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We analyze the role of demand uncertainty in markets of fixed size, in which firms take long-run capacity
decisions prior to competing in prices. We characterize the set of subgame perfect Nash equilibria under
various assumptions regarding the nature and timing of demand uncertainty. In order to prove equilibrium
existence, we identify a sufficient condition for the capacity choice game to be submodular. This condition
resembles the standard downward-sloping marginal revenue condition used in Cournot games. A robust
conclusion of the analysis is that equilibrium capacity choices are asymmetric, even when firms are ex-ante
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with inelastic demands, the equilibria of the former belong to the equilibrium set of the latter. However, as
compared to the Cournot game, the capacity-price game leads to lower prices and generates price dispersion.
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d (1988) analyze a similar model as Gal-Or (1984)'s, but focus on
nd certainty.
Poddar (1997) and Grimm and Zoettl (2006) also consider future
at the investment stage, but assume that firms subsequently
g quantities rather than prices. The Cournot assumption has
ons on investment incentives and equilibrium outcomes. In
1. Introduction

We analyze a two-stage game in which firms take capacity
decisions under demand uncertainty, and then engage in price
competition. We focus on markets with price-inelastic demands,
also referred to as “markets of fixed size” (Cripps and Ireland, 1988).
This specification is well suited to analyze the performance of several
industries in which long-run investments are followed by price
competition. This is for instance the case of electricity markets, in
which generators invest in long-lived assets in order to meet
fluctuating demands. Given that the vast majority of consumers pay
fixed tariffs irrespective of market-based prices, their demands tend
to be quite inelastic, at least in the short-run (Fabra et al., 2009).
Large-scale communication networks, particularly the Internet, share
similar features in that service providers first invest in capacities
under uncertain market conditions, and subsequently engage in price
competition to attract the demand “flows” of internet services
(Acemoglu et al., 2009).

Several papers have tried to understand the role of demand
uncertainty in capacity-price games. The interest on this issue dates
back to Kreps and Scheinkman's (1983) seminal paper, in which they
conjectured that “noise” in the demand function would destroy their
main result, namely, that capacity precommitment followed by price
competition yields Cournot outcomes. Gal-Or (1984) provided the
first analysis on this topic in a model with inelastic demand, but
limited to the case in which firms take capacity and price decisions
prior to observing the actual demand realization.1 Since then, other
papers have analyzed the same topic under the assumption of
downward-sloping demand; for instance, Reynolds and Wilson
(2000) and Lepore (2008) focus on the case in which demand is
realized before firms engage in price competition, whereas Hviid
(1990) focuses on the case in which demand is realized ex-post.2

Broadly speaking, all these papers arrive at two main conclusions:
first, the equivalence between Bertrand and Cournot outcomes
remains true under some, but not all model specifications; and
second, the capacity game may fail to have a symmetric pure-strategy
equilibrium.3 Our model contributes to this literature by considering
nce of a symmetric equilibrium in capacity choices is guaranteed.
s Gal-Or (1984), who predicted symmetric capacity choices.
analysis contained a mistake which has not yet been solved,
-known: she only analyzed the pricing subgame starting at
choices and was therefore unable to correctly assess the effects
he symmetric capacity pairs on second stage expected profits.
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the case of price-inelastic demands for a wide family of demand
distribution functions and various formulations on the nature and
timing of demand uncertainty. More specifically, we allow demand to
follow a continuous or a two-point distribution, and we analyze the
cases in which demand is realized either before or after firms take
their pricing decisions.

We characterize the subgame perfect Nash equilibria of the two-
stage game. We confirm that the capacity choice game with inelastic
demand and ex-ante identical firms does not have symmetric pure-
strategy equilibria; indeed, it only has two asymmetric outcome-
equivalent pure-strategy equilibria. The reasonwhymarket outcomes
are asymmetric is that large and small firms face asymmetricmarginal
returns to investment. In particular, one firm prefers to be small in
order to induce less aggressive pricing by its rival, thus fostering an
increase in its expected profits despite losing output in states at which
the firm sells at capacity. Mathematically, this gives rise to kinked
profit functions and discontinuous best response correspondences
which never cross the 45-degree line. Proving existence of pure-
strategy equilibria in this set-up is a challenging problem. However,
we identify a sufficient condition on the demand distribution function
that allows to apply the theory of submodular games (Topkis, 1979).
The economic interpretation of this sufficient condition is analogous
to the standard downward sloping marginal revenue condition used
in Cournot games. Since this condition does not depend on capacity
cost structures, the capacity game remains submodular under general
capacity cost specifications, including nonlinear and/or asymmetric
cost functions across firms. For this reason, the basic model can be
easily extended to show that ex-ante asymmetries in capacity costs
enhance ex-post asymmetries. In sum, we provide further support to
the claim that asymmetricmarket structures are a robust prediction in
capacity choice models.4

Endogenous asymmetries also arise in a broad family of studies in
applied microeconomics. They all share two important features with
ourmodel: some form of non-concavity in payoffs, and submodularity
in first period actions (Amir et al., 2010). Among these studies, our
approach for proving equilibrium existence closely follows Amir and
Wooders (2000), who analyze a two-stage game of R&D investments
followed by product market competition.

Besides from generating asymmetries, demand uncertainty also
has a crucial effect on equilibrium multiplicity. Whereas the certain
demand game generates a continuum of equilibria, including a
symmetric one, the game with continuous demand uncertainty
picks just two of them.5 If demand follows a two-point distribution,
there are more equilibria that survive the introduction of demand
uncertainty; notably, symmetric and asymmetric equilibria may
coexist. However, if none of the two possible states is sufficiently
likely, only the asymmetric equilibria survive.

We also find that the nature of equilibrium capacity choices are not
affected by the timing of demand uncertainty, i.e., by whether
demand is realized either before or after pricing decisions. More
specifically, equilibrium capacities are asymmetric in both games
because both depict asymmetries in firms' marginal returns to
investment. Furthermore, aggregate capacity is also unchanged, as
in both games the marginal capacity unit is sold at the reservation
4 See Reynolds and Wilson (2000) for a survey on capacity choice models that also
give rise to asymmetric outcomes.

5 In this respect, our model is also related to Klemperer and Meyer's (1989) seminal
paper in which firms facing uncertain demand compete by choosing supply functions.
They find that the introduction of demand uncertainty dramatically shrinks the set of
equilibria, and conclude that the equilibrium is unique only if the support of the
demand distribution function is unbounded. Even though our approach substantially
differs from theirs, it is not surprising that our conclusions concerning the effect of
demand uncertainty are similar. In both scenarios, continuous demand uncertainty
reduces multiplicity of equilibria since it forces each firm's strategic decision to be
optimal against a range of possible demand functions.
price. Nevertheless, equilibrium outcomes (i.e., individual firms'
capacities and expected prices) may differ.

Last, our results serve to partially vindicate Kreps and Scheinkman's.
Namely, with inelastic and uncertain demand, capacity precommitment
followed by price competition yields Cournot outcomes in the following
sense: the set of equilibrium capacity choices of the two-stage game is
contained in the set of Cournot equilibria. However, whereas both
games yield the same level of aggregate capacity (and are thus
equivalent in terms of welfare), the two-stage game leads to lower
prices and generates price dispersion, as correctly pointed out byGal-Or
(1984).

The structure of the paper is as follows. Section 2 describes and
solves the basic model, with and without demand uncertainty. In
Section 3, we vary and extend the basic model in several directions:
general cost functions and ex-ante asymmetries, two-point demand
distributions, and demand uncertainty at the pricing stage. Section 4
compares the results obtained in the basic model with those of its
certainty equivalent game and the Cournot game. The last section
concludes and proofs are included in Appendix A.
2. The model

Two symmetric firms, i=1,2, supply a homogeneous good to a
mass θ of infinitesimal and identical buyers. Each buyer consumes
exactly one unit of the good if its market price is less than the
reservation price, normalized to unity, and if it is available on the
market. Hence, total demand is θ as long as the market price is not
greater than 1. The number of buyers θ is randomly determined in the
unit interval 0;1½ � according to the continuous cumulative distribution
function G θð Þ, which satisfies the following properties:

Assumption 1. G has a continuously differentiable density g,
bounded away from zero in the interior of its support.

We consider a two-stage non-cooperative game. In the first stage,
firms simultaneously choose their capacities ki, i=1,2, at unit cost
c∈ 0;1ð Þ. Capacity decisions are irreversible and become publicly
known. We let k− = min k1; k2f g≤kþ = max k1; k2f g, and refer to the
firmwith capacity k− as “the small firm” and to the firmwith capacity
k+ as “the large firm”; aggregate capacity k−+k+ is denoted by K.
Next, the number of buyers θ is realized and observed by all firms. In
the second stage, firms simultaneously choose prices. Consumers buy
first from the firm with the low price until its capacity is exhausted,
and the residual buyers are served by the high-priced firm. If firms'
prices are equal, consumers split equally between the two.6 Finally,
each firm sells its production at its own price. Production entails zero
marginal costs up to each firm's capacity, while producing above
capacity is infinitely costly. Firms are assumed to be risk neutral and to
maximize expected profits.

We search for the subgame perfect equilibria of the two-stage
game.We allow firms to play mixed strategies at the pricing subgame,
but focus on pure strategies at the investment stage (mixed strategies
in capacity choices are difficult to either justify or interpret).
Accordingly, each firm's strategy is a pair specifying its capacity
choice, and its distribution function over prices given both firms'
capacities. We solve the game by backwards induction.
6 As noted by Cripps and Ireland (1988), the homogeneous nature of the market
means that if buyers are rationed at a firm, the sets of successful and unsuccessful
buyers are identical. Hence, our results are valid regardless of the rationing rule,
including those investigated by Davidson and Deneckere (1986), Osborne and Pitchik
(1986) or Lepore (2008), among others. Our results are also independent of the tie-
breaking rule.



