustained

in equilibrium. Suppose that both �rms bid at marginal costs, bn = cn; n = 1; 2; so that the

aggregate supply function is S = f(0; 2) ; (1; 4) ; (2; 5) ; (2:5; 7)g. Since the auctioneer has to dispatch
three units to satisfy demand, the competitive outcome is fpc = 1; (qc1 = 1:5; qc2 = 1:5)g ; with pro�ts
�cn = 1; n = 1; 2: If �rm 1 deviates to bidding all its units at 2:5; i.e., b01 = f(2:5; 4)g ; the aggregate
supply function becomes S0 = f(0; 1) ; (1; 2) ; (2:5; 7)g ; the stop-out price is raised to p� = 2:5, and
�rms�dispatched quantities are q�1 = 1 and q

�
2 = 2 (by the e¢ cient tie-breaking rule, �rm 1�s �rst

unit is dispatched at capacity, as it has lower marginal costs than any of the other units that tie

at the margin). Thus, �rm 1 makes a larger pro�t, �01 = 2:5 > �c1; and �rm 2 gains even more,

�02 = 4 > �
c
2. Note that one can also rule out existence of a competitive equilibrium by letting �rm 2

deviate from marginal cost bidding. In this case, �rm 2 would optimally raise the price to 2; e.g. by

bidding at b02 = f(2; 2); (2:5; 3)g ; in order to increase its pro�ts to �02 = 2 > �c2; again, the other �rm
gains even more, �01 = 3 > �

c
1: Thus, the competitive outcome cannot be sustained in equilibrium,

unless �rms used weakly-dominated strategies, a possibility ruled out throughout the paper.

The two bid function pro�les considered above, fb01; c2g and fc1; b02g, are indeed in equilibrium.
Under both pro�les, one �rm is setting the stop-out price at the level that maximizes its pro�ts

over its residual demand (which coincides with the marginal cost of its rival�s �rst undispatched

unit), while the other �rm cannot increase its pro�ts as it is producing the maximum it can without

21We have inherited the price-setter and non-price-setter terminology from Crawford et al. (2007).
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incurring in losses. The two equilibria are not outcome equivalent, as the �rst results in a high price,

p� = 2:5; while the second results in a lower price, p� = 2. However, none of them can be ruled

out by appealing to Pareto dominance, given that each �rm is strictly better-o¤ when the rival sets

the price.22 To see this, recall that at the �rst equilibrium �rms�pro�ts are �1 = 2:5 and �2 = 4,

whereas at the second �rms�pro�ts are �1 = 3 and �2 = 2.23

Besides the two equilibria described above, there are many other equilibrium bid pro�les; in

particular, there exist several equilibria with both �rms bidding above marginal costs. The reason

for this multiplicity is that several bids are outcome irrelevant. However, conditionally on the

identity of the �rm that sets the price, all equilibria are outcome equivalent to the two equilibria

just described. In sum, even though the strategy space is quite large, we need just focus on candidate

equilibrium outcomes, of which there are at most as many as �rms in the market.

To illustrate the impact of contracts, let us �rst allocate all contracts to the large �rm, x1 2
(1; 2] > x2 = 0: If �rm 2 bids at marginal costs, �rm 1�s pro�t-maximizing price now equals p� = 1

rather than p� = 2:5: To see this, note that if �rm 1 sets the stop-out price at p� = 2:5; it now

becomes a net-buyer with x1 > q�1 = 1. As such, it prefers to reduce the price to p� = 1 by

e.g. bidding at marginal costs. Indeed, since marginal cost bidding allows �rm 1 to save the price

di¤erence over its net-buying position, its pro�ts increase by [1� 2:5] [1� x1] > 0: Therefore, the

equilibrium at which �rm 1 sets the price at p� = 2:5 can no longer be sustained, whereas the

equilibrium at which �rm 2 sets the price at p� = 2 can still be sustained (�rm 2�s incentives are

unchanged as it has no contracts, while �rm 1 does not �nd it pro�table to reduce the price as at

this equilibrium it is no longer a net-buyer, x1 � q�1 = 2). Since only the low-price equilibrium

outcome survives, allocating contracts to the large �rm is pro-competitive.

Alternatively, let us now allocate all contracts to the small �rm, x2 2 (1; 2] > x1 = 0: By the

same logic, the equilibrium with �rm 2 setting the price at p� = 2 disappears: as a net-buyer, �rm

2 would rather bid at marginal costs in order to reduce the price from p� = 2 to p� = 1. However,

�rm 1 would then respond by setting the price at p� = 2:5, which implies that the only surviving

equilibrium outcome is the one with the high price. Hence, forward contracts are anti-competitive

in this case. Table 1 summarizes these results.

To sum-up, this example illustrates that the impact of forward contracts on bidding incentives

and equilibrium outcomes critically depends on its distribution among �rms. Even though contracts

reduce �rms�incentives to increase prices, equilibrium prices need not be lower as contracts might

also jeopardize the existence of the equilibria in which the contracted �rm sets the price. Indeed,

contracts might lead to (weakly) higher prices whenever they are awarded in su¢ ciently large quan-

22We are grateful to a referee for pointing out that, in some pathological examples, the low-price equilibrium is

(weakly) Pareto dominated by the high-price equilibrium. This may occur when the length and height of �rms�

marginal cost functions equal one and demand is an integer, so that a �rm might be indi¤erent between being a non-

price-setter and selling one more unit at a lower price, or being a price-setter and selling one unit less at a higher price.

For instance, in this example, if the high marginal cost equals 3 rather than 2:5, the high price equilibrium becomes

p� = 3; with �1 = 3 and �2 = 5 so that the low-price equilibrium is now weakly Pareto dominated. However, this

Pareto ranking is not robust to slight perturbations. If this marginal cost equals 3� " (for " small enough) instead of
3, or if demand is 3�" instead of 3, then �rm 1 would strictly prefer to be a non-price-setter rather than a price-setter

and the two equilibria can no longer be Pareto ranked.
23This also implies that both equilibria are coalition-proof (see Bernheim, Peleg and Whinston (1987)).
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Equilibrium Prices

No contracts xi 2 (1; 2] > xj = 0
Firm i is large f2:5; 2g f?; 2g
Firm i is small f2; 2:5g f?; 2:5g

Table 1: Equilibrium clearing prices as a function of �rms�forward contract positions

Note: the �rst (second) term in brackets is the price that �rm i (�rm j) would set in equilibrium when its

rival behaves as a price-taker; there is an ? if such an equilibrium does not exist.

tity to the �rm that would set lower prices without contracts (in this example, the small �rm). Let

us note that this e¤ect can only be uncovered once the symmetry assumption is relaxed, as otherwise

the equilibrium price would be the same regardless of which �rm sets prices, and hence regardless

of whether contracts are allocated to one �rm, to the other, or to none.

4 Analysis of the Model

In this section, we characterize equilibrium bidding behavior and equilibrium outcomes in the general

model. Rather than deriving equilibrium strategies, we instead deduce structural features that any

equilibrium must have. As it is common in the analysis of uniform-price auctions, we �rst re�ne the

equilibrium set by restricting attention to strategies that are not weakly-dominated. In the absence

of contracts, bidding below marginal costs is a weakly-dominated strategy (García-Díaz and Marín

(2003) and Crawford et al. (2007)). However, when �rms hold contracts, this is not generally the

case, as shown next.

Lemma 1 For �rm n; it is weakly-dominated (i) to bid below marginal costs for quantities above

its contract cover, qn > xn, as well as (ii) to bid above marginal costs for quantities not exceeding

its contract cover, qn < xn:

In words, weak-dominance arguments eliminate below marginal cost bidding only for quantities

above the �rm�s contract cover, qn > xn; i.e., such that the �rm is a net-seller.24 At lower quantities,

the �rm is a net-buyer, and as such it would like to exercise monopsony power by bidding some

units below marginal cost. Consistently with this, weak-dominance arguments also eliminate above

marginal cost bidding for quantities below the �rm�s contract cover, qn < xn. We cannot rule out

either below or above marginal cost bidding for qn = xn because bid functions are step functions.

With continuous bid functions instead, bidding qn = xn at marginal costs would be a dominant

strategy.

In what follows, we will �rst �x the identity of the price-setter in order to characterize the

non-price-setters�optimal bidding behavior.
24Kastl (2008) shows that in discrete multi-unit uniform-price auctions, a rational bidder (without contracts) may

submit a bid above its marginal valuation (in the current paper, a bid below marginal costs). This occurs only when

the number of admissible steps in the bid functions is lower than the number of units, as it implies that bidders have to

bundle bids for several units together. However, this does not arise in our paper given that, consistently with practice,

bidders can at least submit as many bids as units they own.

9



Lemma 2 At any Nash Equilibrium in which �rm i is a price-setter, all other �rms j; j 6= i; are
fully dispatching all their units with marginal costs strictly below the equilibrium price p�:

The intuition underlying Lemma 2 above is simple. Given that �rm i is dispatching some output

at p�, it cannot be the case that some other �rm j; j 6= i; has some unit with marginal costs strictly
below p� that has not been called to produce. If it instead bid such an undispatched unit slightly

below p�, �rm j would earn a positive pro�t margin over its increased production, with only (if any)

a slight reduction in the price. Key to this result is the fact that �rms submit a �nite number of

price-quantity pairs, which implies that there is a positive output mass at the margin. Hence, when

�rm j reduces its bid, the quantity gain always outweighs the price reduction as the latter can be

made arbitrarily small.

Lemma 3 At any Nash Equilibrium in which �rm i is a price-setter, �rm j; j 6= i; is not dispatching
any unit with marginal costs strictly above the equilibrium price p� if either one of the following two

conditions holds:

1) �rm j is a net-seller or has a balanced position, i.e., q�j � xj ; or
2) there is at least one marginal �rm that is not fully dispatching its marginal step, i.e., p� = pks

and q�k < qks; k 6= j.

By elimination of weakly-dominated strategies, net-sellers cannot sell their marginal output

below marginal costs. Similarly, �rms with a balanced position do not �nd it pro�table to bid below

marginal costs in equilibrium given that by bidding at marginal costs they could save the di¤erence

between their marginal costs and the equilibrium price times their reduced output. Hence, q�j � xj
is su¢ cient to guarantee that �rm j does not dispatch any unit with marginal costs below p�.

The same result does not apply in general to an equilibrium in which �rm j is a net-buyer, unless

some other �rm k has bid some step at p� which has not been fully dispatched (i.e., p� = pks and

q�k < qks). When this is the case, �rm j can avoid producing at a loss by bidding some of its output

slightly above p�; with no e¤ect on the price. However, if all the marginal �rms are fully dispatching

their marginal steps, �rm j may be unable to reduce its production so as to avoid productive losses

unless it raises the price high enough. As �rm j is a net-buyer, the price increase - which may no

longer be in�nitesimal - may reduce the �rm�s pro�ts (�rm j reduces productive losses but buys its

negative net position at a higher price). There is hence no guarantee that in an equilibrium in which

�rm i is a price-setter, the other �rms produce in an e¢ cient manner unless they are all net-sellers.

Note that this result only arises with contracts as, otherwise, all �rms would trivially be net-sellers.

The next Proposition combines the two lemmas above to provide conditions under which at any

equilibria the non-price-setters behave as if they were price-takers. This does not imply that they

do not act strategically; to the contrary, the non-price-setters are the ones that bene�t the most

from the (potential) exercise of market power, while the price-setters must bear the cost.

Proposition 1 At any Nash Equilibrium in which �rm i is a price-setter, �rm j; j 6= i; produces
the same "as if" it were bidding at marginal costs if either one of the two conditions in the statement

of Lemma 3 hold.
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The conditions under which Proposition 1 holds relate to equilibrium features, which are en-

dogenous, such as the identity of the price-setter or the non-price-setters�equilibrium net-positions.

Nevertheless, one can guarantee that at any equilibrium Proposition 1 always holds if all �rms are

net-sellers at the competitive outcome. This condition relates to the primitives of the game, which

are no longer endogenous.

To see why this is the case, note that weak-dominance arguments imply that if xn < qcn holds for

all �rms, they must all bid their competitive quantities at or above marginal costs. Therefore, the

equilibrium price p� cannot be lower than pc. This implies that those �rms that bid at marginal costs

must be producing more than at the competitive outcome, and are thus net-sellers; while those �rms

that bid above marginal costs must also be net-sellers by elimination of weakly-dominated strategies.

Therefore, since condition 1) of Lemma 3 is satis�ed, Proposition 1 applies.

In contrast, Proposition 1 does not generally hold if some �rms are net-buyers at the competitive

outcome. First, since p� � pc cannot be ruled out, even the �rms that are bidding at marginal costs
may produce below their competitive quantities, and hence remain/become net-buyers. Moreover,

even if p� > pc; and some �rms expand production above their competitive quantities, such an

increase in quantity might not be enough so as to exceed their contract positions.

For these reasons, it will be useful to analyze these two cases separately, which we respectively

refer to as the regular cases (in which xn < qcn for all �rms) and the irregular cases (in which xn < q
c
n

holds for some but not all �rms). Arguably, the regular cases are the empirically most relevant ones

(in practice, regulators never force �rms to holding contracts above their competitive quantities),

but for completeness we will also cover the irregular cases in Section 6.

5 Regular Cases

We start the analysis of the regular cases by identifying conditions under which the competitive

outcome constitutes the unique equilibrium outcome of the game. On the one hand, we provide

primitives of the game which are su¢ cient for all �rms to behave competitively. On the other hand,

we derive properties of the equilibrium bid pro�les that sustain the competitive outcome.

Proposition 2 Let xn < qcn hold for all �rms.

(i) If for any n; all �rms but �rm n can jointly serve total competitive demand D (pc) without

losses, then the competitive outcome, p� = pc and q�n = qcn for all n; is the unique equilibrium

outcome.

(ii) Whenever there is supply rationing at pc, any Nash equilibrium results in the competitive

outcome if and only if there is more than one price-setter.

If every possible combination of (N � 1) �rms can jointly serve total demand at the competitive
price, the residual demand faced by the Nth �rm would fall down to zero if it deviated optimally

from the competitive equilibrium. Hence, all �rms have no option but to behave competitively. If

this condition did not hold, the Nth �rm would have the possibility of manipulating the price up a

notch. If such a �rm is marginal at the competitive outcome, it will certainly bid above marginal

costs in order to make pro�ts out of its marginal output. However, if it is not marginal, meaning

that it is making strictly positive pro�ts out of all its dispatched units, it might not �nd it pro�table
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to deviate if the losses from reducing output exceed the gains due to the price increase. Hence, while

the condition in part (i) of Proposition 2 above is su¢ cient for the competitive outcome to emerge,

it is nevertheless not necessary.

But for knife-edge cases with no supply rationing at pc, the coexistence of multiple price-setters

is both necessary and su¢ cient for the competitive outcome to be sustainable. If there was only

one price-setter, its bid would determine the stop-out price, and the �rm would have incentives to

engage in supply reduction.25 The upshot of this is that with multiple price-setters, the equilibrium

must be competitive as any of them would otherwise gain by slightly undercutting the price in order

to achieve a positive increase in output. It follows that there cannot occur (payo¤-relevant) ties at

the margin among dispatched units, unless the equilibrium is competitive. In contrast, ties at the

equilibrium price with only one �rm dispatching output at the margin will be (almost always) the

rule. This will be clearly the case with inelastic demand, as the price-setter will optimally drive the

price up to the next step in its rivals�bid functions.26

The reason why the statement of part (ii) does not include certain knife-edge cases is simple.

If there was no supply rationing at pc, there could exist equilibria with p� > pc with ties at the

margin, as long as �rms still produce their competitive quantities. Since all �rms are rationed at

pc; they would also be rationed at prices slightly above pc; and would hence have no incentives to

�ght for market share at the margin. One simple example in which this is the case has D = 2,

c1 = c2 = f(0; 1)g and c3 = f(c; 1)g : In equilibrium, p� = c > 0 = pc while q�n = qcn = 1 for n = 1; 2;
and q�3 = qc3 = 0: Both �rms 1 and 2 could be price-setters if they bid at b1 = b2 = f(c; 1)g ; but
the same outcome would also arise with just one of them bidding at c while the other bids below.

In this sense, if there is no supply rationing at pc, ties at the margin among dispatched units can

occur in equilibrium, but such ties are payo¤ irrelevant.

An important consequence of Proposition 2 is that at any non-competitive Nash equilibrium,

there is a unique price-setter. This fact allows us to proceed by �xing the identity of the price-setter

and treating all other �rms as non-price-setters. This approach is appropriate even for competitive

equilibria, as there would be more than one price-setter (Proposition 2) but they would also behave

as non-price-setters in equilibrium (Proposition 1).

5.1 The non-price-setters�and the price-setter�s optimal behavior

In order to derive the necessary and su¢ cient conditions for equilibrium bidding, we will �rst

characterize �rms�optimal bidding behavior conditional on their identities.

By Proposition 1, we already know that the non-price-setters behave as price-takers, i.e., they

have to decide how much to produce at a given stop-out price, p�. Formally,

qNPSj (p�) 2 argmax
q�j
�NPSj

�
p�; q�j

�
;

25Arguments here are identical to those in Ausubel and Cramton (2002) to get optimal demand reduction in uniform-

price auctions.
26With a rationing pro rata on-the-margin rule, such a tie at the margin would not arise. Nevertheless, the outcome

would (almost perfectly) approximate the equilibrium outcome under the e¢ cient tie-breaking rule. Note that if the

tie-breaking rule did not allocate the marginal output to the low cost �rm �rst, such a �rm would avoid the tie by

bidding slightly below its rivals��rst non-accepted bid.
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where

�NPSj

�
p�; q�j

�
= p�

�
q�j � xj

�
� Cj

�
q�j
�
+ � jxj :

Note that, in order to produce qNPSj (p�) ; the non-price-setters can bid at marginal costs or use

any other outcome equivalent strategy. However, their choice of bidding strategies is not irrelevant,

as these determine the shape of the residual demand faced by the price-setter and hence its optimal

bidding behavior. For this reason, we will not assume that the non-price-setters bid at marginal

costs, unless we make it explicit. It follows that we can readily compute the price-setter�s production

in equilibrium, but not outside the equilibrium. In particular, at any candidate equilibrium with

p� = pc; the price-setter produces qci ; while if p
� > pc; given that the market must clear, the

price-setter produces

qPSi (p�) = D (p�)�
X
j 6=i

qNPSj (p�):

However, the above equation might not be satis�ed at prices other than the equilibrium price, given

that the non-price-setters need not be bidding at marginal costs outside the equilibrium, and given

that the market need not always clear.

The nature of the price-setter�s problem clearly di¤ers from that of the non-price-setters�. Instead

of choosing how much to produce at a given price, the price-setter behaves as if it were to choose

the stop-out price that maximizes its pro�ts over its residual demand, i.e., total demand minus the

quantity that the non-price-setters are willing to supply at each price. Formally,

pPSi (b�i) 2 argmax
p�
�PSi (p�; b�i) ; (3)

where

�PSi (p�; b�i) = p [q
�
i (p

�; b�i)� xi]� C (q�i (p�; b�i)) + � ixi;

and,

q�i (p
�; b�i) = max

8<:0; D (p�)�X
j 6=i

q�j (p
�; b�j)

9=; :
Since both the cost function and the residual demand faced by the price-setter are step-functions,

its pro�t function may fail to be di¤erentiable, so that the price-setter�s pro�t-maximizing price

might not be obtained as the solution to a �rst order condition. Therefore, in order to understand

the price-setter�s bidding incentives, consider the change in �rm i�s pro�ts when it raises the stop-out

price from p� to some p0 > p�,

�PSi
�
p0; b�i

�
� �PSi (p�; b�i) =

�
p0 � p�

� �
q�i
�
p0; b�i

�
� xi

�
�
Z q�i (p

�;b�i)

q�i (p
0;b�i)

[p� � ci (z)] dz: (4)

As in any standard monopoly problem, a price increase implies greater revenues through the �rm�s

net-position - the �rst term in (4), - but it also implies a pro�t loss due to the output reduction

- the second term in (4). Accordingly, the price-setter�s incentives to raise the price are stronger

the bigger its net-position is, the less elastic its residual demand is, and the smaller the price-cost

margin on its lost production is. It then follows that �rm i�s pro�t-maximizing price given its rivals�

strategies, pPSi (b�i) ; is non-increasing in its contract cover, xi: This mimics the standard result that

smaller �rms (here, �rms with smaller net-positions) have weaker incentives to raise prices.
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We conclude this subsection by comparing the price-setter�s and non-price-setters�pro�ts. To

simplify notation, we will write �PSi (p�) and �NPSj (p�) ; for j 6= i; to respectively denote the price-
setter�s and non-price-setters�pro�ts when the former sets the stop-out price at p� and all the latter

produce qNPSj (p�).

Lemma 4 Let xn < qcn hold for all �rms. For any stop-out price p
�; (i) the non-price-setters�pro�ts

�NPSj (p�) are increasing in p�; and (ii) they weakly exceed those they would get as a price-setter at

the same stop-out price, �PSi (p�) � �NPSi (p�).

Since under the regular cases all �rms are net-sellers in equilibrium, any price increase makes the

non-price-setters strictly better-o¤. Because of this, we will assume that whenever the price-setter

is indi¤erent between multiple prices, it always chooses the highest one as it is the Pareto dominant

one. By de�nition, the price-setter is indi¤erent between these prices, but the non-price-setters are

strictly better o¤ when the highest maximizer is chosen (as shown in Lemma 4 above). Finally,

the pro�ts that a �rm earns as a non-price-setter are bounded below by the pro�ts it could obtain

as a price-setter: both the non-price-setters and the price-setter are paid the same price, but the

price-setter sells (weakly) less and thus gives up a positive pro�t margin on its reduced production.

5.2 Equilibrium characterization

We have already characterized �rms�optimal behavior conditional on their identities, but the equi-

librium characterization also requires an assessment of whether the price-setter prefers to become

a non-price-setter and vice-versa. An equilibrium outcome is a collection of quantities produced

by the non-price-setters and a price chosen by the price-setter such that no �rm wants to deviate,

either by changing its quantity or price choice, or by changing its identity. The following Theorem

provides necessary and su¢ cient conditions for equilibrium bidding in the regular cases.