45°

Multiple

equilibria

k1

k2

R2(k1)

R1(k2)

Fig. 1. Best response correspondences under demand certainty.
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2.1. Pricing stage

Consider any subgame starting after demand has been realized,
and firms have observed each other's capacity choices. Equilibrium
pricing in this case was first analyzed by Cripps and Ireland (1988),7

whose results we report next (see also Osborne and Pitchik, 1986):

Proposition 1. (Cripps and Ireland (1988)) In the pricing stage, for
given θ and k−≤k+, there is a unique equilibrium which satisfies the
following:

(i) (Region I) If θ≤k−, there exists a unique pure-strategy equilib-
rium in which both firms set prices equal to (zero) marginal cost
and make zero expected profits.

(ii) (Region II) If k−bθbK, a pure strategy equilibrium fails to exist. In
the unique mixed strategy equilibrium, the large firm makes
expected profits [θ−k−], whereas the small firm makes a fraction

k−

min θ; kþf g of the large firm's expected profits.8

(iii) (Region III) If θ≥K, in the unique equilibrium both firms set prices
equal to consumers' reservation price (which equals 1), and they
both sell at capacity.

Equilibrium pricing behavior depends on the relationship between
demand and capacities. For demand realizations in Region I, since
either firm has enough capacity to serve total demand, competition
drives prices down to marginal cost, and firms make zero expected
profits. For demand realizations in Region III, since there is not enough
aggregate capacity to cover demand, the equilibrium price equals
consumers' valuation and both firms sell at capacity. For the
remaining demand realizations, pure-strategy equilibria fail to exist
given that either (i) firms want to price slightly below the rival to sell
at capacity or (ii) want to serve the residual demand at consumers'
reservation price. For a given demand realization in Region II, there
exists a unique mixed strategy equilibrium such that the two firms
mix over a common support, with a lower bound p

¯
strictly above zero

and an upper bound equal to one, the consumers' reservation price.
The equilibrium distribution of prices will depend on both the
aggregate capacity and the distribution of capacities. In particular, the
larger is K the nearer is p

¯
to one; also, for the same value of K, the

smaller is k− the nearer is p
¯
to one. Since the large firm plays a mass

point at the upper bound, and since the small firm is pricing below
that level with probability one, the large firm's expected profits are
the same as if it maximized its expected profits over its residual
demand.

2.2. Capacity investment stage

We can use the above derivation to first consider the deterministic
environment, which will serve as a benchmark for the rest of the
game. The following proposition characterizes equilibrium capacity
choices in the game with certain demand.

Proposition 2. (Cripps and Ireland, 1988) Assume that themass of buyers

is known to be θ. Every profile of firms' capacities with kþ∈ θ
2
;

θ
2−c

h i
and

k−=θ−k+ can be sustained by a pure-strategy subgame perfect
equilibrium. Hence, equilibrium aggregate capacity equals total demand,
and there is a symmetric equilibrium as well as a continuum of asymmetric
equilibria.

Under demand certainty, there exists a continuum of pure-
strategy equilibria, in all of which aggregate capacity is equal to
7 We are very grateful to the authors for providing us with a copy of their manuscript.
8 In more detail, the large firm plays a mass point at the reservation price with

probability 1− k−

min θ; kþð Þ. Hence, the higher k−, the less likely it is that the large firm

prices at the upper bound of the support of firms' mixed strategies.
total demand and prices are set equal to consumers' reservation price.
The symmetric capacity pair belongs to the equilibrium set given that
firms are discouraged from (a) reducing their capacity, as this would
constrain their production without increasing prices; and from
(b) increasing their capacity, as this would increase costs with no
increase in production (the deviant would become the large firm, so it
would serve the residual demand only). Fig. 1 depicts firms' best
response correspondences at the capacity stage with certain demand.

Let us now consider the game with demand uncertainty, in which
themass of buyers θ is randomly determined according to a distribution
function G satisfying Assumption 1. Based on Proposition 1, firms'
expected profit functions at the investment stage are constructed as
follows. For demand realizations in Region I (i.e., below k−), expected
profits are zero independently of the value of firms' capacities, whereas
if Kb1 then for demand realizations in Region III firms' expected profits
are fullydeterminedby their capacity choices. The linkbetween capacity
choices and expected profits becomes more complex for demand
realizations in Region II, i.e., in the interval k−;min K;1f gð Þ. Over this
range, the large firm's expected profits do not depend on its own
capacity, as these are the same as if it served the residual demand with
probability one. In contrast, the small firm's expected profits at the
mixed-strategy equilibrium depend on its own capacity, for two
reasons: first, it constrains its sales when the small firm prices below
the rival; and second, it affects the large firm's pricing behavior,
ultimately determining its own chances of selling at capacity. Thus, for
i, j=1,2, i≠ j, denoting Ko = min K;1f g, expected profits are

πi ki; kj
� �

=
π−
i ki; kj
� �

if ki≤kj

πþ
i ki; kj
� �

if kj≤ki≤1

8><>: ð1Þ

where9

π−
i k−; kþ
� �

= ∫
Ko

k−

k− θ− k−½ �
min θ; kþf gdG θð Þ + ∫

1

Ko

k−dG θð Þ− ck−; k−; kþ
� �

∈ 0;1½ �2 : k−≤ kþ;

ð2Þ

πþ
i kþ; k−
� �

= ∫
Ko

k−
θ−k−½ �dG θð Þ + ∫

1

Ko

kþdG θð Þ− ckþ; k−; kþ
� �

∈ 0;1½ �2 : kþ≥k−:

ð3Þ

The expected profit for firm i is a piecewise continuous function
made up of the continuous and differentiable functions πi− and πi+.
The latter is a strictly concave function in own action k+ whereas the
former is strictly concave in k− under certain conditions on the
9 Note that for any kj, the capacity choice ki=1 strictly dominates any capacity
choice kiN1. Hence, we can restrict the strategy space to the interval [0,1].
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density function (sufficient conditions are, for instance, that g be
either weakly increasing or concave). The expected profit function πi
inherits the continuity properties of its two pieces but it does not
inherit either their differentiability or their concavity. In particular,
the expected profit function has a kink along the diagonal so that it is
not everywhere differentiable. To see this let K≤1. Marginal expected
profits from increasing own capacity when the firm is either the small
or the large one are given by

∂π−
i

∂k− = ∫
K

k−

θ−2k−

min θ; kþf gdG θð Þ + 1−G Kð Þ− c; ð4Þ

∂πþ
i

∂kþ = 1−G Kð Þ− c; ð5Þ

so that at symmetric capacity pairs, the right-hand derivative is larger
than the left-hand derivative as, for any G satisfying Assumption 1,

lim
ki↓k

∂πþ
i

∂ki j
ki ;kð Þ

− lim
ki↑k

∂π−
i

∂ki j
ki ;kð Þ

= ∫
2k

k

2k−θ
k

dG θð Þ N 0: ð6Þ

This non-differentiability stems from the fact that incentives to
undertake marginal increases in capacity in Region II are different if
the firm turns out to be the large or the small one. Whereas the large
firm gains nothing by expanding its capacity, an increase in the small
firm's capacity may lead to either a expected gain or a expected loss
depending on the strength of the two effects involved: by increasing
its capacity the small firm can expand its production when it prices
below the rival; however, as this also makes the large firm more
aggressive, the probability that the small firm prices below and hence
sells at capacity is reduced.

The non-concavity in own action of the expected profit function
along the diagonal of the action space results in a jump in firms' best
responses, which rules out existence of a symmetric equilibrium in
pure strategies.10 Moreover, since ∂πþ

i 0;0ð Þ
∂ki

= 1−c N 0 and ∂π−
i 1;1ð Þ
∂ki

=
−cb0, it follows that neither is 0 a best reply to 0, nor is 1 a best reply
to 1. Consequently, at any candidate equilibrium firms must be
asymmetric: there will be a large and a small firm despite firms being
fully symmetric ex-ante. In equilibrium, the firm that ends up being
the large onemust be choosing a capacity k+Nk−whichmaximizes its
expected profits. Since π+ is strictly concave in k+, the first order
condition of the large firm (Eq. (5)) must be satisfied in equilibrium,
i.e., 1−G Kð Þ−c = 0.

From this, it follows that aggregate equilibrium capacity is K=G−1

(1−c). Aggregate capacity depends on the marginal costs of capacity,
c, as well as on the shape of the demand distribution function, G;
in particular, as the degree of convexity of G increases, aggregate
equilibrium capacity goes up. Intuitively, firms invest more under more
convex distributions as increased convexity implies that higher (lower)
demand realizations are more (less) likely. These results are summa-
rized in the following proposition.

Proposition 3. For any continuous cdf G that satisfies Assumption 1,
(i) no symmetric pure-strategy Nash equilibrium exists, and (ii) at any
candidate equilibrium k−; kþð Þ aggregate capacity is given by
K = k− + kþ = G−1 1−cð Þ⊂ 0;1ð Þ.

Further inspection of πi+ shows that capacities are strategic
substitutes from the large firm's perspective. In other words, the
10 There is a symmetric mixed strategy equilibrium but it is Pareto dominated by any
of the two pure-strategy asymmetric equilibria from the point of view of firms' profits.
The lower bound in the support of firms' mixed strategies is given by the pure-strategy
capacity choice of the small firm, whereas the upper bound is strictly below the pure-
strategy capacity choice of the large firm.
second-order cross derivative of the large firm is negative irrespective
of how demand is distributed,

∂2πþ
i

∂kþ∂k− = −g Kð Þb0:

The intuition for this result runs as follows. Expected profits by the
large firm only depend on its capacity choice if demand is in Region III,
as otherwise it serves residual demand only. Since the incidence of
demand realizations in Region III is lower the bigger aggregate
capacity, the large firm's marginal returns to investment are
decreasing in the small firm's capacity.