Theorem 1 Let xn < qcn hold for all �rms. A strategy pro�le b constitutes a Nash equilibrium in

which �rm i is the price-setter if and only if the following three conditions hold:

1) p� = pPSi (b�i) � pc and q�j = qNPSj (p�) for all j 6= i:
2) �PSi (p�) � �NPSi (p) for all p < p� such that qNPSi (p) +

P
j 6=i qj(p; b) = D(p):

3) �NPSj (p�) � �PSj
�
pPSj

�
for all j 6= i such that pPSj (b�j) > p�.

In equilibrium, the price-setter chooses the price that maximizes its pro�ts over the residual

demand, p� = pPSi (b�i) : By weak-dominance arguments, it must be either equal or above the

competitive price. All the other �rms must behave as price-takers given p�; and hence produce the

same as if they were bidding at marginal costs (Proposition 1).

By condition 1) of Theorem 1 above, all �rms are already optimizing conditionally on their

identities. Thus, the only relevant deviations are those by which �rms reverse their identities. Since

the price-setter might consider becoming a non-price-setter in order to sell more at a lower stop-out

price,27 condition 2) is needed to rule out such deviations. In turn, since all the non-price-setters

are net-sellers in equilibrium, those with pro�t-maximizing prices no larger than p� never �nd it

27Note that at the resulting price, there must be market clearing, as otherwise the deviant could bid so as to sell

the same quantity at the price that clears the market.
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optimal to deviate: not only they would sell their production at a (weakly) lower price, but they

would also sell less. Hence, the only relevant deviations are those by the remaining non-price-setters,

but condition 3) rules them out.

5.3 Equilibrium existence and multiplicity

For a given price-setter, there exist multiple bid function pro�les that constitute an equilibrium

(all those satisfying Theorem 1). This derives from the fact that �rms only care about one point

in their bid functions, the one corresponding to the stop-out price. Furthermore, the multiplicity

of equilibrium bid functions may pave the way for multiplicity of equilibrium outcomes to emerge.

Fortunately, this is not the case, as stated next.28

Proposition 3 (i) There exists an equilibrium in which �rm i is the price-setter if and only if the

equilibrium in which �rm i sets the price at p� = pPSi (c�i) while all the other �rms bid at marginal

costs exists. (ii) Furthermore, if there also exist other equilibria in which �rm i is the price-setter,

the one above is the Pareto dominant one.

Proposition 3 implies that, conditionally on the identity of the price-setter, there is no loss of

generality (as far as equilibrium outcomes are concerned) in restricting attention to equilibria in

which the non-price-setters bid at marginal costs and the price-setter maximizes its pro�ts over the

resulting residual demand. This claim is supported by two important facts: if such an equilibrium

does not exist, there does not exist any other equilibrium in which the same �rm acts a the price-

setter; while if it exists, it is either the unique equilibrium or the Pareto dominant one.

The next result, which is a corollary of Theorem 1, guarantees equilibrium existence. In partic-

ular, the candidate equilibrium with the highest price always exists.

Corollary 1 The equilibrium with p� = maxi pPSi (c�i) always exists.

So far, we have shown that, conditionally on the identity of the price-setter, equilibrium multi-

plicity is irrelevant for equilibrium outcomes. However, the multiplicity of equilibria that di¤er in

the identity of the price-setter might potentially result in di¤erent equilibrium prices. This multi-

plicity was highlighted in the illustrative example provided in Section 3 but it holds more generally.

Furthermore, existence of a candidate equilibrium implies that all other candidate equilibria with

higher equilibrium prices also exist. To understand this, note that the pro�ts that a �rm achieves

as a price-setter are given, but the pro�ts it makes as a non-price-setter are increasing in the equi-

librium price (Lemma 4). Hence, if none of the �rms has incentives to deviate from a candidate

equilibrium, it must also be the case that none of them wants to deviate from a candidate equilib-

rium with a higher price. For similar reasons, if a candidate equilibrium does not exist, there does

not exist any other candidate equilibrium with a lower price. These results are stated in the last

corollary of Theorem 1.

28 In contrast, multiplicity of equilibrium outcomes is pervasive in auctions with continuous bid functions (seeWilson

(1979), Klemperer and Meyer (1989) and Back and Zender (1993), among others). See also the analysis of the irregular

cases in Section 6, which also give rise to multiple equilibria.
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Corollary 2 If the equilibrium with p� = pPSi (c�i) exists, the equilibria with p� = pPSn (c�n) �
pPSi (c�i) also exist. Alternatively, if it does not exist, the equilibria with p� = pPSn (c�n) � pPSi (c�i)

do not exist either, n = 1; :::; N:

Combining the two corollaries above, it follows that under the same primitives of the game, a

competitive equilibrium cannot coexist with a non-competitive equilibrium.

5.4 The impact of forward contracts

We are now ready to analyze the impact of forward contract commitments on equilibrium outcomes.

To do so, we will focus on those cases under which the equilibrium is non-competitive in the absence

of contracts. The reason is two-fold: �rst, these are indeed the cases under which forward contract

commitments are used by regulators in practice; and second, if the equilibrium was competitive

even without contracts, introducing them would trivially make no di¤erence. Since our aim is to

perform comparative statics with respect to changes in contracts, in what follows, with some abuse

of notation, we will write pPSi (xi) to denote the pro�t-maximizing price of �rm i when its rivals

bid at marginal costs and its contract obligation is xi: We will also index �rms according to their

pro�t-maximizing prices at the no-contracts case, i.e., pPS1 (0) � pPS2 (0) � ::: � pPSN (0) :29

Suppose �rst that �rms are symmetric in all respects. The next lemma characterizes the impact

on prices and productive e¢ ciency of increasing total contracts when they are either symmetrically

or asymmetrically distributed among �rms.

Lemma 5 In a symmetric oligopoly,

(i) If forward contracts are equally distributed among �rms, i.e., x1 = ::: = xN = x < qc;

equilibrium prices are non-increasing in x and productive e¢ ciency is non-decreasing in x:

(ii) If forward contracts are not equally distributed among �rms, the highest equilibrium price

is (weakly) higher and its associated productive e¢ ciency is (weakly) lower than under the equal

contract distribution.

Since �rms are fully symmetric, there exist N price-equivalent equilibrium outcomes that only

di¤er in the identity of the price-setter. As �rms�contract cover is increased, the equilibrium price

is reduced and productive e¢ ciency is improved.30 Furthermore, any departure from the symmetric

contract distribution would weaken the positive e¤ect of contracts as �rms�ex-ante symmetry, which

induces more competitive outcomes, would no longer be preserved. For given contracts, similar

results also arise in Allaz and Vila (1993)�s and Bushnell (2007)�s Cournot models, as well as in

Newbery�s (1998) Supply Function Equilibrium model.

We next allow for all types of asymmetries among �rms, and perform comparative statics with

respect to contract volume up to �rms� competitive quantities, depending on the distribution of

contracts across �rms.
29With inelastic demand and �at cost functions, the pro�t-maximizing price of all �rms would be the same, as

it would be equal to the price cap. Hence, contracts would have an e¤ect on equilibrium existence (as shown in

Proposition 4 below), but this e¤ect would not be re�ected in equilibrium prices.
30 In contrast, if total contract volume was further increased (taking us away from the regular cases), �rms would

start exercising monopsony power, leading to prices below the competitive price. Furthermore, since the price-setter

would produce more than at the competitive outcome, productive ine¢ ciencies might emerge.
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Proposition 4 Consider an asymmetric oligopoly, such that at the no-contracts case equilibrium

prices are
�
pPS1 (0) ; :::; pPSi (0)

	
for 1 � i � N; while prices pPSn (0) for i < n � N cannot be

sustained because �rm 1 would deviate.

(i) If forward contracts are awarded to �rm 1 only, prices are (weakly) lower than at the no-

contracts case. Furthermore, a (weak) non-monotonic relationship between contract volume and

equilibrium prices may arise.

(ii) If forward contracts are awarded to �rm i only, there exists x0i 2 (0; qci ) ; such that any

contract allocation xi < x0i leads to (weakly) lower prices than at the no-contracts case, whereas any

contract allocation xi � x0i leads to (weakly) higher prices. Hence, there is a (weak) non-monotonic
relationship between contract volume and equilibrium prices.

(iii) If forward contracts are awarded to �rms n > i only, they have no e¤ect on equilibrium

outcomes.

At the no-contracts case, �rm 1 and �rm i set the highest and lowest equilibrium prices respec-

tively, while �rms n > i behave as price-takers at any equilibrium. Accordingly, we say that �rm

1 and �rm i have �high�and �low�market power respectively, while �rms n > i have �no�market

power at all. The impact of forward contracts on equilibrium prices depends on how contracts are

awarded among these �rms.

To understand the results in Proposition 4 above, it is important to �rst recall that as a �rm�s

contracts go up, its pro�t-maximizing price (weakly) goes down. In turn, given that a low price

makes it relatively more attractive for an uncontracted non-price-setter to become the price-setter,

the equilibrium in which the contracted �rm sets the price might disappear. By the opposite logic,

the contracted �rm now �nds it more appealing to be the non-price-setter, so that if no other �rm

has incentives to deviate, there can now appear new equilibria involving lower prices. These e¤ects

are illustrated in Figures 1 to 4.

If all contracts are awarded to the �rm with �high� market power, as in part (i), contracts

(weakly) reduce prices with respect to the no-contracts case. This holds true regardless of whether

the equilibrium in which the contracted �rms sets the price disappears (Figure 1), and regardless

of whether new equilibria arise (Figure 3), given that in any case the remaining equilibria result in

lower prices.

The above conclusion may be reversed when all contracts are awarded to the �rm with �low�

market power, as in part (ii). In this case, it is still true that contracts (weakly) reduce prices when

the �rm with �low�market power sets the price. However, prices might go up when such equilibrium

disappears (for xi � x0i). Given that the equilibrium price will then be set by �rms with higher

pro�t-maximizing prices, contracts in this case may result in (weakly) higher prices as compared to

the no-contracts case (Figure 2).31 Last, if contracts are awarded to �rms with �no market power�,

as in part (iii), contracts simply have no e¤ect as such �rms behave as price-takers with or without

contracts (Figure 4).

31The cases in which �rms 1 < n < i hold contracts are similar to case (ii) in the Proposition. There exists

x0n 2 (0; qcn) such that allocating contracts xn < x0n to �rm n leads to (weakly) lower prices because the equilibrium

at which �rm n sets the price still exists. However, contracts xn � x0n eliminate such equilibrium, with some of the

remaining equilibria leading to either higher or lower prices. Hence, the e¤ects of contracts in these cases depend on

equilibrium selection, but the anti-competitive e¤ects cannot be ruled out.
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To conclude, when contracts are allocated to �rms with market power, an increase in contract

volume does not always lead to price reductions. Indeed, an increase in contract volume may lead

to (weakly) higher prices whenever such an increase in contracts destroys the equilibrium in which

the contracted �rm sets the price (Figures 1 to 3).