Matters are not that simple for the small firm, as its second-order
cross derivative is given by

∂2π−
i

∂k−∂kþ = ∫
K

kþ

2k−−θð Þ
kþ½ �2 dG θð Þ + g Kð Þ − k−

kþ

� �
: ð7Þ

The sign of the first term in Eq. (7) is ambiguous, as it depends on the
size of the large firm: if k+ is sufficiently close to k−, then the first term
is positive, whereas if k+ is sufficiently large (e.g. if k+N2k−) it is
negative. In contrast, the second term in Eq. (7) is clearly negative. The
relative strength of these (possibly) opposite signs depends on the
shape of the demand distribution. With demand distributions that put
more weight on larger demand values, the negative sign of the second
term dominates, so that strategic substitutability holds.

We next show that by imposing additional restrictions on the
demand distribution function, we can guarantee that capacity choices
are strategic substitutes from the small firm's perspective. A sufficient
(not necessary) condition for strategic substitutability to hold is that
θg(θ) be non-decreasing, i.e., g(θ)+θg′(θ)≥0, as we assume below:

Assumption 2. θg(θ) is non-decreasing.

A distribution function that satisfies Assumption 2 is an increasing
generalized failure rate distribution (IGFR), i.e., its generalized failure
rate, θg θð Þ

1−G θð Þ, is weakly increasing for all θ such that G(θ)b1.11 Note that
any convex distribution function satisfies Assumption 2. Moreover,
it also holds for some concave distributions, such as the power
G θð Þ = θa or the exponential G θð Þ = 1−e−aθ

1−e−a , with 0≤a≤1.
Assumption 2 has an appealing economic interpretation. Since

total revenues when firms sell at capacity are given by x 1−G xð Þð Þ,
Assumption 2 is sufficient for ensuring downward-sloping mar-
ginal revenues. This assumption is commonly used in Cournot
models to guarantee that best responses are decreasing (see Vives
(1999, p. 94)). To see this, let Q xð Þ = 1−G xð Þð Þ. Then, marginal
revenues Q(x)+ xQ′(x) decrease if Assumption 2 holds as
G′ xð Þ + xG″ xð Þ≥0 ensures−2G′ xð Þ− xG″ xð Þ≤0:

For any distribution satisfying Assumptions 1 and 2, Proposition 4
shows that existence and uniqueness of equilibrium outcomes can be
guaranteed by applying the theory of submodular games.12

Proposition 4. For any continuous cdf G that satisfies Assumptions 1 and
2, the capacity game is a game of strategic substitutes and it has exactly one
pair of pure strategy equilibria, (k−, k+) and (k+, k−), with k−b k+.

Fig. 2 depicts firms' best response correspondences at the capacity
game when Assumptions 1 and 2 hold. They are symmetric,
decreasing, and everywhere continuous except at one point. Since
11 For more on IGFR distributions see Barlow and Proschan (1965).
12 Using the dual single-crossing property instead of submodularity has not allowed
us to enlarge the set of distributions for which we can ensure that best-responses are
downward-sloping. This is in line with the results in Amir et al. (2010), where one can
additionally find further arguments in favor of submodularity.



Table 1
Equilibrium capacities as a function of the per-unit capacity cost of the inefficient firm
c2, for c1=0.1; uniformly distributed demand.� � � �

1

(k− ,k + )

k1

k2

R −
2

(k+ ,k − )

R +
2

R +
1

R −
1

45°

Fig. 2. Best response correspondences for demand distributions G satisfying (A2).
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they do not cross the 45-degree line and cross twice, there exist two
outcome-equivalent asymmetric equilibria. Thus, for each firm i, there
are two equilibria: one in which firm i is the large firm and one in
which firm i is the small one.

Last, let us note that Assumption 2 is a sufficient, not a necessary
condition, i.e., even if G does not satisfy Assumption 2, the capacity
game may still have a unique pair of asymmetric equilibria. Consider,

for instance, the cdf G θð Þ = 5
2
θ−13

6
θ2 + 2

3
θ3 whose density, g θð Þ =

2θ2−13
3
θ + 5

2
, fails Assumption 2 as θg(θ) decreases for any θ≥0.4.

Still, for c=0.15 there is an equilibrium at k−=0.139, k+=0.438.13

We have characterized the set of subgame perfect pure strategy
Nash equilibria for a wide family of demand distributions. Our results
are in line with Amir et al.'s (2010), who show that two-player
symmetric games with payoff nonconcavities and some form of
strategic substitutability always possess only asymmetric pure-
strategy Nash equilibria. In sum, we have provided further support
to the claim that asymmetricmarket structures are a robust prediction
in capacity choice models.

3. Extensions and variations

In this section we extend the previous analysis by considering
alternative formulations regarding capacity cost functions and the
nature and timing of demand uncertainty. These extensions cast light
on the importance of the assumptions underlying our main model,
while allowing to assess the robustness of our conclusions.

3.1. General capacity cost functions and ex-ante asymmetries

So far we have assumed that firms are ex-ante symmetric and that
they both have the same constant per-unit cost of capacity, c. In this
section we relax these two assumptions by allowing for nonlinear and
possibly asymmetric capacity costs across firms:

Assumption 3. The cost to firm i of installing ki is Ci(ki), i=1,2. The
function Ci is twice continuously differentiable, convex, and satisfies
Ci(0)=0 and C′

i kið Þ N 0. To avoid trivialities, Ci′ (0)b1, i.e., production
at some level is profitable.14

The following result generalizes Propositions 3 and 4, for all
capacity cost functions satisfying Assumption 3.

Proposition 5. Under Assumption 3, for any continuous cdf G that
satisfies Assumption 1, ið Þ no symmetric pure-strategy Nash equilibrium
13 The interested reader can find other sufficient conditions for equilibrium existence
in the working paper version, De Frutos and Fabra (2007).
14 We borrow this assumption from Kreps and Scheinkman (1983)'s Assumption 2. It
is also assumed by Lepore (2008).
exists; if G also satisfies Assumption 2, (ii) the capacity game is a game of
strategic substitutes, it has at least one asymmetric pure strategy
equilibrium, and exactly two if firms have symmetric cost functions,
Ci=Cj.

Whereas Proposition 5 above shows that the nature of equilibria
remains qualitatively unchanged, this does not imply that capacity
cost functions are irrelevant. To the contrary, the shape and the
asymmetries in capacity cost functions affect equilibrium asymme-
tries across firms, and may have a crucial impact on equilibrium
multiplicity. If firms are symmetric but capacity cost functions are
nonlinear, there exists exactly one pair of pure strategy outcome
equivalent equilibria. However, the shape of the cost function affects
the degree of ex-post asymmetries and the level of aggregate
investment. If cost functions are linear but asymmetric, the two
candidate equilibria are no longer outcome equivalent, and one of
them may eventually disappear as the difference in costs becomes
large enough.

To fix ideas, suppose that firms have constant per-unit costs of
capacity c1≤c≤c2. Since the second-order and cross derivatives are
unchanged, the best replies of the two firms have the same slope as in
the symmetric case. However, the best reply of the inefficient
(efficient) firm shifts inwards (outwards) given that its marginal
profit is now smaller (bigger). This implies that, whenever the
difference in costs is not too large, there exist two equilibria that are
no longer outcome equivalent. More precisely, since aggregate
capacity is determined by the first-order condition of the large firm,
aggregate capacity under equilibrium k−i ; kþj

� �
is G−1(1−cj); hence,

total capacity is larger at the equilibrium at which the efficient firm
has the large capacity. However, if the difference in costs is wide
enough, best replies no longer cross in the region at which the large
firm is the efficient one, so that the unique equilibrium is (k1+,k2−).
Table 1 illustrates these results in a numerical example.
3.2. Two-point distribution

So far we have assumed that the mass of buyers θ is distributed
according to a continuous function. Let us now assume instead that
demand follows a binomial distribution function:

Assumption 4. θ equals θL with probability ρ∈ 0;1ð Þ and θH with
probability 1−ρ, where 0bθLbθH.

The following proposition characterizes the subgame perfect
equilibrium capacity choices in this case.

Proposition 6. Under Assumption 4, the following is true:

(i) In any subgame perfect pure-strategy equilibrium, aggregate
capacity is θL if ρ∈ 1−c;1ð � and it is θH if ρ∈ 0;1−c½ Þ. In either
case, the equilibrium set of this game belongs to the equilibrium
set when the mass of buyers is either θL or θH with certainty. If
ρ=1−c, any aggregate capacity K∈ θL; θH

h i
can be sustained as

an equilibrium outcome.
(ii) For all ρ, there exists a continuum of asymmetric pure-strategy

equilibria in capacity choices.
Equilibrium k−1 ; kþ2 Equilibrium kþ1 ; k
−
2

c2=0.1 c2=0.2 c2=0.4 c2=0.1 c2=0.2 c2=0.4

k1
− 0.27 0.32 – k1

+ 0.63 0.69 0.77
k2
+ 0.63 0.48 – k2

− 0.27 0.21 0.13
K 0.9 0.8 – K 0.9 0.9 0.9
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(iii) There exists �ρ∈
1−c
2

;1−c
� �

such that symmetric equilibria in

capacity choices exist if and only if ρ∉ �ρ;1−cÞ
�

.

The first part of Proposition 6 shows that if 1−ρ≠c, aggregate
equilibrium capacity is either θL or θH. Aggregate capacity cannot be
below θL, as expanding capacity up to θLwould allow firms to increase
production without reducing prices. Similarly, aggregate capacity
cannot exceed θH, as the large firm would never sell at capacity and
could thus increase its expected profits by reducing capacity without
constraining its production. The issue of whether firms invest θL or θH

depends on the comparison between the marginal returns to
investment when demand is high, 1−ρ, and the marginal costs of
the extra capacity, c. If 1−ρ bc, the marginal costs exceed the
marginal gains of increasing capacity, so that firms invest just enough
so as to cover demand in the low state. Alternatively, if 1−ρNc, the
marginal gains exceed the marginal costs and firms expand capacity
in order to fully cover demand in the high state. This implies
that aggregate capacity is the same as if demand was known to be
either low or high with certainty whenever the probability of the
low demand state is either sufficiently large (i.e., ρ∈ 1−c;1ð �)
or sufficiently small (i.e., ρ∈ 0;1−c½ Þ), respectively. In contrast, if
1−ρ=c, any capacity expansion aimed at increasing productionwhen
demand is high yields a zero marginal profit. This implies that any
capacity pair resulting in K∈ θL; θH

h i
can be sustained by a subgame

perfect equilibrium of the game.
Similar to the certain demand case, the investment game under a

two-point distribution generates a continuum of pure-strategy
equilibria,15 some of which involve asymmetric capacity choices.
However, unlike the certain demand case, the existence of a
symmetric equilibrium is not guaranteed whenever it generates
excess capacity with positive probability. If that is the case, one firm
may find it profitable to marginally reduce its capacity to become the
small firm, not only because it implies lower capital costs, but also
because it may induce less aggressive pricing by its rival.

In order to understand the above result, let us analyze the
profitability of deviating from the two candidate symmetric equilibria,
θL=2; θL=2
� �

and θH=2; θH=2
� �

. Consider first θL=2; θL=2
� �

. Following
part (i) of the Proposition, for such an equilibrium to exist the
probability of the low demand state must be sufficiently large, i.e.,
ρ∈ 1−c;1½ �. For all values of ρ in this range, the candidate symmetric
equilibrium exists since (a) reducing capacity below θL /2 would
further constrain production without increasing prices, and (b) the
marginal costs of expanding capacity, c, would exceed the associated
marginal gain, 1−ρ.

Consider now the alternative symmetric candidate equilibrium,
θH= 2; θH=2
� �

. For such an equilibrium to exist the probability of the

low demand state must be sufficiently small, i.e., ρ∈ 0;1−c½ �. Since
aggregate equilibrium capacity equals θH, capacity is fully utilized and
prices are at its maximum only when demand is high. Thus, part (a) of
the above reasoningno longer holds. In particular, since for lowdemand
there is excess capacity and prices are below their reservation level, a
marginal reduction in capacity below θH /2 would not constrain the
deviant's production and it would lead to both capacity savings and
higher prices. Such deviation gains have to be balanced against the
marginal loss due to theoutput reductionwhendemand is high, an issue
which ultimately depends on the relative incidence of the low and high
states. If the probability of the low demand state is sufficiently large, i.e.,
ρ∈ �ρ;1−c
� �

, the deviation gains outweigh the deviation losses, thus
ruling out existence of a symmetric equilibrium.

Finally, the impact of demanduncertainty on equilibriummultiplicity
depends on whether demand is price-responsive or not: whereas in
15 This result is specific of the two-point distribution. For instance, if demand can
take three equally likely values, then a unique equilibrium outcome emerges in which
firms choose asymmetric capacities.
Reynolds and Wilson (2000, Theorem 2) demand uncertainty (weakly)
increases the number of equilibria, we have shown that it reduces
equilibrium multiplicity when demand is price-inelastic.

3.3. Demand uncertainty at the pricing stage

So far we have assumed that firms observe the demand realization
before setting prices. Instead, let us now assume that demand is also
uncertain at the pricing stage. Since this assumption changes the
pricing stage, we first provide equilibrium characterization at the
second stage of the game.

Proposition 7. If capacities and prices are chosen prior to the actual
realization of θ, then for any continuous cdf G that satisfies Assumption 1,
there exists a unique equilibrium for given k−≤k+, that satisfies the
following:

(i) If k−≥1, at the unique pure-strategy equilibrium both firms set
prices equal to marginal cost and make zero expected profits.

(ii) If k−b1, a pure-strategy equilibrium fails to exist. In the unique
mixed strategy equilibrium,16 firms choose prices in a common
support, whose lower bound is strictly above marginal cost and
whose upper bound is 1.

If the small firm chooses to be large enough so that its capacity
always exceeds the largest possible demand realization, firms set
prices equal to marginal costs. However, and precisely for this reason,
this case would never arise as a subgame perfect equilibrium of the
two-stage game. If the small firm is always capacity constrained to
serve the market alone, the equilibrium differs substantially from the
case in which demand is knownwith certainty before prices are set. In
particular, the game has no pure-strategy equilibria. At the unique
mixed-strategy equilibrium, both firms charge prices in a common
support, with a lower bound strictly above (zero) marginal costs, and
an upper bound equal to consumers' reservation price; unlike the
small firm, the large firm plays a mass point at the upper bound.

Based on Proposition 7, we can construct the firms' expected profit
functions at the investment stage as a function of their capacity
choices. For i, j=1, 2, i≠ j,

πi ki; kj
� �

=
π−
i ki; kj
� �

if ki ≤kj

πþ
i ki; kj
� �

if ki≤kj
;

8><>: ð8Þ

where, setting h zð Þ = ∫1
0
min θ; zf gdG θð Þ,

π−
i k−; kþ
� �

=
h k−ð Þ
h kþð Þ ∫

1

k−
min θ−k−; kþ

n o
dG θð Þ− ck−; k−; kþ

� �
∈ 0;1½ �2 : k− ≤ kþ;

ð9Þ

πþ
i kþ; k−
� �

= ∫
1

k−
min θ−k−; kþ

n o
dG θð Þ− ckþ; k−; kþ

� �
∈ 0;1½ �2 : kþ≥ k−:

ð10Þ

The expected profit for firm i is a piecewise continuous function
made up of the continuous and differentiable functions πi− and πi+.
The latter is strictly concave in k+ whereas the former is strictly
concave in k− under certain conditions on the density function (e.g. a
weakly increasing g suffices for πi− to be strictly concave in k−).

For the given capacities, the large firm's expected profits, Eq. (10),
are the same as in the game in which firms face no uncertainty at the
pricing stage, Eq. (3). In either case, the large firm earns the same
16 If F− and F+ denote the equilibrium mixed-strategy of the small and the large firm,
respectively, then F−(p)≥F+(p) follows. Gal-Or (1984) focuses on the symmetric
mixed strategy equilibrium. The mixed strategy equilibrium is symmetric only if
k−=k+=k (see Appendix A for details).



17 For instance, for the family of power functions G(θ)=θa, a∈ 0;1ð Þ; which satisfy
Assumption 2 but not Assumption 5, the cross-partial derivative of the small firm is
positive at any pair (k−,k+) for k− sufficiently small. Hence, within this family of
distribution functions, capacity choices are not always strategic substitutes if demand
is uncertain at both the investment and pricing stages. In contrast, they are strategic
substitutes if demand is uncertain at the first stage only.
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profits as if it were as a monopolist over the residual demand. In
contrast, the smaller firm's expected profits do depend on the timing
of demand realizations. For given capacity choices, the expected
revenue of the small firm is now a fraction of the larger firm's
expected revenue. This fraction is given by the ratio of the expected
revenues of a monopolist with capacity k− over those of a monopolist
with capacity k+.

The expected profit function preserves the main feature that
accounts for the non-existence of a symmetric equilibrium in capacity
choices: marginal returns to investment differ across firms. Formally,
the marginal expected profits from increasing own capacity, condi-
tionally on being the small or the large firm, are given by

∂π−
i

∂k− =
1−G k−ð Þð Þ∫1

k−
min θ−k−; kþ

� 	
dG θð Þ−h k−ð Þ∫K

k−
dG θð Þ

h kþð Þ −c;

ð11Þ

∂πþ
i

∂kþ = 1−G Kð Þ− c: ð12Þ

Consequently, marginal returns to investment jump around
symmetric capacity pairs,

lim
ki↓k

∂πþ
i

∂ki j
ki ;kð Þ

− lim
ki↑k

∂π−
i

∂ki j
ki ;kð Þ

=
1−G kð Þ
h kð Þ ∫k

0
θdG θð Þ + ∫

2k

k
2k−θð ÞdG θð Þ

� �
N 0;

ruling out existence of a symmetric equilibrium in capacity choices.
Since at any candidate equilibrium there is a large and a small firm,

the former must invest k+ to maximize its expected profits. As πi+ is
strictly concave in k+, any candidate equilibrium must solve the large
firm's first order condition, (12). It follows that aggregate capacity is
given by K=G−1(1−c). The analogous to Proposition 3 trivially
follows.

Proposition 8. If capacities and prices are chosen prior to the actual
realization of θ, then for any continuous cdf G that satisfies Assumption 1,
ið Þ no symmetric pure-strategy Nash equilibrium exists, and (ii) at any
equilibrium candidate k−; kþð Þ aggregate capacity is given by
K = k− + kþ = G−1 1−cð Þ⊂ 0;1ð Þ.