[INSERT FIGURES 1-4 AROUND HERE]

Interestingly, note that the classi�cation of �rms as having either �high�, �low�or �no�market

power, and hence the e¤ect of forward contracts on prices, depends on several factors, including �rms�

cost functions, �rms�sizes and, in general, the degree of �rms�asymmetries. Large asymmetries, such

that only one �rm has market power at the no-contracts case, lead to a clear-cut policy conclusion:

the dominant �rm should be forced to hold contracts; getting contract volume wrong in this case is

not very costly, as contracts would in any case be e¤ective. To the contrary, mild asymmetries among

�rms (particularly so, between the �rms with �high�and �low�market power) might give rise to the

anti-competitive e¤ects identi�ed in Proposition 4. It is in these cases when the regulator should

be most cautious when deciding on contract volume and its distribution among �rms. However, it

is also in these cases when contracts can potentially play a more crucial role, as encouraging �rms

with �medium�and �low�market power to purchase such contracts may counterbalance the market

power of the dominant �rms.

6 Irregular Cases

In this section, we assess whether the results we have derived so far are robust to some �rms holding

fewer contracts than their competitive quantities while others hold more, i.e., xn < qcn for some �rms

and xn � qcn for others.
Similar results to those found under the regular cases regarding equilibrium characterization,

equilibrium existence and multiplicity, also arise under the irregular cases as long as in equilibrium

all �rms are either net-sellers or have a balanced position, i.e., as long as xi � q�i holds for all

�rms. The intuition is simple: if all �rms�net-positions at the candidate equilibrium have the same

sign (or no sign at all), they face no con�ict of interests among them. In particular, none of the

non-price-setters wants to deviate in order to reduce the price and, given that Proposition 1 applies,

none of them wants to change its production as they are all producing the same as if they were

bidding at marginal costs.

In contrast, the properties of the equilibria in which net-sellers and net-buyers coexist might

drastically di¤er from those derived under the regular cases, as the coexistence of net-buyers and

net-sellers gives rise to a con�ict of interests among them. Several implications follow from this.

First, as already argued, there is no guarantee that the non-price-setters produce e¢ ciently, given

that Proposition 1 need not hold for the net-buyers. To see this, consider for instance a duopoly

facing inelastic demand, D = 6; with costs c1 = f(0; 1) ; (1; 5) ; (c; 6)g ; c2 = f(0; 1) ; (c; 6)g ; where
c > 1; and contracts x2 = 6 > qc2 = 1 and x1 = 0 < q

c
1 = 5: The bid pro�le b1 =

�
(z; 1) ;

�
pR; 6

�	
and

b2 = f(0; 5) ; (z; 6)g ; where 1 < z < c; constitutes a Nash equilibrium at which �rm 1 is the price-

setter and �rm 2, despite being a non-price-setter, produces with units whose marginal costs exceed

p� (in particular, q�2 = 5 whereas c2(5) = c > z = p
�), thus failing to satisfy Proposition 1.
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Second, the conditions that guarantee existence of competitive equilibria are more stringent in

the irregular than in the regular cases (Proposition 2). On the one hand, the fact that all �rms but

one can exhaust competitive demand does not guarantee that the equilibrium will be competitive,

as the net-buyers face incentives to deviate by reducing the price rather than by increasing it. On

the other hand, neither the existence of several price-setters implies that the equilibrium must be

competitive, nor the existence of a unique price-setter implies that the equilibrium must be non-

competitive. To see this, consider again the market structure described above. The strategies

b01 =
�
(z; 5) ;

�
pR; 6

�	
and b02 = f(z; 6)g generate a Nash equilibrium in which both �rms are price-

setters and still p� = z > 1 = pc: This equilibrium hinges on a property which holds more generally

under the irregular cases, namely, that it is not possible to rule out payo¤-relevant ties at the margin.

Whereas the net-buyers weakly prefer to tie so as to avoid productive losses, the net-sellers might

be capacity-constrained to bene�t from the increased demand they would face if they were to break

the tie by reducing their bids.

Third, the necessary and su¢ cient conditions for equilibrium bidding must now take into account

not only that deviations up and deviations down might be pro�table, but also that the candidate

stop-out price can be above, equal or below the competitive price. At an equilibrium with p� � pc;
condition 3) in Theorem 1 has to be strengthened so that �NPSj (p�) � �PSj (p�j ) holds, not only for

all �rms j 6= i with pPSj (b�j) > p� (as in the regular cases), but also for all �rms j 6= i which satisfy
xi + xj > q

�
i + q

�
j . In words, the modi�ed condition 3) requires that deviations by non-price-setters

with pro�t-maximizing prices below p� be ruled out, but only when the deviant remains a net-buyer

after deviating to a lower price. To see this, note that the quantity sold by the deviant after a price

reduction would at least be equal to q�i � xi + q�j ;32 so that a �rm with xj � q�i � xi + q�j would
become a net-seller and hence would no longer bene�t from lowering the price. Similar arguments

explain why an equilibrium with p� � pc requires �NPSj (p�) � �PSj (p�j ) to hold for all j 6= i with

pPSj (b�j) < p�; but also for all j 6= i satisfying xi + xj < q�i + q�j .

Fourth, multiplicity of equilibrium outcomes pervades the irregular cases. As in the regular

cases, some of this multiplicity can be avoided by appealing to Pareto dominance arguments. In

example above, both b and b0 are Nash equilibria in which �rm 1 is a price-setter. But pro�le b

(which generated a Nash equilibrium in which Proposition 1 failed to hold) is Pareto dominated

by pro�le b0; which satis�es Proposition 1. The net-buyer (�rm 2) is trivially better-o¤ under b0

than under b as both generate the same stop-out price while �rm 2�s productive losses are lower. In

turn, since this implies that the net-seller (�rm 1) produces more, �rm 1 is also better-o¤ under b0

as compared to b. Nevertheless, there is still some remaining multiplicity among equilibria which

cannot be Pareto ranked (as we illustrate below by means of an example).

Finally, there is one last feature that also distinguishes the irregular from the regular cases.

Namely, in contrast to Proposition 3, equilibria in which the non-price-setters bid at marginal costs

may fail to exist under the irregular cases, given that marginal cost bidding exacerbates �rms�

con�ict of interests. As compared to the case in which the non-price-setters bid above marginal

costs, marginal cost bidding by the non-price-setters makes it easier for an over-contracted �rm to

32At prices below p�; �rm i would at most sell xi: Hence, in order to become a price-setter at a lower price, �rm j

would have to at least produce the quantity it was producing before the deviation, q�j ; plus the output that �rm i is

no longer producing, which is at least equal to q�i � xi:
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set a low price: it reduces the amount of output that it has to bid below marginal costs in order

to drive the stop-out price below the competitive one, rendering such a deviation more attractive.

Since �rms with fewer contracts may �nd it pro�table to set a much higher price, an equilibrium in

which the non-price-setters bid at marginal costs may thus fail to exist.33

To illustrate some of the features discussed above, we conclude this section by extending the illus-

trative example presented in Section 3 (two symmetric �rms with costs cn = f(0; 1) ; (1; 2) ; (2; 3)g ;
n = 1; 2, facing inelastic demand, D = 3). Since qcn = 1:5, let x1 = 0 < x2 2 (2; 3] to allow

for a (relevant) irregular case to emerge.34 Focusing on Pareto undominated Nash equilibria, the

following bid pro�le generates a continuum of equilibria parametrized by the stop-out price, which

is determined by the �rst (second) step in �rm 1�s (�rm 2�s) bid function. More precisely, we claim

that the following bid pro�le constitutes a Nash equilibrium,

b1 =
�
(z; 1) ;

�
pR; 3

�	
and b2 = f(0; 2) ; (z; x2) ; (2; 3)g ;

where z 2 [2 (3� x2) ; 2]. Since D = 3; the resulting outcome is q�1 = 1 > x1; q
�
2 = 2 < x2 and

p� = z 2 [2 (3� x2) ; 2]; �rm 1 is net-seller and price-setter, and �rm 2 is net-buyer and non-price-

setter (note that �rm 2 is marginal as it is bidding one step at z; but it is not dispatching it).

Equilibrium pro�ts are

�PS1 (b) = z and �NPS2 (b) = z [2� x2]� 1:

To check that �rm 1 is best-responding to b2; note that for any strategy b01 resulting in p
� 2 [0; z] ;

it pro�ts are p� � �PS1 (b) = z; alternatively, if b01 results in p
� > z; �rm 1�s pro�ts are bounded

below by 2 [3� x2] � �PS1 (b) = z. Consider �rm 2 now. For any strategy b02 resulting in p
� < z;

�rm 2�s pro�ts are p� [3� x2] � 3; since �rm 2 would become a net-seller, 3 � x2 � 0; it does not

gain by lowering the price, i.e., p� [3� x2] � 3 � z [3� x2] � 3 � �NPS2 (b) = z [2� x2] � 1; with
strict inequality if z < 2: If b02 results in p

� = z; �rm 2�s production and pro�ts are identical to those

under b2. Finally, if b02 results in p
� > z; the losses on its net-position increase, thus rendering it

unpro�table.

The equilibria constructed above yield a continuum of prices p� = z 2 [2 (3� x2) ; 2] : They are
thus not outcome equivalent despite the fact that �rm 1 is the price-setter under all of them. They

arise because �rm 2, which is a net-buyer, strategically bids at z so as to �cap� the price set by

�rm 1, by o¤ering some of its output below marginal costs. These equilibria might result in prices

below, at or above the competitive price, and might also involve productive ine¢ ciencies by the

non-price-setter (i.e., there is a second source of productive ine¢ ciency on top of the price-setter

withholding pro�table production). Such multiplicity of equilibrium outcomes, which is reminiscent

of Wilson�s results, only arises in the presence of forward contracts.

Interestingly enough, the solution is continuous in the amount of contracts held by �rm 2, which

enlarge the set of equilibrium prices: when x2 ! 2; p� = 2 is the unique equilibrium price (which
33Since there is complete information, Equilibrium existence can nevertheless be guaranteed .by appealing to Reny�s

better reply security (see Corollary 5.2 to Theorem 3.1 in Reny (1999)): due to the e¢ cient tie-breaking rule, bidders�

payo¤s are secure and their sum is upper semi-continuous, so that an equilibrium always exists. Note further that

existence of a pure-strategy equilibrium follows from Corollary 14 to Theorem 6 in Jackson and Swinkels (2005) as

the multi-unit uniform-price auction analyzed here satis�es assumption 8�in their paper (see page 122).
34Even though x2 2 [1:5; 2] would also belong to the irregular cases, in Section 3 we already showed that at the

unique equilibrium outcome, both �rms�net-positions have the same sign and hence face no con�ict of interests.
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coincides with the one reported in Section 3 for x2 � 2), while when x2 = 3; any price p� 2 [0; 2] can
be sustained in equilibrium. Last, one cannot derive a general Pareto ranking among the multiple

equilibria: the price-setter is strictly better-o¤ at the equilibrium with the highest price (whose

outcome is the same as when the non-price-setter bids at marginal costs); however, that is precisely

the worst equilibrium from the non-price-setter�s point of view.