Regarding the nature of the strategic interaction, capacity choices
are always strategic substitutes from the large firm's perspective. In
contrast, this may not always hold for the small firm. To see this, let
us re-write the small firm's marginal returns to investment as
follows:

∂π−
i

∂k− =
h k−ð Þ
h kþð Þ 1−G Kð Þð Þ−

h k−ð Þ−∫1
k−

min θ−k−; kþ
� 	

dG θð Þ
h kþð Þ 1−G k−ð Þð Þ−c:

Whereas the first term is always decreasing in k+, the second term
need not be. Indeed, the second term is increasing in k+whenever the
numerator, h k−ð Þ−∫1

k−
min θ−k−; kþf gdG θð Þ, is positive. This is

always the case unless k− is sufficiently small. The relative weights
of these two possibly opposite effects determine whether capacity
choices are strategic substitutes or strategic complements from the
small firm's perspective. A sufficient (not necessary) condition for
strategic substitutability to hold is that the density function be non-
decreasing, as stated in the following assumption:

Assumption 5. g is non-decreasing.

Note that Assumption 5 is stronger than Assumption 2. Moreover,
there are demand distributions forwhichwe can guarantee that capacity
choices are strategic substitutes when firms face uncertainty at the
investment stage only, while they are not when firms face demand
uncertainty at both stages.17 The analogous to Proposition 4 reads as
follows.

Proposition 9. If capacities and prices are chosen prior to the actual
realization of θ, then for any continuous cdf G that satisfies Assumptions 1
and 5, the capacity game is a game of strategic substitutes and it has
exactly one pair of pure strategy equilibria (k−, k+) and (k+, k−).

As we have shown, the nature of the equilibria as well as the level
of total investment is the same under both timing of demand
uncertainty. However, prices and firms' expected profits need not
be the same. In order to illustrate this, we focus on the case in which
demand is uniformly distributed.

Lemma 1. Assume that demand is uniformly distributed on the unit
interval. Prices and expectedprofits are higher if prices are chosenprior to the
actual realization of θ than if they are chosen after the actual realization of θ.

The timing of demand uncertainty alters the way in which total
capacity is distributed among firms, thereby affecting market
concentration. At least when demand is uniformly distributed, firms'
capacities are more asymmetric when firms face uncertain demand at
the pricing stage also. This leads to greater expected profits, and hence
higher consumer prices, while total welfare remains the same (recall
that welfare only depends on aggregate investment). It follows that
the most favorable outcome from consumers' point of view is
achieved when firms know he actual mass of consumers prior to
competing in the product market.

4. Comparison with other games

We conclude the paper by comparing the equilibria of the two-
stage game, as analyzed in Section 2, with those in two benchmark
games: the certainty equivalent game, and the Cournot gamewith and
without demand uncertainty.

4.1. Certainty equivalent game

We first consider the certainty equivalent game, i.e., the game in
which demand is known to be equal to the expected demand in the
uncertain game, i.e., to E θ½ � = ∫1

0
θdG θð Þ.

Lemma 2. Comparison of the subgame perfect equilibrium outcomes in
the certainty equivalent game versus the game with demand uncertainty
(regardless of whether firms face demand uncertainty at both stages or
only at the investment stage) shows the following:

(i) Aggregate capacity is larger under demand uncertainty if and only

if c∈ 0; bc� �
, where bc is implicitly defined by G−1 1−bc� �

= E θ½ �.
(ii) Both with certain and uncertain demand, aggregate investment is

welfare-maximizing. Nevertheless, the level of total welfare at the
First-Best is lower under demand uncertainty.

(iii) Prices are lower and consumer surplus is higher under demand
uncertainty.

(iv) The game with demand uncertainty generates price dispersion,
whereas its certainty-equivalent game does not.

Under demand uncertainty, a marginal increase in the large firm's
capacity allows it to sell more output at the reservation price whenever
demand exceeds aggregate capacity, but it implies an additional
investment cost, c. Hence, an increase in c reduces investment, and may
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ultimately lead to very low investment levels as c approaches consumers'
reservation price. In contrast, under demand certainty, firms invest just
enough so as to cover demand irrespective of the unit cost of capacity (as
long as it does not exceed consumers' reservation value). Therefore,
demand uncertainty generates more investment as compared to the
certainty equivalent game if and only if c is sufficiently lowwith respect to
expected demand.

Regardless of whether demand is certain or uncertain, aggregate
investment is the same as the one a social plannerwould choose in order
to maximize total welfare. Social and private gains from increasing
capacity coincide since the marginal capacity is used when aggregate
capacity is fully utilized, in which case it receives consumers' reservation
price. This doesnotmeanhowever thatwelfare levels are the sameunder
bothgames. Trivially, the fact thatKb1 implies that in theuncertain game
total surplus is not maximal for demand realizations in K;1½ �. In contrast,
under the certainty equivalent game, there is no demand rationing nor
unused capacity, so that total welfare is maximized.

Regarding prices and consumer surplus, the ranking goes in the
opposite direction. Under demand uncertainty, the emergence of idle
capacity for some demand realizations drives prices below the
reservation price, allowing consumers to retain a positive share of
total surplus. This contrasts with the certainty equivalent game, in
which prices are set equal to consumers' reservation value, thus
driving consumer surplus to zero.18

Last, as argued by Gal-Or (1984), our results confirm that a rationale
for price variability over time can be based upon uncertain demand: at
theequilibriumcapacities of theuncertain demandgame,mixed strategy
pricing generates price dispersion; this is unlike its certainty equivalent
game, in which prices remain at the constant reservation price.
4.2. Cournot game

There is a long tradition of comparing the sequential capacity-price
game and the Cournot game, which dates back to Kreps and Scheink-
man's seminal paper. For a duopoly facing downward sloping and
certain demand, Kreps and Scheinkman were the first to show that the
unique equilibrium of the sequential capacity-price game yields the
Cournot outcome. By introducing demand uncertainty into Kreps and
Scheinkman's model, Reynolds and Wilson (2000) showed that the
equivalence between these two games need not always hold. In
particular, for some parameter values, the equilibrium capacity choices
of the two-stage game are asymmetric, and hence do not belong to the
set of Cournot equilibria, as these are all symmetric.19

As we show next, Kreps and Scheinkman's result is more robust to
introducing demand uncertainty if demand is price inelastic than if it
is downward-sloping, in the following sense: the equilibrium capacity
choices of the two-stage game are always contained in the set of
Cournot equilibria, regardless of whether demand is certain or not.
However, this does not imply that both games are fully outcome
equivalent as, under demand uncertainty, the two-stage game leads to
more competitive pricing than the Cournot game.

At the Cournot equilibrium, the strategy of firm i is a choice of
output that maximizes its profits given its rival's output choice,

πi qi; qj
� �

= ∫
1

0
min qi; θ−qj

n o
dG θð Þ− cqi; i = 1;2:
18 When firms choose output levels in the second stage rather than prices, as in
Gabszewicz and Poddar (1997), expected price and output under uncertain demand
coincide with the price and output corresponding to the certainty equivalent case.
Here we show that this is no longer true when firms compete in prices in the second
stage.
19 A sufficient condition for the equivalence between the two games is provided by
Lepore (2008, see Theorem 3) who shows that the unique equilibrium of the capacity
game is the largest uncertain Cournot equilibrium (UCE, for short), if at the UCE
capacity pricing is at the Cournot region with probability one.
Because demand is perfectly inelastic, the Cournot price always equals
the reservation price (normalized to 1), as it is the market clearing
price regardless of the choice of output of the firms.

With certain demand, there is a continuumof Cournot equilibria, in all
of which firms' aggregate output equals total demand (Cripps and Ireland
(1988)): any increase in production would remain unsold, whereas any
output reduction would imply a profit loss of 1−c. This equilibrium
outcome is efficient andallowsfirms to earnmonopolyprofits. Comparing
this result to the one in Proposition 2 shows that, in a deterministic
environment, the subgame perfect equilibria of the sequential capacity-
price game are contained in the set of Cournot equilibria.

To explore whether this equivalence remains true under demand
uncertainty, we next characterize equilibria at the uncertain Cournot
game.

Lemma 3. For any continuous cdf G that satisfies Assumption 1, there
are multiple equilibria in the Cournot game with uncertain demand, in all
of which aggregate production is G−1 1−cð Þ.

As far as capacity choices are concerned, the equivalence between
the Cournot game and the sequential capacity-price game is
preserved. More explicitly, the equilibrium capacity choices of the
sequential capacity-price game are contained in the set of Cournot
equilibria, and both games lead to the same aggregate equilibrium
investment. However, firms' total equilibrium profits in the Cournot
game are higher than those in the sequential capacity-price game.
Whereas in the former, firms always receive the reservation price and
hence earnmonopoly profits; in the latter, firms price below that level
with probability 1−c. Last, the two games also differ in an empirically
testable prediction: whereas the sequential game generates price
dispersion, the Cournot game does not.
5. Conclusions

We have characterized the set of subgame perfect Nash equilibria
in a game in which firms take pure-strategy investment decisions and
then engage in price competition. We have shown that the
introduction of demand uncertainty has important implications on
equilibrium investment choices, as it may rule out the existence of
symmetric equilibria, leading to asymmetric capacity choices, regard-
less of whether firms face demand uncertainty at both the investment
and pricing stages or only at the former. Firms become asymmetric in
size in an attempt to generate price distributions which yield higher
expected prices for a wider range of demand realizations. By doing so,
they avoid both competitive prices if demand turns to be below the
small capacity (Region I), as well as to avoid more competitive price
distributions if demand turns to be below aggregate capacity (Region
II). Comparison with the Cournot game shows that under demand
uncertainty, subgame perfect equilibrium capacity choices of the two-
stage game are contained in the set of Cournot equilibria. However,
unlike the Cournot game, the capacity-price game leads to prices
below the reservation price and generates price dispersion.

Our formulation contributes to the existing literature on capacity
choices and imperfect competition under demand uncertainty in
several respects. First, in contrast to the papers that assume Cournot
competition, our approach conforms to the widely accepted view that
firms compete in prices subject to capacity constraints. Second, as
compared to the papers that analyze investment decisions followed
by Bertrand competition, our approach is appealing in terms of
tractability, as it provides a characterization of pure strategy equilibria
for general demand distributions and cost functions, allowing to make
use of powerful results within the theory of submodular games. Last,
our model is able to generate relevant predictions regarding market
structure and the sensitivity of investment decisions and pricing
behavior to measurable variables, such as the shape of the demand
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distribution function or the capacity cost function, and market
characteristics, such as the timing of demand uncertainty.

Our analysis may shed light on investment incentives and
endogenous market structure in a large set of industries characterized
by long-lived assets that involve large sunk cost investments,
imperfect competition and demand fluctuations. These features are
common to most important industries producing commodities, such
as steel, chemicals, cement, or electricity, to name just a few, as well as
to service industries, such as the Internet.
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Appendix A

A.1. The model

Proof of Proposition 4. We first show that both π− and π+ are
submodular by analyzing the sign of the second order cross
derivatives. The second order cross derivatives conditionally on
being the small or the large firm are given by

∂2π−
i

∂k−∂kþ = − 1
kþ

∫
K

kþ

θ−2k−ð Þ
kþ

dG θð Þ + g Kð Þk−
� �

; and

∂2πþ
i

∂kþ∂k− = −g Kð Þ:

The second order cross derivative of the large firm is negative for any
G as g Kð Þ N 0. Similarly, for any G the second order cross derivative of
the small firm is negative at any pair (k−, k+) such that k+≥2k− as

∫K
kþ

θ−2k−ð Þ
kþ

dG θð Þ N 0. If G satisfies Assumptions 1 and 2 the result does

also hold for pairs (k−, k+) such that k−≤k+b2k−. Note that

integration by parts allows to rewrite ∂2π−
i

∂k−∂kþ as − 1
kþ
H k−; kþð Þ, where

H k−; kþ
� �

= ∫
K

kþ

θ−2k−ð Þ
kþ

dG θð Þ + g Kð Þk−

=
1
kþ

∫
K

kþ
G Kð Þ + kþg Kð Þ− G θð Þ + 2k−−kþ

� �
g θð Þ

� �� �
dθ

≥ 1
kþ

∫
K

kþ
G Kð Þ + kþg Kð Þ− G θð Þ + kþg θð Þ

� �� �
dθ;

where the second equality follows from straightforward computa-

tions after integration by parts of θg θð Þ, and the inequality from the

fact that 2k−−k+≤k+. A sufficient condition for the integral above

to be positive is that G θð Þ + kþg θð Þ be an increasing function, which

holds trivially if g θð Þ + θg′ θð Þ≥0, i.e., under Assumptions 1 and 2.
Now existence of at least one pair of asymmetric equilibria follows

from Theorem 3.1. in Amir et al. (2010) as (i) π− and π+ are

submodular, (ii) limki↓k
∂πþ

i

∂ki
j
ki ;kð Þ− limki↑k

∂π−
i

∂ki
j
ki ;kð Þ = ∫2k

k
2k−θ

k
dG θð Þ N 0

and iii) ∂π−
i

∂ki
j
1;1ð Þb0 and ∂πþ

i
∂ki

j
0;0ð Þ N 0, so that (0,0) and (1,1) can be

ruled out as equilibrium outcomes.
Regarding uniqueness the result follows from the fact that the

slope of the best correspondence function of the small firm is smaller
than the one corresponding to the large firm so that they can cross

only once, i.e.,
∂2π−

i

∂k−∂kþ




 



−



 ∂2πþ

i

∂kþ∂k−




b0 holds.
Since under Assumptions 1 and 2 both cross derivatives are
negative, we have

∂2π−
i

∂k−∂kþ












− ∂2πþ

i

∂kþ∂k−












 = 1

kþ
∫

K

kþ

θ−2k−ð Þ
kþ

dG θð Þ−g Kð Þ kþ−k−

kþ

� �
:

Furthermore,

1
kþ

∫
K

kþ

θ−2k−ð Þ
kþ

dG θð Þb 1
kþ

g Kð Þ kþ−k−

kþ

� �
k− b g Kð Þ kþ−k−

kþ

� �
;

where the first inequality follows from the fact that θg θð Þ is an
increasing function and the second one from the fact that k− /k+b1. It

hence follows that
∂2π−

i

∂k−∂kþ












− ∂2πþ

i

∂kþ∂k−












b0, as claimed. Q.E.D.

A.2. Extensions and variations

Proof of Proposition 5. (i) Marginal expected profits from increasing
own capacity are given by Eqs. (4) and (5), except for the last term
which now becomes −Ci′ kið Þ. For any Ci(ki), it remains true that at
symmetric capacity pairs k; kð Þ, with k∈ 0;1ð Þ, the difference between
the right-hand and the left hand derivatives is positives as Ci′ kð Þ
simply cancels. Hence, (6) remains the same. Moreover, ∂πþ

i
∂ki

j 0;0ð Þ =

1−Ci′ 0ð Þ N 0 and ∂π−
i

∂ki j 1;1ð Þ = −Ci′ 1ð Þb 0, so that (0,0) and (1,1) can be

ruled out as equilibrium outcomes. This rules out symmetric equilibria.
(ii) Given that Ci kið Þ does not depend on kj, the second order

cross derivatives are the same as in Proposition 4, and are hence
negative whenever Assumption 2 holds. Together with (i), this
assures that π− and π+ are submodular so that equilibrium existence
is guaranteed. If firms are symmetric, uniqueness also follows
from the fact that the cross derivatives remain unchanged as in
Proposition 4. Q.E.D.

Proof of Proposition 6. (i) The proof is by way of contradiction.
Assume that there is an equilibrium at which K∉ θL; θH

n o
for some

ρ≠1−c. W.l.o.g. index firms such that k1≤k2. Since π1(k1,k2)=
(1−c)k1 for all k1≤θL−k2, it is trivial to see that KbθL cannot be an
equilibrium outcome as firm 1 would find it profitable to increase its
capacity to θL−k2. Similarly, K N θH cannot be an equilibrium either as
firm 2would prefer to decrease its capacity to θH−k1. Note that the large
firm sells at most the residual demand ρ θL−k1

� �
+ 1−ρð Þ θH−k1

� �
,

which is independent of its own capacity, but has to pay c for any extra
capacity. Consequently, K∈ θL; θH

h i
. Assume now that K∈ θL; θH

� i
and

ρ∈ 1−c;1ð �. Since firm 2's expected profits for k2∈ k1; θ
H−k1

h i
are at

most ρ θL−k1
� �

+ 1−ρ−cð Þk2 and these are strictly decreasing in k2
(note that marginal returns to capacity expansions, 1−ρ−c, are
negative), firm 2 can increase its expected profits by investing θL−k1,
contradicting that K∈ θL; θH

� i
is an equilibrium. Finally, assume

K∈ θL; θH
h �

and ρb1−c. Firm 2's expected profits for k2∈ k1; θ
H−k1

h i
are strictly increasing in k2 (since we now have 1−ρ−cN0) so that

firm 2 is better off investing θH−k1 rather than any smaller quantity,
again a contradiction. Finally, if 1−ρ=c, the probability of the
high demand state equals the marginal cost of capacity. Hence, any
capacity expansion aimed to be used under high demand yields no
marginal profit. Consequently, if k1=θL/2, firm 2 is indifferent between
setting k2=θL/2 or any k2∈ θL = 2; θH−θL = 2

h i
. This implies that any

capacity pairs resulting in K∈ θL; θH
h i

can be sustained as an equilibrium

of the game.



20 The interested reader can find the complete characterization and all the details in
the working paper version of this paper.
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(ii) and (iii). We first show that if ρ∈ 1−c;1ð � equilibria are pairs

(θL−k+,k+) with kþ∈ θL

2
;

θLρ
1 + ρ−c

� �
so that a symmetric equilibrium

exists as well as a continuum of asymmetric equilibria. Focus on firm 1.

By i) we can concentrate on choices such θL−k2≤k1≤k2. Appealing to

Proposition 1, firm 1 expected profits are given by ρk1
k2

θL−k1
� �

+

1−ρð Þk1−ck1, which are maximized at k⁎1 k2ð Þ = 1
2
θL + k2

1−c−ρ
ρ

� �
if it

is larger than θL−k2 and at θL−k2 otherwise. Since k1
⁎(k2)bθL−k2 for

any k2≤ θL ρ
1 + ρ−c

, the best reply is θL−k2 for 0≤k2≤ θL ρ
1 + ρ−c

and it is

k1
⁎(k2) for k2∈ θL ρ

1 + ρ−c
; θL

� �
. As ρ

1 + ρ−c
N

1
2
, a symmetric equilibrium

always exist togetherwith a continuumof asymmetric equilibria, which
shows our claim. Furthermore, as ρ→1−c the only equilibrium is the
symmetric one.

Let us now assume ρ∈ 0;1−c½ �. Since any candidate equilibrium
must satisfy K=θH, we can focus on firm 1's best reply to k2≥θH

2
. We

must distinguish two cases: θH

2
N θL and θH

2
≤ θL, i.e., if we let Δ = θH

θL
,

these two cases are ΔN2 and Δ≤2. In what follows, for each value of
Δ, we first show that a symmetric equilibrium does not always exist
and then characterize the set of asymmetric equilibria.