To conclude, whereas under the regular cases any potential multiplicity of equilibrium outcomes

must derive from the coexistence of equilibria in which di¤erent �rms act as price-setters, the

irregular cases lead to a continuum of equilibria even when conditioning on the identity of the price-

setter. Some of these equilibria might involve allocative ine¢ ciencies due to either monopoly or

monopsony power, but they might also lead to productive ine¢ ciencies that cannot be ruled by

Pareto dominance. From a policy point of view, the analysis of the irregular cases again points out

at a similar conclusion as the one above, but for a di¤erent reason: more is not always better since

an increase in contract volume widens up the range of ine¢ ciently low price equilibria. Furthermore,

an increase in some �rms�forward contracts commitments above their competitive output implies

that the regulator loses all control as to which equilibria will be played, therefore running the risk

that a particularly welfare detrimental equilibrium will be chosen.

7 Simulating the Impact of Forward Contracts

We next apply the theoretical model to simulate equilibrium bidding behavior and market outcomes

in the Spanish electricity market during 2005. The aim is to illustrate with real data the strategic

e¤ects of contracts that we have described in Section 5. Appendix B contains details on the Spanish

electricity market as well as on the procedures we have followed to compute �rms�marginal costs.

We have considered alternative scenarios regarding total contract volume and its distribution

across �rms. In particular, focusing on the equilibria in which only the two main �rms (Endesa and

Iberdrola) are price-setters, we have computed both the competitive as well as the equilibrium market

outcomes under the no-contracts case and the cases in which either Endesa (END) or Iberdrola (IB)

hold contracts, ranging from 1 to 8 GWs.35 ;36

Table 2 reports the markups that result from comparing the simulated equilibrium price to the

price that would arise in a competitive market (as suggested in Borenstein et al. ( 2002)).37 Markups

are computed at four demand levels (expressed in percentiles), under the no-contracts case and under

the cases in which Endesa has contracted either 2 or 5 GWs, and Iberdrola has contracted either 6

or 8 GWs (results for all other cases are qualitatively similar). By comparing the markups across

35Since the simulations are conducted on an hourly basis over a year, there are at least 8,760 and at most (if both

�rms act as price-setters) 17,520 equilibrium market outcomes under each of the 17 cases considered, plus the 8,760

competitive outcomes (these are the same regardless of whether �rms hold contracts or not)- adding up to over 300,000

simulated market outcomes in total. Simulations have been produced by ENERGEIA, a simulation software developed

by the authors.
36To have an idea of what this range of contract cover meant for �rms over their total capacity, let us note that

Endesa�s and Iberdrola�s total capacity in 2005 was almost 11 GWs and 8.5 GWs, respectively. Table 4 in Appendix

B provides information on �rms�total capacity and technology mix.
37We have chosen to report these markups rather than prices for clarity. Nevertheless, note that both markups and

prices illustrate identical results to the extent that the competitive price is the same regardless of which �rm sets the

price and regardless of the level of contracting.
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No Contracts END 2 GWs END 5 GWs IB 6 GWs IB 8 GWs

Price-setter IB END IB END IB END IB END IB END

Peak load 50.0% 50.0% 50.0% 50.0% 50.0% *� 50.0% 50.0% *� 50.0%

75% 11.2% 15.0% 11.2% *11.6% 11.2% *� *� 15.0% *� 15.0%

50% � 15.9% *5.2% *10.7% *5.2% *� � 15.9% � 15.9%

25% 23.4% 23.6% 23.4% 23.6% 23.4% *� 23.4% 23.6% 23.4% 23.6%

Table 2: The impact of forward contracts on markups p
��pc
p� in the Spanish electricity market during

2005

Note on Table 2: The table reports the simulated mark-ups p
��pc
p� for four demand levels (the year�s peak

load, and the 75%, 50% and 25% demand percentiles). The results are divided in columns, depending on

the identity of the price-setter. A table entry is left empty if, for the associated demand level and contract

volumes, there is not an equilibrium in which such a �rm behaves as price-setter. An asterisk denotes that

the equilibrium has changed with respect to the no-contracts case.

�rms at the no-contracts case (�rst two columns in Table 2), we can readily verify that Endesa�s

pro�t-maximizing price exceeds that of Iberdrola�s for all demand levels considered, except for peak

load, at which both pro�t-maximizing prices coincide.

Let us �rst consider the e¤ects of contracts when awarded to the �rm with the high pro�t-

maximizing price, Endesa. First, contracts may reduce Endesa�s pro�t-maximizing price as a price-

setter; this is, for instance, the case when Endesa contracts 2 GWs and demand is at its 75% or

50% percentile. Second, contracts may give rise to a new equilibrium in which Iberdrola sets a

lower price; this is the case when Endesa contracts either 2 or 5 GWs and demand is at its 50%

percentile. Last, contracts may eliminate certain equilibria at which Endesa sets the price; this is

the case when Endesa contracts 5 GWs for all demand levels. Therefore, contracts by Endesa have

(weakly) pro-competitive e¤ects.

However, such a conclusion is reversed when contracts are awarded to the �rm with the low

pro�t-maximizing price, Iberdrola. More speci�cally, contracts by Iberdrola have (weakly) anti-

competitive e¤ects when they destroy the low-price equilibrium outcomes. This is the case when

Iberdrola contracts either 6 or 8 GWs and demand is at its 75% percentile.

The e¤ects of contracts reported so far vary with the demand level. For example, whereas at very

high or very low demand levels contracts barely have any e¤ect on equilibrium outcomes, their e¤ect

for intermediate demand levels can go in either direction depending on contract volume and contract

allocation. In real markets, since demand changes over time while contract volumes remain �xed,

the overall e¤ect of contracts will depend on the relative occurrence of periods in which contracts are

either pro-competitive or anti-competitive. Therefore, with illustrative purposes, we have assessed

the e¤ect that contracts would have had on the Spanish electricity prices during 2005 by computing

total payments to producers over the year.

Table 3 reports the change in total payments when contracts are introduced. Given that there

may be multiplicity of equilibrium outcomes depending on which �rm sets the price, we have reported
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Contracts by Min Max

ENDESA (GWs) � Payments

1 -84 -107

2 -143 -194

3 -377 -410

4 -457 -577

5 -439 -608

6 -456 -632

7 -548 -639

8 -709 -654

Contracts by Min Max

IBERDROLA (GWs) � Payments

1 -24 -78

2 -54 -161

3 -88 -222

4 -117 -280

5 -181 -379

6 -200 -434

7 -169 -437

8 -171 -437

Table 3: The impact of forward contracts on total payments to producers (Million e) for the Spanish

electricity market during 2005

Note on Table 3: Total payments to producers under the competitive outcome are 9,599 Me; the minimum

value under the no-contracts case is 11,422 Me, while the maximum is 11,728 Me. The table reports how these

�gures change when forward contracts are introduced. Given that there might be multiplicity of equilibrium

outcomes, the Min and the Max columns report the minimum and maximum change in total payments.

the minimum and the maximum change in payments. Under all contract cases, total payments to

generators go down, thereby indicating that the pro-competitive e¤ects of contracts seem to dominate

over the anti-competitive ones. However, the anti-competitive e¤ects can also be inferred from these

�gures as they account for the non-monotonic relationship between payments to producers and

total contract volume. For instance, such non-monotonicity arises when Iberdrola�s contracts are

increased above 6 GWs, when savings are reduced from 200 Me to either 169 Me or 171 Me.

8 Conclusions

In this paper we have analyzed the impact of forward contract commitments (or more generally,

the impact of exogenous vertical commitments) on the performance of spot markets in a model that

tries to capture the essential institutional and structural features of electricity markets. Instead

of assuming either Cournot or Bertrand competition, we have tried to model the actual market

rules that govern most electricity markets in practice. In particular, we have assumed that �rms

compete by submitting discrete supply functions. Furthermore, we have put no restrictions on the

market demand function - which could be either downward-sloping or price-inelastic,- or the �rms�

cost functions - which could result in either constant or step-wise increasing marginal costs, and

could be symmetric or asymmetric across �rms. Thus, the model is �exible enough so as to make

it comparable with other more stylized models, at the same time as it allows for all degrees of

complexity. Indeed, we have used it to simulate real electricity market outcomes in order to provide

an order of magnitude for the model predictions.

We �nd that forward contracts play a key role in shaping equilibrium market outcomes. To start

with, forward contracts determine the set of weakly-dominated strategies, thus potentially ruling
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out equilibria that would exist without contracts, or giving rise to new equilibria that only exist

with contracts. Indeed, we show that the e¤ects of contracts on equilibrium existence are crucial.

If contracts are awarded to �rms with strong incentives to exercise market power (i.e., typically

the large �rms and/or those facing relatively ine¢ cient rivals), forward contracts may destroy the

equilibria at which such �rms set prices. Since the surviving equilibria involve lower prices, forward

contracts are unambiguously pro-competitive. However, the contrary occurs if contracts are awarded

to �rms with weak but yet some market power. In particular, contracts might destroy the low price

equilibria, and hence have anti-competitive e¤ects. Allocating contracts to �rms with no market

power has no e¤ects on equilibrium existence, and it is thus irrelevant as far as market outcomes are

concerned. The e¤ects of contracts on equilibrium existence also suggest that more is not always

better. That is, if an increase in contract volume destroys the equilibrium at which the contracted

�rm sets the price, more contracts might lead to higher prices.

From a policy perspective, our analysis thus implies that forward contracts should be awarded

in ways that align all �rms�interests by (virtually) reducing their asymmetries. Paradoxical though

it may seem, it is as important to mitigate the large �rms� incentives to increase prices as it is

to enhance those of smaller competitors. This could be achieved by encouraging the medium to

small �rms in the industry to act as counterparts of the forward contract commitments imposed

on the dominant producers. Similarly, restricting certain �rms from entering into these contracts

can be misplaced.38 Regarding contract volume, forcing �rms to hold too few or too many forward

contracts might be at best ine¤ective. Since the optimal contract volume ultimately depends on

�rms�cost structures and demand, it should be determined on a case-by-case basis.

Extending these conclusions to the analysis of vertical integration would imply that vertical

mergers involving large upstream competitors would be pro-competitive, while vertical mergers

involving smaller upstream �rms might be anti-competitive, particularly so when the merging party

is a large downstream �rm.

We have focused on exogenously given contracts since we believe, in line with Bushnell et al.

(2008), that many �vertical arrangements [in electricity markets] are better understood and can

reasonably be considered to be exogenous.�Still, a further step of the analysis would be to allow for

more general types of contracts by investigating the incentives to sign new contracts and hence their

endogenous distribution across �rms. The current paper provides the needed �rst step to perform

such an analysis.

To conclude, even though our analysis has been inspired by the workings of electricity markets, we

believe that its implications have broader applicability. Since the most relevant features of our model

are not unique to electricity markets, similar analyses could be applied to other contexts. Indeed,

there are several other markets in which forward contracts and auctions coexist (e.g. Treasury

markets, gas markets, etc.), or markets which are organized in ways that make auction theory useful

for understanding �rms�strategic behavior (Klemperer (2003)).