We first show that a symmetric equilibrium exists if and only if
ρ∈ 0; �ρ Δð Þ
h i

. If ΔN2 firm 1's expected profits when k2 = θH

2
and

k1≤k2 are given by

π1 k1;
θH

2

 !
=

ρ
k1
θL θL−k1
� �

+ 1−ρð Þk1−ck1 if 0≤k1b θ
L

0 + 1−ρð Þk1−ck1 if θL ≤k1≤
θH

2

8>>><>>>:
Since the profit function is concave in k1 up to k1bθ L and increasing

thereafter, it has two local maxima: one at k⁎1 = min 1−c
2ρ

θL;θL

� �
and

the other one at θ
H

2
d As k1

⁎ is decreasing in ρ with k1
⁎= θL at ρ = 1−c

2
, it

trivially follows that the global maximum is θH

2
for all ρ≤ 1−c

2
. In

contrast, if ρ∈ 1−c
2

;1−c
� �

, we have

π1
θH

2
;
θH

2

 !
−π1

1−c
2ρ

θL;
θH

2

 !
≥ 0 if and only if ρ≤ ρ̂ Δð Þ;

where ρ̂ Δð Þ = 1−c
2

1 +

ffiffiffiffiffiffiffiffiffi
Δ−2
Δ

r" #
∈ 1−c

2
;1−c

� �
with limΔ→2 ρ̂ Δð Þ =

1−c
2

. Hence, θH

2
;
θH

2

� �
is a symmetric equilibrium if ρ∈ 0; ρ̂ Δð Þ� �

.

Assume now that Δ≤2 so that firm 1's expected profits when
k2 = θH

2
and k1≤k2 are given by,

π1 k1;
θ H

2

 !
=

1−cð Þk1 if 0≤k1 ≤ θL− θH

2

ρ
k1

θH = 2
θL−k1
� �

+ 1−ρð Þk1−ck1 if θL− θH

2
≤k1 ≤

θH

2

8>>><>>>:

which has a local maximum at k1′ = min θL

2
+ θH

4ρ
1−c−ρð Þ; θ

H

2

� �
. Note

that k1′ is decreasing in ρ and it is equal to θH

2
for any ρ≤ ρ̃ Δð Þ =

1−c
2

2Δ
3Δ−2

� �
. In contrast for ρ∈ ρ̃;1−c

� �
, k′1 = θL

2
+ θH

4ρ
1−c−ρð Þ b θH

2
so

that a symmetric equilibrium fails to exist.
We next show that there is a continuum of asymmetric

equilibrium for any value of ρ and Δ. If ΔN2 whenever firm 2 expands
its capacity beyond θH

2
firm 1's expected profits for capacities

k1∈ θH−k2; k2
h i

are given by

ρmin
k1
θL

θL−k1
h i

;0
� �

+ 1−ρð Þ k1
k2

θH−k1
� �

−ck1;

which are maximized at k⁎⁎1 k2ð Þ = θL

2
θH 1−ρð Þ + ρ−cð Þk2

θL 1−ρð Þ + k2ρ

� �
so that firm 1

optimal choice is either k1
⁎ or θH−k2 or k1

⁎⁎(k2).
Assume first that ρ≤ 1−c

2
. As 1−ρ−cN0, firm 1 is better off

investing θH−k2 rather than any smaller quantity. Moreover,
k1
⁎⁎(k2)≤θH−k2 for all k2by(ρ), the capacity θH−k2 is firm 1's best

reply to any k2∈ θH

2
; y ρð Þ

� �
, where

y ρð Þ =
2ρθH−θL 2−ρ−cð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρθH ρ θH−θL

� �
+ cθ L

� �
+ 2−ρ−cð Þθ L
� �2q

4ρ
:

Consequently if ρ≤ 1−c
2

there exists a continuum of asymmetric

equilibria made of pairs (θH−k+,k+) with kþ∈ θH

2
; y ρð Þ

� �
. Note that as

ρ→0 the set of equilibria converges to the set of equilibria when

demand is θHwith probability one, i.e., kþ∈ θH

2
;
θH

2−c

� �
and k−=θH−k+.

Assume now that ρ∈ 1−c
2

; ρ̂
� i

, so that producing below θ L, in

particular at k1
⁎, may turn an optimal choice. For these values of ρ there

are two disjoint sets of equilibria: one made of pairs (θH−k+,k+)

with kþ∈ θH

2
; θH− 1−cð Þ2

4ρ 1−ρ−cð Þθ
L

� �
, and the other one consisting of pairs

(θH−k+,k+) with kþ∈ θH−1−c
2ρ

θ L; y ρð Þ
� �

, where θH− 1−cð Þ2
4ρ 1−ρ−cð Þ θ

L ≤

θH−1−c
2ρ

θL ≤y ρð Þ. Note that as ρ→1−c
2

we have

lim
ρ→

1−c
2

θH− θH− θL 1−cð Þ2
4ρ 1−ρ−cð Þ

 !
−1−c

2ρ
θL

" #
= 0;

so that the two sets of equilibria become connected and hence we get
the same equilibria as when ρ≤ 1−c

2
.

Finally, if ρ∈ ρ̂;1−c
� �

, the only equilibrium set is made of the

capacity pairs (θH−k+,k+) with kþ∈ θH− 1−cð Þ
2ρ

θ L; y ρð Þ
� �

.

Assume now thatΔ≤2.When this is the case there are asymmetric
equilibria that depend on the value of Δ. For instance, if ΔN3/2 the

set of asymmetric equilibria is given by kþ∈ ρ 2θH−θL

1−c + ρ
; y ρð Þ

� �
if

ρ∈ ρ̃; 1−c
2

1
Δ−1

� �
, and by kþ∈ θH−1−c

2ρ
θL; y ρð Þ

� �
if ρ∈ 1−c

2
1

Δ−1
;1−c

� �
.

The complete characterizationof the set of asymmetric equilibria for this
last case is a tedious and mechanical exercise and it is hence omitted.20

Q.E.D.

Proof of Proposition 7. We prove part (ii) only as part (i) follows
directly from Proposition 1. Standard arguments show that a pure-
strategy equilibrium does not exist. To see this, note first that in a pure-
strategy equilibrium both firms' prices must be equal. Otherwise, the
firm with the low price could profitably increase its price towards its
rival's without losing output. Next, this common price cannot exceed
(zero) marginal costs; if it did, some firm could profitably deviate to a
slightly lower price, thereby increasing its expected output with only a
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negligible effect on the expected price. Lastly, pricing at marginal costs
cannot constitute an equilibrium either, since at least the large firm
could obtain positive expected profits in the event that demand exceeds
its rival's capacity if it raised its own price.

Accordingly, we next characterize the unique mixed-strategy
equilibrium. To do so, we concentrate our attention on the case
in which K≤1, as KN1 will never be part of a subgame perfect
equilibrium (the large firm would never sell at capacity and could
increase its expected profits by reducing its capacity to 1−k−).

Let Fi pð Þ = Pr pi≤pf g denote the equilibrium mixed-strategy of
firm i, i=1,2, with fi(p)=Fi′(p), and let Si be the support of Fi. Standard
arguments imply that S1∩S2 = �p;1

h �
and that F1 and F2 do not have

mass points on �p;1
� �

.21

Firm i's expected profits when pricing at p are given by

πi pð Þ = p Fj pð Þ∫1

kj
min θ−kj; ki

n o
dG θð Þ + 1−Fj pð Þ

� �
∫
1

0
min θ; kif gdG θð Þ

" #
−cki:

A necessary condition for firm i to follow a mixed-strategy is that
πi pð Þ = π̄i for all p∈Si, implying

Fj pð Þ =
πi + cki

p
−∫1

0
min θ; kif gdG θð Þ

∫
1

kj
min θ−kj; ki

n o
dG θð Þ−∫

1

0
min θ; kif gdG θð Þ

:

Using the boundary condition Fj �p
� �

= 0, it follows that

πi + cki = �p∫
1

0
min θ; kif gdG θð Þ:

Hence, for prices in the support Si, it holds that

Fj pð Þ = ∫1

0
min θ;kif gdG θð Þ

∫1
0
min θ; kif gdG θð Þ−∫1

kj
min θ−kj;ki

n o
dG θð Þ

p−�p
p

:

Let F− and F+ denote the equilibrium mixed-strategy of the small
and the large firm, respectively. We first show that F−(p)≥F+(p). It
follows that we cannot have limp ↑1F

+(p)=1, since this would imply
limp ↑1F

−(p)≥1, with strict inequality for k−bk+. Consequently, we
have the boundary condition limp ↑1F

−(p)=1, from which it follows
that

�p =
∫1

k−
min θ−k−; kþ

� 	
dG θð Þ

∫1
0
min θ; kþf gdG θð Þ

b 1:

Equilibrium expected profits become

π−
i =

∫1

0
min θ; k−f gdG θð Þ

∫1

0
min θ;kþf gdG θð Þ

∫1

k−
min θ−k−; kþ

n o
dG θð Þ−ck−; and

πþ
i = ∫1

k−
min θ−k−; kþ

n o
dG θð Þ−ckþ:

Q.E.D.