38For instance, EDP and Unión Fenosa are not allowed to participate in the Spanish VPPs. Similarly, Electrabel

and Essent were not initially allowed to participate in the VPPs in the Netherlands (Essent objected to being excluded

from the auction and the court �nally allowed it to participate).
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Appendix

Notation

The following pieces of notation are used throughout the Appendix. We will denote by q
n
(p) the

maximum quantity that �rm n can produce at marginal costs strictly below p; and by �qn(p) the

maximum quantity that �rm n can produce at marginal costs not exceeding p: Formally,

q
n
(p) = max fq : q 2 [0;Kn] and cn (q) < pg ; and

�qn(p) = max fq : q 2 [0;Ki] and cn (q) � pg :

Since the marginal cost curve, cn(q); is a left-continuous non-decreasing step function, by treating

all production units with equal marginal costs as the same unit we can write it as a �nite number of

cost-quantity pairs, cn =
n
(cns; qns)

~sn
s=1

o
with cns+1 > cns; qns+1 > qns and qn~sn = Kn. Since qn (p)

and �qn(p) are on the corners of �rm n�s marginal cost function, the following properties trivially

follow:

(i) q
n
(p) and �qn(p) are non-decreasing in p:

(ii) q
n
(p) = �qn(p) = qns for all p 2 (cns; cns+1] :

(iii) q
n
(p) = qns�1 < �qn(p) = qns for p = cns:

(iv) q
n
(p0) � �qn(p) for all p0 > p:

Since marginal cost functions are non-decreasing, the maximum quantities that a �rm can pro-

duce either below or at marginal costs are non-decreasing in p; (i). If p does not intersect the �rm�s

marginal cost function (or equivalently, if it falls on a vertical segment), then q
n
(p) and �qn(p) are

equal, (ii). Otherwise, q
n
(p) < �qn(p); with p re�ecting the marginal costs at which the �rm produces

the quantities in (qns�1; qns] ; (iii). Last, when comparing qn (p
0) and �qn(p) at di¤erent prices p0 > p;

note that q
n
(p0) exceeds �qn(p) whenever there is a step in �rm n�s marginal cost function in between

p0 and p; and they are both equal otherwise, (iv). These results are illustrated in Figure 5.

[INSERT FIGURE 5 AROUND HERE]
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A Proofs

Proof of Lemma 1. (i) Let us �x the bid functions submitted by �rms other than n at b�n;

and assume �rm n follows the strategy b̂n; under which there is at least one step to the right of

xn at prices below marginal costs. For the sake of exposition, but without any loss of generality,

let us assume that this happens at only one step ~s such that xn � qn~s�1. Next, we show that b̂n
is weakly-dominated by the strategy b0n; which replicates b̂n except for quantities in (qn~s�1; qn~s] as

these are now o¤ered at marginal costs. Let b̂ (respectively, b0) denote the bid pro�le
�
b̂n; b�n

�
(respectively, (b0n; b�n)). We �rst note that the equilibrium price under b̂ is no larger than under

b0 as b̂n � b0n while b�n is the same under both pro�les. Consequently, p̂ � p0:39 Trivially, if either
p̂ = p0 � p̂n~s�1 or p̂ = p0 � p̂n~s+1 hold, the two strategies give �rm n the same pro�ts. We focus next
in the remaining possibilities. If demand is price-inelastic, we must have p̂ < p0 and q̂n = q0n > xn;

if demand is downward-sloping, we have p̂ � p0 and q̂n > q0n > xn. Pro�ts at the two pro�les are

given by

�n
�
b0
�
=

�
q0n � xn

�
p0 � Cn

�
q0n
�
+ �nxn and

�n

�
b̂
�

= [q̂n � xn] p̂� Cn (q̂n) + �nxn:

Thus,

�n
�
b0
�
� �n

�
b̂
�
=
�
q0n � xn

� �
p0 � p̂

�
�
Z q̂n

q0n

[p̂� cn(z)] dz > 0;

as either q̂n = q0n so that the integral is zero while [q
0
n � xn] [p0 � p̂] > 0; or q0n < q̂n so thatR q̂n

q0n
[p̂� cn(z)] dz < 0 as p̂ < cn(q) for all q > xn and hence for q 2 (q0n; q̂n] while [q0n � xn] [p0 � p̂] � 0:

Since pro�ts under b0 are no smaller than under b̂, the statement follows.

(ii) Let us �x the bid functions submitted by �rms other than n at b�n; and assume that �rm

n follows the strategy b̂n; under which there is at least one step to the left of xn at prices above

marginal costs. Compare the pro�ts made by �rm n under b̂n and b0n; with the latter constructed

as above, i.e., it replicates b̂n except for quantities in (qn~s�1; qn~s] ; with qn~s � xn; as these are now
o¤ered at marginal costs. The equilibrium price under b̂ is no smaller than under b0 as b̂n � b0n while
b�n is the same under both pro�les. Consequently, p̂ � p0: If p̂ = p0 � p̂n~s�1 or p̂ = p0 � p̂n~s+1

holds, the two strategies give �rm n the same pro�ts. Since p̂ = p0 = p̂n~s cannot hold, the only

remaining possibility is p̂ = p̂n~s > p0 so that xn � q0n > q̂n if demand is downward-sloping and

xn � q0n = q̂n if demand is price-inelastic. Thus, unless demand is inelastic and it happens to be

such that xn = q0n = q̂n so that pro�ts under the two strategies are identical, the di¤erence in pro�ts

at the two pro�les is

�n
�
b0
�
� �n

�
b̂
�
= [xn � q̂n]

�
p̂� p0

�
+

Z q0n

q̂n

�
p0 � cn(z)

�
dz > 0;

as either the integral is strictly positive or the second term, [xn � q̂n] [p̂� p0] ; is strictly positive.
Since pro�ts under b0 are no smaller than under b̂, the statement follows.
39There is a knife-edge case with downward-sloping demand in which p̂ > p0: This only occurs if demand cuts

aggregate supply generated by b̂ at p̂n but does not intersect aggregate supply generated by b0; so that the price falls

down to the price at the previous step. In this case, however, the strategy b̂n is weakly dominated by one that moves

the price for quantities in (xn; q̂n~s�1) above marginal costs so that there is market clearing and hence a new price that

exceeds p̂; as claimed.
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Proof of Lemma 2. Since we must show q�j � qj(p
�); assume by contradiction that there is an

equilibrium at which some �rm j; j 6= i; for which q�j < qj(p
�) holds. As there is a �nite number of

bid-points, there exists �̂ > 0 such that there are no price-bids in the interval (p� � �̂; p�) : Pick an
� < �̂ and consider the deviation by �rm j of moving the original bid for quantities in

�
q�j ; qj (p

�)
i

down to p� � �: Let the resulting bid pro�le, denoted by b0 =
n
b1; ::; b

0
j ; ::; bN

o
; generate a stop-out

price p0; and a quantity q0j for �rm j: Since q0j > q
�
j (the deviant�s quantity replaces part of �rm i�s

marginal output), the di¤erence in �rm j�s pro�ts is given by:

�j
�
b0
�
� �j (b) =

�
p0 � p�

� �
q0j � xj

�
+

Z q0j

q�j

[p� � cj(z)] dz:

There are two cases to consider: (a) If p0 = p� � �, then the di¤erence in pro�ts is positive: the
second term of the above equation is positive by de�nition of q

j
(p�) as p� > cj(q) for any positive

q < q0j � q
j
(p�) ; whereas the �rst term can be made arbitrarily small by taking � small enough.

(b) If p0 = p�; the deviant now sells the additional output q
j
(p�)� q�j at a price above its marginal

costs and thus gets more pro�ts. Since the deviation is pro�table, we reach a contradiction which

proves the result.

Proof of Lemma 3. To show q�j � �qj (p
�) for all j 6= i; assume for the sake of contradiction that

there is some �rm j for which q�j > �qj (p
�) holds in equilibrium. By weak-dominance arguments,

it must be the case that q�j � xj as it could not otherwise bid below marginal costs to dispatch

q�j > �qj(p
�). It hence follows that q�j > xj su¢ ces for q�j � �qj (p

�) to hold. To show that q�j = xj

or q�k < qks for some marginal �rm k; k 6= j; are also su¢ cient conditions to ensure q�j � �qj (p
�), let

�qj (p
�) < q�j � xj : Consider the deviation by �rm j of moving the original bid(s) for quantities in�

A; q�j

i
above p� (e.g. �rm j could bid such quantities at marginal costs). The di¤erence in �rm j�s

pro�ts is given by:

�j
�
b0
�
� �j (b) =

�
p0 � p�

� �
q0j � xj

�
+

Z q�j

q0j

[cj(z)� p�] dz: (5)

If qks < q�k let A = q�j � [qks � q�k] : At the resulting bid function pro�le b0 the stop-out price
remains p� as j�s dispatched output under b is replaced by �rm k, so that q0j < q

�
j . Consequently,

the �rst term in equation (5) is zero while the second is strictly positive (the deviant now reduces its

output and therefore its losses), so that �j (b0) > �j (b) : Since the deviation is pro�table, we have

reached a contradiction as desired.

If qks = q�k for all marginal �rms k; k 6= j; but q�j = xj let A = q�j � �qj (p
�) : Now, �rm j�s

deviation implies a price increase, p0 > p�; thus implying that the �rst term in equation (5) may

be negative. However, as we can rewrite equation (5) as the sum of two integrals, recalling that

q�j = xj ; it follows that

�j
�
b0
�
� �j (b) =

Z q0j

xj

�
p0 � p�

�
dz +

Z xj

q0j

[cj(z)� p�] dz =
Z xj

q0j

�
cj(z)� p0

�
dz > 0;

since cj(z) > p0 for all z 2
�
�qj (p

�) ; q�j

i
and hence for z 2

h
q0j ; xj

i
: The deviation is again pro�table,

reaching a contradiction.
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Proof of Proposition 1. We must show that q�j 2
h
q
j
(p�); �qj(p�)

i
for any non-price-setter �rm

j: By appealing to Lemma 2 it follows that q�j � qj(p
�) holds. Similarly, if q�j > xj or if q

�
k < qks for

some marginal �rm k; k 6= j; then q�j � �qj(p
�) follows from Lemma 3. Thus q�j 2

h
q
j
(p�); �qj(p�)

i
as

claimed.

Proof of Proposition 2. (i) We �rst show that if D (pc) � mini
P
j 6=i �qj (p

c) holds, then at

any Nash equilibrium p� = pc: Assume, by contradiction, that p� > pc: Since p� must be set by at

least one �rm, assume that �rm i is a price-setter. By Lemma 2,
P
j 6=i q

�
j �

P
j 6=i qj (p

�) ; so that

q�i = D (p
�)�

P
j 6=i q

�
j � D (p�)�

P
j 6=i qj (p

�) : Furthermore, since
P
j 6=i qj (p

�) �
P
j 6=i �qj (p

c) ; then

q�i � D (pc) �
P
j 6=i �qj (p

c) � 0; contradicting that �rm i is a price-setter. Since p� = pc; it follows

that q�n = q
c
n for all n; by Proposition 1:

(ii) [Only if ] Assume, by contradiction, that there is a unique price-setter, while p� = pc and

q�n = q
c
n for all n hold: Note that by de�nition of p

c; it must be the case that pc � cn (qcn) : For all
the �rms that are not marginal such a condition is satis�ed with strict inequality, pc > cn (qcn) ; so

that qcn = �qn (p
c). Moreover, there must be at least one marginal �rm for which such a condition is

satis�ed with equality, pc = cn (qcn) ; so that q
c
n < �qn (p

c) as we have ruled out the cases under which

there is no supply rationing at the competitive outcome. Two possibilities can emerge.

1. Firm i is the unique marginal �rm. Hence, pc = ci(q
c
i ): Firm i can pro�tably deviate by

bidding its marginal output up to pc + �; for � small enough so that there are no other bids in

(pc; pc + �) : Such a deviation is trivially pro�table, pc = ci(qci ) implies that it was making no pro�t

out of the marginal output.

2. Both �rms i and j are marginal. We cannot have pc = cj

�
qcj

�
= ci (q

c
i ) ; as both �rms

would be partly dispatching their marginal steps, which contradicts the fact that there is only one

price-setter. Hence, let cj(qcj) < ci (q
c
i ) : If p

c = cj(q
c
j) < ci (q

c
i ) ; �rm i would be selling qci at a price

below marginal costs, which is ruled out by weak-dominance. Alternatively, if cj(qcj) < p
c = ci (q

c
i ) ;

both �rms must be dispatching their marginal steps as demand would not otherwise be covered,

D (pc) =
P
j 6=i �qj (p

c) + qci . The contradiction proves our claim.

[If ] If there were more than one price-setter while p� > pc; then q�n � q
n
(p�) for all n must

hold by Lemma 2. Since q
n
(p�) � �qn(p

c) � qcn; then q�n � qcn for all n. If for at least one of them
q�n > q

c
n holds, then D(p

�) �
P
n q

�
n >

P
n q

c
n = D(p

c); an impossibility. Consequently, q�n = q
c
n for

all n: However, q�n = q
c
n and p

� > pc can only hold simultaneously when q�n = �qn(p
�) = �qn(p

c) = qcn

for all n; so that �rms are not rationed at the competitive outcome. A possibility which has been

nevertheless ruled out.

Proof of Lemma 4. To show (i), recall that q�j � q
j
(p�) holds for all j 6= i by Proposition 1.

Since p� � pc; then q
j
(p�) � q

j
(pc) as q

j
in a non-decreasing function of p: Consequently, �NPSj (p�)

is an increasing function of p� as qNPSj (p�) � qcj > xj :
(ii) Since p� � pc; then qNPSj (p�) � qcj � qPSj (p�); with strict inequality if p� > pc. Thus,

�NPSj (p�)� �PSj (p�) =

Z qNPSj (p�)

qPSj (p�)
[p� � cj(z)] dz � 0;

as p� � cj(qNPSj (p�)):
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Proof of Theorem 1. [Only if ] Suppose that there exists a pure-strategy equilibrium b in

which �rm i sets the price at p� = pPSi (b�i) � pc and �rms�payo¤s are �PSi (p�) and �NPSj (p�);

i; j = 1; :::N; j 6= i: If this is the case then Condition 1 follows from Proposition 1 and optimal

behavior by the price-setter, and Conditions 2 and 3 follow trivially from the de�nition of Nash

equilibrium.

[If ] To show that no �rm pro�ts by deviating from strategies that satisfy Conditions 1 to 3,

consider �rst the non-price-setters j; j 6= i: By Condition 1, they do not want to change their quantity
given p�: Thus, the only relevant deviations are those that allow the �rm to become the price-setter

at a price above p�. Deviating to a price equal to or lower than p� is not pro�table as by Lemma

4, �NPSj (p) is increasing in p and �NPSj (p) � �PSj (p). Hence, those �rms j with pPSj (b�j) � p� will
trivially not deviate. Those �rms j with pPSj (b�j) > p� will not deviate as �NPSj (p�) � �PSj (pPSj )

holds by Condition 3. Last, by Condition 1 the price-setter is already maximizing its pro�ts over

its residual demand, so that any deviation by �rm i must imply becoming a non-price-setter at a

lower price, p < p�; while increasing its production to qNPSi (p). Such deviation is not pro�table by

Condition 2.

Proof of Proposition 3.

We �rst prove part (ii). Let b̂ and b0 be two equilibrium bid pro�les such that that under b̂ all

�rms j bid at marginal costs (i.e., b̂�i = c�i) while �rm i sets the price at p� = p̂; whereas under b0 at

least one �rm j, j 6= i does not bid at marginal costs while �rm i sets the price at p� = p0. Trivially,

if p̂ = p0 both equilibria are outcome-equivalent as prices are the same and �rms�j 6= i quantities
must also coincide since they must satisfy Proposition 1. If p̂ > p0 then any non-price-setter prefers

b̂ to b0 as shown in Lemma 4. This is also the case for the price-setter: if p0 = pc; the price-setter

prefers p̂ to p0 by revealed preference, as it could have chosen to also bid at marginal costs to set

the price at pc; but it chose to set p̂ > pc instead; if p0 > pc; then

�PSi

�
p̂; b̂�i

�
� �PSi

�
p0; b̂�i

�
= �PSi

�
p0; b0�i

�
;

where the �rst inequality follows from the fact that p̂ is an equilibrium under b̂ which requires that

p̂ 2 argmaxp �PSi
�
p; b̂�i

�
; and the second equality from the fact that p0 is an equilibrium under b0

so that Proposition 1 holds and hence q�j
�
p0; b0�i

�
= q�j

�
p0; b̂�i

�
= q�j (p

0; c�i) for all j 6= i so that

q�i
�
p0; b0�i

�
= q�i

�
p0; b̂�i

�
: Since all �rms are better-o¤ at b̂ = (b̂i; c�i), it is the Pareto-dominant

one, as claimed.

If p̂ < p0; we show next that p0 is also an equilibrium under b̂: For the sake of contradiction

assume it is not so that one of the three conditions in Theorem 1 must fail to hold. Since �rms

j 6= i bid at marginal costs, they are trivially producing optimally conditionally on being non-price-
setters; furthermore, given that the non-price-setters do not want to become the price-setter under

p̂; p̂ < p0; the same must hold true under p0 so that Condition 3 of Theorem 1 is satis�ed. As p0 is

an equilibrium under b0 then for any p � p0 such that
P
n qn(p; b

0
�i) = D(p),

�PSi
�
p0; b0�i

�
= �PSi

�
p0; b̂�i

�
� �NPSi

�
p; b0�i

�
= �NPSi

�
p; b̂�i

�
;

where the �rst equality and second inequality follow from the fact that p0 is an equilibrium under

b0 (so that Conditions 1 and 2 in Theorem 1 hold) and the last equality from the fact that the
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non-price-setters�pro�ts are independent of their rivals�strategies. Hence, since this implies that

Condition 2 of Theorem 1 does also hold, it must then be the case that p0 =2 argmax�PSi
�
b̂�i
�
, so

that

�PSi

�
p̂; b̂�i

�
> �PSi

�
p0; b̂�i

�
= �PSi

�
p0; b0�i

�
� �PSi

�
p̂; b0�i

�
:

where the last inequality from the fact that p0 2 argmax�PSi
�
b0�i
�
: Thus, �PSi

�
p̂; b̂�i

�
> �PSi

�
p̂; b0�i

�
or equivalently, Z qi(p̂;b̂�i)

qi(p̂;b0�i)
[p̂� ci(z)] dz > 0:

However, integral above cannot be positive. If qi
�
p̂; b0�i

�
= qi

�
p̂; b̂�i

�
; integral above is zero.

If qi
�
p̂; b0�i

�
> qi

�
p̂; b̂�i

�
; because some bidder j bids units above marginal costs, then p̂ �

ci(qi
�
p̂; b0�i

�
) implies that the integral is negative. (c) Finally, if qi

�
p̂; b0�i

�
< qi

�
p̂; b̂�i

�
then some

bidder j bids units below marginal costs at b0�i. Since such units are dispatched under b̂�i bidding

them below marginal costs is ruled out by weak-dominance so that qi
�
p̂; b0�i

�
< qi

�
p̂; b̂�i

�
cannot

hold in equilibrium. Since integral above cannot be positive we ran into a contradiction proving

that p0 > p̂ must also be an equilibrium when �rms j bid at marginal costs as it satis�es the three

conditions in Theorem 1. Last, by the same arguments as above, the equilibrium with p0 Pareto

dominates the equilibrium with p̂:

We now prove (i). The [If ] part is trivial, so we omit it. [Only If ] For the sake of contradiction,

suppose that the equilibrium in which �rm i is the price-setter at p� = pPSi (c�i) while all other

�rms bid at marginal costs does not exist. This must be because Condition 3 fails to hold, given

that Conditions 1 and 2 trivially hold. If there is multiple pro�t-maximizing prices any other price

p� 2 argmax�PSi (c�i) < pPSi (c�i) would also violate Condition 3, given that pPSi (c�i) is assumed

to be the largest one. To show that there does not exist any other equilibrium in which �rm i

is the price-setter, argue by contradiction and suppose that some other bid pro�le b0 constitutes

an equilibrium. If p0 < pPSi (c�i) then Condition 3 will again fail to hold contradicting that it

constitutes an equilibrium, whereas if p0 > pPSi (c�i) then p0 must also be sustainable when the

non-price-setters bid at marginal costs as shown in (ii). The contradiction proves the claim.

Proof of Corollary 1. For ease of exposition, let us index �rms by their pro�t-maximizing

prices when rivals bid at marginal costs, i.e., pPSn (c�n) � pPSn+1 (c�n+1). We prove this result by

constructing a bid pro�le that always constitutes an equilibrium, in which �rm 1 (i.e., the �rm with

the highest pro�t-maximizing price) is the price-setter. Assume that �rms j 6= 1 bid at marginal

costs while �rm 1 uses strategy b1 constructed as follows: any q1 < x1 is bid in at marginal

cost, whereas quantities q1 � x1 are split into two sets, quantities q1 2 (x1; ~q1) are all bid in

at pPS1 (c�1) where ~q1 = inf
�
q : c1(q1) � pPS1 (c�1)

	
� x1; and quantities q1 2 (~q1;K1) are bid in

at marginal costs. Trivially, the equilibrium price under the proposed pro�le equals pPS1 (c�1) :

Note that a price p� > pPS1 (c�1) is impossible since at any such price p� all �rms are bidding at

marginal costs; similarly, if p� < pPS1 (c�1) �rm 1 dispatches no more than x1; implying that �rm

1�s pro�ts would be less than �x1, but �PS1
�
pPS1

�
� �PS1 (pc) � �x1 given that x1 < qc1: Now, since

p� = pPS1 (c�1) and q�j = qNPSj (p�) for all j 6= 1, Condition 1 of Theorem 1 holds. Condition 2

also holds since if �rm 1 deviates to become a non-price-setter, the price would go down to pc; and
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�NPS1 (pc) = �PS1 (pc) � �PS1
�
pPS1

�
: Finally, Condition 3 follows from the de�nition of pPS1 (c�1) as

pPS1 (c�1) � pPSj (c�j) for all j 6= 1.

Proof of Corollary 2. Assume that the equilibrium in which �rm i is the price-setter exists so

that �NPSj

�
pPSi

�
� �PSj

�
pPSj

�
for all j 6= i. Since by Lemma 4, the non-price-setters�pro�ts are

increasing in p; it follows that �NPSj

�
pPSi�n

�
� �NPSj

�
pPSi

�
for any n = 1; ::; i � 1: Consequently,

�NPSj

�
pPSi�n

�
� �NPSj

�
pPSi

�
� �PSj

�
pPSj

�
implies that the equilibria in which �rms f1; :::; i� 1g are

the price-setters also exist. The remaining part of the proof follows the reversed arguments.