Proof of Proposition 9. The proof uses the same arguments
displayed in the Proof of Proposition 4. Recall that equilibrium
existence can be guaranteed if the three following conditions hold:
21 If there were a mass point in the interior of the distribution, it would be optimal
for the rival to transfer some probability weight below the mass point so as to increase
the probability of having the low price. This is not feasible at the upper bound (p=1)
as the rival is pricing below this price with probability one. Hence, there can be mass
points in the mixed strategies at the upper bound.
ið Þ π− and π+ are submodular; iið Þ limki↓k
∂πþ

i

∂ki j ki ;kð Þ
− limki↑k

∂π−
i

∂ki j ki ;kð Þ
N 0;

and iiið Þ Both ∂πþ
i

ki j 1;1ð Þ
b 0 and ∂π−

i
∂ki

j 0;0ð ÞN 0 hold, so that (0,0) and (1,1)

can be ruled out as equilibrium outcomes. Condition iið Þ has already

been shown to hold. Condition iiið Þ holds as ∂πþ
i

∂ki
j 1;1ð Þ = −cb0 and

∂π−
i

∂ki j 0;0ð Þ = 1−c N 0, where the last result follows from the fact that
∂π−

i
∂ki j 0;0ð Þ = limk↑0

∂π−
i

∂ki j k;kð Þ

� �
−c, which equals 1−c from l'Hôpital's

rule. Consequently, we only need to show that both cross partial
derivatives are negative, i.e., ∂2πþ

i
∂kþ∂k− b 0 and ∂2π−

i
∂k−∂kþ b 0, as this will ensure

that condition ið Þ holds too.
For the large firm the result follows trivially as

∂2πþ
i

∂kþ∂k− = −g Kð Þb 0:

For the small firm, ∂2π−
i

∂k−∂kþ = N k− ;kþð Þ
h kþð Þð Þ2 , where the numeratorN(k−,k+)

is given by

1−G k−ð Þð Þ 1−G Kð Þð Þ−g Kð Þ∫1

0
min θ; k−f gdG θð Þ

� �
∫1

0
min θ; kþ

� 	
dG θð Þ

− 1−G k−ð Þð Þ∫1

k−
min θ−k−; kþ

� 	
dG θð Þ−∫K

k−
g θð Þdθ∫1

0
min θ; k−f gdG θð Þ

� �
� 1−G kþ

� �� �
:

Since

∫1

z
min θ−z; yf gdG θð Þ = ∫z + y

z
θ−zð ÞdG θð Þ + y 1−G x + yð Þð Þ

= ∫y

0
θdG θ + zð Þ + y 1−G x + yð Þð Þ;

straightforward computations allow us to rewrite N(k−, k+) as follows

1−G k−ð Þð Þ 1−G Kð Þ½ �∫kþ

0
θdG θð Þ− 1−G kþ

� �� �∫kþ

0
θdG θ + k−ð Þ

� �
− ∫1

0
min θ; k−ð ÞdG θð Þ

� �
g Kð Þ∫1

0
min θ; kþ

� �
dG θð Þ− 1−G kþ

� �� �∫K

k−
g θð Þdθ

� �
:

If g is non-decreasing (i.e., under Assumption 5) N(k−, k+) is
negative. Note that for a non-decreasing g it holds that
∫kþ

0
θdG θ + k−ð Þ≥ ∫kþ

0
θdG θð Þ

� �
, which combined with 1−G kþ

� �
≥

1−G Kð Þ ensures that the first term is negative. Similarly, the second
one is negative as g Kð Þ∫1

0
min θ; kþ

� �
dG θð Þ≥ g Kð Þkþ 1−G kþ

� �� �
, and

g Kð Þkþ≥ ∫K

k−
g θð Þdθ

� �
. It hence follows that N(k−, k+)b0, so that

∂2π−
i

∂k−∂kþ =
N k− ;kþð Þ
h kþð Þð Þ2 b0, as claimed.

Regarding uniqueness, we next show for all k̃−; k̃þ
� �

such that
∂π−

i
∂ki j k̃−; k̃þð Þ =

∂πþ
i

∂ki j k̃− ; k̃þð Þ = 0 it is satisfied that j ∂2π−
i

∂k−∂kþj k̃−; k̃þð Þj−j ∂2πþ
i

∂kþ∂k−j k̃
−
; k̃þð Þb 0.

Let k̃
−
; k̃

þ� �
be such that ∂π−

i

∂ki j k̃−; k̃þð Þ =
∂πþ

i

∂ki j k̃−; k̃þð Þ = 0 holds.

Denote by J k̃
−
; k̃

þ� �
the second order cross derivative of the small

firm evaluated at k̃
−
; k̃

þ� �
, i.e., let J k̃

−
; k̃

þ� �
= ∂2π−

i

∂k−∂kþj k̃−; k̃þð Þ.
Straightforward computations give

J k̃−; k̃þ
� �

=
1−G k̃−

� �� �
c−g K̃

� �
∫1

0
min θ; k̃−

n o
dG θð Þ−c 1−G k̃þ

� �� �
∫1

0
min θ; k̃þ

n o
dG θð Þ

=
G k̃þ
� �

−G k̃−
� �� �

c−g K̃
� �

∫1

0
min θ; k̃−

n o
dG θð Þ

∫1

0
min θ; k̃þ

n o
dG θð Þ

:
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Since for any non-decreasing g, it holds true that J k̃−; k̃þ
� �

b0, the

sign of ∂2π−
i

∂k−∂kþj k̃− ; k̃þð Þ





 



− ∂2πþ
i

∂kþ∂k−j k̃− ; k̃þð Þ





 



 equals the sign of

− G k̃þ
� �

−G k̃−
� �� �

c+ g K̃
� �

∫1

0
min θ; k̃−

n o
dG θð Þ−∫1

0
min θ; k̃þ

n o
dG θð Þ

� �
b0;

which ensures uniqueness, as claimed. Q.E.D.

Proof of Lemma 1. Assume thatdemand isuniformlydistributed in the
unit interval. Suppose first that firms face demand uncertainty at the
investment stage only. As a particular case of Proposition 5, equilibrium
capacities k− and k+ satisfy k++k−=1−c and k+=αk− with αN2
given implicitly by the equation α2−2αln αð Þ = 3

2
. Total expected

profits are given by,

∏= 1−cð Þ k−+ kþ
� �

− k−ð Þ2 1 +
1
2
k−

kþ
−ln

k−

kþ

� �� �
− 1

2
kþ
� �2

+ k−kþ
� �

:

At equilibrium capacities, these are approximately equal to
0:36 1−cð Þ2.

Suppose now that firms face demand uncertainty at both the
investment and pricing stages. Closed-form solutionswhen demand is
uniformly distributed are given by,

k− =
1
2

2 + c−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 4c + 3c2

p� �
; ð13Þ

kþ =
1
2

−3c +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 4c + 3c2

p� �
: ð14Þ

Total expected profits are given by,

∏ = π−
i +πþ

j =
1
2

2−2k−− kþ
� � 2−k−ð Þk−+ 2−kþ

� �
kþ

2−kþ
− c k−+kþ

� �
:

Substituting for k− and k+ from Eqs. (13) and (14) above, we find
equilibrium expected profits in reduced form,

∏ =
1
4

c +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 4c + 3c2

p� � 1 + 2cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 4c + 3c2

p
−c 5 + 4cð Þ

2 + 1
2

3c−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 4c + 3c2

p� �
−c 1−cð Þ: ð15Þ

It is straightforward to check that Eq. (15) exceeds 0:36 1−cð Þ2.
Hence, expected profits are always lower when demand is uncertain
at the investment stage only. Since investment and output are equal
under both games, prices must also be lower. Q.E.D.

Appendix A.3. Comparison with other games

Proof of Lemma 2. ið Þ Subgame perfect equilibrium aggregate
capacity is given by Ku = G−1 1−cð Þ in the game with continuous
demand uncertainty, and it is given by Kc = E θ½ � in the certainty
equivalent game. The difference Ku−Kc is strictly decreasing in c.
Furthermore, limc→0 Ku−Kcð Þ N 0 and limc→1 Ku−Kcð Þb0. Hence, it
follows that there must exist some bc such that KuNKc if and only if
c∈ 0; bc� �

.
iið Þ Let Wu and Wc denote subgame perfect equilibrium welfare in

the game with demand uncertainty and in the certainty equivalent
game, respectively. These can be expressed as,

Wu = ∫1

0
min θ;Ku� 	

dG θð Þ−cKu
;

Wc = ∫1

0
θdG θð Þ−c∫1

0
θdG θð Þ:
Since Kub1 total surplus is smaller in the uncertain game as for a
positive mass of demand realizations total surplus is not maximal.
However, since the ranking of total production costs across games
depends on c as shown in ið Þ, the sign of Wu−Wc is a priori unclear.
Computing the difference in total welfare in the two games we have
that

Wu−Wc = c E θ½ �−G−1 1−cð Þ
� �

−∫1

G−1 1−cð Þ θ−G−1 1−cð Þ
� �

dG θð Þ:

The above expression is clearly negative if c∈ 0; bc� �
, as the second

term is negative and, by point ið Þ above, the first term is negative as

well. Furthermore, since ∂ Wu−Wc� �
∂c = E θ½ �−G−1 1−cð Þ N 0 for c∈ bc;1� �

and limc↑1 Wu−Wc� �
= 0, it follows that WubWc for all c.

Finally note that E θ½ �maximizes welfare at the certainty equivalent
game. Similarly, G−1 1−cð Þ maximizes Wu, as ∂Wu

∂K = 1−G Kð Þ−c = 0
implies KFB = G−1 1−cð Þ.

iiið Þ and ivð Þ. In the certainty equivalent game, subgame perfect
equilibrium prices are equal to consumers' reservation price, so
that consumer surplus is zero. In the game with continuous
demand uncertainty, prices are strictly below the reservation price
for θ∈ 0;G−1 1−cð Þ� �

⊂ 0;1½ �, so that consumer surplus is strictly
positive. It follows that expected prices must be lower and
consumer surplus higher under demand uncertainty. Finally, for
θ∈ k−;Kð Þ, the equilibrium is in mixed strategies, so there is price
dispersion. Q.E.D.

Proof of Lemma 3. The first order, second-order and cross
derivatives of firms' profits functions in the Cournot game are given by

∂πi

∂qi
= 1−G qi + qj

� �
−c = 0and

∂2πi

∂q2i
=

∂2πi

∂qi∂qj
= −g qi + qj

� �
b0:

By solving the FOC, any output pair q1; q2ð Þ that satisfies
q1 + q2 = G−1 1−cð Þ constitutes an equilibrium of the Cournot game
with uncertain and inelastic demand. Q.E.D.
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