Proof of Lemma 5. Part (i) follows from the fact that pPSn (x) is equal for all n; it constitutes

the unique equilibrium price, and it is (weakly) decreasing in x. As x approaches qc; productive

e¢ ciency is (weakly) greater because �rms�market shares converge and marginal cost functions are

(weakly) increasing.

To prove part (ii), suppose that contracts are not identically distributed among �rms, x1 < x2 �
::: � xn; so that x1 <

P
n xn
N = x: Since all �rms are symmetric in all other respects, pPS1 (x1) �

pPSj (xj) for all j 6= 1; furthermore, existence of an equilibrium with pPS1 (x1) is guaranteed by

Corollary 1. When contracts are identically distributed, the highest equilibrium price is pPS1 (x) :

Since for x1 < x; pPS1 (x1) � pPS1 (x), the highest equilibrium price is (weakly) higher if contracts

are not identically distributed. It follows that productive e¢ ciency at the highest price equilibrium

is (weakly) lower under any asymmetric contract distribution.

Proof of Proposition 4. Let us �rst introduce the following piece of notation. For xn � xj = 0;
let x0n be the smallest amount of contracts held by �rm n for which the equilibrium in which �rm n

sets the price does not exist. Formally,

x0n � min
�
xn : xn 2 [0; qcn] and �NPSj

�
pPSn (xn)

�
< �PSj

�
pPSj (0)

�
for some j

	
:

(i) By construction, pPS1 (0) is the highest candidate equilibrium price at the no-contracts case,

and Corollary 1 guarantees that it is an equilibrium price. Since pPS1 (x1) is weakly decreasing in x1;

the highest equilibrium price when x1 > 0 is max
�
pPS1 (x1) ; p

PS
2 (0)

	
� pPS1 (0) : Hence, the highest

equilibrium price is (weakly) higher at the no-contracts case. To show that the lowest equilibrium

price is also (weakly) higher at the no-contracts case, let pPSi (0) be the lowest equilibrium price

when x1 = 0: By Corollary 2, any price pPSn (0) � pPSi (0) ; for 1 < n � i; must also be an equilibrium
price when x1 = 0 as well as when x1 > 0. The incentives of all �rms other than �rm 1 do not

depend on x1, whereas �rm 1�s incentives to deviate from an equilibrium in which �rm n sets the

price are decreasing in x1; hence, if no �rm deviates from pPSn (0) when x1 = 0; no �rm will deviate

either when x1 > 0. It thus follows that the lowest equilibrium price when x1 > 0 can not be larger

than pPSi (0) : Therefore, since the set of equilibrium prices is the same when x1 = 0 or x1 > 0,

except (possibly) for the highest price, which is higher when x1 = 0, and the lowest(s) price(s)

which is (possibly) lower when x1 > 0; contracts by �rm 1 only (weakly) reduce prices.

Let us now show that there can exist a non-monotonic relationship between contracts awarded

to �rm 1 and equilibrium prices. Since pPS1 (0) is an equilibrium price when x1 = 0, while when

x1 = q
c
1 it is not (since p

PS
1 (qc1) � pc < pPS2 (0), �rm 2 would trivially deviate from such a low price),

there exists x01 2 (0; qc1] such that the equilibrium with pPS1 (x1) does not exist for all x1 2 [x01; qc1] :
Let pPSj (0) be the lowest equilibrium price when x1 = x01: By Corollary 2, it must be the case that
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pPS1 (x01) < pPSj (0) as otherwise pPS1 (x01) would also be an equilibrium. Thus, if p
PS
1 (x1) is close

enough to pPS1 (x01) for x1 slightly below x
0
1; then equilibrium prices go up as x1 approaches x01: Note

that such non-monotonicity need not always arise, e.g., if for x1 slightly below x01; p
PS
1 (x1) � pPSj (0) :

(ii) Let us allocate all contracts to �rm i. Since pPSi (0) is the lowest equilibrium price at the

no-contracts case, by Corollary 2, equilibrium prices are
�
pPS1 (0) ; :::; pPSi�1 (0) ; p

PS
i (0)

	
. Existence

of x0i 2 (0; qci ] is guaranteed by monotonicity, since pPSi (0) is an equilibrium price while pPSi (qci ) �
pc < pPS1 (0) is not (�rm 1 would trivially deviate from such a low price). Now, as pPSi (xi) is

non-increasing in xi, allocating contracts xi 2 (0; x0i) to �rm i leads to (weakly) lower prices as

compared to the no-contracts case, as equilibrium prices are
�
pPS1 (0) ; :::; pPSi�1 (0) ; p

PS
i (xi)

	
and

pPSi (0) � pPSi (xi). However, allocating contracts xi 2 [x0i; qci ] yields to (weakly) higher prices, as
equilibrium prices are

�
pPS1 (0) ; :::; pPSi�1 (0)

	
and pPSi (0) � pPSi�1 (0). Note that allocating contracts

xi to �rm i does not give rise to new equilibria in which �rms n > i set prices, as at least �rm 1

would deviate from such equilibria. It follows that there exists a (weak) non-monotonic relationship

between contract volume and equilibrium prices when contracts are awarded to �rm i.

Similar arguments would imply that if all contracts are awarded to some �rm 1 < n < i;

there exists x0n 2 (0; qcn) such that equilibrium prices are
�
pPS1 (0) ; :::; pPSn (xn) ; :::; p

PS
i (0)

	
for

xn < x
0
n and

�
pPS1 (0) ; :::; pPSn�1 (0) ; p

PS
n+1 (0) ; :::; p

PS
i (0)

	
for xn � x0n. Contracts xn < x0n thus lead

to (weakly) lower prices, but the e¤ect of contracts xn � x0n depend on which equilibrium is chosen,

given that pPSi (0) � pPSn (0) � pPS1 (0) :

(iii) Since for n > i; pPSn (0) is not an equilibrium price at the no-contracts case, it follows that

x0n = 0: Consequently, for any xn � 0; pPSn (xn) � pPSn (0) ; so that by Corollary 2, pPSn (xn) cannot

be sustained in equilibrium. Hence, prices remain the same as in the no-contracts case.

B Details on Simulations

The Spanish electricity market is organized similarly to many other wholesale electricity markets

around the world. In particular, most transactions take place through an organized exchange,

that operates on an hourly basis according to the rules described in Section 2 (see Crampes and

Fabra (2005) for more details). The market structure is highly concentrated, with the two largest

�rms - Endesa and Iberdrola - controlling almost 60% of total thermal capacity, more than 80% of

total hydro capacity, and approximately 40% of total renewables. Even though the shares of these

technologies on total production vary across years, in 2005 hydro and renewables contributed to

cover 8% and 11% of total demand, respectively. Table 4 summarizes the market structure of the

main generators in the Spanish electricity market.

In order to conduct the simulations, we have �rst computed �rms�marginal cost curves following

similar techniques as in previous papers (Fabra and Toro (2005)).40 In particular, we have estimated

each thermal unit�s marginal production costs on a daily basis, taking into account the type of fuel it

burns, the cost of the fuel, the plant�s heat rate (i.e., the e¢ ciency rate at which each plant converts

the heat content of the fuel into output), the short-run variable cost of operating and maintaining

it, and the costs of its CO2 emissions. In addition, for coal plants, we have added an estimate of

40The data used in the simulations have been obtained from various sources, including The National Energy Com-

mission (CNE), Red Eléctrica de España (REE), OMEL and UNESA.
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Firm/ Technology Nuclear Coal CCGT Oil-Gas Total Shares

Endesa 3,511 5,511 1,170 1,779 10,918 33%

Iberdrola 3,222 1,225 3,704 3,050 8,456 26%

Unión Fenosa 702 1,946 1,559 747 4,954 15%

Gas Natural � � 2,729 � 2,729 8%

Hidrocantábrico 155 1,549 390 � 2,094 6%

Others � 909 2,144 731 3,784 11%

Table 4: Installed Thermal Capacity (MWs) by Firm and Technology in the Spanish Electricity

Market, 2005 (Source: REE)

the costs of transporting coal from the nearest harbor where it is delivered to the plant where it is

consumed. Lastly, each unit�s generation capacity has been reduced by its estimated outage rate.

By aggregating the capacities of each �rm�s thermal units in increasing marginal cost order, we have

obtained estimates of �rms�thermal marginal cost curves for each day of the year.

Furthermore, we have assumed that the marginal costs of producing electricity with hydro and

renewables equal zero. The production coming from such sources has therefore been added to the

left of each �rm�s thermal marginal costs curve in order to construct their overall marginal costs

curves. We have chosen not to use actual data on hydro production, as it is already the result of

�rms�strategic decisions. Instead, poundage hydro generation has been set to peak-shave demand

on a monthly basis, taking into account maximum hydro �ows.41 Both, run-of-river hydro as well as

renewables�production, have been uniformly spread across time. Hydro stocks, run-of-river hydro

�ows, and renewable energy, are monthly estimates of a representative year.

Demand has been assumed to be price-inelastic at the actual hourly demand levels that were ob-

served in 2005. Furthermore, we have set the market-reserve price at 120e/MWh, below its explicit

180e/MWh level, with the aim of re�ecting issues such as the threat of entry or regulatory inter-

vention. Nevertheless, setting this cap at either 120 or 180e/MWh does not change the qualitative

nature of the results.

41As it is by now well understood (Bushnell (2003)), �rms could strategically shift hydro from peak to o¤-peak

hours, thereby distorting the e¢ cient use of hydro resources. A full analysis of this issue is out of the scope of this

section. However, despite assuming competitive bidding for hydro units, hydro still a¤ects �rms�strategic decisions

through its impact on their inframarginal output.

35



34

39

44

49

54

0 5 10 15 20 25 30 35

Contracts by Firm 1

Pr
ic

es
Equilibrium price (Firm 1 pricesetter)

Equilibrium price (Firm 2 pricesetter)

Competitive price

Equilibrium
with firm 1
pricesetter
disappears

Figure 1: Forward contracts by �rm 1 and equilibrium prices (asymmetric �rms (55%,45%))
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Figure 2: Forward contracts by �rm 2 and equilibrium prices (asymmetric �rms (55%,45%))

Note: In Figures 1 and 2 we have assumed N = 2: There are 200 units, 2 at each marginal cost level,

k = 1; :::; 100; each owned by a di¤erent �rm. Firm 1�s units have capacity 1:10 while �rm 2�s units

have capacity 0:9. Demand is price-inelastic, D = 70; so that pc = 35 and qc1 = 38:5 > q
c
2 = 31:5:
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Figure 3: Forward contracts by �rm 1 and equilibrium prices (asymmetric �rms (60%,40%))
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Figure 4: Forward contracts by �rm 2 and equilibrium prices (asymmetric �rms (60%,40%))

Note: In Figures 3 and 4 we have assumed N = 2: There are 200 units, 2 at each marginal cost

level, k = 1; :::; 100; each owned by a di¤erent �rm. Firm 1�s units have capacity 1:20 while �rm 2�s

units have capacity 0:8. Demand is price-inelastic, D = 70; so that pc = 35 and qc1 = 42 > q
c
2 = 28:
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Figure 5: An example of a �rm�s marginal cost function and the quantities q
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(p) and �qn(p)
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